xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision b8a94bfb)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 #ifdef CONFIG_NUMA
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 					struct inode *inode, pgoff_t index)
89 {
90 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 							index);
92 }
93 
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 	mpol_cond_put(vma->vm_policy);
97 }
98 #else
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 					struct inode *inode, pgoff_t index)
101 {
102 }
103 
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108 
109 /*
110  * Mask used when checking the page offset value passed in via system
111  * calls.  This value will be converted to a loff_t which is signed.
112  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113  * value.  The extra bit (- 1 in the shift value) is to take the sign
114  * bit into account.
115  */
116 #define PGOFF_LOFFT_MAX \
117 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118 
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 	struct inode *inode = file_inode(file);
122 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 	loff_t len, vma_len;
124 	int ret;
125 	struct hstate *h = hstate_file(file);
126 
127 	/*
128 	 * vma address alignment (but not the pgoff alignment) has
129 	 * already been checked by prepare_hugepage_range.  If you add
130 	 * any error returns here, do so after setting VM_HUGETLB, so
131 	 * is_vm_hugetlb_page tests below unmap_region go the right
132 	 * way when do_mmap unwinds (may be important on powerpc
133 	 * and ia64).
134 	 */
135 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
136 	vma->vm_ops = &hugetlb_vm_ops;
137 
138 	ret = seal_check_future_write(info->seals, vma);
139 	if (ret)
140 		return ret;
141 
142 	/*
143 	 * page based offset in vm_pgoff could be sufficiently large to
144 	 * overflow a loff_t when converted to byte offset.  This can
145 	 * only happen on architectures where sizeof(loff_t) ==
146 	 * sizeof(unsigned long).  So, only check in those instances.
147 	 */
148 	if (sizeof(unsigned long) == sizeof(loff_t)) {
149 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 			return -EINVAL;
151 	}
152 
153 	/* must be huge page aligned */
154 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
155 		return -EINVAL;
156 
157 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 	/* check for overflow */
160 	if (len < vma_len)
161 		return -EINVAL;
162 
163 	inode_lock(inode);
164 	file_accessed(file);
165 
166 	ret = -ENOMEM;
167 	if (!hugetlb_reserve_pages(inode,
168 				vma->vm_pgoff >> huge_page_order(h),
169 				len >> huge_page_shift(h), vma,
170 				vma->vm_flags))
171 		goto out;
172 
173 	ret = 0;
174 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 		i_size_write(inode, len);
176 out:
177 	inode_unlock(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called under mmap_write_lock(mm).
184  */
185 
186 static unsigned long
187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 		unsigned long len, unsigned long pgoff, unsigned long flags)
189 {
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	info.flags = 0;
194 	info.length = len;
195 	info.low_limit = current->mm->mmap_base;
196 	info.high_limit = arch_get_mmap_end(addr, len, flags);
197 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 	info.align_offset = 0;
199 	return vm_unmapped_area(&info);
200 }
201 
202 static unsigned long
203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 		unsigned long len, unsigned long pgoff, unsigned long flags)
205 {
206 	struct hstate *h = hstate_file(file);
207 	struct vm_unmapped_area_info info;
208 
209 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 	info.length = len;
211 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
212 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 	info.align_offset = 0;
215 	addr = vm_unmapped_area(&info);
216 
217 	/*
218 	 * A failed mmap() very likely causes application failure,
219 	 * so fall back to the bottom-up function here. This scenario
220 	 * can happen with large stack limits and large mmap()
221 	 * allocations.
222 	 */
223 	if (unlikely(offset_in_page(addr))) {
224 		VM_BUG_ON(addr != -ENOMEM);
225 		info.flags = 0;
226 		info.low_limit = current->mm->mmap_base;
227 		info.high_limit = arch_get_mmap_end(addr, len, flags);
228 		addr = vm_unmapped_area(&info);
229 	}
230 
231 	return addr;
232 }
233 
234 unsigned long
235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 				  unsigned long len, unsigned long pgoff,
237 				  unsigned long flags)
238 {
239 	struct mm_struct *mm = current->mm;
240 	struct vm_area_struct *vma;
241 	struct hstate *h = hstate_file(file);
242 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
243 
244 	if (len & ~huge_page_mask(h))
245 		return -EINVAL;
246 	if (len > TASK_SIZE)
247 		return -ENOMEM;
248 
249 	if (flags & MAP_FIXED) {
250 		if (prepare_hugepage_range(file, addr, len))
251 			return -EINVAL;
252 		return addr;
253 	}
254 
255 	if (addr) {
256 		addr = ALIGN(addr, huge_page_size(h));
257 		vma = find_vma(mm, addr);
258 		if (mmap_end - len >= addr &&
259 		    (!vma || addr + len <= vm_start_gap(vma)))
260 			return addr;
261 	}
262 
263 	/*
264 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 	 * If architectures have special needs, they should define their own
266 	 * version of hugetlb_get_unmapped_area.
267 	 */
268 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 				pgoff, flags);
271 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 			pgoff, flags);
273 }
274 
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276 static unsigned long
277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 			  unsigned long len, unsigned long pgoff,
279 			  unsigned long flags)
280 {
281 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282 }
283 #endif
284 
285 /*
286  * Support for read() - Find the page attached to f_mapping and copy out the
287  * data. This provides functionality similar to filemap_read().
288  */
289 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
290 {
291 	struct file *file = iocb->ki_filp;
292 	struct hstate *h = hstate_file(file);
293 	struct address_space *mapping = file->f_mapping;
294 	struct inode *inode = mapping->host;
295 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
296 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
297 	unsigned long end_index;
298 	loff_t isize;
299 	ssize_t retval = 0;
300 
301 	while (iov_iter_count(to)) {
302 		struct page *page;
303 		size_t nr, copied;
304 
305 		/* nr is the maximum number of bytes to copy from this page */
306 		nr = huge_page_size(h);
307 		isize = i_size_read(inode);
308 		if (!isize)
309 			break;
310 		end_index = (isize - 1) >> huge_page_shift(h);
311 		if (index > end_index)
312 			break;
313 		if (index == end_index) {
314 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
315 			if (nr <= offset)
316 				break;
317 		}
318 		nr = nr - offset;
319 
320 		/* Find the page */
321 		page = find_lock_page(mapping, index);
322 		if (unlikely(page == NULL)) {
323 			/*
324 			 * We have a HOLE, zero out the user-buffer for the
325 			 * length of the hole or request.
326 			 */
327 			copied = iov_iter_zero(nr, to);
328 		} else {
329 			unlock_page(page);
330 
331 			/*
332 			 * We have the page, copy it to user space buffer.
333 			 */
334 			copied = copy_page_to_iter(page, offset, nr, to);
335 			put_page(page);
336 		}
337 		offset += copied;
338 		retval += copied;
339 		if (copied != nr && iov_iter_count(to)) {
340 			if (!retval)
341 				retval = -EFAULT;
342 			break;
343 		}
344 		index += offset >> huge_page_shift(h);
345 		offset &= ~huge_page_mask(h);
346 	}
347 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
348 	return retval;
349 }
350 
351 static int hugetlbfs_write_begin(struct file *file,
352 			struct address_space *mapping,
353 			loff_t pos, unsigned len,
354 			struct page **pagep, void **fsdata)
355 {
356 	return -EINVAL;
357 }
358 
359 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
360 			loff_t pos, unsigned len, unsigned copied,
361 			struct page *page, void *fsdata)
362 {
363 	BUG();
364 	return -EINVAL;
365 }
366 
367 static void remove_huge_page(struct page *page)
368 {
369 	ClearPageDirty(page);
370 	ClearPageUptodate(page);
371 	delete_from_page_cache(page);
372 }
373 
374 static void
375 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
376 		      zap_flags_t zap_flags)
377 {
378 	struct vm_area_struct *vma;
379 
380 	/*
381 	 * end == 0 indicates that the entire range after start should be
382 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
383 	 * an inclusive "last".
384 	 */
385 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
386 		unsigned long v_offset;
387 		unsigned long v_end;
388 
389 		/*
390 		 * Can the expression below overflow on 32-bit arches?
391 		 * No, because the interval tree returns us only those vmas
392 		 * which overlap the truncated area starting at pgoff,
393 		 * and no vma on a 32-bit arch can span beyond the 4GB.
394 		 */
395 		if (vma->vm_pgoff < start)
396 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
397 		else
398 			v_offset = 0;
399 
400 		if (!end)
401 			v_end = vma->vm_end;
402 		else {
403 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
404 							+ vma->vm_start;
405 			if (v_end > vma->vm_end)
406 				v_end = vma->vm_end;
407 		}
408 
409 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
410 				     NULL, zap_flags);
411 	}
412 }
413 
414 /*
415  * remove_inode_hugepages handles two distinct cases: truncation and hole
416  * punch.  There are subtle differences in operation for each case.
417  *
418  * truncation is indicated by end of range being LLONG_MAX
419  *	In this case, we first scan the range and release found pages.
420  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
421  *	maps and global counts.  Page faults can not race with truncation
422  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
423  *	page faults in the truncated range by checking i_size.  i_size is
424  *	modified while holding i_mmap_rwsem.
425  * hole punch is indicated if end is not LLONG_MAX
426  *	In the hole punch case we scan the range and release found pages.
427  *	Only when releasing a page is the associated region/reserve map
428  *	deleted.  The region/reserve map for ranges without associated
429  *	pages are not modified.  Page faults can race with hole punch.
430  *	This is indicated if we find a mapped page.
431  * Note: If the passed end of range value is beyond the end of file, but
432  * not LLONG_MAX this routine still performs a hole punch operation.
433  */
434 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
435 				   loff_t lend)
436 {
437 	struct hstate *h = hstate_inode(inode);
438 	struct address_space *mapping = &inode->i_data;
439 	const pgoff_t start = lstart >> huge_page_shift(h);
440 	const pgoff_t end = lend >> huge_page_shift(h);
441 	struct folio_batch fbatch;
442 	pgoff_t next, index;
443 	int i, freed = 0;
444 	bool truncate_op = (lend == LLONG_MAX);
445 
446 	folio_batch_init(&fbatch);
447 	next = start;
448 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
449 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
450 			struct folio *folio = fbatch.folios[i];
451 			u32 hash = 0;
452 
453 			index = folio->index;
454 			if (!truncate_op) {
455 				/*
456 				 * Only need to hold the fault mutex in the
457 				 * hole punch case.  This prevents races with
458 				 * page faults.  Races are not possible in the
459 				 * case of truncation.
460 				 */
461 				hash = hugetlb_fault_mutex_hash(mapping, index);
462 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
463 			}
464 
465 			/*
466 			 * If folio is mapped, it was faulted in after being
467 			 * unmapped in caller.  Unmap (again) now after taking
468 			 * the fault mutex.  The mutex will prevent faults
469 			 * until we finish removing the folio.
470 			 *
471 			 * This race can only happen in the hole punch case.
472 			 * Getting here in a truncate operation is a bug.
473 			 */
474 			if (unlikely(folio_mapped(folio))) {
475 				BUG_ON(truncate_op);
476 
477 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
478 				i_mmap_lock_write(mapping);
479 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
480 				hugetlb_vmdelete_list(&mapping->i_mmap,
481 					index * pages_per_huge_page(h),
482 					(index + 1) * pages_per_huge_page(h),
483 					ZAP_FLAG_DROP_MARKER);
484 				i_mmap_unlock_write(mapping);
485 			}
486 
487 			folio_lock(folio);
488 			/*
489 			 * We must free the huge page and remove from page
490 			 * cache (remove_huge_page) BEFORE removing the
491 			 * region/reserve map (hugetlb_unreserve_pages).  In
492 			 * rare out of memory conditions, removal of the
493 			 * region/reserve map could fail. Correspondingly,
494 			 * the subpool and global reserve usage count can need
495 			 * to be adjusted.
496 			 */
497 			VM_BUG_ON(HPageRestoreReserve(&folio->page));
498 			remove_huge_page(&folio->page);
499 			freed++;
500 			if (!truncate_op) {
501 				if (unlikely(hugetlb_unreserve_pages(inode,
502 							index, index + 1, 1)))
503 					hugetlb_fix_reserve_counts(inode);
504 			}
505 
506 			folio_unlock(folio);
507 			if (!truncate_op)
508 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
509 		}
510 		folio_batch_release(&fbatch);
511 		cond_resched();
512 	}
513 
514 	if (truncate_op)
515 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
516 }
517 
518 static void hugetlbfs_evict_inode(struct inode *inode)
519 {
520 	struct resv_map *resv_map;
521 
522 	remove_inode_hugepages(inode, 0, LLONG_MAX);
523 
524 	/*
525 	 * Get the resv_map from the address space embedded in the inode.
526 	 * This is the address space which points to any resv_map allocated
527 	 * at inode creation time.  If this is a device special inode,
528 	 * i_mapping may not point to the original address space.
529 	 */
530 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
531 	/* Only regular and link inodes have associated reserve maps */
532 	if (resv_map)
533 		resv_map_release(&resv_map->refs);
534 	clear_inode(inode);
535 }
536 
537 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
538 {
539 	pgoff_t pgoff;
540 	struct address_space *mapping = inode->i_mapping;
541 	struct hstate *h = hstate_inode(inode);
542 
543 	BUG_ON(offset & ~huge_page_mask(h));
544 	pgoff = offset >> PAGE_SHIFT;
545 
546 	i_mmap_lock_write(mapping);
547 	i_size_write(inode, offset);
548 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
549 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
550 				      ZAP_FLAG_DROP_MARKER);
551 	i_mmap_unlock_write(mapping);
552 	remove_inode_hugepages(inode, offset, LLONG_MAX);
553 }
554 
555 static void hugetlbfs_zero_partial_page(struct hstate *h,
556 					struct address_space *mapping,
557 					loff_t start,
558 					loff_t end)
559 {
560 	pgoff_t idx = start >> huge_page_shift(h);
561 	struct folio *folio;
562 
563 	folio = filemap_lock_folio(mapping, idx);
564 	if (!folio)
565 		return;
566 
567 	start = start & ~huge_page_mask(h);
568 	end = end & ~huge_page_mask(h);
569 	if (!end)
570 		end = huge_page_size(h);
571 
572 	folio_zero_segment(folio, (size_t)start, (size_t)end);
573 
574 	folio_unlock(folio);
575 	folio_put(folio);
576 }
577 
578 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
579 {
580 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
581 	struct address_space *mapping = inode->i_mapping;
582 	struct hstate *h = hstate_inode(inode);
583 	loff_t hpage_size = huge_page_size(h);
584 	loff_t hole_start, hole_end;
585 
586 	/*
587 	 * hole_start and hole_end indicate the full pages within the hole.
588 	 */
589 	hole_start = round_up(offset, hpage_size);
590 	hole_end = round_down(offset + len, hpage_size);
591 
592 	inode_lock(inode);
593 
594 	/* protected by i_rwsem */
595 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
596 		inode_unlock(inode);
597 		return -EPERM;
598 	}
599 
600 	i_mmap_lock_write(mapping);
601 
602 	/* If range starts before first full page, zero partial page. */
603 	if (offset < hole_start)
604 		hugetlbfs_zero_partial_page(h, mapping,
605 				offset, min(offset + len, hole_start));
606 
607 	/* Unmap users of full pages in the hole. */
608 	if (hole_end > hole_start) {
609 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
610 			hugetlb_vmdelete_list(&mapping->i_mmap,
611 					      hole_start >> PAGE_SHIFT,
612 					      hole_end >> PAGE_SHIFT, 0);
613 	}
614 
615 	/* If range extends beyond last full page, zero partial page. */
616 	if ((offset + len) > hole_end && (offset + len) > hole_start)
617 		hugetlbfs_zero_partial_page(h, mapping,
618 				hole_end, offset + len);
619 
620 	i_mmap_unlock_write(mapping);
621 
622 	/* Remove full pages from the file. */
623 	if (hole_end > hole_start)
624 		remove_inode_hugepages(inode, hole_start, hole_end);
625 
626 	inode_unlock(inode);
627 
628 	return 0;
629 }
630 
631 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
632 				loff_t len)
633 {
634 	struct inode *inode = file_inode(file);
635 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
636 	struct address_space *mapping = inode->i_mapping;
637 	struct hstate *h = hstate_inode(inode);
638 	struct vm_area_struct pseudo_vma;
639 	struct mm_struct *mm = current->mm;
640 	loff_t hpage_size = huge_page_size(h);
641 	unsigned long hpage_shift = huge_page_shift(h);
642 	pgoff_t start, index, end;
643 	int error;
644 	u32 hash;
645 
646 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
647 		return -EOPNOTSUPP;
648 
649 	if (mode & FALLOC_FL_PUNCH_HOLE)
650 		return hugetlbfs_punch_hole(inode, offset, len);
651 
652 	/*
653 	 * Default preallocate case.
654 	 * For this range, start is rounded down and end is rounded up
655 	 * as well as being converted to page offsets.
656 	 */
657 	start = offset >> hpage_shift;
658 	end = (offset + len + hpage_size - 1) >> hpage_shift;
659 
660 	inode_lock(inode);
661 
662 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
663 	error = inode_newsize_ok(inode, offset + len);
664 	if (error)
665 		goto out;
666 
667 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
668 		error = -EPERM;
669 		goto out;
670 	}
671 
672 	/*
673 	 * Initialize a pseudo vma as this is required by the huge page
674 	 * allocation routines.  If NUMA is configured, use page index
675 	 * as input to create an allocation policy.
676 	 */
677 	vma_init(&pseudo_vma, mm);
678 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
679 	pseudo_vma.vm_file = file;
680 
681 	for (index = start; index < end; index++) {
682 		/*
683 		 * This is supposed to be the vaddr where the page is being
684 		 * faulted in, but we have no vaddr here.
685 		 */
686 		struct page *page;
687 		unsigned long addr;
688 
689 		cond_resched();
690 
691 		/*
692 		 * fallocate(2) manpage permits EINTR; we may have been
693 		 * interrupted because we are using up too much memory.
694 		 */
695 		if (signal_pending(current)) {
696 			error = -EINTR;
697 			break;
698 		}
699 
700 		/* Set numa allocation policy based on index */
701 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
702 
703 		/* addr is the offset within the file (zero based) */
704 		addr = index * hpage_size;
705 
706 		/*
707 		 * fault mutex taken here, protects against fault path
708 		 * and hole punch.  inode_lock previously taken protects
709 		 * against truncation.
710 		 */
711 		hash = hugetlb_fault_mutex_hash(mapping, index);
712 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
713 
714 		/* See if already present in mapping to avoid alloc/free */
715 		page = find_get_page(mapping, index);
716 		if (page) {
717 			put_page(page);
718 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
719 			hugetlb_drop_vma_policy(&pseudo_vma);
720 			continue;
721 		}
722 
723 		/*
724 		 * Allocate page without setting the avoid_reserve argument.
725 		 * There certainly are no reserves associated with the
726 		 * pseudo_vma.  However, there could be shared mappings with
727 		 * reserves for the file at the inode level.  If we fallocate
728 		 * pages in these areas, we need to consume the reserves
729 		 * to keep reservation accounting consistent.
730 		 */
731 		page = alloc_huge_page(&pseudo_vma, addr, 0);
732 		hugetlb_drop_vma_policy(&pseudo_vma);
733 		if (IS_ERR(page)) {
734 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
735 			error = PTR_ERR(page);
736 			goto out;
737 		}
738 		clear_huge_page(page, addr, pages_per_huge_page(h));
739 		__SetPageUptodate(page);
740 		error = huge_add_to_page_cache(page, mapping, index);
741 		if (unlikely(error)) {
742 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
743 			put_page(page);
744 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
745 			goto out;
746 		}
747 
748 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
749 
750 		SetHPageMigratable(page);
751 		/*
752 		 * unlock_page because locked by huge_add_to_page_cache()
753 		 * put_page() due to reference from alloc_huge_page()
754 		 */
755 		unlock_page(page);
756 		put_page(page);
757 	}
758 
759 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
760 		i_size_write(inode, offset + len);
761 	inode->i_ctime = current_time(inode);
762 out:
763 	inode_unlock(inode);
764 	return error;
765 }
766 
767 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
768 			     struct dentry *dentry, struct iattr *attr)
769 {
770 	struct inode *inode = d_inode(dentry);
771 	struct hstate *h = hstate_inode(inode);
772 	int error;
773 	unsigned int ia_valid = attr->ia_valid;
774 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
775 
776 	error = setattr_prepare(&init_user_ns, dentry, attr);
777 	if (error)
778 		return error;
779 
780 	if (ia_valid & ATTR_SIZE) {
781 		loff_t oldsize = inode->i_size;
782 		loff_t newsize = attr->ia_size;
783 
784 		if (newsize & ~huge_page_mask(h))
785 			return -EINVAL;
786 		/* protected by i_rwsem */
787 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
788 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
789 			return -EPERM;
790 		hugetlb_vmtruncate(inode, newsize);
791 	}
792 
793 	setattr_copy(&init_user_ns, inode, attr);
794 	mark_inode_dirty(inode);
795 	return 0;
796 }
797 
798 static struct inode *hugetlbfs_get_root(struct super_block *sb,
799 					struct hugetlbfs_fs_context *ctx)
800 {
801 	struct inode *inode;
802 
803 	inode = new_inode(sb);
804 	if (inode) {
805 		inode->i_ino = get_next_ino();
806 		inode->i_mode = S_IFDIR | ctx->mode;
807 		inode->i_uid = ctx->uid;
808 		inode->i_gid = ctx->gid;
809 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
810 		inode->i_op = &hugetlbfs_dir_inode_operations;
811 		inode->i_fop = &simple_dir_operations;
812 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
813 		inc_nlink(inode);
814 		lockdep_annotate_inode_mutex_key(inode);
815 	}
816 	return inode;
817 }
818 
819 /*
820  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
821  * be taken from reclaim -- unlike regular filesystems. This needs an
822  * annotation because huge_pmd_share() does an allocation under hugetlb's
823  * i_mmap_rwsem.
824  */
825 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
826 
827 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
828 					struct inode *dir,
829 					umode_t mode, dev_t dev)
830 {
831 	struct inode *inode;
832 	struct resv_map *resv_map = NULL;
833 
834 	/*
835 	 * Reserve maps are only needed for inodes that can have associated
836 	 * page allocations.
837 	 */
838 	if (S_ISREG(mode) || S_ISLNK(mode)) {
839 		resv_map = resv_map_alloc();
840 		if (!resv_map)
841 			return NULL;
842 	}
843 
844 	inode = new_inode(sb);
845 	if (inode) {
846 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
847 
848 		inode->i_ino = get_next_ino();
849 		inode_init_owner(&init_user_ns, inode, dir, mode);
850 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
851 				&hugetlbfs_i_mmap_rwsem_key);
852 		inode->i_mapping->a_ops = &hugetlbfs_aops;
853 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
854 		inode->i_mapping->private_data = resv_map;
855 		info->seals = F_SEAL_SEAL;
856 		switch (mode & S_IFMT) {
857 		default:
858 			init_special_inode(inode, mode, dev);
859 			break;
860 		case S_IFREG:
861 			inode->i_op = &hugetlbfs_inode_operations;
862 			inode->i_fop = &hugetlbfs_file_operations;
863 			break;
864 		case S_IFDIR:
865 			inode->i_op = &hugetlbfs_dir_inode_operations;
866 			inode->i_fop = &simple_dir_operations;
867 
868 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
869 			inc_nlink(inode);
870 			break;
871 		case S_IFLNK:
872 			inode->i_op = &page_symlink_inode_operations;
873 			inode_nohighmem(inode);
874 			break;
875 		}
876 		lockdep_annotate_inode_mutex_key(inode);
877 	} else {
878 		if (resv_map)
879 			kref_put(&resv_map->refs, resv_map_release);
880 	}
881 
882 	return inode;
883 }
884 
885 /*
886  * File creation. Allocate an inode, and we're done..
887  */
888 static int do_hugetlbfs_mknod(struct inode *dir,
889 			struct dentry *dentry,
890 			umode_t mode,
891 			dev_t dev,
892 			bool tmpfile)
893 {
894 	struct inode *inode;
895 	int error = -ENOSPC;
896 
897 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
898 	if (inode) {
899 		dir->i_ctime = dir->i_mtime = current_time(dir);
900 		if (tmpfile) {
901 			d_tmpfile(dentry, inode);
902 		} else {
903 			d_instantiate(dentry, inode);
904 			dget(dentry);/* Extra count - pin the dentry in core */
905 		}
906 		error = 0;
907 	}
908 	return error;
909 }
910 
911 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
912 			   struct dentry *dentry, umode_t mode, dev_t dev)
913 {
914 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
915 }
916 
917 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
918 			   struct dentry *dentry, umode_t mode)
919 {
920 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
921 				     mode | S_IFDIR, 0);
922 	if (!retval)
923 		inc_nlink(dir);
924 	return retval;
925 }
926 
927 static int hugetlbfs_create(struct user_namespace *mnt_userns,
928 			    struct inode *dir, struct dentry *dentry,
929 			    umode_t mode, bool excl)
930 {
931 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
932 }
933 
934 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
935 			     struct inode *dir, struct dentry *dentry,
936 			     umode_t mode)
937 {
938 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
939 }
940 
941 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
942 			     struct inode *dir, struct dentry *dentry,
943 			     const char *symname)
944 {
945 	struct inode *inode;
946 	int error = -ENOSPC;
947 
948 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
949 	if (inode) {
950 		int l = strlen(symname)+1;
951 		error = page_symlink(inode, symname, l);
952 		if (!error) {
953 			d_instantiate(dentry, inode);
954 			dget(dentry);
955 		} else
956 			iput(inode);
957 	}
958 	dir->i_ctime = dir->i_mtime = current_time(dir);
959 
960 	return error;
961 }
962 
963 #ifdef CONFIG_MIGRATION
964 static int hugetlbfs_migrate_folio(struct address_space *mapping,
965 				struct folio *dst, struct folio *src,
966 				enum migrate_mode mode)
967 {
968 	int rc;
969 
970 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
971 	if (rc != MIGRATEPAGE_SUCCESS)
972 		return rc;
973 
974 	if (hugetlb_page_subpool(&src->page)) {
975 		hugetlb_set_page_subpool(&dst->page,
976 					hugetlb_page_subpool(&src->page));
977 		hugetlb_set_page_subpool(&src->page, NULL);
978 	}
979 
980 	if (mode != MIGRATE_SYNC_NO_COPY)
981 		folio_migrate_copy(dst, src);
982 	else
983 		folio_migrate_flags(dst, src);
984 
985 	return MIGRATEPAGE_SUCCESS;
986 }
987 #else
988 #define hugetlbfs_migrate_folio NULL
989 #endif
990 
991 static int hugetlbfs_error_remove_page(struct address_space *mapping,
992 				struct page *page)
993 {
994 	struct inode *inode = mapping->host;
995 	pgoff_t index = page->index;
996 
997 	remove_huge_page(page);
998 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
999 		hugetlb_fix_reserve_counts(inode);
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * Display the mount options in /proc/mounts.
1006  */
1007 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1008 {
1009 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1010 	struct hugepage_subpool *spool = sbinfo->spool;
1011 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1012 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1013 	char mod;
1014 
1015 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1016 		seq_printf(m, ",uid=%u",
1017 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1018 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1019 		seq_printf(m, ",gid=%u",
1020 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1021 	if (sbinfo->mode != 0755)
1022 		seq_printf(m, ",mode=%o", sbinfo->mode);
1023 	if (sbinfo->max_inodes != -1)
1024 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1025 
1026 	hpage_size /= 1024;
1027 	mod = 'K';
1028 	if (hpage_size >= 1024) {
1029 		hpage_size /= 1024;
1030 		mod = 'M';
1031 	}
1032 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1033 	if (spool) {
1034 		if (spool->max_hpages != -1)
1035 			seq_printf(m, ",size=%llu",
1036 				   (unsigned long long)spool->max_hpages << hpage_shift);
1037 		if (spool->min_hpages != -1)
1038 			seq_printf(m, ",min_size=%llu",
1039 				   (unsigned long long)spool->min_hpages << hpage_shift);
1040 	}
1041 	return 0;
1042 }
1043 
1044 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1045 {
1046 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1047 	struct hstate *h = hstate_inode(d_inode(dentry));
1048 
1049 	buf->f_type = HUGETLBFS_MAGIC;
1050 	buf->f_bsize = huge_page_size(h);
1051 	if (sbinfo) {
1052 		spin_lock(&sbinfo->stat_lock);
1053 		/* If no limits set, just report 0 or -1 for max/free/used
1054 		 * blocks, like simple_statfs() */
1055 		if (sbinfo->spool) {
1056 			long free_pages;
1057 
1058 			spin_lock_irq(&sbinfo->spool->lock);
1059 			buf->f_blocks = sbinfo->spool->max_hpages;
1060 			free_pages = sbinfo->spool->max_hpages
1061 				- sbinfo->spool->used_hpages;
1062 			buf->f_bavail = buf->f_bfree = free_pages;
1063 			spin_unlock_irq(&sbinfo->spool->lock);
1064 			buf->f_files = sbinfo->max_inodes;
1065 			buf->f_ffree = sbinfo->free_inodes;
1066 		}
1067 		spin_unlock(&sbinfo->stat_lock);
1068 	}
1069 	buf->f_namelen = NAME_MAX;
1070 	return 0;
1071 }
1072 
1073 static void hugetlbfs_put_super(struct super_block *sb)
1074 {
1075 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1076 
1077 	if (sbi) {
1078 		sb->s_fs_info = NULL;
1079 
1080 		if (sbi->spool)
1081 			hugepage_put_subpool(sbi->spool);
1082 
1083 		kfree(sbi);
1084 	}
1085 }
1086 
1087 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1088 {
1089 	if (sbinfo->free_inodes >= 0) {
1090 		spin_lock(&sbinfo->stat_lock);
1091 		if (unlikely(!sbinfo->free_inodes)) {
1092 			spin_unlock(&sbinfo->stat_lock);
1093 			return 0;
1094 		}
1095 		sbinfo->free_inodes--;
1096 		spin_unlock(&sbinfo->stat_lock);
1097 	}
1098 
1099 	return 1;
1100 }
1101 
1102 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1103 {
1104 	if (sbinfo->free_inodes >= 0) {
1105 		spin_lock(&sbinfo->stat_lock);
1106 		sbinfo->free_inodes++;
1107 		spin_unlock(&sbinfo->stat_lock);
1108 	}
1109 }
1110 
1111 
1112 static struct kmem_cache *hugetlbfs_inode_cachep;
1113 
1114 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1115 {
1116 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1117 	struct hugetlbfs_inode_info *p;
1118 
1119 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1120 		return NULL;
1121 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1122 	if (unlikely(!p)) {
1123 		hugetlbfs_inc_free_inodes(sbinfo);
1124 		return NULL;
1125 	}
1126 
1127 	/*
1128 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1129 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1130 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1131 	 * in case of a quick call to destroy.
1132 	 *
1133 	 * Note that the policy is initialized even if we are creating a
1134 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1135 	 */
1136 	mpol_shared_policy_init(&p->policy, NULL);
1137 
1138 	return &p->vfs_inode;
1139 }
1140 
1141 static void hugetlbfs_free_inode(struct inode *inode)
1142 {
1143 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1144 }
1145 
1146 static void hugetlbfs_destroy_inode(struct inode *inode)
1147 {
1148 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1149 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1150 }
1151 
1152 static const struct address_space_operations hugetlbfs_aops = {
1153 	.write_begin	= hugetlbfs_write_begin,
1154 	.write_end	= hugetlbfs_write_end,
1155 	.dirty_folio	= noop_dirty_folio,
1156 	.migrate_folio  = hugetlbfs_migrate_folio,
1157 	.error_remove_page	= hugetlbfs_error_remove_page,
1158 };
1159 
1160 
1161 static void init_once(void *foo)
1162 {
1163 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1164 
1165 	inode_init_once(&ei->vfs_inode);
1166 }
1167 
1168 const struct file_operations hugetlbfs_file_operations = {
1169 	.read_iter		= hugetlbfs_read_iter,
1170 	.mmap			= hugetlbfs_file_mmap,
1171 	.fsync			= noop_fsync,
1172 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1173 	.llseek			= default_llseek,
1174 	.fallocate		= hugetlbfs_fallocate,
1175 };
1176 
1177 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1178 	.create		= hugetlbfs_create,
1179 	.lookup		= simple_lookup,
1180 	.link		= simple_link,
1181 	.unlink		= simple_unlink,
1182 	.symlink	= hugetlbfs_symlink,
1183 	.mkdir		= hugetlbfs_mkdir,
1184 	.rmdir		= simple_rmdir,
1185 	.mknod		= hugetlbfs_mknod,
1186 	.rename		= simple_rename,
1187 	.setattr	= hugetlbfs_setattr,
1188 	.tmpfile	= hugetlbfs_tmpfile,
1189 };
1190 
1191 static const struct inode_operations hugetlbfs_inode_operations = {
1192 	.setattr	= hugetlbfs_setattr,
1193 };
1194 
1195 static const struct super_operations hugetlbfs_ops = {
1196 	.alloc_inode    = hugetlbfs_alloc_inode,
1197 	.free_inode     = hugetlbfs_free_inode,
1198 	.destroy_inode  = hugetlbfs_destroy_inode,
1199 	.evict_inode	= hugetlbfs_evict_inode,
1200 	.statfs		= hugetlbfs_statfs,
1201 	.put_super	= hugetlbfs_put_super,
1202 	.show_options	= hugetlbfs_show_options,
1203 };
1204 
1205 /*
1206  * Convert size option passed from command line to number of huge pages
1207  * in the pool specified by hstate.  Size option could be in bytes
1208  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1209  */
1210 static long
1211 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1212 			 enum hugetlbfs_size_type val_type)
1213 {
1214 	if (val_type == NO_SIZE)
1215 		return -1;
1216 
1217 	if (val_type == SIZE_PERCENT) {
1218 		size_opt <<= huge_page_shift(h);
1219 		size_opt *= h->max_huge_pages;
1220 		do_div(size_opt, 100);
1221 	}
1222 
1223 	size_opt >>= huge_page_shift(h);
1224 	return size_opt;
1225 }
1226 
1227 /*
1228  * Parse one mount parameter.
1229  */
1230 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1231 {
1232 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1233 	struct fs_parse_result result;
1234 	char *rest;
1235 	unsigned long ps;
1236 	int opt;
1237 
1238 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1239 	if (opt < 0)
1240 		return opt;
1241 
1242 	switch (opt) {
1243 	case Opt_uid:
1244 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1245 		if (!uid_valid(ctx->uid))
1246 			goto bad_val;
1247 		return 0;
1248 
1249 	case Opt_gid:
1250 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1251 		if (!gid_valid(ctx->gid))
1252 			goto bad_val;
1253 		return 0;
1254 
1255 	case Opt_mode:
1256 		ctx->mode = result.uint_32 & 01777U;
1257 		return 0;
1258 
1259 	case Opt_size:
1260 		/* memparse() will accept a K/M/G without a digit */
1261 		if (!isdigit(param->string[0]))
1262 			goto bad_val;
1263 		ctx->max_size_opt = memparse(param->string, &rest);
1264 		ctx->max_val_type = SIZE_STD;
1265 		if (*rest == '%')
1266 			ctx->max_val_type = SIZE_PERCENT;
1267 		return 0;
1268 
1269 	case Opt_nr_inodes:
1270 		/* memparse() will accept a K/M/G without a digit */
1271 		if (!isdigit(param->string[0]))
1272 			goto bad_val;
1273 		ctx->nr_inodes = memparse(param->string, &rest);
1274 		return 0;
1275 
1276 	case Opt_pagesize:
1277 		ps = memparse(param->string, &rest);
1278 		ctx->hstate = size_to_hstate(ps);
1279 		if (!ctx->hstate) {
1280 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1281 			return -EINVAL;
1282 		}
1283 		return 0;
1284 
1285 	case Opt_min_size:
1286 		/* memparse() will accept a K/M/G without a digit */
1287 		if (!isdigit(param->string[0]))
1288 			goto bad_val;
1289 		ctx->min_size_opt = memparse(param->string, &rest);
1290 		ctx->min_val_type = SIZE_STD;
1291 		if (*rest == '%')
1292 			ctx->min_val_type = SIZE_PERCENT;
1293 		return 0;
1294 
1295 	default:
1296 		return -EINVAL;
1297 	}
1298 
1299 bad_val:
1300 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1301 		      param->string, param->key);
1302 }
1303 
1304 /*
1305  * Validate the parsed options.
1306  */
1307 static int hugetlbfs_validate(struct fs_context *fc)
1308 {
1309 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1310 
1311 	/*
1312 	 * Use huge page pool size (in hstate) to convert the size
1313 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1314 	 */
1315 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1316 						   ctx->max_size_opt,
1317 						   ctx->max_val_type);
1318 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1319 						   ctx->min_size_opt,
1320 						   ctx->min_val_type);
1321 
1322 	/*
1323 	 * If max_size was specified, then min_size must be smaller
1324 	 */
1325 	if (ctx->max_val_type > NO_SIZE &&
1326 	    ctx->min_hpages > ctx->max_hpages) {
1327 		pr_err("Minimum size can not be greater than maximum size\n");
1328 		return -EINVAL;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static int
1335 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1336 {
1337 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1338 	struct hugetlbfs_sb_info *sbinfo;
1339 
1340 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1341 	if (!sbinfo)
1342 		return -ENOMEM;
1343 	sb->s_fs_info = sbinfo;
1344 	spin_lock_init(&sbinfo->stat_lock);
1345 	sbinfo->hstate		= ctx->hstate;
1346 	sbinfo->max_inodes	= ctx->nr_inodes;
1347 	sbinfo->free_inodes	= ctx->nr_inodes;
1348 	sbinfo->spool		= NULL;
1349 	sbinfo->uid		= ctx->uid;
1350 	sbinfo->gid		= ctx->gid;
1351 	sbinfo->mode		= ctx->mode;
1352 
1353 	/*
1354 	 * Allocate and initialize subpool if maximum or minimum size is
1355 	 * specified.  Any needed reservations (for minimum size) are taken
1356 	 * when the subpool is created.
1357 	 */
1358 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1359 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1360 						     ctx->max_hpages,
1361 						     ctx->min_hpages);
1362 		if (!sbinfo->spool)
1363 			goto out_free;
1364 	}
1365 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1366 	sb->s_blocksize = huge_page_size(ctx->hstate);
1367 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1368 	sb->s_magic = HUGETLBFS_MAGIC;
1369 	sb->s_op = &hugetlbfs_ops;
1370 	sb->s_time_gran = 1;
1371 
1372 	/*
1373 	 * Due to the special and limited functionality of hugetlbfs, it does
1374 	 * not work well as a stacking filesystem.
1375 	 */
1376 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1377 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1378 	if (!sb->s_root)
1379 		goto out_free;
1380 	return 0;
1381 out_free:
1382 	kfree(sbinfo->spool);
1383 	kfree(sbinfo);
1384 	return -ENOMEM;
1385 }
1386 
1387 static int hugetlbfs_get_tree(struct fs_context *fc)
1388 {
1389 	int err = hugetlbfs_validate(fc);
1390 	if (err)
1391 		return err;
1392 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1393 }
1394 
1395 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1396 {
1397 	kfree(fc->fs_private);
1398 }
1399 
1400 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1401 	.free		= hugetlbfs_fs_context_free,
1402 	.parse_param	= hugetlbfs_parse_param,
1403 	.get_tree	= hugetlbfs_get_tree,
1404 };
1405 
1406 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1407 {
1408 	struct hugetlbfs_fs_context *ctx;
1409 
1410 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1411 	if (!ctx)
1412 		return -ENOMEM;
1413 
1414 	ctx->max_hpages	= -1; /* No limit on size by default */
1415 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1416 	ctx->uid	= current_fsuid();
1417 	ctx->gid	= current_fsgid();
1418 	ctx->mode	= 0755;
1419 	ctx->hstate	= &default_hstate;
1420 	ctx->min_hpages	= -1; /* No default minimum size */
1421 	ctx->max_val_type = NO_SIZE;
1422 	ctx->min_val_type = NO_SIZE;
1423 	fc->fs_private = ctx;
1424 	fc->ops	= &hugetlbfs_fs_context_ops;
1425 	return 0;
1426 }
1427 
1428 static struct file_system_type hugetlbfs_fs_type = {
1429 	.name			= "hugetlbfs",
1430 	.init_fs_context	= hugetlbfs_init_fs_context,
1431 	.parameters		= hugetlb_fs_parameters,
1432 	.kill_sb		= kill_litter_super,
1433 };
1434 
1435 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1436 
1437 static int can_do_hugetlb_shm(void)
1438 {
1439 	kgid_t shm_group;
1440 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1441 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1442 }
1443 
1444 static int get_hstate_idx(int page_size_log)
1445 {
1446 	struct hstate *h = hstate_sizelog(page_size_log);
1447 
1448 	if (!h)
1449 		return -1;
1450 	return hstate_index(h);
1451 }
1452 
1453 /*
1454  * Note that size should be aligned to proper hugepage size in caller side,
1455  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1456  */
1457 struct file *hugetlb_file_setup(const char *name, size_t size,
1458 				vm_flags_t acctflag, int creat_flags,
1459 				int page_size_log)
1460 {
1461 	struct inode *inode;
1462 	struct vfsmount *mnt;
1463 	int hstate_idx;
1464 	struct file *file;
1465 
1466 	hstate_idx = get_hstate_idx(page_size_log);
1467 	if (hstate_idx < 0)
1468 		return ERR_PTR(-ENODEV);
1469 
1470 	mnt = hugetlbfs_vfsmount[hstate_idx];
1471 	if (!mnt)
1472 		return ERR_PTR(-ENOENT);
1473 
1474 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1475 		struct ucounts *ucounts = current_ucounts();
1476 
1477 		if (user_shm_lock(size, ucounts)) {
1478 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1479 				current->comm, current->pid);
1480 			user_shm_unlock(size, ucounts);
1481 		}
1482 		return ERR_PTR(-EPERM);
1483 	}
1484 
1485 	file = ERR_PTR(-ENOSPC);
1486 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1487 	if (!inode)
1488 		goto out;
1489 	if (creat_flags == HUGETLB_SHMFS_INODE)
1490 		inode->i_flags |= S_PRIVATE;
1491 
1492 	inode->i_size = size;
1493 	clear_nlink(inode);
1494 
1495 	if (!hugetlb_reserve_pages(inode, 0,
1496 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1497 			acctflag))
1498 		file = ERR_PTR(-ENOMEM);
1499 	else
1500 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1501 					&hugetlbfs_file_operations);
1502 	if (!IS_ERR(file))
1503 		return file;
1504 
1505 	iput(inode);
1506 out:
1507 	return file;
1508 }
1509 
1510 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1511 {
1512 	struct fs_context *fc;
1513 	struct vfsmount *mnt;
1514 
1515 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1516 	if (IS_ERR(fc)) {
1517 		mnt = ERR_CAST(fc);
1518 	} else {
1519 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1520 		ctx->hstate = h;
1521 		mnt = fc_mount(fc);
1522 		put_fs_context(fc);
1523 	}
1524 	if (IS_ERR(mnt))
1525 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1526 		       huge_page_size(h) / SZ_1K);
1527 	return mnt;
1528 }
1529 
1530 static int __init init_hugetlbfs_fs(void)
1531 {
1532 	struct vfsmount *mnt;
1533 	struct hstate *h;
1534 	int error;
1535 	int i;
1536 
1537 	if (!hugepages_supported()) {
1538 		pr_info("disabling because there are no supported hugepage sizes\n");
1539 		return -ENOTSUPP;
1540 	}
1541 
1542 	error = -ENOMEM;
1543 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1544 					sizeof(struct hugetlbfs_inode_info),
1545 					0, SLAB_ACCOUNT, init_once);
1546 	if (hugetlbfs_inode_cachep == NULL)
1547 		goto out;
1548 
1549 	error = register_filesystem(&hugetlbfs_fs_type);
1550 	if (error)
1551 		goto out_free;
1552 
1553 	/* default hstate mount is required */
1554 	mnt = mount_one_hugetlbfs(&default_hstate);
1555 	if (IS_ERR(mnt)) {
1556 		error = PTR_ERR(mnt);
1557 		goto out_unreg;
1558 	}
1559 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1560 
1561 	/* other hstates are optional */
1562 	i = 0;
1563 	for_each_hstate(h) {
1564 		if (i == default_hstate_idx) {
1565 			i++;
1566 			continue;
1567 		}
1568 
1569 		mnt = mount_one_hugetlbfs(h);
1570 		if (IS_ERR(mnt))
1571 			hugetlbfs_vfsmount[i] = NULL;
1572 		else
1573 			hugetlbfs_vfsmount[i] = mnt;
1574 		i++;
1575 	}
1576 
1577 	return 0;
1578 
1579  out_unreg:
1580 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1581  out_free:
1582 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1583  out:
1584 	return error;
1585 }
1586 fs_initcall(init_hugetlbfs_fs)
1587