1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 struct hstate *hstate; 50 long max_hpages; 51 long nr_inodes; 52 long min_hpages; 53 kuid_t uid; 54 kgid_t gid; 55 umode_t mode; 56 }; 57 58 int sysctl_hugetlb_shm_group; 59 60 enum { 61 Opt_size, Opt_nr_inodes, 62 Opt_mode, Opt_uid, Opt_gid, 63 Opt_pagesize, Opt_min_size, 64 Opt_err, 65 }; 66 67 static const match_table_t tokens = { 68 {Opt_size, "size=%s"}, 69 {Opt_nr_inodes, "nr_inodes=%s"}, 70 {Opt_mode, "mode=%o"}, 71 {Opt_uid, "uid=%u"}, 72 {Opt_gid, "gid=%u"}, 73 {Opt_pagesize, "pagesize=%s"}, 74 {Opt_min_size, "min_size=%s"}, 75 {Opt_err, NULL}, 76 }; 77 78 #ifdef CONFIG_NUMA 79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 80 struct inode *inode, pgoff_t index) 81 { 82 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 83 index); 84 } 85 86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 87 { 88 mpol_cond_put(vma->vm_policy); 89 } 90 #else 91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 92 struct inode *inode, pgoff_t index) 93 { 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 } 99 #endif 100 101 static void huge_pagevec_release(struct pagevec *pvec) 102 { 103 int i; 104 105 for (i = 0; i < pagevec_count(pvec); ++i) 106 put_page(pvec->pages[i]); 107 108 pagevec_reinit(pvec); 109 } 110 111 /* 112 * Mask used when checking the page offset value passed in via system 113 * calls. This value will be converted to a loff_t which is signed. 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 115 * value. The extra bit (- 1 in the shift value) is to take the sign 116 * bit into account. 117 */ 118 #define PGOFF_LOFFT_MAX \ 119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 /* 140 * page based offset in vm_pgoff could be sufficiently large to 141 * overflow a (l)off_t when converted to byte offset. 142 */ 143 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 144 return -EINVAL; 145 146 /* must be huge page aligned */ 147 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 148 return -EINVAL; 149 150 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 151 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 152 /* check for overflow */ 153 if (len < vma_len) 154 return -EINVAL; 155 156 inode_lock(inode); 157 file_accessed(file); 158 159 ret = -ENOMEM; 160 if (hugetlb_reserve_pages(inode, 161 vma->vm_pgoff >> huge_page_order(h), 162 len >> huge_page_shift(h), vma, 163 vma->vm_flags)) 164 goto out; 165 166 ret = 0; 167 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 168 i_size_write(inode, len); 169 out: 170 inode_unlock(inode); 171 172 return ret; 173 } 174 175 /* 176 * Called under down_write(mmap_sem). 177 */ 178 179 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 180 static unsigned long 181 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 182 unsigned long len, unsigned long pgoff, unsigned long flags) 183 { 184 struct mm_struct *mm = current->mm; 185 struct vm_area_struct *vma; 186 struct hstate *h = hstate_file(file); 187 struct vm_unmapped_area_info info; 188 189 if (len & ~huge_page_mask(h)) 190 return -EINVAL; 191 if (len > TASK_SIZE) 192 return -ENOMEM; 193 194 if (flags & MAP_FIXED) { 195 if (prepare_hugepage_range(file, addr, len)) 196 return -EINVAL; 197 return addr; 198 } 199 200 if (addr) { 201 addr = ALIGN(addr, huge_page_size(h)); 202 vma = find_vma(mm, addr); 203 if (TASK_SIZE - len >= addr && 204 (!vma || addr + len <= vm_start_gap(vma))) 205 return addr; 206 } 207 208 info.flags = 0; 209 info.length = len; 210 info.low_limit = TASK_UNMAPPED_BASE; 211 info.high_limit = TASK_SIZE; 212 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 213 info.align_offset = 0; 214 return vm_unmapped_area(&info); 215 } 216 #endif 217 218 static size_t 219 hugetlbfs_read_actor(struct page *page, unsigned long offset, 220 struct iov_iter *to, unsigned long size) 221 { 222 size_t copied = 0; 223 int i, chunksize; 224 225 /* Find which 4k chunk and offset with in that chunk */ 226 i = offset >> PAGE_SHIFT; 227 offset = offset & ~PAGE_MASK; 228 229 while (size) { 230 size_t n; 231 chunksize = PAGE_SIZE; 232 if (offset) 233 chunksize -= offset; 234 if (chunksize > size) 235 chunksize = size; 236 n = copy_page_to_iter(&page[i], offset, chunksize, to); 237 copied += n; 238 if (n != chunksize) 239 return copied; 240 offset = 0; 241 size -= chunksize; 242 i++; 243 } 244 return copied; 245 } 246 247 /* 248 * Support for read() - Find the page attached to f_mapping and copy out the 249 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 250 * since it has PAGE_SIZE assumptions. 251 */ 252 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 253 { 254 struct file *file = iocb->ki_filp; 255 struct hstate *h = hstate_file(file); 256 struct address_space *mapping = file->f_mapping; 257 struct inode *inode = mapping->host; 258 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 259 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 260 unsigned long end_index; 261 loff_t isize; 262 ssize_t retval = 0; 263 264 while (iov_iter_count(to)) { 265 struct page *page; 266 size_t nr, copied; 267 268 /* nr is the maximum number of bytes to copy from this page */ 269 nr = huge_page_size(h); 270 isize = i_size_read(inode); 271 if (!isize) 272 break; 273 end_index = (isize - 1) >> huge_page_shift(h); 274 if (index > end_index) 275 break; 276 if (index == end_index) { 277 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 278 if (nr <= offset) 279 break; 280 } 281 nr = nr - offset; 282 283 /* Find the page */ 284 page = find_lock_page(mapping, index); 285 if (unlikely(page == NULL)) { 286 /* 287 * We have a HOLE, zero out the user-buffer for the 288 * length of the hole or request. 289 */ 290 copied = iov_iter_zero(nr, to); 291 } else { 292 unlock_page(page); 293 294 /* 295 * We have the page, copy it to user space buffer. 296 */ 297 copied = hugetlbfs_read_actor(page, offset, to, nr); 298 put_page(page); 299 } 300 offset += copied; 301 retval += copied; 302 if (copied != nr && iov_iter_count(to)) { 303 if (!retval) 304 retval = -EFAULT; 305 break; 306 } 307 index += offset >> huge_page_shift(h); 308 offset &= ~huge_page_mask(h); 309 } 310 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 311 return retval; 312 } 313 314 static int hugetlbfs_write_begin(struct file *file, 315 struct address_space *mapping, 316 loff_t pos, unsigned len, unsigned flags, 317 struct page **pagep, void **fsdata) 318 { 319 return -EINVAL; 320 } 321 322 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 323 loff_t pos, unsigned len, unsigned copied, 324 struct page *page, void *fsdata) 325 { 326 BUG(); 327 return -EINVAL; 328 } 329 330 static void remove_huge_page(struct page *page) 331 { 332 ClearPageDirty(page); 333 ClearPageUptodate(page); 334 delete_from_page_cache(page); 335 } 336 337 static void 338 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 339 { 340 struct vm_area_struct *vma; 341 342 /* 343 * end == 0 indicates that the entire range after 344 * start should be unmapped. 345 */ 346 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 347 unsigned long v_offset; 348 unsigned long v_end; 349 350 /* 351 * Can the expression below overflow on 32-bit arches? 352 * No, because the interval tree returns us only those vmas 353 * which overlap the truncated area starting at pgoff, 354 * and no vma on a 32-bit arch can span beyond the 4GB. 355 */ 356 if (vma->vm_pgoff < start) 357 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 358 else 359 v_offset = 0; 360 361 if (!end) 362 v_end = vma->vm_end; 363 else { 364 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 365 + vma->vm_start; 366 if (v_end > vma->vm_end) 367 v_end = vma->vm_end; 368 } 369 370 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 371 NULL); 372 } 373 } 374 375 /* 376 * remove_inode_hugepages handles two distinct cases: truncation and hole 377 * punch. There are subtle differences in operation for each case. 378 * 379 * truncation is indicated by end of range being LLONG_MAX 380 * In this case, we first scan the range and release found pages. 381 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 382 * maps and global counts. Page faults can not race with truncation 383 * in this routine. hugetlb_no_page() prevents page faults in the 384 * truncated range. It checks i_size before allocation, and again after 385 * with the page table lock for the page held. The same lock must be 386 * acquired to unmap a page. 387 * hole punch is indicated if end is not LLONG_MAX 388 * In the hole punch case we scan the range and release found pages. 389 * Only when releasing a page is the associated region/reserv map 390 * deleted. The region/reserv map for ranges without associated 391 * pages are not modified. Page faults can race with hole punch. 392 * This is indicated if we find a mapped page. 393 * Note: If the passed end of range value is beyond the end of file, but 394 * not LLONG_MAX this routine still performs a hole punch operation. 395 */ 396 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 397 loff_t lend) 398 { 399 struct hstate *h = hstate_inode(inode); 400 struct address_space *mapping = &inode->i_data; 401 const pgoff_t start = lstart >> huge_page_shift(h); 402 const pgoff_t end = lend >> huge_page_shift(h); 403 struct vm_area_struct pseudo_vma; 404 struct pagevec pvec; 405 pgoff_t next, index; 406 int i, freed = 0; 407 bool truncate_op = (lend == LLONG_MAX); 408 409 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 410 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 411 pagevec_init(&pvec); 412 next = start; 413 while (next < end) { 414 /* 415 * When no more pages are found, we are done. 416 */ 417 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 418 break; 419 420 for (i = 0; i < pagevec_count(&pvec); ++i) { 421 struct page *page = pvec.pages[i]; 422 u32 hash; 423 424 index = page->index; 425 hash = hugetlb_fault_mutex_hash(h, current->mm, 426 &pseudo_vma, 427 mapping, index, 0); 428 mutex_lock(&hugetlb_fault_mutex_table[hash]); 429 430 /* 431 * If page is mapped, it was faulted in after being 432 * unmapped in caller. Unmap (again) now after taking 433 * the fault mutex. The mutex will prevent faults 434 * until we finish removing the page. 435 * 436 * This race can only happen in the hole punch case. 437 * Getting here in a truncate operation is a bug. 438 */ 439 if (unlikely(page_mapped(page))) { 440 BUG_ON(truncate_op); 441 442 i_mmap_lock_write(mapping); 443 hugetlb_vmdelete_list(&mapping->i_mmap, 444 index * pages_per_huge_page(h), 445 (index + 1) * pages_per_huge_page(h)); 446 i_mmap_unlock_write(mapping); 447 } 448 449 lock_page(page); 450 /* 451 * We must free the huge page and remove from page 452 * cache (remove_huge_page) BEFORE removing the 453 * region/reserve map (hugetlb_unreserve_pages). In 454 * rare out of memory conditions, removal of the 455 * region/reserve map could fail. Correspondingly, 456 * the subpool and global reserve usage count can need 457 * to be adjusted. 458 */ 459 VM_BUG_ON(PagePrivate(page)); 460 remove_huge_page(page); 461 freed++; 462 if (!truncate_op) { 463 if (unlikely(hugetlb_unreserve_pages(inode, 464 index, index + 1, 1))) 465 hugetlb_fix_reserve_counts(inode); 466 } 467 468 unlock_page(page); 469 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 470 } 471 huge_pagevec_release(&pvec); 472 cond_resched(); 473 } 474 475 if (truncate_op) 476 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 477 } 478 479 static void hugetlbfs_evict_inode(struct inode *inode) 480 { 481 struct resv_map *resv_map; 482 483 remove_inode_hugepages(inode, 0, LLONG_MAX); 484 resv_map = (struct resv_map *)inode->i_mapping->private_data; 485 /* root inode doesn't have the resv_map, so we should check it */ 486 if (resv_map) 487 resv_map_release(&resv_map->refs); 488 clear_inode(inode); 489 } 490 491 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 492 { 493 pgoff_t pgoff; 494 struct address_space *mapping = inode->i_mapping; 495 struct hstate *h = hstate_inode(inode); 496 497 BUG_ON(offset & ~huge_page_mask(h)); 498 pgoff = offset >> PAGE_SHIFT; 499 500 i_size_write(inode, offset); 501 i_mmap_lock_write(mapping); 502 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 503 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 504 i_mmap_unlock_write(mapping); 505 remove_inode_hugepages(inode, offset, LLONG_MAX); 506 return 0; 507 } 508 509 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 510 { 511 struct hstate *h = hstate_inode(inode); 512 loff_t hpage_size = huge_page_size(h); 513 loff_t hole_start, hole_end; 514 515 /* 516 * For hole punch round up the beginning offset of the hole and 517 * round down the end. 518 */ 519 hole_start = round_up(offset, hpage_size); 520 hole_end = round_down(offset + len, hpage_size); 521 522 if (hole_end > hole_start) { 523 struct address_space *mapping = inode->i_mapping; 524 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 525 526 inode_lock(inode); 527 528 /* protected by i_mutex */ 529 if (info->seals & F_SEAL_WRITE) { 530 inode_unlock(inode); 531 return -EPERM; 532 } 533 534 i_mmap_lock_write(mapping); 535 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 536 hugetlb_vmdelete_list(&mapping->i_mmap, 537 hole_start >> PAGE_SHIFT, 538 hole_end >> PAGE_SHIFT); 539 i_mmap_unlock_write(mapping); 540 remove_inode_hugepages(inode, hole_start, hole_end); 541 inode_unlock(inode); 542 } 543 544 return 0; 545 } 546 547 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 548 loff_t len) 549 { 550 struct inode *inode = file_inode(file); 551 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 552 struct address_space *mapping = inode->i_mapping; 553 struct hstate *h = hstate_inode(inode); 554 struct vm_area_struct pseudo_vma; 555 struct mm_struct *mm = current->mm; 556 loff_t hpage_size = huge_page_size(h); 557 unsigned long hpage_shift = huge_page_shift(h); 558 pgoff_t start, index, end; 559 int error; 560 u32 hash; 561 562 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 563 return -EOPNOTSUPP; 564 565 if (mode & FALLOC_FL_PUNCH_HOLE) 566 return hugetlbfs_punch_hole(inode, offset, len); 567 568 /* 569 * Default preallocate case. 570 * For this range, start is rounded down and end is rounded up 571 * as well as being converted to page offsets. 572 */ 573 start = offset >> hpage_shift; 574 end = (offset + len + hpage_size - 1) >> hpage_shift; 575 576 inode_lock(inode); 577 578 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 579 error = inode_newsize_ok(inode, offset + len); 580 if (error) 581 goto out; 582 583 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 584 error = -EPERM; 585 goto out; 586 } 587 588 /* 589 * Initialize a pseudo vma as this is required by the huge page 590 * allocation routines. If NUMA is configured, use page index 591 * as input to create an allocation policy. 592 */ 593 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 594 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 595 pseudo_vma.vm_file = file; 596 597 for (index = start; index < end; index++) { 598 /* 599 * This is supposed to be the vaddr where the page is being 600 * faulted in, but we have no vaddr here. 601 */ 602 struct page *page; 603 unsigned long addr; 604 int avoid_reserve = 0; 605 606 cond_resched(); 607 608 /* 609 * fallocate(2) manpage permits EINTR; we may have been 610 * interrupted because we are using up too much memory. 611 */ 612 if (signal_pending(current)) { 613 error = -EINTR; 614 break; 615 } 616 617 /* Set numa allocation policy based on index */ 618 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 619 620 /* addr is the offset within the file (zero based) */ 621 addr = index * hpage_size; 622 623 /* mutex taken here, fault path and hole punch */ 624 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 625 index, addr); 626 mutex_lock(&hugetlb_fault_mutex_table[hash]); 627 628 /* See if already present in mapping to avoid alloc/free */ 629 page = find_get_page(mapping, index); 630 if (page) { 631 put_page(page); 632 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 633 hugetlb_drop_vma_policy(&pseudo_vma); 634 continue; 635 } 636 637 /* Allocate page and add to page cache */ 638 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 639 hugetlb_drop_vma_policy(&pseudo_vma); 640 if (IS_ERR(page)) { 641 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 642 error = PTR_ERR(page); 643 goto out; 644 } 645 clear_huge_page(page, addr, pages_per_huge_page(h)); 646 __SetPageUptodate(page); 647 error = huge_add_to_page_cache(page, mapping, index); 648 if (unlikely(error)) { 649 put_page(page); 650 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 651 goto out; 652 } 653 654 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 655 656 /* 657 * unlock_page because locked by add_to_page_cache() 658 * page_put due to reference from alloc_huge_page() 659 */ 660 unlock_page(page); 661 put_page(page); 662 } 663 664 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 665 i_size_write(inode, offset + len); 666 inode->i_ctime = current_time(inode); 667 out: 668 inode_unlock(inode); 669 return error; 670 } 671 672 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 673 { 674 struct inode *inode = d_inode(dentry); 675 struct hstate *h = hstate_inode(inode); 676 int error; 677 unsigned int ia_valid = attr->ia_valid; 678 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 679 680 BUG_ON(!inode); 681 682 error = setattr_prepare(dentry, attr); 683 if (error) 684 return error; 685 686 if (ia_valid & ATTR_SIZE) { 687 loff_t oldsize = inode->i_size; 688 loff_t newsize = attr->ia_size; 689 690 if (newsize & ~huge_page_mask(h)) 691 return -EINVAL; 692 /* protected by i_mutex */ 693 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 694 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 695 return -EPERM; 696 error = hugetlb_vmtruncate(inode, newsize); 697 if (error) 698 return error; 699 } 700 701 setattr_copy(inode, attr); 702 mark_inode_dirty(inode); 703 return 0; 704 } 705 706 static struct inode *hugetlbfs_get_root(struct super_block *sb, 707 struct hugetlbfs_config *config) 708 { 709 struct inode *inode; 710 711 inode = new_inode(sb); 712 if (inode) { 713 inode->i_ino = get_next_ino(); 714 inode->i_mode = S_IFDIR | config->mode; 715 inode->i_uid = config->uid; 716 inode->i_gid = config->gid; 717 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 718 inode->i_op = &hugetlbfs_dir_inode_operations; 719 inode->i_fop = &simple_dir_operations; 720 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 721 inc_nlink(inode); 722 lockdep_annotate_inode_mutex_key(inode); 723 } 724 return inode; 725 } 726 727 /* 728 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 729 * be taken from reclaim -- unlike regular filesystems. This needs an 730 * annotation because huge_pmd_share() does an allocation under hugetlb's 731 * i_mmap_rwsem. 732 */ 733 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 734 735 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 736 struct inode *dir, 737 umode_t mode, dev_t dev) 738 { 739 struct inode *inode; 740 struct resv_map *resv_map; 741 742 resv_map = resv_map_alloc(); 743 if (!resv_map) 744 return NULL; 745 746 inode = new_inode(sb); 747 if (inode) { 748 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 749 750 inode->i_ino = get_next_ino(); 751 inode_init_owner(inode, dir, mode); 752 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 753 &hugetlbfs_i_mmap_rwsem_key); 754 inode->i_mapping->a_ops = &hugetlbfs_aops; 755 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 756 inode->i_mapping->private_data = resv_map; 757 info->seals = F_SEAL_SEAL; 758 switch (mode & S_IFMT) { 759 default: 760 init_special_inode(inode, mode, dev); 761 break; 762 case S_IFREG: 763 inode->i_op = &hugetlbfs_inode_operations; 764 inode->i_fop = &hugetlbfs_file_operations; 765 break; 766 case S_IFDIR: 767 inode->i_op = &hugetlbfs_dir_inode_operations; 768 inode->i_fop = &simple_dir_operations; 769 770 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 771 inc_nlink(inode); 772 break; 773 case S_IFLNK: 774 inode->i_op = &page_symlink_inode_operations; 775 inode_nohighmem(inode); 776 break; 777 } 778 lockdep_annotate_inode_mutex_key(inode); 779 } else 780 kref_put(&resv_map->refs, resv_map_release); 781 782 return inode; 783 } 784 785 /* 786 * File creation. Allocate an inode, and we're done.. 787 */ 788 static int hugetlbfs_mknod(struct inode *dir, 789 struct dentry *dentry, umode_t mode, dev_t dev) 790 { 791 struct inode *inode; 792 int error = -ENOSPC; 793 794 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 795 if (inode) { 796 dir->i_ctime = dir->i_mtime = current_time(dir); 797 d_instantiate(dentry, inode); 798 dget(dentry); /* Extra count - pin the dentry in core */ 799 error = 0; 800 } 801 return error; 802 } 803 804 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 805 { 806 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 807 if (!retval) 808 inc_nlink(dir); 809 return retval; 810 } 811 812 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 813 { 814 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 815 } 816 817 static int hugetlbfs_symlink(struct inode *dir, 818 struct dentry *dentry, const char *symname) 819 { 820 struct inode *inode; 821 int error = -ENOSPC; 822 823 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 824 if (inode) { 825 int l = strlen(symname)+1; 826 error = page_symlink(inode, symname, l); 827 if (!error) { 828 d_instantiate(dentry, inode); 829 dget(dentry); 830 } else 831 iput(inode); 832 } 833 dir->i_ctime = dir->i_mtime = current_time(dir); 834 835 return error; 836 } 837 838 /* 839 * mark the head page dirty 840 */ 841 static int hugetlbfs_set_page_dirty(struct page *page) 842 { 843 struct page *head = compound_head(page); 844 845 SetPageDirty(head); 846 return 0; 847 } 848 849 static int hugetlbfs_migrate_page(struct address_space *mapping, 850 struct page *newpage, struct page *page, 851 enum migrate_mode mode) 852 { 853 int rc; 854 855 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 856 if (rc != MIGRATEPAGE_SUCCESS) 857 return rc; 858 if (mode != MIGRATE_SYNC_NO_COPY) 859 migrate_page_copy(newpage, page); 860 else 861 migrate_page_states(newpage, page); 862 863 return MIGRATEPAGE_SUCCESS; 864 } 865 866 static int hugetlbfs_error_remove_page(struct address_space *mapping, 867 struct page *page) 868 { 869 struct inode *inode = mapping->host; 870 pgoff_t index = page->index; 871 872 remove_huge_page(page); 873 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 874 hugetlb_fix_reserve_counts(inode); 875 876 return 0; 877 } 878 879 /* 880 * Display the mount options in /proc/mounts. 881 */ 882 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 883 { 884 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 885 struct hugepage_subpool *spool = sbinfo->spool; 886 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 887 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 888 char mod; 889 890 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 891 seq_printf(m, ",uid=%u", 892 from_kuid_munged(&init_user_ns, sbinfo->uid)); 893 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 894 seq_printf(m, ",gid=%u", 895 from_kgid_munged(&init_user_ns, sbinfo->gid)); 896 if (sbinfo->mode != 0755) 897 seq_printf(m, ",mode=%o", sbinfo->mode); 898 if (sbinfo->max_inodes != -1) 899 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 900 901 hpage_size /= 1024; 902 mod = 'K'; 903 if (hpage_size >= 1024) { 904 hpage_size /= 1024; 905 mod = 'M'; 906 } 907 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 908 if (spool) { 909 if (spool->max_hpages != -1) 910 seq_printf(m, ",size=%llu", 911 (unsigned long long)spool->max_hpages << hpage_shift); 912 if (spool->min_hpages != -1) 913 seq_printf(m, ",min_size=%llu", 914 (unsigned long long)spool->min_hpages << hpage_shift); 915 } 916 return 0; 917 } 918 919 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 920 { 921 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 922 struct hstate *h = hstate_inode(d_inode(dentry)); 923 924 buf->f_type = HUGETLBFS_MAGIC; 925 buf->f_bsize = huge_page_size(h); 926 if (sbinfo) { 927 spin_lock(&sbinfo->stat_lock); 928 /* If no limits set, just report 0 for max/free/used 929 * blocks, like simple_statfs() */ 930 if (sbinfo->spool) { 931 long free_pages; 932 933 spin_lock(&sbinfo->spool->lock); 934 buf->f_blocks = sbinfo->spool->max_hpages; 935 free_pages = sbinfo->spool->max_hpages 936 - sbinfo->spool->used_hpages; 937 buf->f_bavail = buf->f_bfree = free_pages; 938 spin_unlock(&sbinfo->spool->lock); 939 buf->f_files = sbinfo->max_inodes; 940 buf->f_ffree = sbinfo->free_inodes; 941 } 942 spin_unlock(&sbinfo->stat_lock); 943 } 944 buf->f_namelen = NAME_MAX; 945 return 0; 946 } 947 948 static void hugetlbfs_put_super(struct super_block *sb) 949 { 950 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 951 952 if (sbi) { 953 sb->s_fs_info = NULL; 954 955 if (sbi->spool) 956 hugepage_put_subpool(sbi->spool); 957 958 kfree(sbi); 959 } 960 } 961 962 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 963 { 964 if (sbinfo->free_inodes >= 0) { 965 spin_lock(&sbinfo->stat_lock); 966 if (unlikely(!sbinfo->free_inodes)) { 967 spin_unlock(&sbinfo->stat_lock); 968 return 0; 969 } 970 sbinfo->free_inodes--; 971 spin_unlock(&sbinfo->stat_lock); 972 } 973 974 return 1; 975 } 976 977 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 978 { 979 if (sbinfo->free_inodes >= 0) { 980 spin_lock(&sbinfo->stat_lock); 981 sbinfo->free_inodes++; 982 spin_unlock(&sbinfo->stat_lock); 983 } 984 } 985 986 987 static struct kmem_cache *hugetlbfs_inode_cachep; 988 989 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 990 { 991 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 992 struct hugetlbfs_inode_info *p; 993 994 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 995 return NULL; 996 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 997 if (unlikely(!p)) { 998 hugetlbfs_inc_free_inodes(sbinfo); 999 return NULL; 1000 } 1001 1002 /* 1003 * Any time after allocation, hugetlbfs_destroy_inode can be called 1004 * for the inode. mpol_free_shared_policy is unconditionally called 1005 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1006 * in case of a quick call to destroy. 1007 * 1008 * Note that the policy is initialized even if we are creating a 1009 * private inode. This simplifies hugetlbfs_destroy_inode. 1010 */ 1011 mpol_shared_policy_init(&p->policy, NULL); 1012 1013 return &p->vfs_inode; 1014 } 1015 1016 static void hugetlbfs_i_callback(struct rcu_head *head) 1017 { 1018 struct inode *inode = container_of(head, struct inode, i_rcu); 1019 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1020 } 1021 1022 static void hugetlbfs_destroy_inode(struct inode *inode) 1023 { 1024 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1025 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1026 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1027 } 1028 1029 static const struct address_space_operations hugetlbfs_aops = { 1030 .write_begin = hugetlbfs_write_begin, 1031 .write_end = hugetlbfs_write_end, 1032 .set_page_dirty = hugetlbfs_set_page_dirty, 1033 .migratepage = hugetlbfs_migrate_page, 1034 .error_remove_page = hugetlbfs_error_remove_page, 1035 }; 1036 1037 1038 static void init_once(void *foo) 1039 { 1040 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1041 1042 inode_init_once(&ei->vfs_inode); 1043 } 1044 1045 const struct file_operations hugetlbfs_file_operations = { 1046 .read_iter = hugetlbfs_read_iter, 1047 .mmap = hugetlbfs_file_mmap, 1048 .fsync = noop_fsync, 1049 .get_unmapped_area = hugetlb_get_unmapped_area, 1050 .llseek = default_llseek, 1051 .fallocate = hugetlbfs_fallocate, 1052 }; 1053 1054 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1055 .create = hugetlbfs_create, 1056 .lookup = simple_lookup, 1057 .link = simple_link, 1058 .unlink = simple_unlink, 1059 .symlink = hugetlbfs_symlink, 1060 .mkdir = hugetlbfs_mkdir, 1061 .rmdir = simple_rmdir, 1062 .mknod = hugetlbfs_mknod, 1063 .rename = simple_rename, 1064 .setattr = hugetlbfs_setattr, 1065 }; 1066 1067 static const struct inode_operations hugetlbfs_inode_operations = { 1068 .setattr = hugetlbfs_setattr, 1069 }; 1070 1071 static const struct super_operations hugetlbfs_ops = { 1072 .alloc_inode = hugetlbfs_alloc_inode, 1073 .destroy_inode = hugetlbfs_destroy_inode, 1074 .evict_inode = hugetlbfs_evict_inode, 1075 .statfs = hugetlbfs_statfs, 1076 .put_super = hugetlbfs_put_super, 1077 .show_options = hugetlbfs_show_options, 1078 }; 1079 1080 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1081 1082 /* 1083 * Convert size option passed from command line to number of huge pages 1084 * in the pool specified by hstate. Size option could be in bytes 1085 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1086 */ 1087 static long 1088 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1089 enum hugetlbfs_size_type val_type) 1090 { 1091 if (val_type == NO_SIZE) 1092 return -1; 1093 1094 if (val_type == SIZE_PERCENT) { 1095 size_opt <<= huge_page_shift(h); 1096 size_opt *= h->max_huge_pages; 1097 do_div(size_opt, 100); 1098 } 1099 1100 size_opt >>= huge_page_shift(h); 1101 return size_opt; 1102 } 1103 1104 static int 1105 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1106 { 1107 char *p, *rest; 1108 substring_t args[MAX_OPT_ARGS]; 1109 int option; 1110 unsigned long long max_size_opt = 0, min_size_opt = 0; 1111 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1112 1113 if (!options) 1114 return 0; 1115 1116 while ((p = strsep(&options, ",")) != NULL) { 1117 int token; 1118 if (!*p) 1119 continue; 1120 1121 token = match_token(p, tokens, args); 1122 switch (token) { 1123 case Opt_uid: 1124 if (match_int(&args[0], &option)) 1125 goto bad_val; 1126 pconfig->uid = make_kuid(current_user_ns(), option); 1127 if (!uid_valid(pconfig->uid)) 1128 goto bad_val; 1129 break; 1130 1131 case Opt_gid: 1132 if (match_int(&args[0], &option)) 1133 goto bad_val; 1134 pconfig->gid = make_kgid(current_user_ns(), option); 1135 if (!gid_valid(pconfig->gid)) 1136 goto bad_val; 1137 break; 1138 1139 case Opt_mode: 1140 if (match_octal(&args[0], &option)) 1141 goto bad_val; 1142 pconfig->mode = option & 01777U; 1143 break; 1144 1145 case Opt_size: { 1146 /* memparse() will accept a K/M/G without a digit */ 1147 if (!isdigit(*args[0].from)) 1148 goto bad_val; 1149 max_size_opt = memparse(args[0].from, &rest); 1150 max_val_type = SIZE_STD; 1151 if (*rest == '%') 1152 max_val_type = SIZE_PERCENT; 1153 break; 1154 } 1155 1156 case Opt_nr_inodes: 1157 /* memparse() will accept a K/M/G without a digit */ 1158 if (!isdigit(*args[0].from)) 1159 goto bad_val; 1160 pconfig->nr_inodes = memparse(args[0].from, &rest); 1161 break; 1162 1163 case Opt_pagesize: { 1164 unsigned long ps; 1165 ps = memparse(args[0].from, &rest); 1166 pconfig->hstate = size_to_hstate(ps); 1167 if (!pconfig->hstate) { 1168 pr_err("Unsupported page size %lu MB\n", 1169 ps >> 20); 1170 return -EINVAL; 1171 } 1172 break; 1173 } 1174 1175 case Opt_min_size: { 1176 /* memparse() will accept a K/M/G without a digit */ 1177 if (!isdigit(*args[0].from)) 1178 goto bad_val; 1179 min_size_opt = memparse(args[0].from, &rest); 1180 min_val_type = SIZE_STD; 1181 if (*rest == '%') 1182 min_val_type = SIZE_PERCENT; 1183 break; 1184 } 1185 1186 default: 1187 pr_err("Bad mount option: \"%s\"\n", p); 1188 return -EINVAL; 1189 break; 1190 } 1191 } 1192 1193 /* 1194 * Use huge page pool size (in hstate) to convert the size 1195 * options to number of huge pages. If NO_SIZE, -1 is returned. 1196 */ 1197 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1198 max_size_opt, max_val_type); 1199 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1200 min_size_opt, min_val_type); 1201 1202 /* 1203 * If max_size was specified, then min_size must be smaller 1204 */ 1205 if (max_val_type > NO_SIZE && 1206 pconfig->min_hpages > pconfig->max_hpages) { 1207 pr_err("minimum size can not be greater than maximum size\n"); 1208 return -EINVAL; 1209 } 1210 1211 return 0; 1212 1213 bad_val: 1214 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1215 return -EINVAL; 1216 } 1217 1218 static int 1219 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1220 { 1221 int ret; 1222 struct hugetlbfs_config config; 1223 struct hugetlbfs_sb_info *sbinfo; 1224 1225 config.max_hpages = -1; /* No limit on size by default */ 1226 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1227 config.uid = current_fsuid(); 1228 config.gid = current_fsgid(); 1229 config.mode = 0755; 1230 config.hstate = &default_hstate; 1231 config.min_hpages = -1; /* No default minimum size */ 1232 ret = hugetlbfs_parse_options(data, &config); 1233 if (ret) 1234 return ret; 1235 1236 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1237 if (!sbinfo) 1238 return -ENOMEM; 1239 sb->s_fs_info = sbinfo; 1240 sbinfo->hstate = config.hstate; 1241 spin_lock_init(&sbinfo->stat_lock); 1242 sbinfo->max_inodes = config.nr_inodes; 1243 sbinfo->free_inodes = config.nr_inodes; 1244 sbinfo->spool = NULL; 1245 sbinfo->uid = config.uid; 1246 sbinfo->gid = config.gid; 1247 sbinfo->mode = config.mode; 1248 1249 /* 1250 * Allocate and initialize subpool if maximum or minimum size is 1251 * specified. Any needed reservations (for minimim size) are taken 1252 * taken when the subpool is created. 1253 */ 1254 if (config.max_hpages != -1 || config.min_hpages != -1) { 1255 sbinfo->spool = hugepage_new_subpool(config.hstate, 1256 config.max_hpages, 1257 config.min_hpages); 1258 if (!sbinfo->spool) 1259 goto out_free; 1260 } 1261 sb->s_maxbytes = MAX_LFS_FILESIZE; 1262 sb->s_blocksize = huge_page_size(config.hstate); 1263 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1264 sb->s_magic = HUGETLBFS_MAGIC; 1265 sb->s_op = &hugetlbfs_ops; 1266 sb->s_time_gran = 1; 1267 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1268 if (!sb->s_root) 1269 goto out_free; 1270 return 0; 1271 out_free: 1272 kfree(sbinfo->spool); 1273 kfree(sbinfo); 1274 return -ENOMEM; 1275 } 1276 1277 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1278 int flags, const char *dev_name, void *data) 1279 { 1280 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1281 } 1282 1283 static struct file_system_type hugetlbfs_fs_type = { 1284 .name = "hugetlbfs", 1285 .mount = hugetlbfs_mount, 1286 .kill_sb = kill_litter_super, 1287 }; 1288 1289 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1290 1291 static int can_do_hugetlb_shm(void) 1292 { 1293 kgid_t shm_group; 1294 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1295 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1296 } 1297 1298 static int get_hstate_idx(int page_size_log) 1299 { 1300 struct hstate *h = hstate_sizelog(page_size_log); 1301 1302 if (!h) 1303 return -1; 1304 return h - hstates; 1305 } 1306 1307 static const struct dentry_operations anon_ops = { 1308 .d_dname = simple_dname 1309 }; 1310 1311 /* 1312 * Note that size should be aligned to proper hugepage size in caller side, 1313 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1314 */ 1315 struct file *hugetlb_file_setup(const char *name, size_t size, 1316 vm_flags_t acctflag, struct user_struct **user, 1317 int creat_flags, int page_size_log) 1318 { 1319 struct file *file = ERR_PTR(-ENOMEM); 1320 struct inode *inode; 1321 struct path path; 1322 struct super_block *sb; 1323 struct qstr quick_string; 1324 int hstate_idx; 1325 1326 hstate_idx = get_hstate_idx(page_size_log); 1327 if (hstate_idx < 0) 1328 return ERR_PTR(-ENODEV); 1329 1330 *user = NULL; 1331 if (!hugetlbfs_vfsmount[hstate_idx]) 1332 return ERR_PTR(-ENOENT); 1333 1334 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1335 *user = current_user(); 1336 if (user_shm_lock(size, *user)) { 1337 task_lock(current); 1338 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1339 current->comm, current->pid); 1340 task_unlock(current); 1341 } else { 1342 *user = NULL; 1343 return ERR_PTR(-EPERM); 1344 } 1345 } 1346 1347 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb; 1348 quick_string.name = name; 1349 quick_string.len = strlen(quick_string.name); 1350 quick_string.hash = 0; 1351 path.dentry = d_alloc_pseudo(sb, &quick_string); 1352 if (!path.dentry) 1353 goto out_shm_unlock; 1354 1355 d_set_d_op(path.dentry, &anon_ops); 1356 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]); 1357 file = ERR_PTR(-ENOSPC); 1358 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0); 1359 if (!inode) 1360 goto out_dentry; 1361 if (creat_flags == HUGETLB_SHMFS_INODE) 1362 inode->i_flags |= S_PRIVATE; 1363 1364 file = ERR_PTR(-ENOMEM); 1365 if (hugetlb_reserve_pages(inode, 0, 1366 size >> huge_page_shift(hstate_inode(inode)), NULL, 1367 acctflag)) 1368 goto out_inode; 1369 1370 d_instantiate(path.dentry, inode); 1371 inode->i_size = size; 1372 clear_nlink(inode); 1373 1374 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 1375 &hugetlbfs_file_operations); 1376 if (IS_ERR(file)) 1377 goto out_dentry; /* inode is already attached */ 1378 1379 return file; 1380 1381 out_inode: 1382 iput(inode); 1383 out_dentry: 1384 path_put(&path); 1385 out_shm_unlock: 1386 if (*user) { 1387 user_shm_unlock(size, *user); 1388 *user = NULL; 1389 } 1390 return file; 1391 } 1392 1393 static int __init init_hugetlbfs_fs(void) 1394 { 1395 struct hstate *h; 1396 int error; 1397 int i; 1398 1399 if (!hugepages_supported()) { 1400 pr_info("disabling because there are no supported hugepage sizes\n"); 1401 return -ENOTSUPP; 1402 } 1403 1404 error = -ENOMEM; 1405 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1406 sizeof(struct hugetlbfs_inode_info), 1407 0, SLAB_ACCOUNT, init_once); 1408 if (hugetlbfs_inode_cachep == NULL) 1409 goto out2; 1410 1411 error = register_filesystem(&hugetlbfs_fs_type); 1412 if (error) 1413 goto out; 1414 1415 i = 0; 1416 for_each_hstate(h) { 1417 char buf[50]; 1418 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1419 1420 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1421 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1422 buf); 1423 1424 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1425 pr_err("Cannot mount internal hugetlbfs for " 1426 "page size %uK", ps_kb); 1427 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1428 hugetlbfs_vfsmount[i] = NULL; 1429 } 1430 i++; 1431 } 1432 /* Non default hstates are optional */ 1433 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1434 return 0; 1435 1436 out: 1437 kmem_cache_destroy(hugetlbfs_inode_cachep); 1438 out2: 1439 return error; 1440 } 1441 fs_initcall(init_hugetlbfs_fs) 1442