xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 struct hugetlbfs_config {
49 	struct hstate		*hstate;
50 	long			max_hpages;
51 	long			nr_inodes;
52 	long			min_hpages;
53 	kuid_t			uid;
54 	kgid_t			gid;
55 	umode_t			mode;
56 };
57 
58 int sysctl_hugetlb_shm_group;
59 
60 enum {
61 	Opt_size, Opt_nr_inodes,
62 	Opt_mode, Opt_uid, Opt_gid,
63 	Opt_pagesize, Opt_min_size,
64 	Opt_err,
65 };
66 
67 static const match_table_t tokens = {
68 	{Opt_size,	"size=%s"},
69 	{Opt_nr_inodes,	"nr_inodes=%s"},
70 	{Opt_mode,	"mode=%o"},
71 	{Opt_uid,	"uid=%u"},
72 	{Opt_gid,	"gid=%u"},
73 	{Opt_pagesize,	"pagesize=%s"},
74 	{Opt_min_size,	"min_size=%s"},
75 	{Opt_err,	NULL},
76 };
77 
78 #ifdef CONFIG_NUMA
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
80 					struct inode *inode, pgoff_t index)
81 {
82 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
83 							index);
84 }
85 
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
87 {
88 	mpol_cond_put(vma->vm_policy);
89 }
90 #else
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
92 					struct inode *inode, pgoff_t index)
93 {
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 }
99 #endif
100 
101 static void huge_pagevec_release(struct pagevec *pvec)
102 {
103 	int i;
104 
105 	for (i = 0; i < pagevec_count(pvec); ++i)
106 		put_page(pvec->pages[i]);
107 
108 	pagevec_reinit(pvec);
109 }
110 
111 /*
112  * Mask used when checking the page offset value passed in via system
113  * calls.  This value will be converted to a loff_t which is signed.
114  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115  * value.  The extra bit (- 1 in the shift value) is to take the sign
116  * bit into account.
117  */
118 #define PGOFF_LOFFT_MAX \
119 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
120 
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 	struct inode *inode = file_inode(file);
124 	loff_t len, vma_len;
125 	int ret;
126 	struct hstate *h = hstate_file(file);
127 
128 	/*
129 	 * vma address alignment (but not the pgoff alignment) has
130 	 * already been checked by prepare_hugepage_range.  If you add
131 	 * any error returns here, do so after setting VM_HUGETLB, so
132 	 * is_vm_hugetlb_page tests below unmap_region go the right
133 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 	 * and ia64).
135 	 */
136 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 	vma->vm_ops = &hugetlb_vm_ops;
138 
139 	/*
140 	 * page based offset in vm_pgoff could be sufficiently large to
141 	 * overflow a (l)off_t when converted to byte offset.
142 	 */
143 	if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
144 		return -EINVAL;
145 
146 	/* must be huge page aligned */
147 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
148 		return -EINVAL;
149 
150 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
151 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
152 	/* check for overflow */
153 	if (len < vma_len)
154 		return -EINVAL;
155 
156 	inode_lock(inode);
157 	file_accessed(file);
158 
159 	ret = -ENOMEM;
160 	if (hugetlb_reserve_pages(inode,
161 				vma->vm_pgoff >> huge_page_order(h),
162 				len >> huge_page_shift(h), vma,
163 				vma->vm_flags))
164 		goto out;
165 
166 	ret = 0;
167 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
168 		i_size_write(inode, len);
169 out:
170 	inode_unlock(inode);
171 
172 	return ret;
173 }
174 
175 /*
176  * Called under down_write(mmap_sem).
177  */
178 
179 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
180 static unsigned long
181 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
182 		unsigned long len, unsigned long pgoff, unsigned long flags)
183 {
184 	struct mm_struct *mm = current->mm;
185 	struct vm_area_struct *vma;
186 	struct hstate *h = hstate_file(file);
187 	struct vm_unmapped_area_info info;
188 
189 	if (len & ~huge_page_mask(h))
190 		return -EINVAL;
191 	if (len > TASK_SIZE)
192 		return -ENOMEM;
193 
194 	if (flags & MAP_FIXED) {
195 		if (prepare_hugepage_range(file, addr, len))
196 			return -EINVAL;
197 		return addr;
198 	}
199 
200 	if (addr) {
201 		addr = ALIGN(addr, huge_page_size(h));
202 		vma = find_vma(mm, addr);
203 		if (TASK_SIZE - len >= addr &&
204 		    (!vma || addr + len <= vm_start_gap(vma)))
205 			return addr;
206 	}
207 
208 	info.flags = 0;
209 	info.length = len;
210 	info.low_limit = TASK_UNMAPPED_BASE;
211 	info.high_limit = TASK_SIZE;
212 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
213 	info.align_offset = 0;
214 	return vm_unmapped_area(&info);
215 }
216 #endif
217 
218 static size_t
219 hugetlbfs_read_actor(struct page *page, unsigned long offset,
220 			struct iov_iter *to, unsigned long size)
221 {
222 	size_t copied = 0;
223 	int i, chunksize;
224 
225 	/* Find which 4k chunk and offset with in that chunk */
226 	i = offset >> PAGE_SHIFT;
227 	offset = offset & ~PAGE_MASK;
228 
229 	while (size) {
230 		size_t n;
231 		chunksize = PAGE_SIZE;
232 		if (offset)
233 			chunksize -= offset;
234 		if (chunksize > size)
235 			chunksize = size;
236 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
237 		copied += n;
238 		if (n != chunksize)
239 			return copied;
240 		offset = 0;
241 		size -= chunksize;
242 		i++;
243 	}
244 	return copied;
245 }
246 
247 /*
248  * Support for read() - Find the page attached to f_mapping and copy out the
249  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
250  * since it has PAGE_SIZE assumptions.
251  */
252 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
253 {
254 	struct file *file = iocb->ki_filp;
255 	struct hstate *h = hstate_file(file);
256 	struct address_space *mapping = file->f_mapping;
257 	struct inode *inode = mapping->host;
258 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
259 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
260 	unsigned long end_index;
261 	loff_t isize;
262 	ssize_t retval = 0;
263 
264 	while (iov_iter_count(to)) {
265 		struct page *page;
266 		size_t nr, copied;
267 
268 		/* nr is the maximum number of bytes to copy from this page */
269 		nr = huge_page_size(h);
270 		isize = i_size_read(inode);
271 		if (!isize)
272 			break;
273 		end_index = (isize - 1) >> huge_page_shift(h);
274 		if (index > end_index)
275 			break;
276 		if (index == end_index) {
277 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
278 			if (nr <= offset)
279 				break;
280 		}
281 		nr = nr - offset;
282 
283 		/* Find the page */
284 		page = find_lock_page(mapping, index);
285 		if (unlikely(page == NULL)) {
286 			/*
287 			 * We have a HOLE, zero out the user-buffer for the
288 			 * length of the hole or request.
289 			 */
290 			copied = iov_iter_zero(nr, to);
291 		} else {
292 			unlock_page(page);
293 
294 			/*
295 			 * We have the page, copy it to user space buffer.
296 			 */
297 			copied = hugetlbfs_read_actor(page, offset, to, nr);
298 			put_page(page);
299 		}
300 		offset += copied;
301 		retval += copied;
302 		if (copied != nr && iov_iter_count(to)) {
303 			if (!retval)
304 				retval = -EFAULT;
305 			break;
306 		}
307 		index += offset >> huge_page_shift(h);
308 		offset &= ~huge_page_mask(h);
309 	}
310 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
311 	return retval;
312 }
313 
314 static int hugetlbfs_write_begin(struct file *file,
315 			struct address_space *mapping,
316 			loff_t pos, unsigned len, unsigned flags,
317 			struct page **pagep, void **fsdata)
318 {
319 	return -EINVAL;
320 }
321 
322 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
323 			loff_t pos, unsigned len, unsigned copied,
324 			struct page *page, void *fsdata)
325 {
326 	BUG();
327 	return -EINVAL;
328 }
329 
330 static void remove_huge_page(struct page *page)
331 {
332 	ClearPageDirty(page);
333 	ClearPageUptodate(page);
334 	delete_from_page_cache(page);
335 }
336 
337 static void
338 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
339 {
340 	struct vm_area_struct *vma;
341 
342 	/*
343 	 * end == 0 indicates that the entire range after
344 	 * start should be unmapped.
345 	 */
346 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
347 		unsigned long v_offset;
348 		unsigned long v_end;
349 
350 		/*
351 		 * Can the expression below overflow on 32-bit arches?
352 		 * No, because the interval tree returns us only those vmas
353 		 * which overlap the truncated area starting at pgoff,
354 		 * and no vma on a 32-bit arch can span beyond the 4GB.
355 		 */
356 		if (vma->vm_pgoff < start)
357 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
358 		else
359 			v_offset = 0;
360 
361 		if (!end)
362 			v_end = vma->vm_end;
363 		else {
364 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
365 							+ vma->vm_start;
366 			if (v_end > vma->vm_end)
367 				v_end = vma->vm_end;
368 		}
369 
370 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
371 									NULL);
372 	}
373 }
374 
375 /*
376  * remove_inode_hugepages handles two distinct cases: truncation and hole
377  * punch.  There are subtle differences in operation for each case.
378  *
379  * truncation is indicated by end of range being LLONG_MAX
380  *	In this case, we first scan the range and release found pages.
381  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
382  *	maps and global counts.  Page faults can not race with truncation
383  *	in this routine.  hugetlb_no_page() prevents page faults in the
384  *	truncated range.  It checks i_size before allocation, and again after
385  *	with the page table lock for the page held.  The same lock must be
386  *	acquired to unmap a page.
387  * hole punch is indicated if end is not LLONG_MAX
388  *	In the hole punch case we scan the range and release found pages.
389  *	Only when releasing a page is the associated region/reserv map
390  *	deleted.  The region/reserv map for ranges without associated
391  *	pages are not modified.  Page faults can race with hole punch.
392  *	This is indicated if we find a mapped page.
393  * Note: If the passed end of range value is beyond the end of file, but
394  * not LLONG_MAX this routine still performs a hole punch operation.
395  */
396 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
397 				   loff_t lend)
398 {
399 	struct hstate *h = hstate_inode(inode);
400 	struct address_space *mapping = &inode->i_data;
401 	const pgoff_t start = lstart >> huge_page_shift(h);
402 	const pgoff_t end = lend >> huge_page_shift(h);
403 	struct vm_area_struct pseudo_vma;
404 	struct pagevec pvec;
405 	pgoff_t next, index;
406 	int i, freed = 0;
407 	bool truncate_op = (lend == LLONG_MAX);
408 
409 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
410 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
411 	pagevec_init(&pvec);
412 	next = start;
413 	while (next < end) {
414 		/*
415 		 * When no more pages are found, we are done.
416 		 */
417 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
418 			break;
419 
420 		for (i = 0; i < pagevec_count(&pvec); ++i) {
421 			struct page *page = pvec.pages[i];
422 			u32 hash;
423 
424 			index = page->index;
425 			hash = hugetlb_fault_mutex_hash(h, current->mm,
426 							&pseudo_vma,
427 							mapping, index, 0);
428 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
429 
430 			/*
431 			 * If page is mapped, it was faulted in after being
432 			 * unmapped in caller.  Unmap (again) now after taking
433 			 * the fault mutex.  The mutex will prevent faults
434 			 * until we finish removing the page.
435 			 *
436 			 * This race can only happen in the hole punch case.
437 			 * Getting here in a truncate operation is a bug.
438 			 */
439 			if (unlikely(page_mapped(page))) {
440 				BUG_ON(truncate_op);
441 
442 				i_mmap_lock_write(mapping);
443 				hugetlb_vmdelete_list(&mapping->i_mmap,
444 					index * pages_per_huge_page(h),
445 					(index + 1) * pages_per_huge_page(h));
446 				i_mmap_unlock_write(mapping);
447 			}
448 
449 			lock_page(page);
450 			/*
451 			 * We must free the huge page and remove from page
452 			 * cache (remove_huge_page) BEFORE removing the
453 			 * region/reserve map (hugetlb_unreserve_pages).  In
454 			 * rare out of memory conditions, removal of the
455 			 * region/reserve map could fail. Correspondingly,
456 			 * the subpool and global reserve usage count can need
457 			 * to be adjusted.
458 			 */
459 			VM_BUG_ON(PagePrivate(page));
460 			remove_huge_page(page);
461 			freed++;
462 			if (!truncate_op) {
463 				if (unlikely(hugetlb_unreserve_pages(inode,
464 							index, index + 1, 1)))
465 					hugetlb_fix_reserve_counts(inode);
466 			}
467 
468 			unlock_page(page);
469 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
470 		}
471 		huge_pagevec_release(&pvec);
472 		cond_resched();
473 	}
474 
475 	if (truncate_op)
476 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
477 }
478 
479 static void hugetlbfs_evict_inode(struct inode *inode)
480 {
481 	struct resv_map *resv_map;
482 
483 	remove_inode_hugepages(inode, 0, LLONG_MAX);
484 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
485 	/* root inode doesn't have the resv_map, so we should check it */
486 	if (resv_map)
487 		resv_map_release(&resv_map->refs);
488 	clear_inode(inode);
489 }
490 
491 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
492 {
493 	pgoff_t pgoff;
494 	struct address_space *mapping = inode->i_mapping;
495 	struct hstate *h = hstate_inode(inode);
496 
497 	BUG_ON(offset & ~huge_page_mask(h));
498 	pgoff = offset >> PAGE_SHIFT;
499 
500 	i_size_write(inode, offset);
501 	i_mmap_lock_write(mapping);
502 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
503 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
504 	i_mmap_unlock_write(mapping);
505 	remove_inode_hugepages(inode, offset, LLONG_MAX);
506 	return 0;
507 }
508 
509 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
510 {
511 	struct hstate *h = hstate_inode(inode);
512 	loff_t hpage_size = huge_page_size(h);
513 	loff_t hole_start, hole_end;
514 
515 	/*
516 	 * For hole punch round up the beginning offset of the hole and
517 	 * round down the end.
518 	 */
519 	hole_start = round_up(offset, hpage_size);
520 	hole_end = round_down(offset + len, hpage_size);
521 
522 	if (hole_end > hole_start) {
523 		struct address_space *mapping = inode->i_mapping;
524 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
525 
526 		inode_lock(inode);
527 
528 		/* protected by i_mutex */
529 		if (info->seals & F_SEAL_WRITE) {
530 			inode_unlock(inode);
531 			return -EPERM;
532 		}
533 
534 		i_mmap_lock_write(mapping);
535 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
536 			hugetlb_vmdelete_list(&mapping->i_mmap,
537 						hole_start >> PAGE_SHIFT,
538 						hole_end  >> PAGE_SHIFT);
539 		i_mmap_unlock_write(mapping);
540 		remove_inode_hugepages(inode, hole_start, hole_end);
541 		inode_unlock(inode);
542 	}
543 
544 	return 0;
545 }
546 
547 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
548 				loff_t len)
549 {
550 	struct inode *inode = file_inode(file);
551 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
552 	struct address_space *mapping = inode->i_mapping;
553 	struct hstate *h = hstate_inode(inode);
554 	struct vm_area_struct pseudo_vma;
555 	struct mm_struct *mm = current->mm;
556 	loff_t hpage_size = huge_page_size(h);
557 	unsigned long hpage_shift = huge_page_shift(h);
558 	pgoff_t start, index, end;
559 	int error;
560 	u32 hash;
561 
562 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
563 		return -EOPNOTSUPP;
564 
565 	if (mode & FALLOC_FL_PUNCH_HOLE)
566 		return hugetlbfs_punch_hole(inode, offset, len);
567 
568 	/*
569 	 * Default preallocate case.
570 	 * For this range, start is rounded down and end is rounded up
571 	 * as well as being converted to page offsets.
572 	 */
573 	start = offset >> hpage_shift;
574 	end = (offset + len + hpage_size - 1) >> hpage_shift;
575 
576 	inode_lock(inode);
577 
578 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
579 	error = inode_newsize_ok(inode, offset + len);
580 	if (error)
581 		goto out;
582 
583 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
584 		error = -EPERM;
585 		goto out;
586 	}
587 
588 	/*
589 	 * Initialize a pseudo vma as this is required by the huge page
590 	 * allocation routines.  If NUMA is configured, use page index
591 	 * as input to create an allocation policy.
592 	 */
593 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
594 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
595 	pseudo_vma.vm_file = file;
596 
597 	for (index = start; index < end; index++) {
598 		/*
599 		 * This is supposed to be the vaddr where the page is being
600 		 * faulted in, but we have no vaddr here.
601 		 */
602 		struct page *page;
603 		unsigned long addr;
604 		int avoid_reserve = 0;
605 
606 		cond_resched();
607 
608 		/*
609 		 * fallocate(2) manpage permits EINTR; we may have been
610 		 * interrupted because we are using up too much memory.
611 		 */
612 		if (signal_pending(current)) {
613 			error = -EINTR;
614 			break;
615 		}
616 
617 		/* Set numa allocation policy based on index */
618 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
619 
620 		/* addr is the offset within the file (zero based) */
621 		addr = index * hpage_size;
622 
623 		/* mutex taken here, fault path and hole punch */
624 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
625 						index, addr);
626 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
627 
628 		/* See if already present in mapping to avoid alloc/free */
629 		page = find_get_page(mapping, index);
630 		if (page) {
631 			put_page(page);
632 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
633 			hugetlb_drop_vma_policy(&pseudo_vma);
634 			continue;
635 		}
636 
637 		/* Allocate page and add to page cache */
638 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
639 		hugetlb_drop_vma_policy(&pseudo_vma);
640 		if (IS_ERR(page)) {
641 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
642 			error = PTR_ERR(page);
643 			goto out;
644 		}
645 		clear_huge_page(page, addr, pages_per_huge_page(h));
646 		__SetPageUptodate(page);
647 		error = huge_add_to_page_cache(page, mapping, index);
648 		if (unlikely(error)) {
649 			put_page(page);
650 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
651 			goto out;
652 		}
653 
654 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
655 
656 		/*
657 		 * unlock_page because locked by add_to_page_cache()
658 		 * page_put due to reference from alloc_huge_page()
659 		 */
660 		unlock_page(page);
661 		put_page(page);
662 	}
663 
664 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
665 		i_size_write(inode, offset + len);
666 	inode->i_ctime = current_time(inode);
667 out:
668 	inode_unlock(inode);
669 	return error;
670 }
671 
672 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
673 {
674 	struct inode *inode = d_inode(dentry);
675 	struct hstate *h = hstate_inode(inode);
676 	int error;
677 	unsigned int ia_valid = attr->ia_valid;
678 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
679 
680 	BUG_ON(!inode);
681 
682 	error = setattr_prepare(dentry, attr);
683 	if (error)
684 		return error;
685 
686 	if (ia_valid & ATTR_SIZE) {
687 		loff_t oldsize = inode->i_size;
688 		loff_t newsize = attr->ia_size;
689 
690 		if (newsize & ~huge_page_mask(h))
691 			return -EINVAL;
692 		/* protected by i_mutex */
693 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
694 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
695 			return -EPERM;
696 		error = hugetlb_vmtruncate(inode, newsize);
697 		if (error)
698 			return error;
699 	}
700 
701 	setattr_copy(inode, attr);
702 	mark_inode_dirty(inode);
703 	return 0;
704 }
705 
706 static struct inode *hugetlbfs_get_root(struct super_block *sb,
707 					struct hugetlbfs_config *config)
708 {
709 	struct inode *inode;
710 
711 	inode = new_inode(sb);
712 	if (inode) {
713 		inode->i_ino = get_next_ino();
714 		inode->i_mode = S_IFDIR | config->mode;
715 		inode->i_uid = config->uid;
716 		inode->i_gid = config->gid;
717 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
718 		inode->i_op = &hugetlbfs_dir_inode_operations;
719 		inode->i_fop = &simple_dir_operations;
720 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
721 		inc_nlink(inode);
722 		lockdep_annotate_inode_mutex_key(inode);
723 	}
724 	return inode;
725 }
726 
727 /*
728  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
729  * be taken from reclaim -- unlike regular filesystems. This needs an
730  * annotation because huge_pmd_share() does an allocation under hugetlb's
731  * i_mmap_rwsem.
732  */
733 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
734 
735 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
736 					struct inode *dir,
737 					umode_t mode, dev_t dev)
738 {
739 	struct inode *inode;
740 	struct resv_map *resv_map;
741 
742 	resv_map = resv_map_alloc();
743 	if (!resv_map)
744 		return NULL;
745 
746 	inode = new_inode(sb);
747 	if (inode) {
748 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
749 
750 		inode->i_ino = get_next_ino();
751 		inode_init_owner(inode, dir, mode);
752 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
753 				&hugetlbfs_i_mmap_rwsem_key);
754 		inode->i_mapping->a_ops = &hugetlbfs_aops;
755 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
756 		inode->i_mapping->private_data = resv_map;
757 		info->seals = F_SEAL_SEAL;
758 		switch (mode & S_IFMT) {
759 		default:
760 			init_special_inode(inode, mode, dev);
761 			break;
762 		case S_IFREG:
763 			inode->i_op = &hugetlbfs_inode_operations;
764 			inode->i_fop = &hugetlbfs_file_operations;
765 			break;
766 		case S_IFDIR:
767 			inode->i_op = &hugetlbfs_dir_inode_operations;
768 			inode->i_fop = &simple_dir_operations;
769 
770 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
771 			inc_nlink(inode);
772 			break;
773 		case S_IFLNK:
774 			inode->i_op = &page_symlink_inode_operations;
775 			inode_nohighmem(inode);
776 			break;
777 		}
778 		lockdep_annotate_inode_mutex_key(inode);
779 	} else
780 		kref_put(&resv_map->refs, resv_map_release);
781 
782 	return inode;
783 }
784 
785 /*
786  * File creation. Allocate an inode, and we're done..
787  */
788 static int hugetlbfs_mknod(struct inode *dir,
789 			struct dentry *dentry, umode_t mode, dev_t dev)
790 {
791 	struct inode *inode;
792 	int error = -ENOSPC;
793 
794 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
795 	if (inode) {
796 		dir->i_ctime = dir->i_mtime = current_time(dir);
797 		d_instantiate(dentry, inode);
798 		dget(dentry);	/* Extra count - pin the dentry in core */
799 		error = 0;
800 	}
801 	return error;
802 }
803 
804 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
805 {
806 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
807 	if (!retval)
808 		inc_nlink(dir);
809 	return retval;
810 }
811 
812 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
813 {
814 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
815 }
816 
817 static int hugetlbfs_symlink(struct inode *dir,
818 			struct dentry *dentry, const char *symname)
819 {
820 	struct inode *inode;
821 	int error = -ENOSPC;
822 
823 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
824 	if (inode) {
825 		int l = strlen(symname)+1;
826 		error = page_symlink(inode, symname, l);
827 		if (!error) {
828 			d_instantiate(dentry, inode);
829 			dget(dentry);
830 		} else
831 			iput(inode);
832 	}
833 	dir->i_ctime = dir->i_mtime = current_time(dir);
834 
835 	return error;
836 }
837 
838 /*
839  * mark the head page dirty
840  */
841 static int hugetlbfs_set_page_dirty(struct page *page)
842 {
843 	struct page *head = compound_head(page);
844 
845 	SetPageDirty(head);
846 	return 0;
847 }
848 
849 static int hugetlbfs_migrate_page(struct address_space *mapping,
850 				struct page *newpage, struct page *page,
851 				enum migrate_mode mode)
852 {
853 	int rc;
854 
855 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
856 	if (rc != MIGRATEPAGE_SUCCESS)
857 		return rc;
858 	if (mode != MIGRATE_SYNC_NO_COPY)
859 		migrate_page_copy(newpage, page);
860 	else
861 		migrate_page_states(newpage, page);
862 
863 	return MIGRATEPAGE_SUCCESS;
864 }
865 
866 static int hugetlbfs_error_remove_page(struct address_space *mapping,
867 				struct page *page)
868 {
869 	struct inode *inode = mapping->host;
870 	pgoff_t index = page->index;
871 
872 	remove_huge_page(page);
873 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
874 		hugetlb_fix_reserve_counts(inode);
875 
876 	return 0;
877 }
878 
879 /*
880  * Display the mount options in /proc/mounts.
881  */
882 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
883 {
884 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
885 	struct hugepage_subpool *spool = sbinfo->spool;
886 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
887 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
888 	char mod;
889 
890 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
891 		seq_printf(m, ",uid=%u",
892 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
893 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
894 		seq_printf(m, ",gid=%u",
895 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
896 	if (sbinfo->mode != 0755)
897 		seq_printf(m, ",mode=%o", sbinfo->mode);
898 	if (sbinfo->max_inodes != -1)
899 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
900 
901 	hpage_size /= 1024;
902 	mod = 'K';
903 	if (hpage_size >= 1024) {
904 		hpage_size /= 1024;
905 		mod = 'M';
906 	}
907 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
908 	if (spool) {
909 		if (spool->max_hpages != -1)
910 			seq_printf(m, ",size=%llu",
911 				   (unsigned long long)spool->max_hpages << hpage_shift);
912 		if (spool->min_hpages != -1)
913 			seq_printf(m, ",min_size=%llu",
914 				   (unsigned long long)spool->min_hpages << hpage_shift);
915 	}
916 	return 0;
917 }
918 
919 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
920 {
921 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
922 	struct hstate *h = hstate_inode(d_inode(dentry));
923 
924 	buf->f_type = HUGETLBFS_MAGIC;
925 	buf->f_bsize = huge_page_size(h);
926 	if (sbinfo) {
927 		spin_lock(&sbinfo->stat_lock);
928 		/* If no limits set, just report 0 for max/free/used
929 		 * blocks, like simple_statfs() */
930 		if (sbinfo->spool) {
931 			long free_pages;
932 
933 			spin_lock(&sbinfo->spool->lock);
934 			buf->f_blocks = sbinfo->spool->max_hpages;
935 			free_pages = sbinfo->spool->max_hpages
936 				- sbinfo->spool->used_hpages;
937 			buf->f_bavail = buf->f_bfree = free_pages;
938 			spin_unlock(&sbinfo->spool->lock);
939 			buf->f_files = sbinfo->max_inodes;
940 			buf->f_ffree = sbinfo->free_inodes;
941 		}
942 		spin_unlock(&sbinfo->stat_lock);
943 	}
944 	buf->f_namelen = NAME_MAX;
945 	return 0;
946 }
947 
948 static void hugetlbfs_put_super(struct super_block *sb)
949 {
950 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
951 
952 	if (sbi) {
953 		sb->s_fs_info = NULL;
954 
955 		if (sbi->spool)
956 			hugepage_put_subpool(sbi->spool);
957 
958 		kfree(sbi);
959 	}
960 }
961 
962 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
963 {
964 	if (sbinfo->free_inodes >= 0) {
965 		spin_lock(&sbinfo->stat_lock);
966 		if (unlikely(!sbinfo->free_inodes)) {
967 			spin_unlock(&sbinfo->stat_lock);
968 			return 0;
969 		}
970 		sbinfo->free_inodes--;
971 		spin_unlock(&sbinfo->stat_lock);
972 	}
973 
974 	return 1;
975 }
976 
977 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
978 {
979 	if (sbinfo->free_inodes >= 0) {
980 		spin_lock(&sbinfo->stat_lock);
981 		sbinfo->free_inodes++;
982 		spin_unlock(&sbinfo->stat_lock);
983 	}
984 }
985 
986 
987 static struct kmem_cache *hugetlbfs_inode_cachep;
988 
989 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
990 {
991 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
992 	struct hugetlbfs_inode_info *p;
993 
994 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
995 		return NULL;
996 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
997 	if (unlikely(!p)) {
998 		hugetlbfs_inc_free_inodes(sbinfo);
999 		return NULL;
1000 	}
1001 
1002 	/*
1003 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1004 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1005 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1006 	 * in case of a quick call to destroy.
1007 	 *
1008 	 * Note that the policy is initialized even if we are creating a
1009 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1010 	 */
1011 	mpol_shared_policy_init(&p->policy, NULL);
1012 
1013 	return &p->vfs_inode;
1014 }
1015 
1016 static void hugetlbfs_i_callback(struct rcu_head *head)
1017 {
1018 	struct inode *inode = container_of(head, struct inode, i_rcu);
1019 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1020 }
1021 
1022 static void hugetlbfs_destroy_inode(struct inode *inode)
1023 {
1024 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1025 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1026 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1027 }
1028 
1029 static const struct address_space_operations hugetlbfs_aops = {
1030 	.write_begin	= hugetlbfs_write_begin,
1031 	.write_end	= hugetlbfs_write_end,
1032 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1033 	.migratepage    = hugetlbfs_migrate_page,
1034 	.error_remove_page	= hugetlbfs_error_remove_page,
1035 };
1036 
1037 
1038 static void init_once(void *foo)
1039 {
1040 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1041 
1042 	inode_init_once(&ei->vfs_inode);
1043 }
1044 
1045 const struct file_operations hugetlbfs_file_operations = {
1046 	.read_iter		= hugetlbfs_read_iter,
1047 	.mmap			= hugetlbfs_file_mmap,
1048 	.fsync			= noop_fsync,
1049 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1050 	.llseek			= default_llseek,
1051 	.fallocate		= hugetlbfs_fallocate,
1052 };
1053 
1054 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1055 	.create		= hugetlbfs_create,
1056 	.lookup		= simple_lookup,
1057 	.link		= simple_link,
1058 	.unlink		= simple_unlink,
1059 	.symlink	= hugetlbfs_symlink,
1060 	.mkdir		= hugetlbfs_mkdir,
1061 	.rmdir		= simple_rmdir,
1062 	.mknod		= hugetlbfs_mknod,
1063 	.rename		= simple_rename,
1064 	.setattr	= hugetlbfs_setattr,
1065 };
1066 
1067 static const struct inode_operations hugetlbfs_inode_operations = {
1068 	.setattr	= hugetlbfs_setattr,
1069 };
1070 
1071 static const struct super_operations hugetlbfs_ops = {
1072 	.alloc_inode    = hugetlbfs_alloc_inode,
1073 	.destroy_inode  = hugetlbfs_destroy_inode,
1074 	.evict_inode	= hugetlbfs_evict_inode,
1075 	.statfs		= hugetlbfs_statfs,
1076 	.put_super	= hugetlbfs_put_super,
1077 	.show_options	= hugetlbfs_show_options,
1078 };
1079 
1080 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1081 
1082 /*
1083  * Convert size option passed from command line to number of huge pages
1084  * in the pool specified by hstate.  Size option could be in bytes
1085  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1086  */
1087 static long
1088 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1089 			 enum hugetlbfs_size_type val_type)
1090 {
1091 	if (val_type == NO_SIZE)
1092 		return -1;
1093 
1094 	if (val_type == SIZE_PERCENT) {
1095 		size_opt <<= huge_page_shift(h);
1096 		size_opt *= h->max_huge_pages;
1097 		do_div(size_opt, 100);
1098 	}
1099 
1100 	size_opt >>= huge_page_shift(h);
1101 	return size_opt;
1102 }
1103 
1104 static int
1105 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1106 {
1107 	char *p, *rest;
1108 	substring_t args[MAX_OPT_ARGS];
1109 	int option;
1110 	unsigned long long max_size_opt = 0, min_size_opt = 0;
1111 	enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1112 
1113 	if (!options)
1114 		return 0;
1115 
1116 	while ((p = strsep(&options, ",")) != NULL) {
1117 		int token;
1118 		if (!*p)
1119 			continue;
1120 
1121 		token = match_token(p, tokens, args);
1122 		switch (token) {
1123 		case Opt_uid:
1124 			if (match_int(&args[0], &option))
1125  				goto bad_val;
1126 			pconfig->uid = make_kuid(current_user_ns(), option);
1127 			if (!uid_valid(pconfig->uid))
1128 				goto bad_val;
1129 			break;
1130 
1131 		case Opt_gid:
1132 			if (match_int(&args[0], &option))
1133  				goto bad_val;
1134 			pconfig->gid = make_kgid(current_user_ns(), option);
1135 			if (!gid_valid(pconfig->gid))
1136 				goto bad_val;
1137 			break;
1138 
1139 		case Opt_mode:
1140 			if (match_octal(&args[0], &option))
1141  				goto bad_val;
1142 			pconfig->mode = option & 01777U;
1143 			break;
1144 
1145 		case Opt_size: {
1146 			/* memparse() will accept a K/M/G without a digit */
1147 			if (!isdigit(*args[0].from))
1148 				goto bad_val;
1149 			max_size_opt = memparse(args[0].from, &rest);
1150 			max_val_type = SIZE_STD;
1151 			if (*rest == '%')
1152 				max_val_type = SIZE_PERCENT;
1153 			break;
1154 		}
1155 
1156 		case Opt_nr_inodes:
1157 			/* memparse() will accept a K/M/G without a digit */
1158 			if (!isdigit(*args[0].from))
1159 				goto bad_val;
1160 			pconfig->nr_inodes = memparse(args[0].from, &rest);
1161 			break;
1162 
1163 		case Opt_pagesize: {
1164 			unsigned long ps;
1165 			ps = memparse(args[0].from, &rest);
1166 			pconfig->hstate = size_to_hstate(ps);
1167 			if (!pconfig->hstate) {
1168 				pr_err("Unsupported page size %lu MB\n",
1169 					ps >> 20);
1170 				return -EINVAL;
1171 			}
1172 			break;
1173 		}
1174 
1175 		case Opt_min_size: {
1176 			/* memparse() will accept a K/M/G without a digit */
1177 			if (!isdigit(*args[0].from))
1178 				goto bad_val;
1179 			min_size_opt = memparse(args[0].from, &rest);
1180 			min_val_type = SIZE_STD;
1181 			if (*rest == '%')
1182 				min_val_type = SIZE_PERCENT;
1183 			break;
1184 		}
1185 
1186 		default:
1187 			pr_err("Bad mount option: \"%s\"\n", p);
1188 			return -EINVAL;
1189 			break;
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * Use huge page pool size (in hstate) to convert the size
1195 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1196 	 */
1197 	pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1198 						max_size_opt, max_val_type);
1199 	pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1200 						min_size_opt, min_val_type);
1201 
1202 	/*
1203 	 * If max_size was specified, then min_size must be smaller
1204 	 */
1205 	if (max_val_type > NO_SIZE &&
1206 	    pconfig->min_hpages > pconfig->max_hpages) {
1207 		pr_err("minimum size can not be greater than maximum size\n");
1208 		return -EINVAL;
1209 	}
1210 
1211 	return 0;
1212 
1213 bad_val:
1214 	pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1215  	return -EINVAL;
1216 }
1217 
1218 static int
1219 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1220 {
1221 	int ret;
1222 	struct hugetlbfs_config config;
1223 	struct hugetlbfs_sb_info *sbinfo;
1224 
1225 	config.max_hpages = -1; /* No limit on size by default */
1226 	config.nr_inodes = -1; /* No limit on number of inodes by default */
1227 	config.uid = current_fsuid();
1228 	config.gid = current_fsgid();
1229 	config.mode = 0755;
1230 	config.hstate = &default_hstate;
1231 	config.min_hpages = -1; /* No default minimum size */
1232 	ret = hugetlbfs_parse_options(data, &config);
1233 	if (ret)
1234 		return ret;
1235 
1236 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1237 	if (!sbinfo)
1238 		return -ENOMEM;
1239 	sb->s_fs_info = sbinfo;
1240 	sbinfo->hstate = config.hstate;
1241 	spin_lock_init(&sbinfo->stat_lock);
1242 	sbinfo->max_inodes = config.nr_inodes;
1243 	sbinfo->free_inodes = config.nr_inodes;
1244 	sbinfo->spool = NULL;
1245 	sbinfo->uid = config.uid;
1246 	sbinfo->gid = config.gid;
1247 	sbinfo->mode = config.mode;
1248 
1249 	/*
1250 	 * Allocate and initialize subpool if maximum or minimum size is
1251 	 * specified.  Any needed reservations (for minimim size) are taken
1252 	 * taken when the subpool is created.
1253 	 */
1254 	if (config.max_hpages != -1 || config.min_hpages != -1) {
1255 		sbinfo->spool = hugepage_new_subpool(config.hstate,
1256 							config.max_hpages,
1257 							config.min_hpages);
1258 		if (!sbinfo->spool)
1259 			goto out_free;
1260 	}
1261 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1262 	sb->s_blocksize = huge_page_size(config.hstate);
1263 	sb->s_blocksize_bits = huge_page_shift(config.hstate);
1264 	sb->s_magic = HUGETLBFS_MAGIC;
1265 	sb->s_op = &hugetlbfs_ops;
1266 	sb->s_time_gran = 1;
1267 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1268 	if (!sb->s_root)
1269 		goto out_free;
1270 	return 0;
1271 out_free:
1272 	kfree(sbinfo->spool);
1273 	kfree(sbinfo);
1274 	return -ENOMEM;
1275 }
1276 
1277 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1278 	int flags, const char *dev_name, void *data)
1279 {
1280 	return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1281 }
1282 
1283 static struct file_system_type hugetlbfs_fs_type = {
1284 	.name		= "hugetlbfs",
1285 	.mount		= hugetlbfs_mount,
1286 	.kill_sb	= kill_litter_super,
1287 };
1288 
1289 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1290 
1291 static int can_do_hugetlb_shm(void)
1292 {
1293 	kgid_t shm_group;
1294 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1295 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1296 }
1297 
1298 static int get_hstate_idx(int page_size_log)
1299 {
1300 	struct hstate *h = hstate_sizelog(page_size_log);
1301 
1302 	if (!h)
1303 		return -1;
1304 	return h - hstates;
1305 }
1306 
1307 static const struct dentry_operations anon_ops = {
1308 	.d_dname = simple_dname
1309 };
1310 
1311 /*
1312  * Note that size should be aligned to proper hugepage size in caller side,
1313  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1314  */
1315 struct file *hugetlb_file_setup(const char *name, size_t size,
1316 				vm_flags_t acctflag, struct user_struct **user,
1317 				int creat_flags, int page_size_log)
1318 {
1319 	struct file *file = ERR_PTR(-ENOMEM);
1320 	struct inode *inode;
1321 	struct path path;
1322 	struct super_block *sb;
1323 	struct qstr quick_string;
1324 	int hstate_idx;
1325 
1326 	hstate_idx = get_hstate_idx(page_size_log);
1327 	if (hstate_idx < 0)
1328 		return ERR_PTR(-ENODEV);
1329 
1330 	*user = NULL;
1331 	if (!hugetlbfs_vfsmount[hstate_idx])
1332 		return ERR_PTR(-ENOENT);
1333 
1334 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1335 		*user = current_user();
1336 		if (user_shm_lock(size, *user)) {
1337 			task_lock(current);
1338 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1339 				current->comm, current->pid);
1340 			task_unlock(current);
1341 		} else {
1342 			*user = NULL;
1343 			return ERR_PTR(-EPERM);
1344 		}
1345 	}
1346 
1347 	sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1348 	quick_string.name = name;
1349 	quick_string.len = strlen(quick_string.name);
1350 	quick_string.hash = 0;
1351 	path.dentry = d_alloc_pseudo(sb, &quick_string);
1352 	if (!path.dentry)
1353 		goto out_shm_unlock;
1354 
1355 	d_set_d_op(path.dentry, &anon_ops);
1356 	path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1357 	file = ERR_PTR(-ENOSPC);
1358 	inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1359 	if (!inode)
1360 		goto out_dentry;
1361 	if (creat_flags == HUGETLB_SHMFS_INODE)
1362 		inode->i_flags |= S_PRIVATE;
1363 
1364 	file = ERR_PTR(-ENOMEM);
1365 	if (hugetlb_reserve_pages(inode, 0,
1366 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1367 			acctflag))
1368 		goto out_inode;
1369 
1370 	d_instantiate(path.dentry, inode);
1371 	inode->i_size = size;
1372 	clear_nlink(inode);
1373 
1374 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1375 			&hugetlbfs_file_operations);
1376 	if (IS_ERR(file))
1377 		goto out_dentry; /* inode is already attached */
1378 
1379 	return file;
1380 
1381 out_inode:
1382 	iput(inode);
1383 out_dentry:
1384 	path_put(&path);
1385 out_shm_unlock:
1386 	if (*user) {
1387 		user_shm_unlock(size, *user);
1388 		*user = NULL;
1389 	}
1390 	return file;
1391 }
1392 
1393 static int __init init_hugetlbfs_fs(void)
1394 {
1395 	struct hstate *h;
1396 	int error;
1397 	int i;
1398 
1399 	if (!hugepages_supported()) {
1400 		pr_info("disabling because there are no supported hugepage sizes\n");
1401 		return -ENOTSUPP;
1402 	}
1403 
1404 	error = -ENOMEM;
1405 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1406 					sizeof(struct hugetlbfs_inode_info),
1407 					0, SLAB_ACCOUNT, init_once);
1408 	if (hugetlbfs_inode_cachep == NULL)
1409 		goto out2;
1410 
1411 	error = register_filesystem(&hugetlbfs_fs_type);
1412 	if (error)
1413 		goto out;
1414 
1415 	i = 0;
1416 	for_each_hstate(h) {
1417 		char buf[50];
1418 		unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1419 
1420 		snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1421 		hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1422 							buf);
1423 
1424 		if (IS_ERR(hugetlbfs_vfsmount[i])) {
1425 			pr_err("Cannot mount internal hugetlbfs for "
1426 				"page size %uK", ps_kb);
1427 			error = PTR_ERR(hugetlbfs_vfsmount[i]);
1428 			hugetlbfs_vfsmount[i] = NULL;
1429 		}
1430 		i++;
1431 	}
1432 	/* Non default hstates are optional */
1433 	if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1434 		return 0;
1435 
1436  out:
1437 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1438  out2:
1439 	return error;
1440 }
1441 fs_initcall(init_hugetlbfs_fs)
1442