1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 struct hstate *hstate; 50 long max_hpages; 51 long nr_inodes; 52 long min_hpages; 53 kuid_t uid; 54 kgid_t gid; 55 umode_t mode; 56 }; 57 58 int sysctl_hugetlb_shm_group; 59 60 enum { 61 Opt_size, Opt_nr_inodes, 62 Opt_mode, Opt_uid, Opt_gid, 63 Opt_pagesize, Opt_min_size, 64 Opt_err, 65 }; 66 67 static const match_table_t tokens = { 68 {Opt_size, "size=%s"}, 69 {Opt_nr_inodes, "nr_inodes=%s"}, 70 {Opt_mode, "mode=%o"}, 71 {Opt_uid, "uid=%u"}, 72 {Opt_gid, "gid=%u"}, 73 {Opt_pagesize, "pagesize=%s"}, 74 {Opt_min_size, "min_size=%s"}, 75 {Opt_err, NULL}, 76 }; 77 78 #ifdef CONFIG_NUMA 79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 80 struct inode *inode, pgoff_t index) 81 { 82 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 83 index); 84 } 85 86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 87 { 88 mpol_cond_put(vma->vm_policy); 89 } 90 #else 91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 92 struct inode *inode, pgoff_t index) 93 { 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 } 99 #endif 100 101 static void huge_pagevec_release(struct pagevec *pvec) 102 { 103 int i; 104 105 for (i = 0; i < pagevec_count(pvec); ++i) 106 put_page(pvec->pages[i]); 107 108 pagevec_reinit(pvec); 109 } 110 111 /* 112 * Mask used when checking the page offset value passed in via system 113 * calls. This value will be converted to a loff_t which is signed. 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 115 * value. The extra bit (- 1 in the shift value) is to take the sign 116 * bit into account. 117 */ 118 #define PGOFF_LOFFT_MAX \ 119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 /* 140 * page based offset in vm_pgoff could be sufficiently large to 141 * overflow a loff_t when converted to byte offset. This can 142 * only happen on architectures where sizeof(loff_t) == 143 * sizeof(unsigned long). So, only check in those instances. 144 */ 145 if (sizeof(unsigned long) == sizeof(loff_t)) { 146 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 147 return -EINVAL; 148 } 149 150 /* must be huge page aligned */ 151 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 152 return -EINVAL; 153 154 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 155 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 156 /* check for overflow */ 157 if (len < vma_len) 158 return -EINVAL; 159 160 inode_lock(inode); 161 file_accessed(file); 162 163 ret = -ENOMEM; 164 if (hugetlb_reserve_pages(inode, 165 vma->vm_pgoff >> huge_page_order(h), 166 len >> huge_page_shift(h), vma, 167 vma->vm_flags)) 168 goto out; 169 170 ret = 0; 171 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 172 i_size_write(inode, len); 173 out: 174 inode_unlock(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called under down_write(mmap_sem). 181 */ 182 183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 184 static unsigned long 185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 186 unsigned long len, unsigned long pgoff, unsigned long flags) 187 { 188 struct mm_struct *mm = current->mm; 189 struct vm_area_struct *vma; 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 if (len & ~huge_page_mask(h)) 194 return -EINVAL; 195 if (len > TASK_SIZE) 196 return -ENOMEM; 197 198 if (flags & MAP_FIXED) { 199 if (prepare_hugepage_range(file, addr, len)) 200 return -EINVAL; 201 return addr; 202 } 203 204 if (addr) { 205 addr = ALIGN(addr, huge_page_size(h)); 206 vma = find_vma(mm, addr); 207 if (TASK_SIZE - len >= addr && 208 (!vma || addr + len <= vm_start_gap(vma))) 209 return addr; 210 } 211 212 info.flags = 0; 213 info.length = len; 214 info.low_limit = TASK_UNMAPPED_BASE; 215 info.high_limit = TASK_SIZE; 216 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 217 info.align_offset = 0; 218 return vm_unmapped_area(&info); 219 } 220 #endif 221 222 static size_t 223 hugetlbfs_read_actor(struct page *page, unsigned long offset, 224 struct iov_iter *to, unsigned long size) 225 { 226 size_t copied = 0; 227 int i, chunksize; 228 229 /* Find which 4k chunk and offset with in that chunk */ 230 i = offset >> PAGE_SHIFT; 231 offset = offset & ~PAGE_MASK; 232 233 while (size) { 234 size_t n; 235 chunksize = PAGE_SIZE; 236 if (offset) 237 chunksize -= offset; 238 if (chunksize > size) 239 chunksize = size; 240 n = copy_page_to_iter(&page[i], offset, chunksize, to); 241 copied += n; 242 if (n != chunksize) 243 return copied; 244 offset = 0; 245 size -= chunksize; 246 i++; 247 } 248 return copied; 249 } 250 251 /* 252 * Support for read() - Find the page attached to f_mapping and copy out the 253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 254 * since it has PAGE_SIZE assumptions. 255 */ 256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 257 { 258 struct file *file = iocb->ki_filp; 259 struct hstate *h = hstate_file(file); 260 struct address_space *mapping = file->f_mapping; 261 struct inode *inode = mapping->host; 262 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 263 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 264 unsigned long end_index; 265 loff_t isize; 266 ssize_t retval = 0; 267 268 while (iov_iter_count(to)) { 269 struct page *page; 270 size_t nr, copied; 271 272 /* nr is the maximum number of bytes to copy from this page */ 273 nr = huge_page_size(h); 274 isize = i_size_read(inode); 275 if (!isize) 276 break; 277 end_index = (isize - 1) >> huge_page_shift(h); 278 if (index > end_index) 279 break; 280 if (index == end_index) { 281 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 282 if (nr <= offset) 283 break; 284 } 285 nr = nr - offset; 286 287 /* Find the page */ 288 page = find_lock_page(mapping, index); 289 if (unlikely(page == NULL)) { 290 /* 291 * We have a HOLE, zero out the user-buffer for the 292 * length of the hole or request. 293 */ 294 copied = iov_iter_zero(nr, to); 295 } else { 296 unlock_page(page); 297 298 /* 299 * We have the page, copy it to user space buffer. 300 */ 301 copied = hugetlbfs_read_actor(page, offset, to, nr); 302 put_page(page); 303 } 304 offset += copied; 305 retval += copied; 306 if (copied != nr && iov_iter_count(to)) { 307 if (!retval) 308 retval = -EFAULT; 309 break; 310 } 311 index += offset >> huge_page_shift(h); 312 offset &= ~huge_page_mask(h); 313 } 314 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 315 return retval; 316 } 317 318 static int hugetlbfs_write_begin(struct file *file, 319 struct address_space *mapping, 320 loff_t pos, unsigned len, unsigned flags, 321 struct page **pagep, void **fsdata) 322 { 323 return -EINVAL; 324 } 325 326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 327 loff_t pos, unsigned len, unsigned copied, 328 struct page *page, void *fsdata) 329 { 330 BUG(); 331 return -EINVAL; 332 } 333 334 static void remove_huge_page(struct page *page) 335 { 336 ClearPageDirty(page); 337 ClearPageUptodate(page); 338 delete_from_page_cache(page); 339 } 340 341 static void 342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 343 { 344 struct vm_area_struct *vma; 345 346 /* 347 * end == 0 indicates that the entire range after 348 * start should be unmapped. 349 */ 350 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 351 unsigned long v_offset; 352 unsigned long v_end; 353 354 /* 355 * Can the expression below overflow on 32-bit arches? 356 * No, because the interval tree returns us only those vmas 357 * which overlap the truncated area starting at pgoff, 358 * and no vma on a 32-bit arch can span beyond the 4GB. 359 */ 360 if (vma->vm_pgoff < start) 361 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 362 else 363 v_offset = 0; 364 365 if (!end) 366 v_end = vma->vm_end; 367 else { 368 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 369 + vma->vm_start; 370 if (v_end > vma->vm_end) 371 v_end = vma->vm_end; 372 } 373 374 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 375 NULL); 376 } 377 } 378 379 /* 380 * remove_inode_hugepages handles two distinct cases: truncation and hole 381 * punch. There are subtle differences in operation for each case. 382 * 383 * truncation is indicated by end of range being LLONG_MAX 384 * In this case, we first scan the range and release found pages. 385 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 386 * maps and global counts. Page faults can not race with truncation 387 * in this routine. hugetlb_no_page() prevents page faults in the 388 * truncated range. It checks i_size before allocation, and again after 389 * with the page table lock for the page held. The same lock must be 390 * acquired to unmap a page. 391 * hole punch is indicated if end is not LLONG_MAX 392 * In the hole punch case we scan the range and release found pages. 393 * Only when releasing a page is the associated region/reserv map 394 * deleted. The region/reserv map for ranges without associated 395 * pages are not modified. Page faults can race with hole punch. 396 * This is indicated if we find a mapped page. 397 * Note: If the passed end of range value is beyond the end of file, but 398 * not LLONG_MAX this routine still performs a hole punch operation. 399 */ 400 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 401 loff_t lend) 402 { 403 struct hstate *h = hstate_inode(inode); 404 struct address_space *mapping = &inode->i_data; 405 const pgoff_t start = lstart >> huge_page_shift(h); 406 const pgoff_t end = lend >> huge_page_shift(h); 407 struct vm_area_struct pseudo_vma; 408 struct pagevec pvec; 409 pgoff_t next, index; 410 int i, freed = 0; 411 bool truncate_op = (lend == LLONG_MAX); 412 413 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 414 vma_init(&pseudo_vma, current->mm); 415 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 416 pagevec_init(&pvec); 417 next = start; 418 while (next < end) { 419 /* 420 * When no more pages are found, we are done. 421 */ 422 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 423 break; 424 425 for (i = 0; i < pagevec_count(&pvec); ++i) { 426 struct page *page = pvec.pages[i]; 427 u32 hash; 428 429 index = page->index; 430 hash = hugetlb_fault_mutex_hash(h, current->mm, 431 &pseudo_vma, 432 mapping, index, 0); 433 mutex_lock(&hugetlb_fault_mutex_table[hash]); 434 435 /* 436 * If page is mapped, it was faulted in after being 437 * unmapped in caller. Unmap (again) now after taking 438 * the fault mutex. The mutex will prevent faults 439 * until we finish removing the page. 440 * 441 * This race can only happen in the hole punch case. 442 * Getting here in a truncate operation is a bug. 443 */ 444 if (unlikely(page_mapped(page))) { 445 BUG_ON(truncate_op); 446 447 i_mmap_lock_write(mapping); 448 hugetlb_vmdelete_list(&mapping->i_mmap, 449 index * pages_per_huge_page(h), 450 (index + 1) * pages_per_huge_page(h)); 451 i_mmap_unlock_write(mapping); 452 } 453 454 lock_page(page); 455 /* 456 * We must free the huge page and remove from page 457 * cache (remove_huge_page) BEFORE removing the 458 * region/reserve map (hugetlb_unreserve_pages). In 459 * rare out of memory conditions, removal of the 460 * region/reserve map could fail. Correspondingly, 461 * the subpool and global reserve usage count can need 462 * to be adjusted. 463 */ 464 VM_BUG_ON(PagePrivate(page)); 465 remove_huge_page(page); 466 freed++; 467 if (!truncate_op) { 468 if (unlikely(hugetlb_unreserve_pages(inode, 469 index, index + 1, 1))) 470 hugetlb_fix_reserve_counts(inode); 471 } 472 473 unlock_page(page); 474 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 475 } 476 huge_pagevec_release(&pvec); 477 cond_resched(); 478 } 479 480 if (truncate_op) 481 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 482 } 483 484 static void hugetlbfs_evict_inode(struct inode *inode) 485 { 486 struct resv_map *resv_map; 487 488 remove_inode_hugepages(inode, 0, LLONG_MAX); 489 resv_map = (struct resv_map *)inode->i_mapping->private_data; 490 /* root inode doesn't have the resv_map, so we should check it */ 491 if (resv_map) 492 resv_map_release(&resv_map->refs); 493 clear_inode(inode); 494 } 495 496 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 497 { 498 pgoff_t pgoff; 499 struct address_space *mapping = inode->i_mapping; 500 struct hstate *h = hstate_inode(inode); 501 502 BUG_ON(offset & ~huge_page_mask(h)); 503 pgoff = offset >> PAGE_SHIFT; 504 505 i_size_write(inode, offset); 506 i_mmap_lock_write(mapping); 507 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 508 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 509 i_mmap_unlock_write(mapping); 510 remove_inode_hugepages(inode, offset, LLONG_MAX); 511 return 0; 512 } 513 514 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 515 { 516 struct hstate *h = hstate_inode(inode); 517 loff_t hpage_size = huge_page_size(h); 518 loff_t hole_start, hole_end; 519 520 /* 521 * For hole punch round up the beginning offset of the hole and 522 * round down the end. 523 */ 524 hole_start = round_up(offset, hpage_size); 525 hole_end = round_down(offset + len, hpage_size); 526 527 if (hole_end > hole_start) { 528 struct address_space *mapping = inode->i_mapping; 529 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 530 531 inode_lock(inode); 532 533 /* protected by i_mutex */ 534 if (info->seals & F_SEAL_WRITE) { 535 inode_unlock(inode); 536 return -EPERM; 537 } 538 539 i_mmap_lock_write(mapping); 540 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 541 hugetlb_vmdelete_list(&mapping->i_mmap, 542 hole_start >> PAGE_SHIFT, 543 hole_end >> PAGE_SHIFT); 544 i_mmap_unlock_write(mapping); 545 remove_inode_hugepages(inode, hole_start, hole_end); 546 inode_unlock(inode); 547 } 548 549 return 0; 550 } 551 552 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 553 loff_t len) 554 { 555 struct inode *inode = file_inode(file); 556 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 557 struct address_space *mapping = inode->i_mapping; 558 struct hstate *h = hstate_inode(inode); 559 struct vm_area_struct pseudo_vma; 560 struct mm_struct *mm = current->mm; 561 loff_t hpage_size = huge_page_size(h); 562 unsigned long hpage_shift = huge_page_shift(h); 563 pgoff_t start, index, end; 564 int error; 565 u32 hash; 566 567 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 568 return -EOPNOTSUPP; 569 570 if (mode & FALLOC_FL_PUNCH_HOLE) 571 return hugetlbfs_punch_hole(inode, offset, len); 572 573 /* 574 * Default preallocate case. 575 * For this range, start is rounded down and end is rounded up 576 * as well as being converted to page offsets. 577 */ 578 start = offset >> hpage_shift; 579 end = (offset + len + hpage_size - 1) >> hpage_shift; 580 581 inode_lock(inode); 582 583 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 584 error = inode_newsize_ok(inode, offset + len); 585 if (error) 586 goto out; 587 588 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 589 error = -EPERM; 590 goto out; 591 } 592 593 /* 594 * Initialize a pseudo vma as this is required by the huge page 595 * allocation routines. If NUMA is configured, use page index 596 * as input to create an allocation policy. 597 */ 598 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 599 vma_init(&pseudo_vma, mm); 600 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 601 pseudo_vma.vm_file = file; 602 603 for (index = start; index < end; index++) { 604 /* 605 * This is supposed to be the vaddr where the page is being 606 * faulted in, but we have no vaddr here. 607 */ 608 struct page *page; 609 unsigned long addr; 610 int avoid_reserve = 0; 611 612 cond_resched(); 613 614 /* 615 * fallocate(2) manpage permits EINTR; we may have been 616 * interrupted because we are using up too much memory. 617 */ 618 if (signal_pending(current)) { 619 error = -EINTR; 620 break; 621 } 622 623 /* Set numa allocation policy based on index */ 624 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 625 626 /* addr is the offset within the file (zero based) */ 627 addr = index * hpage_size; 628 629 /* mutex taken here, fault path and hole punch */ 630 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 631 index, addr); 632 mutex_lock(&hugetlb_fault_mutex_table[hash]); 633 634 /* See if already present in mapping to avoid alloc/free */ 635 page = find_get_page(mapping, index); 636 if (page) { 637 put_page(page); 638 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 639 hugetlb_drop_vma_policy(&pseudo_vma); 640 continue; 641 } 642 643 /* Allocate page and add to page cache */ 644 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 645 hugetlb_drop_vma_policy(&pseudo_vma); 646 if (IS_ERR(page)) { 647 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 648 error = PTR_ERR(page); 649 goto out; 650 } 651 clear_huge_page(page, addr, pages_per_huge_page(h)); 652 __SetPageUptodate(page); 653 error = huge_add_to_page_cache(page, mapping, index); 654 if (unlikely(error)) { 655 put_page(page); 656 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 657 goto out; 658 } 659 660 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 661 662 /* 663 * unlock_page because locked by add_to_page_cache() 664 * page_put due to reference from alloc_huge_page() 665 */ 666 unlock_page(page); 667 put_page(page); 668 } 669 670 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 671 i_size_write(inode, offset + len); 672 inode->i_ctime = current_time(inode); 673 out: 674 inode_unlock(inode); 675 return error; 676 } 677 678 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 679 { 680 struct inode *inode = d_inode(dentry); 681 struct hstate *h = hstate_inode(inode); 682 int error; 683 unsigned int ia_valid = attr->ia_valid; 684 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 685 686 BUG_ON(!inode); 687 688 error = setattr_prepare(dentry, attr); 689 if (error) 690 return error; 691 692 if (ia_valid & ATTR_SIZE) { 693 loff_t oldsize = inode->i_size; 694 loff_t newsize = attr->ia_size; 695 696 if (newsize & ~huge_page_mask(h)) 697 return -EINVAL; 698 /* protected by i_mutex */ 699 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 700 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 701 return -EPERM; 702 error = hugetlb_vmtruncate(inode, newsize); 703 if (error) 704 return error; 705 } 706 707 setattr_copy(inode, attr); 708 mark_inode_dirty(inode); 709 return 0; 710 } 711 712 static struct inode *hugetlbfs_get_root(struct super_block *sb, 713 struct hugetlbfs_config *config) 714 { 715 struct inode *inode; 716 717 inode = new_inode(sb); 718 if (inode) { 719 inode->i_ino = get_next_ino(); 720 inode->i_mode = S_IFDIR | config->mode; 721 inode->i_uid = config->uid; 722 inode->i_gid = config->gid; 723 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 724 inode->i_op = &hugetlbfs_dir_inode_operations; 725 inode->i_fop = &simple_dir_operations; 726 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 727 inc_nlink(inode); 728 lockdep_annotate_inode_mutex_key(inode); 729 } 730 return inode; 731 } 732 733 /* 734 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 735 * be taken from reclaim -- unlike regular filesystems. This needs an 736 * annotation because huge_pmd_share() does an allocation under hugetlb's 737 * i_mmap_rwsem. 738 */ 739 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 740 741 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 742 struct inode *dir, 743 umode_t mode, dev_t dev) 744 { 745 struct inode *inode; 746 struct resv_map *resv_map; 747 748 resv_map = resv_map_alloc(); 749 if (!resv_map) 750 return NULL; 751 752 inode = new_inode(sb); 753 if (inode) { 754 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 755 756 inode->i_ino = get_next_ino(); 757 inode_init_owner(inode, dir, mode); 758 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 759 &hugetlbfs_i_mmap_rwsem_key); 760 inode->i_mapping->a_ops = &hugetlbfs_aops; 761 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 762 inode->i_mapping->private_data = resv_map; 763 info->seals = F_SEAL_SEAL; 764 switch (mode & S_IFMT) { 765 default: 766 init_special_inode(inode, mode, dev); 767 break; 768 case S_IFREG: 769 inode->i_op = &hugetlbfs_inode_operations; 770 inode->i_fop = &hugetlbfs_file_operations; 771 break; 772 case S_IFDIR: 773 inode->i_op = &hugetlbfs_dir_inode_operations; 774 inode->i_fop = &simple_dir_operations; 775 776 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 777 inc_nlink(inode); 778 break; 779 case S_IFLNK: 780 inode->i_op = &page_symlink_inode_operations; 781 inode_nohighmem(inode); 782 break; 783 } 784 lockdep_annotate_inode_mutex_key(inode); 785 } else 786 kref_put(&resv_map->refs, resv_map_release); 787 788 return inode; 789 } 790 791 /* 792 * File creation. Allocate an inode, and we're done.. 793 */ 794 static int hugetlbfs_mknod(struct inode *dir, 795 struct dentry *dentry, umode_t mode, dev_t dev) 796 { 797 struct inode *inode; 798 int error = -ENOSPC; 799 800 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 801 if (inode) { 802 dir->i_ctime = dir->i_mtime = current_time(dir); 803 d_instantiate(dentry, inode); 804 dget(dentry); /* Extra count - pin the dentry in core */ 805 error = 0; 806 } 807 return error; 808 } 809 810 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 811 { 812 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 813 if (!retval) 814 inc_nlink(dir); 815 return retval; 816 } 817 818 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 819 { 820 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 821 } 822 823 static int hugetlbfs_symlink(struct inode *dir, 824 struct dentry *dentry, const char *symname) 825 { 826 struct inode *inode; 827 int error = -ENOSPC; 828 829 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 830 if (inode) { 831 int l = strlen(symname)+1; 832 error = page_symlink(inode, symname, l); 833 if (!error) { 834 d_instantiate(dentry, inode); 835 dget(dentry); 836 } else 837 iput(inode); 838 } 839 dir->i_ctime = dir->i_mtime = current_time(dir); 840 841 return error; 842 } 843 844 /* 845 * mark the head page dirty 846 */ 847 static int hugetlbfs_set_page_dirty(struct page *page) 848 { 849 struct page *head = compound_head(page); 850 851 SetPageDirty(head); 852 return 0; 853 } 854 855 static int hugetlbfs_migrate_page(struct address_space *mapping, 856 struct page *newpage, struct page *page, 857 enum migrate_mode mode) 858 { 859 int rc; 860 861 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 862 if (rc != MIGRATEPAGE_SUCCESS) 863 return rc; 864 if (mode != MIGRATE_SYNC_NO_COPY) 865 migrate_page_copy(newpage, page); 866 else 867 migrate_page_states(newpage, page); 868 869 return MIGRATEPAGE_SUCCESS; 870 } 871 872 static int hugetlbfs_error_remove_page(struct address_space *mapping, 873 struct page *page) 874 { 875 struct inode *inode = mapping->host; 876 pgoff_t index = page->index; 877 878 remove_huge_page(page); 879 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 880 hugetlb_fix_reserve_counts(inode); 881 882 return 0; 883 } 884 885 /* 886 * Display the mount options in /proc/mounts. 887 */ 888 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 889 { 890 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 891 struct hugepage_subpool *spool = sbinfo->spool; 892 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 893 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 894 char mod; 895 896 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 897 seq_printf(m, ",uid=%u", 898 from_kuid_munged(&init_user_ns, sbinfo->uid)); 899 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 900 seq_printf(m, ",gid=%u", 901 from_kgid_munged(&init_user_ns, sbinfo->gid)); 902 if (sbinfo->mode != 0755) 903 seq_printf(m, ",mode=%o", sbinfo->mode); 904 if (sbinfo->max_inodes != -1) 905 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 906 907 hpage_size /= 1024; 908 mod = 'K'; 909 if (hpage_size >= 1024) { 910 hpage_size /= 1024; 911 mod = 'M'; 912 } 913 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 914 if (spool) { 915 if (spool->max_hpages != -1) 916 seq_printf(m, ",size=%llu", 917 (unsigned long long)spool->max_hpages << hpage_shift); 918 if (spool->min_hpages != -1) 919 seq_printf(m, ",min_size=%llu", 920 (unsigned long long)spool->min_hpages << hpage_shift); 921 } 922 return 0; 923 } 924 925 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 926 { 927 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 928 struct hstate *h = hstate_inode(d_inode(dentry)); 929 930 buf->f_type = HUGETLBFS_MAGIC; 931 buf->f_bsize = huge_page_size(h); 932 if (sbinfo) { 933 spin_lock(&sbinfo->stat_lock); 934 /* If no limits set, just report 0 for max/free/used 935 * blocks, like simple_statfs() */ 936 if (sbinfo->spool) { 937 long free_pages; 938 939 spin_lock(&sbinfo->spool->lock); 940 buf->f_blocks = sbinfo->spool->max_hpages; 941 free_pages = sbinfo->spool->max_hpages 942 - sbinfo->spool->used_hpages; 943 buf->f_bavail = buf->f_bfree = free_pages; 944 spin_unlock(&sbinfo->spool->lock); 945 buf->f_files = sbinfo->max_inodes; 946 buf->f_ffree = sbinfo->free_inodes; 947 } 948 spin_unlock(&sbinfo->stat_lock); 949 } 950 buf->f_namelen = NAME_MAX; 951 return 0; 952 } 953 954 static void hugetlbfs_put_super(struct super_block *sb) 955 { 956 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 957 958 if (sbi) { 959 sb->s_fs_info = NULL; 960 961 if (sbi->spool) 962 hugepage_put_subpool(sbi->spool); 963 964 kfree(sbi); 965 } 966 } 967 968 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 969 { 970 if (sbinfo->free_inodes >= 0) { 971 spin_lock(&sbinfo->stat_lock); 972 if (unlikely(!sbinfo->free_inodes)) { 973 spin_unlock(&sbinfo->stat_lock); 974 return 0; 975 } 976 sbinfo->free_inodes--; 977 spin_unlock(&sbinfo->stat_lock); 978 } 979 980 return 1; 981 } 982 983 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 984 { 985 if (sbinfo->free_inodes >= 0) { 986 spin_lock(&sbinfo->stat_lock); 987 sbinfo->free_inodes++; 988 spin_unlock(&sbinfo->stat_lock); 989 } 990 } 991 992 993 static struct kmem_cache *hugetlbfs_inode_cachep; 994 995 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 996 { 997 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 998 struct hugetlbfs_inode_info *p; 999 1000 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1001 return NULL; 1002 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1003 if (unlikely(!p)) { 1004 hugetlbfs_inc_free_inodes(sbinfo); 1005 return NULL; 1006 } 1007 1008 /* 1009 * Any time after allocation, hugetlbfs_destroy_inode can be called 1010 * for the inode. mpol_free_shared_policy is unconditionally called 1011 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1012 * in case of a quick call to destroy. 1013 * 1014 * Note that the policy is initialized even if we are creating a 1015 * private inode. This simplifies hugetlbfs_destroy_inode. 1016 */ 1017 mpol_shared_policy_init(&p->policy, NULL); 1018 1019 return &p->vfs_inode; 1020 } 1021 1022 static void hugetlbfs_i_callback(struct rcu_head *head) 1023 { 1024 struct inode *inode = container_of(head, struct inode, i_rcu); 1025 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1026 } 1027 1028 static void hugetlbfs_destroy_inode(struct inode *inode) 1029 { 1030 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1031 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1032 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1033 } 1034 1035 static const struct address_space_operations hugetlbfs_aops = { 1036 .write_begin = hugetlbfs_write_begin, 1037 .write_end = hugetlbfs_write_end, 1038 .set_page_dirty = hugetlbfs_set_page_dirty, 1039 .migratepage = hugetlbfs_migrate_page, 1040 .error_remove_page = hugetlbfs_error_remove_page, 1041 }; 1042 1043 1044 static void init_once(void *foo) 1045 { 1046 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1047 1048 inode_init_once(&ei->vfs_inode); 1049 } 1050 1051 const struct file_operations hugetlbfs_file_operations = { 1052 .read_iter = hugetlbfs_read_iter, 1053 .mmap = hugetlbfs_file_mmap, 1054 .fsync = noop_fsync, 1055 .get_unmapped_area = hugetlb_get_unmapped_area, 1056 .llseek = default_llseek, 1057 .fallocate = hugetlbfs_fallocate, 1058 }; 1059 1060 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1061 .create = hugetlbfs_create, 1062 .lookup = simple_lookup, 1063 .link = simple_link, 1064 .unlink = simple_unlink, 1065 .symlink = hugetlbfs_symlink, 1066 .mkdir = hugetlbfs_mkdir, 1067 .rmdir = simple_rmdir, 1068 .mknod = hugetlbfs_mknod, 1069 .rename = simple_rename, 1070 .setattr = hugetlbfs_setattr, 1071 }; 1072 1073 static const struct inode_operations hugetlbfs_inode_operations = { 1074 .setattr = hugetlbfs_setattr, 1075 }; 1076 1077 static const struct super_operations hugetlbfs_ops = { 1078 .alloc_inode = hugetlbfs_alloc_inode, 1079 .destroy_inode = hugetlbfs_destroy_inode, 1080 .evict_inode = hugetlbfs_evict_inode, 1081 .statfs = hugetlbfs_statfs, 1082 .put_super = hugetlbfs_put_super, 1083 .show_options = hugetlbfs_show_options, 1084 }; 1085 1086 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1087 1088 /* 1089 * Convert size option passed from command line to number of huge pages 1090 * in the pool specified by hstate. Size option could be in bytes 1091 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1092 */ 1093 static long 1094 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1095 enum hugetlbfs_size_type val_type) 1096 { 1097 if (val_type == NO_SIZE) 1098 return -1; 1099 1100 if (val_type == SIZE_PERCENT) { 1101 size_opt <<= huge_page_shift(h); 1102 size_opt *= h->max_huge_pages; 1103 do_div(size_opt, 100); 1104 } 1105 1106 size_opt >>= huge_page_shift(h); 1107 return size_opt; 1108 } 1109 1110 static int 1111 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1112 { 1113 char *p, *rest; 1114 substring_t args[MAX_OPT_ARGS]; 1115 int option; 1116 unsigned long long max_size_opt = 0, min_size_opt = 0; 1117 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1118 1119 if (!options) 1120 return 0; 1121 1122 while ((p = strsep(&options, ",")) != NULL) { 1123 int token; 1124 if (!*p) 1125 continue; 1126 1127 token = match_token(p, tokens, args); 1128 switch (token) { 1129 case Opt_uid: 1130 if (match_int(&args[0], &option)) 1131 goto bad_val; 1132 pconfig->uid = make_kuid(current_user_ns(), option); 1133 if (!uid_valid(pconfig->uid)) 1134 goto bad_val; 1135 break; 1136 1137 case Opt_gid: 1138 if (match_int(&args[0], &option)) 1139 goto bad_val; 1140 pconfig->gid = make_kgid(current_user_ns(), option); 1141 if (!gid_valid(pconfig->gid)) 1142 goto bad_val; 1143 break; 1144 1145 case Opt_mode: 1146 if (match_octal(&args[0], &option)) 1147 goto bad_val; 1148 pconfig->mode = option & 01777U; 1149 break; 1150 1151 case Opt_size: { 1152 /* memparse() will accept a K/M/G without a digit */ 1153 if (!isdigit(*args[0].from)) 1154 goto bad_val; 1155 max_size_opt = memparse(args[0].from, &rest); 1156 max_val_type = SIZE_STD; 1157 if (*rest == '%') 1158 max_val_type = SIZE_PERCENT; 1159 break; 1160 } 1161 1162 case Opt_nr_inodes: 1163 /* memparse() will accept a K/M/G without a digit */ 1164 if (!isdigit(*args[0].from)) 1165 goto bad_val; 1166 pconfig->nr_inodes = memparse(args[0].from, &rest); 1167 break; 1168 1169 case Opt_pagesize: { 1170 unsigned long ps; 1171 ps = memparse(args[0].from, &rest); 1172 pconfig->hstate = size_to_hstate(ps); 1173 if (!pconfig->hstate) { 1174 pr_err("Unsupported page size %lu MB\n", 1175 ps >> 20); 1176 return -EINVAL; 1177 } 1178 break; 1179 } 1180 1181 case Opt_min_size: { 1182 /* memparse() will accept a K/M/G without a digit */ 1183 if (!isdigit(*args[0].from)) 1184 goto bad_val; 1185 min_size_opt = memparse(args[0].from, &rest); 1186 min_val_type = SIZE_STD; 1187 if (*rest == '%') 1188 min_val_type = SIZE_PERCENT; 1189 break; 1190 } 1191 1192 default: 1193 pr_err("Bad mount option: \"%s\"\n", p); 1194 return -EINVAL; 1195 break; 1196 } 1197 } 1198 1199 /* 1200 * Use huge page pool size (in hstate) to convert the size 1201 * options to number of huge pages. If NO_SIZE, -1 is returned. 1202 */ 1203 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1204 max_size_opt, max_val_type); 1205 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1206 min_size_opt, min_val_type); 1207 1208 /* 1209 * If max_size was specified, then min_size must be smaller 1210 */ 1211 if (max_val_type > NO_SIZE && 1212 pconfig->min_hpages > pconfig->max_hpages) { 1213 pr_err("minimum size can not be greater than maximum size\n"); 1214 return -EINVAL; 1215 } 1216 1217 return 0; 1218 1219 bad_val: 1220 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1221 return -EINVAL; 1222 } 1223 1224 static int 1225 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1226 { 1227 int ret; 1228 struct hugetlbfs_config config; 1229 struct hugetlbfs_sb_info *sbinfo; 1230 1231 config.max_hpages = -1; /* No limit on size by default */ 1232 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1233 config.uid = current_fsuid(); 1234 config.gid = current_fsgid(); 1235 config.mode = 0755; 1236 config.hstate = &default_hstate; 1237 config.min_hpages = -1; /* No default minimum size */ 1238 ret = hugetlbfs_parse_options(data, &config); 1239 if (ret) 1240 return ret; 1241 1242 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1243 if (!sbinfo) 1244 return -ENOMEM; 1245 sb->s_fs_info = sbinfo; 1246 sbinfo->hstate = config.hstate; 1247 spin_lock_init(&sbinfo->stat_lock); 1248 sbinfo->max_inodes = config.nr_inodes; 1249 sbinfo->free_inodes = config.nr_inodes; 1250 sbinfo->spool = NULL; 1251 sbinfo->uid = config.uid; 1252 sbinfo->gid = config.gid; 1253 sbinfo->mode = config.mode; 1254 1255 /* 1256 * Allocate and initialize subpool if maximum or minimum size is 1257 * specified. Any needed reservations (for minimim size) are taken 1258 * taken when the subpool is created. 1259 */ 1260 if (config.max_hpages != -1 || config.min_hpages != -1) { 1261 sbinfo->spool = hugepage_new_subpool(config.hstate, 1262 config.max_hpages, 1263 config.min_hpages); 1264 if (!sbinfo->spool) 1265 goto out_free; 1266 } 1267 sb->s_maxbytes = MAX_LFS_FILESIZE; 1268 sb->s_blocksize = huge_page_size(config.hstate); 1269 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1270 sb->s_magic = HUGETLBFS_MAGIC; 1271 sb->s_op = &hugetlbfs_ops; 1272 sb->s_time_gran = 1; 1273 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1274 if (!sb->s_root) 1275 goto out_free; 1276 return 0; 1277 out_free: 1278 kfree(sbinfo->spool); 1279 kfree(sbinfo); 1280 return -ENOMEM; 1281 } 1282 1283 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1284 int flags, const char *dev_name, void *data) 1285 { 1286 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1287 } 1288 1289 static struct file_system_type hugetlbfs_fs_type = { 1290 .name = "hugetlbfs", 1291 .mount = hugetlbfs_mount, 1292 .kill_sb = kill_litter_super, 1293 }; 1294 1295 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1296 1297 static int can_do_hugetlb_shm(void) 1298 { 1299 kgid_t shm_group; 1300 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1301 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1302 } 1303 1304 static int get_hstate_idx(int page_size_log) 1305 { 1306 struct hstate *h = hstate_sizelog(page_size_log); 1307 1308 if (!h) 1309 return -1; 1310 return h - hstates; 1311 } 1312 1313 static const struct dentry_operations anon_ops = { 1314 .d_dname = simple_dname 1315 }; 1316 1317 /* 1318 * Note that size should be aligned to proper hugepage size in caller side, 1319 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1320 */ 1321 struct file *hugetlb_file_setup(const char *name, size_t size, 1322 vm_flags_t acctflag, struct user_struct **user, 1323 int creat_flags, int page_size_log) 1324 { 1325 struct file *file = ERR_PTR(-ENOMEM); 1326 struct inode *inode; 1327 struct path path; 1328 struct super_block *sb; 1329 struct qstr quick_string; 1330 int hstate_idx; 1331 1332 hstate_idx = get_hstate_idx(page_size_log); 1333 if (hstate_idx < 0) 1334 return ERR_PTR(-ENODEV); 1335 1336 *user = NULL; 1337 if (!hugetlbfs_vfsmount[hstate_idx]) 1338 return ERR_PTR(-ENOENT); 1339 1340 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1341 *user = current_user(); 1342 if (user_shm_lock(size, *user)) { 1343 task_lock(current); 1344 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1345 current->comm, current->pid); 1346 task_unlock(current); 1347 } else { 1348 *user = NULL; 1349 return ERR_PTR(-EPERM); 1350 } 1351 } 1352 1353 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb; 1354 quick_string.name = name; 1355 quick_string.len = strlen(quick_string.name); 1356 quick_string.hash = 0; 1357 path.dentry = d_alloc_pseudo(sb, &quick_string); 1358 if (!path.dentry) 1359 goto out_shm_unlock; 1360 1361 d_set_d_op(path.dentry, &anon_ops); 1362 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]); 1363 file = ERR_PTR(-ENOSPC); 1364 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0); 1365 if (!inode) 1366 goto out_dentry; 1367 if (creat_flags == HUGETLB_SHMFS_INODE) 1368 inode->i_flags |= S_PRIVATE; 1369 1370 file = ERR_PTR(-ENOMEM); 1371 if (hugetlb_reserve_pages(inode, 0, 1372 size >> huge_page_shift(hstate_inode(inode)), NULL, 1373 acctflag)) 1374 goto out_inode; 1375 1376 d_instantiate(path.dentry, inode); 1377 inode->i_size = size; 1378 clear_nlink(inode); 1379 1380 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 1381 &hugetlbfs_file_operations); 1382 if (IS_ERR(file)) 1383 goto out_dentry; /* inode is already attached */ 1384 1385 return file; 1386 1387 out_inode: 1388 iput(inode); 1389 out_dentry: 1390 path_put(&path); 1391 out_shm_unlock: 1392 if (*user) { 1393 user_shm_unlock(size, *user); 1394 *user = NULL; 1395 } 1396 return file; 1397 } 1398 1399 static int __init init_hugetlbfs_fs(void) 1400 { 1401 struct hstate *h; 1402 int error; 1403 int i; 1404 1405 if (!hugepages_supported()) { 1406 pr_info("disabling because there are no supported hugepage sizes\n"); 1407 return -ENOTSUPP; 1408 } 1409 1410 error = -ENOMEM; 1411 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1412 sizeof(struct hugetlbfs_inode_info), 1413 0, SLAB_ACCOUNT, init_once); 1414 if (hugetlbfs_inode_cachep == NULL) 1415 goto out2; 1416 1417 error = register_filesystem(&hugetlbfs_fs_type); 1418 if (error) 1419 goto out; 1420 1421 i = 0; 1422 for_each_hstate(h) { 1423 char buf[50]; 1424 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1425 1426 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1427 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1428 buf); 1429 1430 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1431 pr_err("Cannot mount internal hugetlbfs for " 1432 "page size %uK", ps_kb); 1433 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1434 hugetlbfs_vfsmount[i] = NULL; 1435 } 1436 i++; 1437 } 1438 /* Non default hstates are optional */ 1439 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1440 return 0; 1441 1442 out: 1443 kmem_cache_destroy(hugetlbfs_inode_cachep); 1444 out2: 1445 return error; 1446 } 1447 fs_initcall(init_hugetlbfs_fs) 1448