xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision b9b77222)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 struct hugetlbfs_config {
49 	struct hstate		*hstate;
50 	long			max_hpages;
51 	long			nr_inodes;
52 	long			min_hpages;
53 	kuid_t			uid;
54 	kgid_t			gid;
55 	umode_t			mode;
56 };
57 
58 int sysctl_hugetlb_shm_group;
59 
60 enum {
61 	Opt_size, Opt_nr_inodes,
62 	Opt_mode, Opt_uid, Opt_gid,
63 	Opt_pagesize, Opt_min_size,
64 	Opt_err,
65 };
66 
67 static const match_table_t tokens = {
68 	{Opt_size,	"size=%s"},
69 	{Opt_nr_inodes,	"nr_inodes=%s"},
70 	{Opt_mode,	"mode=%o"},
71 	{Opt_uid,	"uid=%u"},
72 	{Opt_gid,	"gid=%u"},
73 	{Opt_pagesize,	"pagesize=%s"},
74 	{Opt_min_size,	"min_size=%s"},
75 	{Opt_err,	NULL},
76 };
77 
78 #ifdef CONFIG_NUMA
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
80 					struct inode *inode, pgoff_t index)
81 {
82 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
83 							index);
84 }
85 
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
87 {
88 	mpol_cond_put(vma->vm_policy);
89 }
90 #else
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
92 					struct inode *inode, pgoff_t index)
93 {
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 }
99 #endif
100 
101 static void huge_pagevec_release(struct pagevec *pvec)
102 {
103 	int i;
104 
105 	for (i = 0; i < pagevec_count(pvec); ++i)
106 		put_page(pvec->pages[i]);
107 
108 	pagevec_reinit(pvec);
109 }
110 
111 /*
112  * Mask used when checking the page offset value passed in via system
113  * calls.  This value will be converted to a loff_t which is signed.
114  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115  * value.  The extra bit (- 1 in the shift value) is to take the sign
116  * bit into account.
117  */
118 #define PGOFF_LOFFT_MAX \
119 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
120 
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 	struct inode *inode = file_inode(file);
124 	loff_t len, vma_len;
125 	int ret;
126 	struct hstate *h = hstate_file(file);
127 
128 	/*
129 	 * vma address alignment (but not the pgoff alignment) has
130 	 * already been checked by prepare_hugepage_range.  If you add
131 	 * any error returns here, do so after setting VM_HUGETLB, so
132 	 * is_vm_hugetlb_page tests below unmap_region go the right
133 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 	 * and ia64).
135 	 */
136 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 	vma->vm_ops = &hugetlb_vm_ops;
138 
139 	/*
140 	 * page based offset in vm_pgoff could be sufficiently large to
141 	 * overflow a loff_t when converted to byte offset.  This can
142 	 * only happen on architectures where sizeof(loff_t) ==
143 	 * sizeof(unsigned long).  So, only check in those instances.
144 	 */
145 	if (sizeof(unsigned long) == sizeof(loff_t)) {
146 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
147 			return -EINVAL;
148 	}
149 
150 	/* must be huge page aligned */
151 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
152 		return -EINVAL;
153 
154 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
155 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
156 	/* check for overflow */
157 	if (len < vma_len)
158 		return -EINVAL;
159 
160 	inode_lock(inode);
161 	file_accessed(file);
162 
163 	ret = -ENOMEM;
164 	if (hugetlb_reserve_pages(inode,
165 				vma->vm_pgoff >> huge_page_order(h),
166 				len >> huge_page_shift(h), vma,
167 				vma->vm_flags))
168 		goto out;
169 
170 	ret = 0;
171 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
172 		i_size_write(inode, len);
173 out:
174 	inode_unlock(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called under down_write(mmap_sem).
181  */
182 
183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
184 static unsigned long
185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
186 		unsigned long len, unsigned long pgoff, unsigned long flags)
187 {
188 	struct mm_struct *mm = current->mm;
189 	struct vm_area_struct *vma;
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	if (len & ~huge_page_mask(h))
194 		return -EINVAL;
195 	if (len > TASK_SIZE)
196 		return -ENOMEM;
197 
198 	if (flags & MAP_FIXED) {
199 		if (prepare_hugepage_range(file, addr, len))
200 			return -EINVAL;
201 		return addr;
202 	}
203 
204 	if (addr) {
205 		addr = ALIGN(addr, huge_page_size(h));
206 		vma = find_vma(mm, addr);
207 		if (TASK_SIZE - len >= addr &&
208 		    (!vma || addr + len <= vm_start_gap(vma)))
209 			return addr;
210 	}
211 
212 	info.flags = 0;
213 	info.length = len;
214 	info.low_limit = TASK_UNMAPPED_BASE;
215 	info.high_limit = TASK_SIZE;
216 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
217 	info.align_offset = 0;
218 	return vm_unmapped_area(&info);
219 }
220 #endif
221 
222 static size_t
223 hugetlbfs_read_actor(struct page *page, unsigned long offset,
224 			struct iov_iter *to, unsigned long size)
225 {
226 	size_t copied = 0;
227 	int i, chunksize;
228 
229 	/* Find which 4k chunk and offset with in that chunk */
230 	i = offset >> PAGE_SHIFT;
231 	offset = offset & ~PAGE_MASK;
232 
233 	while (size) {
234 		size_t n;
235 		chunksize = PAGE_SIZE;
236 		if (offset)
237 			chunksize -= offset;
238 		if (chunksize > size)
239 			chunksize = size;
240 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
241 		copied += n;
242 		if (n != chunksize)
243 			return copied;
244 		offset = 0;
245 		size -= chunksize;
246 		i++;
247 	}
248 	return copied;
249 }
250 
251 /*
252  * Support for read() - Find the page attached to f_mapping and copy out the
253  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
254  * since it has PAGE_SIZE assumptions.
255  */
256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
257 {
258 	struct file *file = iocb->ki_filp;
259 	struct hstate *h = hstate_file(file);
260 	struct address_space *mapping = file->f_mapping;
261 	struct inode *inode = mapping->host;
262 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
263 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
264 	unsigned long end_index;
265 	loff_t isize;
266 	ssize_t retval = 0;
267 
268 	while (iov_iter_count(to)) {
269 		struct page *page;
270 		size_t nr, copied;
271 
272 		/* nr is the maximum number of bytes to copy from this page */
273 		nr = huge_page_size(h);
274 		isize = i_size_read(inode);
275 		if (!isize)
276 			break;
277 		end_index = (isize - 1) >> huge_page_shift(h);
278 		if (index > end_index)
279 			break;
280 		if (index == end_index) {
281 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
282 			if (nr <= offset)
283 				break;
284 		}
285 		nr = nr - offset;
286 
287 		/* Find the page */
288 		page = find_lock_page(mapping, index);
289 		if (unlikely(page == NULL)) {
290 			/*
291 			 * We have a HOLE, zero out the user-buffer for the
292 			 * length of the hole or request.
293 			 */
294 			copied = iov_iter_zero(nr, to);
295 		} else {
296 			unlock_page(page);
297 
298 			/*
299 			 * We have the page, copy it to user space buffer.
300 			 */
301 			copied = hugetlbfs_read_actor(page, offset, to, nr);
302 			put_page(page);
303 		}
304 		offset += copied;
305 		retval += copied;
306 		if (copied != nr && iov_iter_count(to)) {
307 			if (!retval)
308 				retval = -EFAULT;
309 			break;
310 		}
311 		index += offset >> huge_page_shift(h);
312 		offset &= ~huge_page_mask(h);
313 	}
314 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
315 	return retval;
316 }
317 
318 static int hugetlbfs_write_begin(struct file *file,
319 			struct address_space *mapping,
320 			loff_t pos, unsigned len, unsigned flags,
321 			struct page **pagep, void **fsdata)
322 {
323 	return -EINVAL;
324 }
325 
326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
327 			loff_t pos, unsigned len, unsigned copied,
328 			struct page *page, void *fsdata)
329 {
330 	BUG();
331 	return -EINVAL;
332 }
333 
334 static void remove_huge_page(struct page *page)
335 {
336 	ClearPageDirty(page);
337 	ClearPageUptodate(page);
338 	delete_from_page_cache(page);
339 }
340 
341 static void
342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
343 {
344 	struct vm_area_struct *vma;
345 
346 	/*
347 	 * end == 0 indicates that the entire range after
348 	 * start should be unmapped.
349 	 */
350 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
351 		unsigned long v_offset;
352 		unsigned long v_end;
353 
354 		/*
355 		 * Can the expression below overflow on 32-bit arches?
356 		 * No, because the interval tree returns us only those vmas
357 		 * which overlap the truncated area starting at pgoff,
358 		 * and no vma on a 32-bit arch can span beyond the 4GB.
359 		 */
360 		if (vma->vm_pgoff < start)
361 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
362 		else
363 			v_offset = 0;
364 
365 		if (!end)
366 			v_end = vma->vm_end;
367 		else {
368 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
369 							+ vma->vm_start;
370 			if (v_end > vma->vm_end)
371 				v_end = vma->vm_end;
372 		}
373 
374 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
375 									NULL);
376 	}
377 }
378 
379 /*
380  * remove_inode_hugepages handles two distinct cases: truncation and hole
381  * punch.  There are subtle differences in operation for each case.
382  *
383  * truncation is indicated by end of range being LLONG_MAX
384  *	In this case, we first scan the range and release found pages.
385  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
386  *	maps and global counts.  Page faults can not race with truncation
387  *	in this routine.  hugetlb_no_page() prevents page faults in the
388  *	truncated range.  It checks i_size before allocation, and again after
389  *	with the page table lock for the page held.  The same lock must be
390  *	acquired to unmap a page.
391  * hole punch is indicated if end is not LLONG_MAX
392  *	In the hole punch case we scan the range and release found pages.
393  *	Only when releasing a page is the associated region/reserv map
394  *	deleted.  The region/reserv map for ranges without associated
395  *	pages are not modified.  Page faults can race with hole punch.
396  *	This is indicated if we find a mapped page.
397  * Note: If the passed end of range value is beyond the end of file, but
398  * not LLONG_MAX this routine still performs a hole punch operation.
399  */
400 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
401 				   loff_t lend)
402 {
403 	struct hstate *h = hstate_inode(inode);
404 	struct address_space *mapping = &inode->i_data;
405 	const pgoff_t start = lstart >> huge_page_shift(h);
406 	const pgoff_t end = lend >> huge_page_shift(h);
407 	struct vm_area_struct pseudo_vma;
408 	struct pagevec pvec;
409 	pgoff_t next, index;
410 	int i, freed = 0;
411 	bool truncate_op = (lend == LLONG_MAX);
412 
413 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
414 	vma_init(&pseudo_vma, current->mm);
415 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
416 	pagevec_init(&pvec);
417 	next = start;
418 	while (next < end) {
419 		/*
420 		 * When no more pages are found, we are done.
421 		 */
422 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
423 			break;
424 
425 		for (i = 0; i < pagevec_count(&pvec); ++i) {
426 			struct page *page = pvec.pages[i];
427 			u32 hash;
428 
429 			index = page->index;
430 			hash = hugetlb_fault_mutex_hash(h, current->mm,
431 							&pseudo_vma,
432 							mapping, index, 0);
433 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
434 
435 			/*
436 			 * If page is mapped, it was faulted in after being
437 			 * unmapped in caller.  Unmap (again) now after taking
438 			 * the fault mutex.  The mutex will prevent faults
439 			 * until we finish removing the page.
440 			 *
441 			 * This race can only happen in the hole punch case.
442 			 * Getting here in a truncate operation is a bug.
443 			 */
444 			if (unlikely(page_mapped(page))) {
445 				BUG_ON(truncate_op);
446 
447 				i_mmap_lock_write(mapping);
448 				hugetlb_vmdelete_list(&mapping->i_mmap,
449 					index * pages_per_huge_page(h),
450 					(index + 1) * pages_per_huge_page(h));
451 				i_mmap_unlock_write(mapping);
452 			}
453 
454 			lock_page(page);
455 			/*
456 			 * We must free the huge page and remove from page
457 			 * cache (remove_huge_page) BEFORE removing the
458 			 * region/reserve map (hugetlb_unreserve_pages).  In
459 			 * rare out of memory conditions, removal of the
460 			 * region/reserve map could fail. Correspondingly,
461 			 * the subpool and global reserve usage count can need
462 			 * to be adjusted.
463 			 */
464 			VM_BUG_ON(PagePrivate(page));
465 			remove_huge_page(page);
466 			freed++;
467 			if (!truncate_op) {
468 				if (unlikely(hugetlb_unreserve_pages(inode,
469 							index, index + 1, 1)))
470 					hugetlb_fix_reserve_counts(inode);
471 			}
472 
473 			unlock_page(page);
474 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
475 		}
476 		huge_pagevec_release(&pvec);
477 		cond_resched();
478 	}
479 
480 	if (truncate_op)
481 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
482 }
483 
484 static void hugetlbfs_evict_inode(struct inode *inode)
485 {
486 	struct resv_map *resv_map;
487 
488 	remove_inode_hugepages(inode, 0, LLONG_MAX);
489 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
490 	/* root inode doesn't have the resv_map, so we should check it */
491 	if (resv_map)
492 		resv_map_release(&resv_map->refs);
493 	clear_inode(inode);
494 }
495 
496 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
497 {
498 	pgoff_t pgoff;
499 	struct address_space *mapping = inode->i_mapping;
500 	struct hstate *h = hstate_inode(inode);
501 
502 	BUG_ON(offset & ~huge_page_mask(h));
503 	pgoff = offset >> PAGE_SHIFT;
504 
505 	i_size_write(inode, offset);
506 	i_mmap_lock_write(mapping);
507 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
508 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
509 	i_mmap_unlock_write(mapping);
510 	remove_inode_hugepages(inode, offset, LLONG_MAX);
511 	return 0;
512 }
513 
514 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
515 {
516 	struct hstate *h = hstate_inode(inode);
517 	loff_t hpage_size = huge_page_size(h);
518 	loff_t hole_start, hole_end;
519 
520 	/*
521 	 * For hole punch round up the beginning offset of the hole and
522 	 * round down the end.
523 	 */
524 	hole_start = round_up(offset, hpage_size);
525 	hole_end = round_down(offset + len, hpage_size);
526 
527 	if (hole_end > hole_start) {
528 		struct address_space *mapping = inode->i_mapping;
529 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
530 
531 		inode_lock(inode);
532 
533 		/* protected by i_mutex */
534 		if (info->seals & F_SEAL_WRITE) {
535 			inode_unlock(inode);
536 			return -EPERM;
537 		}
538 
539 		i_mmap_lock_write(mapping);
540 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
541 			hugetlb_vmdelete_list(&mapping->i_mmap,
542 						hole_start >> PAGE_SHIFT,
543 						hole_end  >> PAGE_SHIFT);
544 		i_mmap_unlock_write(mapping);
545 		remove_inode_hugepages(inode, hole_start, hole_end);
546 		inode_unlock(inode);
547 	}
548 
549 	return 0;
550 }
551 
552 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
553 				loff_t len)
554 {
555 	struct inode *inode = file_inode(file);
556 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
557 	struct address_space *mapping = inode->i_mapping;
558 	struct hstate *h = hstate_inode(inode);
559 	struct vm_area_struct pseudo_vma;
560 	struct mm_struct *mm = current->mm;
561 	loff_t hpage_size = huge_page_size(h);
562 	unsigned long hpage_shift = huge_page_shift(h);
563 	pgoff_t start, index, end;
564 	int error;
565 	u32 hash;
566 
567 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
568 		return -EOPNOTSUPP;
569 
570 	if (mode & FALLOC_FL_PUNCH_HOLE)
571 		return hugetlbfs_punch_hole(inode, offset, len);
572 
573 	/*
574 	 * Default preallocate case.
575 	 * For this range, start is rounded down and end is rounded up
576 	 * as well as being converted to page offsets.
577 	 */
578 	start = offset >> hpage_shift;
579 	end = (offset + len + hpage_size - 1) >> hpage_shift;
580 
581 	inode_lock(inode);
582 
583 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
584 	error = inode_newsize_ok(inode, offset + len);
585 	if (error)
586 		goto out;
587 
588 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
589 		error = -EPERM;
590 		goto out;
591 	}
592 
593 	/*
594 	 * Initialize a pseudo vma as this is required by the huge page
595 	 * allocation routines.  If NUMA is configured, use page index
596 	 * as input to create an allocation policy.
597 	 */
598 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
599 	vma_init(&pseudo_vma, mm);
600 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
601 	pseudo_vma.vm_file = file;
602 
603 	for (index = start; index < end; index++) {
604 		/*
605 		 * This is supposed to be the vaddr where the page is being
606 		 * faulted in, but we have no vaddr here.
607 		 */
608 		struct page *page;
609 		unsigned long addr;
610 		int avoid_reserve = 0;
611 
612 		cond_resched();
613 
614 		/*
615 		 * fallocate(2) manpage permits EINTR; we may have been
616 		 * interrupted because we are using up too much memory.
617 		 */
618 		if (signal_pending(current)) {
619 			error = -EINTR;
620 			break;
621 		}
622 
623 		/* Set numa allocation policy based on index */
624 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
625 
626 		/* addr is the offset within the file (zero based) */
627 		addr = index * hpage_size;
628 
629 		/* mutex taken here, fault path and hole punch */
630 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
631 						index, addr);
632 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
633 
634 		/* See if already present in mapping to avoid alloc/free */
635 		page = find_get_page(mapping, index);
636 		if (page) {
637 			put_page(page);
638 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
639 			hugetlb_drop_vma_policy(&pseudo_vma);
640 			continue;
641 		}
642 
643 		/* Allocate page and add to page cache */
644 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
645 		hugetlb_drop_vma_policy(&pseudo_vma);
646 		if (IS_ERR(page)) {
647 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
648 			error = PTR_ERR(page);
649 			goto out;
650 		}
651 		clear_huge_page(page, addr, pages_per_huge_page(h));
652 		__SetPageUptodate(page);
653 		error = huge_add_to_page_cache(page, mapping, index);
654 		if (unlikely(error)) {
655 			put_page(page);
656 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
657 			goto out;
658 		}
659 
660 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
661 
662 		/*
663 		 * unlock_page because locked by add_to_page_cache()
664 		 * page_put due to reference from alloc_huge_page()
665 		 */
666 		unlock_page(page);
667 		put_page(page);
668 	}
669 
670 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
671 		i_size_write(inode, offset + len);
672 	inode->i_ctime = current_time(inode);
673 out:
674 	inode_unlock(inode);
675 	return error;
676 }
677 
678 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
679 {
680 	struct inode *inode = d_inode(dentry);
681 	struct hstate *h = hstate_inode(inode);
682 	int error;
683 	unsigned int ia_valid = attr->ia_valid;
684 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
685 
686 	BUG_ON(!inode);
687 
688 	error = setattr_prepare(dentry, attr);
689 	if (error)
690 		return error;
691 
692 	if (ia_valid & ATTR_SIZE) {
693 		loff_t oldsize = inode->i_size;
694 		loff_t newsize = attr->ia_size;
695 
696 		if (newsize & ~huge_page_mask(h))
697 			return -EINVAL;
698 		/* protected by i_mutex */
699 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
700 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
701 			return -EPERM;
702 		error = hugetlb_vmtruncate(inode, newsize);
703 		if (error)
704 			return error;
705 	}
706 
707 	setattr_copy(inode, attr);
708 	mark_inode_dirty(inode);
709 	return 0;
710 }
711 
712 static struct inode *hugetlbfs_get_root(struct super_block *sb,
713 					struct hugetlbfs_config *config)
714 {
715 	struct inode *inode;
716 
717 	inode = new_inode(sb);
718 	if (inode) {
719 		inode->i_ino = get_next_ino();
720 		inode->i_mode = S_IFDIR | config->mode;
721 		inode->i_uid = config->uid;
722 		inode->i_gid = config->gid;
723 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
724 		inode->i_op = &hugetlbfs_dir_inode_operations;
725 		inode->i_fop = &simple_dir_operations;
726 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
727 		inc_nlink(inode);
728 		lockdep_annotate_inode_mutex_key(inode);
729 	}
730 	return inode;
731 }
732 
733 /*
734  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
735  * be taken from reclaim -- unlike regular filesystems. This needs an
736  * annotation because huge_pmd_share() does an allocation under hugetlb's
737  * i_mmap_rwsem.
738  */
739 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
740 
741 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
742 					struct inode *dir,
743 					umode_t mode, dev_t dev)
744 {
745 	struct inode *inode;
746 	struct resv_map *resv_map;
747 
748 	resv_map = resv_map_alloc();
749 	if (!resv_map)
750 		return NULL;
751 
752 	inode = new_inode(sb);
753 	if (inode) {
754 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
755 
756 		inode->i_ino = get_next_ino();
757 		inode_init_owner(inode, dir, mode);
758 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
759 				&hugetlbfs_i_mmap_rwsem_key);
760 		inode->i_mapping->a_ops = &hugetlbfs_aops;
761 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
762 		inode->i_mapping->private_data = resv_map;
763 		info->seals = F_SEAL_SEAL;
764 		switch (mode & S_IFMT) {
765 		default:
766 			init_special_inode(inode, mode, dev);
767 			break;
768 		case S_IFREG:
769 			inode->i_op = &hugetlbfs_inode_operations;
770 			inode->i_fop = &hugetlbfs_file_operations;
771 			break;
772 		case S_IFDIR:
773 			inode->i_op = &hugetlbfs_dir_inode_operations;
774 			inode->i_fop = &simple_dir_operations;
775 
776 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
777 			inc_nlink(inode);
778 			break;
779 		case S_IFLNK:
780 			inode->i_op = &page_symlink_inode_operations;
781 			inode_nohighmem(inode);
782 			break;
783 		}
784 		lockdep_annotate_inode_mutex_key(inode);
785 	} else
786 		kref_put(&resv_map->refs, resv_map_release);
787 
788 	return inode;
789 }
790 
791 /*
792  * File creation. Allocate an inode, and we're done..
793  */
794 static int hugetlbfs_mknod(struct inode *dir,
795 			struct dentry *dentry, umode_t mode, dev_t dev)
796 {
797 	struct inode *inode;
798 	int error = -ENOSPC;
799 
800 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
801 	if (inode) {
802 		dir->i_ctime = dir->i_mtime = current_time(dir);
803 		d_instantiate(dentry, inode);
804 		dget(dentry);	/* Extra count - pin the dentry in core */
805 		error = 0;
806 	}
807 	return error;
808 }
809 
810 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
811 {
812 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
813 	if (!retval)
814 		inc_nlink(dir);
815 	return retval;
816 }
817 
818 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
819 {
820 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
821 }
822 
823 static int hugetlbfs_symlink(struct inode *dir,
824 			struct dentry *dentry, const char *symname)
825 {
826 	struct inode *inode;
827 	int error = -ENOSPC;
828 
829 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
830 	if (inode) {
831 		int l = strlen(symname)+1;
832 		error = page_symlink(inode, symname, l);
833 		if (!error) {
834 			d_instantiate(dentry, inode);
835 			dget(dentry);
836 		} else
837 			iput(inode);
838 	}
839 	dir->i_ctime = dir->i_mtime = current_time(dir);
840 
841 	return error;
842 }
843 
844 /*
845  * mark the head page dirty
846  */
847 static int hugetlbfs_set_page_dirty(struct page *page)
848 {
849 	struct page *head = compound_head(page);
850 
851 	SetPageDirty(head);
852 	return 0;
853 }
854 
855 static int hugetlbfs_migrate_page(struct address_space *mapping,
856 				struct page *newpage, struct page *page,
857 				enum migrate_mode mode)
858 {
859 	int rc;
860 
861 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
862 	if (rc != MIGRATEPAGE_SUCCESS)
863 		return rc;
864 	if (mode != MIGRATE_SYNC_NO_COPY)
865 		migrate_page_copy(newpage, page);
866 	else
867 		migrate_page_states(newpage, page);
868 
869 	return MIGRATEPAGE_SUCCESS;
870 }
871 
872 static int hugetlbfs_error_remove_page(struct address_space *mapping,
873 				struct page *page)
874 {
875 	struct inode *inode = mapping->host;
876 	pgoff_t index = page->index;
877 
878 	remove_huge_page(page);
879 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
880 		hugetlb_fix_reserve_counts(inode);
881 
882 	return 0;
883 }
884 
885 /*
886  * Display the mount options in /proc/mounts.
887  */
888 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
889 {
890 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
891 	struct hugepage_subpool *spool = sbinfo->spool;
892 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
893 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
894 	char mod;
895 
896 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
897 		seq_printf(m, ",uid=%u",
898 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
899 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
900 		seq_printf(m, ",gid=%u",
901 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
902 	if (sbinfo->mode != 0755)
903 		seq_printf(m, ",mode=%o", sbinfo->mode);
904 	if (sbinfo->max_inodes != -1)
905 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
906 
907 	hpage_size /= 1024;
908 	mod = 'K';
909 	if (hpage_size >= 1024) {
910 		hpage_size /= 1024;
911 		mod = 'M';
912 	}
913 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
914 	if (spool) {
915 		if (spool->max_hpages != -1)
916 			seq_printf(m, ",size=%llu",
917 				   (unsigned long long)spool->max_hpages << hpage_shift);
918 		if (spool->min_hpages != -1)
919 			seq_printf(m, ",min_size=%llu",
920 				   (unsigned long long)spool->min_hpages << hpage_shift);
921 	}
922 	return 0;
923 }
924 
925 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
926 {
927 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
928 	struct hstate *h = hstate_inode(d_inode(dentry));
929 
930 	buf->f_type = HUGETLBFS_MAGIC;
931 	buf->f_bsize = huge_page_size(h);
932 	if (sbinfo) {
933 		spin_lock(&sbinfo->stat_lock);
934 		/* If no limits set, just report 0 for max/free/used
935 		 * blocks, like simple_statfs() */
936 		if (sbinfo->spool) {
937 			long free_pages;
938 
939 			spin_lock(&sbinfo->spool->lock);
940 			buf->f_blocks = sbinfo->spool->max_hpages;
941 			free_pages = sbinfo->spool->max_hpages
942 				- sbinfo->spool->used_hpages;
943 			buf->f_bavail = buf->f_bfree = free_pages;
944 			spin_unlock(&sbinfo->spool->lock);
945 			buf->f_files = sbinfo->max_inodes;
946 			buf->f_ffree = sbinfo->free_inodes;
947 		}
948 		spin_unlock(&sbinfo->stat_lock);
949 	}
950 	buf->f_namelen = NAME_MAX;
951 	return 0;
952 }
953 
954 static void hugetlbfs_put_super(struct super_block *sb)
955 {
956 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
957 
958 	if (sbi) {
959 		sb->s_fs_info = NULL;
960 
961 		if (sbi->spool)
962 			hugepage_put_subpool(sbi->spool);
963 
964 		kfree(sbi);
965 	}
966 }
967 
968 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
969 {
970 	if (sbinfo->free_inodes >= 0) {
971 		spin_lock(&sbinfo->stat_lock);
972 		if (unlikely(!sbinfo->free_inodes)) {
973 			spin_unlock(&sbinfo->stat_lock);
974 			return 0;
975 		}
976 		sbinfo->free_inodes--;
977 		spin_unlock(&sbinfo->stat_lock);
978 	}
979 
980 	return 1;
981 }
982 
983 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
984 {
985 	if (sbinfo->free_inodes >= 0) {
986 		spin_lock(&sbinfo->stat_lock);
987 		sbinfo->free_inodes++;
988 		spin_unlock(&sbinfo->stat_lock);
989 	}
990 }
991 
992 
993 static struct kmem_cache *hugetlbfs_inode_cachep;
994 
995 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
996 {
997 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
998 	struct hugetlbfs_inode_info *p;
999 
1000 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1001 		return NULL;
1002 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1003 	if (unlikely(!p)) {
1004 		hugetlbfs_inc_free_inodes(sbinfo);
1005 		return NULL;
1006 	}
1007 
1008 	/*
1009 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1010 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1011 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1012 	 * in case of a quick call to destroy.
1013 	 *
1014 	 * Note that the policy is initialized even if we are creating a
1015 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1016 	 */
1017 	mpol_shared_policy_init(&p->policy, NULL);
1018 
1019 	return &p->vfs_inode;
1020 }
1021 
1022 static void hugetlbfs_i_callback(struct rcu_head *head)
1023 {
1024 	struct inode *inode = container_of(head, struct inode, i_rcu);
1025 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1026 }
1027 
1028 static void hugetlbfs_destroy_inode(struct inode *inode)
1029 {
1030 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1031 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1032 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1033 }
1034 
1035 static const struct address_space_operations hugetlbfs_aops = {
1036 	.write_begin	= hugetlbfs_write_begin,
1037 	.write_end	= hugetlbfs_write_end,
1038 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1039 	.migratepage    = hugetlbfs_migrate_page,
1040 	.error_remove_page	= hugetlbfs_error_remove_page,
1041 };
1042 
1043 
1044 static void init_once(void *foo)
1045 {
1046 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1047 
1048 	inode_init_once(&ei->vfs_inode);
1049 }
1050 
1051 const struct file_operations hugetlbfs_file_operations = {
1052 	.read_iter		= hugetlbfs_read_iter,
1053 	.mmap			= hugetlbfs_file_mmap,
1054 	.fsync			= noop_fsync,
1055 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1056 	.llseek			= default_llseek,
1057 	.fallocate		= hugetlbfs_fallocate,
1058 };
1059 
1060 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1061 	.create		= hugetlbfs_create,
1062 	.lookup		= simple_lookup,
1063 	.link		= simple_link,
1064 	.unlink		= simple_unlink,
1065 	.symlink	= hugetlbfs_symlink,
1066 	.mkdir		= hugetlbfs_mkdir,
1067 	.rmdir		= simple_rmdir,
1068 	.mknod		= hugetlbfs_mknod,
1069 	.rename		= simple_rename,
1070 	.setattr	= hugetlbfs_setattr,
1071 };
1072 
1073 static const struct inode_operations hugetlbfs_inode_operations = {
1074 	.setattr	= hugetlbfs_setattr,
1075 };
1076 
1077 static const struct super_operations hugetlbfs_ops = {
1078 	.alloc_inode    = hugetlbfs_alloc_inode,
1079 	.destroy_inode  = hugetlbfs_destroy_inode,
1080 	.evict_inode	= hugetlbfs_evict_inode,
1081 	.statfs		= hugetlbfs_statfs,
1082 	.put_super	= hugetlbfs_put_super,
1083 	.show_options	= hugetlbfs_show_options,
1084 };
1085 
1086 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1087 
1088 /*
1089  * Convert size option passed from command line to number of huge pages
1090  * in the pool specified by hstate.  Size option could be in bytes
1091  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1092  */
1093 static long
1094 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1095 			 enum hugetlbfs_size_type val_type)
1096 {
1097 	if (val_type == NO_SIZE)
1098 		return -1;
1099 
1100 	if (val_type == SIZE_PERCENT) {
1101 		size_opt <<= huge_page_shift(h);
1102 		size_opt *= h->max_huge_pages;
1103 		do_div(size_opt, 100);
1104 	}
1105 
1106 	size_opt >>= huge_page_shift(h);
1107 	return size_opt;
1108 }
1109 
1110 static int
1111 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1112 {
1113 	char *p, *rest;
1114 	substring_t args[MAX_OPT_ARGS];
1115 	int option;
1116 	unsigned long long max_size_opt = 0, min_size_opt = 0;
1117 	enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1118 
1119 	if (!options)
1120 		return 0;
1121 
1122 	while ((p = strsep(&options, ",")) != NULL) {
1123 		int token;
1124 		if (!*p)
1125 			continue;
1126 
1127 		token = match_token(p, tokens, args);
1128 		switch (token) {
1129 		case Opt_uid:
1130 			if (match_int(&args[0], &option))
1131  				goto bad_val;
1132 			pconfig->uid = make_kuid(current_user_ns(), option);
1133 			if (!uid_valid(pconfig->uid))
1134 				goto bad_val;
1135 			break;
1136 
1137 		case Opt_gid:
1138 			if (match_int(&args[0], &option))
1139  				goto bad_val;
1140 			pconfig->gid = make_kgid(current_user_ns(), option);
1141 			if (!gid_valid(pconfig->gid))
1142 				goto bad_val;
1143 			break;
1144 
1145 		case Opt_mode:
1146 			if (match_octal(&args[0], &option))
1147  				goto bad_val;
1148 			pconfig->mode = option & 01777U;
1149 			break;
1150 
1151 		case Opt_size: {
1152 			/* memparse() will accept a K/M/G without a digit */
1153 			if (!isdigit(*args[0].from))
1154 				goto bad_val;
1155 			max_size_opt = memparse(args[0].from, &rest);
1156 			max_val_type = SIZE_STD;
1157 			if (*rest == '%')
1158 				max_val_type = SIZE_PERCENT;
1159 			break;
1160 		}
1161 
1162 		case Opt_nr_inodes:
1163 			/* memparse() will accept a K/M/G without a digit */
1164 			if (!isdigit(*args[0].from))
1165 				goto bad_val;
1166 			pconfig->nr_inodes = memparse(args[0].from, &rest);
1167 			break;
1168 
1169 		case Opt_pagesize: {
1170 			unsigned long ps;
1171 			ps = memparse(args[0].from, &rest);
1172 			pconfig->hstate = size_to_hstate(ps);
1173 			if (!pconfig->hstate) {
1174 				pr_err("Unsupported page size %lu MB\n",
1175 					ps >> 20);
1176 				return -EINVAL;
1177 			}
1178 			break;
1179 		}
1180 
1181 		case Opt_min_size: {
1182 			/* memparse() will accept a K/M/G without a digit */
1183 			if (!isdigit(*args[0].from))
1184 				goto bad_val;
1185 			min_size_opt = memparse(args[0].from, &rest);
1186 			min_val_type = SIZE_STD;
1187 			if (*rest == '%')
1188 				min_val_type = SIZE_PERCENT;
1189 			break;
1190 		}
1191 
1192 		default:
1193 			pr_err("Bad mount option: \"%s\"\n", p);
1194 			return -EINVAL;
1195 			break;
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * Use huge page pool size (in hstate) to convert the size
1201 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1202 	 */
1203 	pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1204 						max_size_opt, max_val_type);
1205 	pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1206 						min_size_opt, min_val_type);
1207 
1208 	/*
1209 	 * If max_size was specified, then min_size must be smaller
1210 	 */
1211 	if (max_val_type > NO_SIZE &&
1212 	    pconfig->min_hpages > pconfig->max_hpages) {
1213 		pr_err("minimum size can not be greater than maximum size\n");
1214 		return -EINVAL;
1215 	}
1216 
1217 	return 0;
1218 
1219 bad_val:
1220 	pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1221  	return -EINVAL;
1222 }
1223 
1224 static int
1225 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1226 {
1227 	int ret;
1228 	struct hugetlbfs_config config;
1229 	struct hugetlbfs_sb_info *sbinfo;
1230 
1231 	config.max_hpages = -1; /* No limit on size by default */
1232 	config.nr_inodes = -1; /* No limit on number of inodes by default */
1233 	config.uid = current_fsuid();
1234 	config.gid = current_fsgid();
1235 	config.mode = 0755;
1236 	config.hstate = &default_hstate;
1237 	config.min_hpages = -1; /* No default minimum size */
1238 	ret = hugetlbfs_parse_options(data, &config);
1239 	if (ret)
1240 		return ret;
1241 
1242 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1243 	if (!sbinfo)
1244 		return -ENOMEM;
1245 	sb->s_fs_info = sbinfo;
1246 	sbinfo->hstate = config.hstate;
1247 	spin_lock_init(&sbinfo->stat_lock);
1248 	sbinfo->max_inodes = config.nr_inodes;
1249 	sbinfo->free_inodes = config.nr_inodes;
1250 	sbinfo->spool = NULL;
1251 	sbinfo->uid = config.uid;
1252 	sbinfo->gid = config.gid;
1253 	sbinfo->mode = config.mode;
1254 
1255 	/*
1256 	 * Allocate and initialize subpool if maximum or minimum size is
1257 	 * specified.  Any needed reservations (for minimim size) are taken
1258 	 * taken when the subpool is created.
1259 	 */
1260 	if (config.max_hpages != -1 || config.min_hpages != -1) {
1261 		sbinfo->spool = hugepage_new_subpool(config.hstate,
1262 							config.max_hpages,
1263 							config.min_hpages);
1264 		if (!sbinfo->spool)
1265 			goto out_free;
1266 	}
1267 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1268 	sb->s_blocksize = huge_page_size(config.hstate);
1269 	sb->s_blocksize_bits = huge_page_shift(config.hstate);
1270 	sb->s_magic = HUGETLBFS_MAGIC;
1271 	sb->s_op = &hugetlbfs_ops;
1272 	sb->s_time_gran = 1;
1273 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1274 	if (!sb->s_root)
1275 		goto out_free;
1276 	return 0;
1277 out_free:
1278 	kfree(sbinfo->spool);
1279 	kfree(sbinfo);
1280 	return -ENOMEM;
1281 }
1282 
1283 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1284 	int flags, const char *dev_name, void *data)
1285 {
1286 	return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1287 }
1288 
1289 static struct file_system_type hugetlbfs_fs_type = {
1290 	.name		= "hugetlbfs",
1291 	.mount		= hugetlbfs_mount,
1292 	.kill_sb	= kill_litter_super,
1293 };
1294 
1295 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1296 
1297 static int can_do_hugetlb_shm(void)
1298 {
1299 	kgid_t shm_group;
1300 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1301 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1302 }
1303 
1304 static int get_hstate_idx(int page_size_log)
1305 {
1306 	struct hstate *h = hstate_sizelog(page_size_log);
1307 
1308 	if (!h)
1309 		return -1;
1310 	return h - hstates;
1311 }
1312 
1313 static const struct dentry_operations anon_ops = {
1314 	.d_dname = simple_dname
1315 };
1316 
1317 /*
1318  * Note that size should be aligned to proper hugepage size in caller side,
1319  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1320  */
1321 struct file *hugetlb_file_setup(const char *name, size_t size,
1322 				vm_flags_t acctflag, struct user_struct **user,
1323 				int creat_flags, int page_size_log)
1324 {
1325 	struct file *file = ERR_PTR(-ENOMEM);
1326 	struct inode *inode;
1327 	struct path path;
1328 	struct super_block *sb;
1329 	struct qstr quick_string;
1330 	int hstate_idx;
1331 
1332 	hstate_idx = get_hstate_idx(page_size_log);
1333 	if (hstate_idx < 0)
1334 		return ERR_PTR(-ENODEV);
1335 
1336 	*user = NULL;
1337 	if (!hugetlbfs_vfsmount[hstate_idx])
1338 		return ERR_PTR(-ENOENT);
1339 
1340 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1341 		*user = current_user();
1342 		if (user_shm_lock(size, *user)) {
1343 			task_lock(current);
1344 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1345 				current->comm, current->pid);
1346 			task_unlock(current);
1347 		} else {
1348 			*user = NULL;
1349 			return ERR_PTR(-EPERM);
1350 		}
1351 	}
1352 
1353 	sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1354 	quick_string.name = name;
1355 	quick_string.len = strlen(quick_string.name);
1356 	quick_string.hash = 0;
1357 	path.dentry = d_alloc_pseudo(sb, &quick_string);
1358 	if (!path.dentry)
1359 		goto out_shm_unlock;
1360 
1361 	d_set_d_op(path.dentry, &anon_ops);
1362 	path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1363 	file = ERR_PTR(-ENOSPC);
1364 	inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1365 	if (!inode)
1366 		goto out_dentry;
1367 	if (creat_flags == HUGETLB_SHMFS_INODE)
1368 		inode->i_flags |= S_PRIVATE;
1369 
1370 	file = ERR_PTR(-ENOMEM);
1371 	if (hugetlb_reserve_pages(inode, 0,
1372 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1373 			acctflag))
1374 		goto out_inode;
1375 
1376 	d_instantiate(path.dentry, inode);
1377 	inode->i_size = size;
1378 	clear_nlink(inode);
1379 
1380 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1381 			&hugetlbfs_file_operations);
1382 	if (IS_ERR(file))
1383 		goto out_dentry; /* inode is already attached */
1384 
1385 	return file;
1386 
1387 out_inode:
1388 	iput(inode);
1389 out_dentry:
1390 	path_put(&path);
1391 out_shm_unlock:
1392 	if (*user) {
1393 		user_shm_unlock(size, *user);
1394 		*user = NULL;
1395 	}
1396 	return file;
1397 }
1398 
1399 static int __init init_hugetlbfs_fs(void)
1400 {
1401 	struct hstate *h;
1402 	int error;
1403 	int i;
1404 
1405 	if (!hugepages_supported()) {
1406 		pr_info("disabling because there are no supported hugepage sizes\n");
1407 		return -ENOTSUPP;
1408 	}
1409 
1410 	error = -ENOMEM;
1411 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1412 					sizeof(struct hugetlbfs_inode_info),
1413 					0, SLAB_ACCOUNT, init_once);
1414 	if (hugetlbfs_inode_cachep == NULL)
1415 		goto out2;
1416 
1417 	error = register_filesystem(&hugetlbfs_fs_type);
1418 	if (error)
1419 		goto out;
1420 
1421 	i = 0;
1422 	for_each_hstate(h) {
1423 		char buf[50];
1424 		unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1425 
1426 		snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1427 		hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1428 							buf);
1429 
1430 		if (IS_ERR(hugetlbfs_vfsmount[i])) {
1431 			pr_err("Cannot mount internal hugetlbfs for "
1432 				"page size %uK", ps_kb);
1433 			error = PTR_ERR(hugetlbfs_vfsmount[i]);
1434 			hugetlbfs_vfsmount[i] = NULL;
1435 		}
1436 		i++;
1437 	}
1438 	/* Non default hstates are optional */
1439 	if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1440 		return 0;
1441 
1442  out:
1443 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1444  out2:
1445 	return error;
1446 }
1447 fs_initcall(init_hugetlbfs_fs)
1448