1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_u32 ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_u32 ("uid", Opt_uid), 83 {} 84 }; 85 86 #ifdef CONFIG_NUMA 87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 88 struct inode *inode, pgoff_t index) 89 { 90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 91 index); 92 } 93 94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 95 { 96 mpol_cond_put(vma->vm_policy); 97 } 98 #else 99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 100 struct inode *inode, pgoff_t index) 101 { 102 } 103 104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 105 { 106 } 107 #endif 108 109 /* 110 * Mask used when checking the page offset value passed in via system 111 * calls. This value will be converted to a loff_t which is signed. 112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 113 * value. The extra bit (- 1 in the shift value) is to take the sign 114 * bit into account. 115 */ 116 #define PGOFF_LOFFT_MAX \ 117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 118 119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 120 { 121 struct inode *inode = file_inode(file); 122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 123 loff_t len, vma_len; 124 int ret; 125 struct hstate *h = hstate_file(file); 126 vm_flags_t vm_flags; 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 ret = seal_check_future_write(info->seals, vma); 140 if (ret) 141 return ret; 142 143 /* 144 * page based offset in vm_pgoff could be sufficiently large to 145 * overflow a loff_t when converted to byte offset. This can 146 * only happen on architectures where sizeof(loff_t) == 147 * sizeof(unsigned long). So, only check in those instances. 148 */ 149 if (sizeof(unsigned long) == sizeof(loff_t)) { 150 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 151 return -EINVAL; 152 } 153 154 /* must be huge page aligned */ 155 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 156 return -EINVAL; 157 158 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 159 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 160 /* check for overflow */ 161 if (len < vma_len) 162 return -EINVAL; 163 164 inode_lock(inode); 165 file_accessed(file); 166 167 ret = -ENOMEM; 168 169 vm_flags = vma->vm_flags; 170 /* 171 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip 172 * reserving here. Note: only for SHM hugetlbfs file, the inode 173 * flag S_PRIVATE is set. 174 */ 175 if (inode->i_flags & S_PRIVATE) 176 vm_flags |= VM_NORESERVE; 177 178 if (!hugetlb_reserve_pages(inode, 179 vma->vm_pgoff >> huge_page_order(h), 180 len >> huge_page_shift(h), vma, 181 vm_flags)) 182 goto out; 183 184 ret = 0; 185 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 186 i_size_write(inode, len); 187 out: 188 inode_unlock(inode); 189 190 return ret; 191 } 192 193 /* 194 * Called under mmap_write_lock(mm). 195 */ 196 197 static unsigned long 198 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 199 unsigned long len, unsigned long pgoff, unsigned long flags) 200 { 201 struct hstate *h = hstate_file(file); 202 struct vm_unmapped_area_info info; 203 204 info.flags = 0; 205 info.length = len; 206 info.low_limit = current->mm->mmap_base; 207 info.high_limit = arch_get_mmap_end(addr, len, flags); 208 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 209 info.align_offset = 0; 210 return vm_unmapped_area(&info); 211 } 212 213 static unsigned long 214 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 215 unsigned long len, unsigned long pgoff, unsigned long flags) 216 { 217 struct hstate *h = hstate_file(file); 218 struct vm_unmapped_area_info info; 219 220 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 221 info.length = len; 222 info.low_limit = PAGE_SIZE; 223 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 224 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 225 info.align_offset = 0; 226 addr = vm_unmapped_area(&info); 227 228 /* 229 * A failed mmap() very likely causes application failure, 230 * so fall back to the bottom-up function here. This scenario 231 * can happen with large stack limits and large mmap() 232 * allocations. 233 */ 234 if (unlikely(offset_in_page(addr))) { 235 VM_BUG_ON(addr != -ENOMEM); 236 info.flags = 0; 237 info.low_limit = current->mm->mmap_base; 238 info.high_limit = arch_get_mmap_end(addr, len, flags); 239 addr = vm_unmapped_area(&info); 240 } 241 242 return addr; 243 } 244 245 unsigned long 246 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 247 unsigned long len, unsigned long pgoff, 248 unsigned long flags) 249 { 250 struct mm_struct *mm = current->mm; 251 struct vm_area_struct *vma; 252 struct hstate *h = hstate_file(file); 253 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 254 255 if (len & ~huge_page_mask(h)) 256 return -EINVAL; 257 if (len > TASK_SIZE) 258 return -ENOMEM; 259 260 if (flags & MAP_FIXED) { 261 if (prepare_hugepage_range(file, addr, len)) 262 return -EINVAL; 263 return addr; 264 } 265 266 if (addr) { 267 addr = ALIGN(addr, huge_page_size(h)); 268 vma = find_vma(mm, addr); 269 if (mmap_end - len >= addr && 270 (!vma || addr + len <= vm_start_gap(vma))) 271 return addr; 272 } 273 274 /* 275 * Use mm->get_unmapped_area value as a hint to use topdown routine. 276 * If architectures have special needs, they should define their own 277 * version of hugetlb_get_unmapped_area. 278 */ 279 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 280 return hugetlb_get_unmapped_area_topdown(file, addr, len, 281 pgoff, flags); 282 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 283 pgoff, flags); 284 } 285 286 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 287 static unsigned long 288 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 289 unsigned long len, unsigned long pgoff, 290 unsigned long flags) 291 { 292 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 293 } 294 #endif 295 296 /* 297 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 298 * Returns the maximum number of bytes one can read without touching the 1st raw 299 * HWPOISON subpage. 300 * 301 * The implementation borrows the iteration logic from copy_page_to_iter*. 302 */ 303 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 304 { 305 size_t n = 0; 306 size_t res = 0; 307 308 /* First subpage to start the loop. */ 309 page = nth_page(page, offset / PAGE_SIZE); 310 offset %= PAGE_SIZE; 311 while (1) { 312 if (is_raw_hwpoison_page_in_hugepage(page)) 313 break; 314 315 /* Safe to read n bytes without touching HWPOISON subpage. */ 316 n = min(bytes, (size_t)PAGE_SIZE - offset); 317 res += n; 318 bytes -= n; 319 if (!bytes || !n) 320 break; 321 offset += n; 322 if (offset == PAGE_SIZE) { 323 page = nth_page(page, 1); 324 offset = 0; 325 } 326 } 327 328 return res; 329 } 330 331 /* 332 * Support for read() - Find the page attached to f_mapping and copy out the 333 * data. This provides functionality similar to filemap_read(). 334 */ 335 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 336 { 337 struct file *file = iocb->ki_filp; 338 struct hstate *h = hstate_file(file); 339 struct address_space *mapping = file->f_mapping; 340 struct inode *inode = mapping->host; 341 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 342 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 343 unsigned long end_index; 344 loff_t isize; 345 ssize_t retval = 0; 346 347 while (iov_iter_count(to)) { 348 struct page *page; 349 size_t nr, copied, want; 350 351 /* nr is the maximum number of bytes to copy from this page */ 352 nr = huge_page_size(h); 353 isize = i_size_read(inode); 354 if (!isize) 355 break; 356 end_index = (isize - 1) >> huge_page_shift(h); 357 if (index > end_index) 358 break; 359 if (index == end_index) { 360 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 361 if (nr <= offset) 362 break; 363 } 364 nr = nr - offset; 365 366 /* Find the page */ 367 page = find_lock_page(mapping, index); 368 if (unlikely(page == NULL)) { 369 /* 370 * We have a HOLE, zero out the user-buffer for the 371 * length of the hole or request. 372 */ 373 copied = iov_iter_zero(nr, to); 374 } else { 375 unlock_page(page); 376 377 if (!PageHWPoison(page)) 378 want = nr; 379 else { 380 /* 381 * Adjust how many bytes safe to read without 382 * touching the 1st raw HWPOISON subpage after 383 * offset. 384 */ 385 want = adjust_range_hwpoison(page, offset, nr); 386 if (want == 0) { 387 put_page(page); 388 retval = -EIO; 389 break; 390 } 391 } 392 393 /* 394 * We have the page, copy it to user space buffer. 395 */ 396 copied = copy_page_to_iter(page, offset, want, to); 397 put_page(page); 398 } 399 offset += copied; 400 retval += copied; 401 if (copied != nr && iov_iter_count(to)) { 402 if (!retval) 403 retval = -EFAULT; 404 break; 405 } 406 index += offset >> huge_page_shift(h); 407 offset &= ~huge_page_mask(h); 408 } 409 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 410 return retval; 411 } 412 413 static int hugetlbfs_write_begin(struct file *file, 414 struct address_space *mapping, 415 loff_t pos, unsigned len, 416 struct page **pagep, void **fsdata) 417 { 418 return -EINVAL; 419 } 420 421 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 422 loff_t pos, unsigned len, unsigned copied, 423 struct page *page, void *fsdata) 424 { 425 BUG(); 426 return -EINVAL; 427 } 428 429 static void hugetlb_delete_from_page_cache(struct folio *folio) 430 { 431 folio_clear_dirty(folio); 432 folio_clear_uptodate(folio); 433 filemap_remove_folio(folio); 434 } 435 436 /* 437 * Called with i_mmap_rwsem held for inode based vma maps. This makes 438 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 439 * mutex for the page in the mapping. So, we can not race with page being 440 * faulted into the vma. 441 */ 442 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 443 unsigned long addr, struct page *page) 444 { 445 pte_t *ptep, pte; 446 447 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 448 if (!ptep) 449 return false; 450 451 pte = huge_ptep_get(ptep); 452 if (huge_pte_none(pte) || !pte_present(pte)) 453 return false; 454 455 if (pte_page(pte) == page) 456 return true; 457 458 return false; 459 } 460 461 /* 462 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 463 * No, because the interval tree returns us only those vmas 464 * which overlap the truncated area starting at pgoff, 465 * and no vma on a 32-bit arch can span beyond the 4GB. 466 */ 467 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 468 { 469 unsigned long offset = 0; 470 471 if (vma->vm_pgoff < start) 472 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 473 474 return vma->vm_start + offset; 475 } 476 477 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 478 { 479 unsigned long t_end; 480 481 if (!end) 482 return vma->vm_end; 483 484 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 485 if (t_end > vma->vm_end) 486 t_end = vma->vm_end; 487 return t_end; 488 } 489 490 /* 491 * Called with hugetlb fault mutex held. Therefore, no more mappings to 492 * this folio can be created while executing the routine. 493 */ 494 static void hugetlb_unmap_file_folio(struct hstate *h, 495 struct address_space *mapping, 496 struct folio *folio, pgoff_t index) 497 { 498 struct rb_root_cached *root = &mapping->i_mmap; 499 struct hugetlb_vma_lock *vma_lock; 500 struct page *page = &folio->page; 501 struct vm_area_struct *vma; 502 unsigned long v_start; 503 unsigned long v_end; 504 pgoff_t start, end; 505 506 start = index * pages_per_huge_page(h); 507 end = (index + 1) * pages_per_huge_page(h); 508 509 i_mmap_lock_write(mapping); 510 retry: 511 vma_lock = NULL; 512 vma_interval_tree_foreach(vma, root, start, end - 1) { 513 v_start = vma_offset_start(vma, start); 514 v_end = vma_offset_end(vma, end); 515 516 if (!hugetlb_vma_maps_page(vma, v_start, page)) 517 continue; 518 519 if (!hugetlb_vma_trylock_write(vma)) { 520 vma_lock = vma->vm_private_data; 521 /* 522 * If we can not get vma lock, we need to drop 523 * immap_sema and take locks in order. First, 524 * take a ref on the vma_lock structure so that 525 * we can be guaranteed it will not go away when 526 * dropping immap_sema. 527 */ 528 kref_get(&vma_lock->refs); 529 break; 530 } 531 532 unmap_hugepage_range(vma, v_start, v_end, NULL, 533 ZAP_FLAG_DROP_MARKER); 534 hugetlb_vma_unlock_write(vma); 535 } 536 537 i_mmap_unlock_write(mapping); 538 539 if (vma_lock) { 540 /* 541 * Wait on vma_lock. We know it is still valid as we have 542 * a reference. We must 'open code' vma locking as we do 543 * not know if vma_lock is still attached to vma. 544 */ 545 down_write(&vma_lock->rw_sema); 546 i_mmap_lock_write(mapping); 547 548 vma = vma_lock->vma; 549 if (!vma) { 550 /* 551 * If lock is no longer attached to vma, then just 552 * unlock, drop our reference and retry looking for 553 * other vmas. 554 */ 555 up_write(&vma_lock->rw_sema); 556 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 557 goto retry; 558 } 559 560 /* 561 * vma_lock is still attached to vma. Check to see if vma 562 * still maps page and if so, unmap. 563 */ 564 v_start = vma_offset_start(vma, start); 565 v_end = vma_offset_end(vma, end); 566 if (hugetlb_vma_maps_page(vma, v_start, page)) 567 unmap_hugepage_range(vma, v_start, v_end, NULL, 568 ZAP_FLAG_DROP_MARKER); 569 570 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 571 hugetlb_vma_unlock_write(vma); 572 573 goto retry; 574 } 575 } 576 577 static void 578 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 579 zap_flags_t zap_flags) 580 { 581 struct vm_area_struct *vma; 582 583 /* 584 * end == 0 indicates that the entire range after start should be 585 * unmapped. Note, end is exclusive, whereas the interval tree takes 586 * an inclusive "last". 587 */ 588 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 589 unsigned long v_start; 590 unsigned long v_end; 591 592 if (!hugetlb_vma_trylock_write(vma)) 593 continue; 594 595 v_start = vma_offset_start(vma, start); 596 v_end = vma_offset_end(vma, end); 597 598 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 599 600 /* 601 * Note that vma lock only exists for shared/non-private 602 * vmas. Therefore, lock is not held when calling 603 * unmap_hugepage_range for private vmas. 604 */ 605 hugetlb_vma_unlock_write(vma); 606 } 607 } 608 609 /* 610 * Called with hugetlb fault mutex held. 611 * Returns true if page was actually removed, false otherwise. 612 */ 613 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 614 struct address_space *mapping, 615 struct folio *folio, pgoff_t index, 616 bool truncate_op) 617 { 618 bool ret = false; 619 620 /* 621 * If folio is mapped, it was faulted in after being 622 * unmapped in caller. Unmap (again) while holding 623 * the fault mutex. The mutex will prevent faults 624 * until we finish removing the folio. 625 */ 626 if (unlikely(folio_mapped(folio))) 627 hugetlb_unmap_file_folio(h, mapping, folio, index); 628 629 folio_lock(folio); 630 /* 631 * We must remove the folio from page cache before removing 632 * the region/ reserve map (hugetlb_unreserve_pages). In 633 * rare out of memory conditions, removal of the region/reserve 634 * map could fail. Correspondingly, the subpool and global 635 * reserve usage count can need to be adjusted. 636 */ 637 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 638 hugetlb_delete_from_page_cache(folio); 639 ret = true; 640 if (!truncate_op) { 641 if (unlikely(hugetlb_unreserve_pages(inode, index, 642 index + 1, 1))) 643 hugetlb_fix_reserve_counts(inode); 644 } 645 646 folio_unlock(folio); 647 return ret; 648 } 649 650 /* 651 * remove_inode_hugepages handles two distinct cases: truncation and hole 652 * punch. There are subtle differences in operation for each case. 653 * 654 * truncation is indicated by end of range being LLONG_MAX 655 * In this case, we first scan the range and release found pages. 656 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 657 * maps and global counts. Page faults can race with truncation. 658 * During faults, hugetlb_no_page() checks i_size before page allocation, 659 * and again after obtaining page table lock. It will 'back out' 660 * allocations in the truncated range. 661 * hole punch is indicated if end is not LLONG_MAX 662 * In the hole punch case we scan the range and release found pages. 663 * Only when releasing a page is the associated region/reserve map 664 * deleted. The region/reserve map for ranges without associated 665 * pages are not modified. Page faults can race with hole punch. 666 * This is indicated if we find a mapped page. 667 * Note: If the passed end of range value is beyond the end of file, but 668 * not LLONG_MAX this routine still performs a hole punch operation. 669 */ 670 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 671 loff_t lend) 672 { 673 struct hstate *h = hstate_inode(inode); 674 struct address_space *mapping = &inode->i_data; 675 const pgoff_t start = lstart >> huge_page_shift(h); 676 const pgoff_t end = lend >> huge_page_shift(h); 677 struct folio_batch fbatch; 678 pgoff_t next, index; 679 int i, freed = 0; 680 bool truncate_op = (lend == LLONG_MAX); 681 682 folio_batch_init(&fbatch); 683 next = start; 684 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 685 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 686 struct folio *folio = fbatch.folios[i]; 687 u32 hash = 0; 688 689 index = folio->index; 690 hash = hugetlb_fault_mutex_hash(mapping, index); 691 mutex_lock(&hugetlb_fault_mutex_table[hash]); 692 693 /* 694 * Remove folio that was part of folio_batch. 695 */ 696 if (remove_inode_single_folio(h, inode, mapping, folio, 697 index, truncate_op)) 698 freed++; 699 700 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 701 } 702 folio_batch_release(&fbatch); 703 cond_resched(); 704 } 705 706 if (truncate_op) 707 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 708 } 709 710 static void hugetlbfs_evict_inode(struct inode *inode) 711 { 712 struct resv_map *resv_map; 713 714 remove_inode_hugepages(inode, 0, LLONG_MAX); 715 716 /* 717 * Get the resv_map from the address space embedded in the inode. 718 * This is the address space which points to any resv_map allocated 719 * at inode creation time. If this is a device special inode, 720 * i_mapping may not point to the original address space. 721 */ 722 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 723 /* Only regular and link inodes have associated reserve maps */ 724 if (resv_map) 725 resv_map_release(&resv_map->refs); 726 clear_inode(inode); 727 } 728 729 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 730 { 731 pgoff_t pgoff; 732 struct address_space *mapping = inode->i_mapping; 733 struct hstate *h = hstate_inode(inode); 734 735 BUG_ON(offset & ~huge_page_mask(h)); 736 pgoff = offset >> PAGE_SHIFT; 737 738 i_size_write(inode, offset); 739 i_mmap_lock_write(mapping); 740 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 741 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 742 ZAP_FLAG_DROP_MARKER); 743 i_mmap_unlock_write(mapping); 744 remove_inode_hugepages(inode, offset, LLONG_MAX); 745 } 746 747 static void hugetlbfs_zero_partial_page(struct hstate *h, 748 struct address_space *mapping, 749 loff_t start, 750 loff_t end) 751 { 752 pgoff_t idx = start >> huge_page_shift(h); 753 struct folio *folio; 754 755 folio = filemap_lock_folio(mapping, idx); 756 if (IS_ERR(folio)) 757 return; 758 759 start = start & ~huge_page_mask(h); 760 end = end & ~huge_page_mask(h); 761 if (!end) 762 end = huge_page_size(h); 763 764 folio_zero_segment(folio, (size_t)start, (size_t)end); 765 766 folio_unlock(folio); 767 folio_put(folio); 768 } 769 770 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 771 { 772 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 773 struct address_space *mapping = inode->i_mapping; 774 struct hstate *h = hstate_inode(inode); 775 loff_t hpage_size = huge_page_size(h); 776 loff_t hole_start, hole_end; 777 778 /* 779 * hole_start and hole_end indicate the full pages within the hole. 780 */ 781 hole_start = round_up(offset, hpage_size); 782 hole_end = round_down(offset + len, hpage_size); 783 784 inode_lock(inode); 785 786 /* protected by i_rwsem */ 787 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 788 inode_unlock(inode); 789 return -EPERM; 790 } 791 792 i_mmap_lock_write(mapping); 793 794 /* If range starts before first full page, zero partial page. */ 795 if (offset < hole_start) 796 hugetlbfs_zero_partial_page(h, mapping, 797 offset, min(offset + len, hole_start)); 798 799 /* Unmap users of full pages in the hole. */ 800 if (hole_end > hole_start) { 801 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 802 hugetlb_vmdelete_list(&mapping->i_mmap, 803 hole_start >> PAGE_SHIFT, 804 hole_end >> PAGE_SHIFT, 0); 805 } 806 807 /* If range extends beyond last full page, zero partial page. */ 808 if ((offset + len) > hole_end && (offset + len) > hole_start) 809 hugetlbfs_zero_partial_page(h, mapping, 810 hole_end, offset + len); 811 812 i_mmap_unlock_write(mapping); 813 814 /* Remove full pages from the file. */ 815 if (hole_end > hole_start) 816 remove_inode_hugepages(inode, hole_start, hole_end); 817 818 inode_unlock(inode); 819 820 return 0; 821 } 822 823 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 824 loff_t len) 825 { 826 struct inode *inode = file_inode(file); 827 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 828 struct address_space *mapping = inode->i_mapping; 829 struct hstate *h = hstate_inode(inode); 830 struct vm_area_struct pseudo_vma; 831 struct mm_struct *mm = current->mm; 832 loff_t hpage_size = huge_page_size(h); 833 unsigned long hpage_shift = huge_page_shift(h); 834 pgoff_t start, index, end; 835 int error; 836 u32 hash; 837 838 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 839 return -EOPNOTSUPP; 840 841 if (mode & FALLOC_FL_PUNCH_HOLE) 842 return hugetlbfs_punch_hole(inode, offset, len); 843 844 /* 845 * Default preallocate case. 846 * For this range, start is rounded down and end is rounded up 847 * as well as being converted to page offsets. 848 */ 849 start = offset >> hpage_shift; 850 end = (offset + len + hpage_size - 1) >> hpage_shift; 851 852 inode_lock(inode); 853 854 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 855 error = inode_newsize_ok(inode, offset + len); 856 if (error) 857 goto out; 858 859 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 860 error = -EPERM; 861 goto out; 862 } 863 864 /* 865 * Initialize a pseudo vma as this is required by the huge page 866 * allocation routines. If NUMA is configured, use page index 867 * as input to create an allocation policy. 868 */ 869 vma_init(&pseudo_vma, mm); 870 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 871 pseudo_vma.vm_file = file; 872 873 for (index = start; index < end; index++) { 874 /* 875 * This is supposed to be the vaddr where the page is being 876 * faulted in, but we have no vaddr here. 877 */ 878 struct folio *folio; 879 unsigned long addr; 880 881 cond_resched(); 882 883 /* 884 * fallocate(2) manpage permits EINTR; we may have been 885 * interrupted because we are using up too much memory. 886 */ 887 if (signal_pending(current)) { 888 error = -EINTR; 889 break; 890 } 891 892 /* addr is the offset within the file (zero based) */ 893 addr = index * hpage_size; 894 895 /* mutex taken here, fault path and hole punch */ 896 hash = hugetlb_fault_mutex_hash(mapping, index); 897 mutex_lock(&hugetlb_fault_mutex_table[hash]); 898 899 /* See if already present in mapping to avoid alloc/free */ 900 folio = filemap_get_folio(mapping, index); 901 if (!IS_ERR(folio)) { 902 folio_put(folio); 903 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 904 continue; 905 } 906 907 /* 908 * Allocate folio without setting the avoid_reserve argument. 909 * There certainly are no reserves associated with the 910 * pseudo_vma. However, there could be shared mappings with 911 * reserves for the file at the inode level. If we fallocate 912 * folios in these areas, we need to consume the reserves 913 * to keep reservation accounting consistent. 914 */ 915 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 916 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0); 917 hugetlb_drop_vma_policy(&pseudo_vma); 918 if (IS_ERR(folio)) { 919 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 920 error = PTR_ERR(folio); 921 goto out; 922 } 923 clear_huge_page(&folio->page, addr, pages_per_huge_page(h)); 924 __folio_mark_uptodate(folio); 925 error = hugetlb_add_to_page_cache(folio, mapping, index); 926 if (unlikely(error)) { 927 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 928 folio_put(folio); 929 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 930 goto out; 931 } 932 933 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 934 935 folio_set_hugetlb_migratable(folio); 936 /* 937 * folio_unlock because locked by hugetlb_add_to_page_cache() 938 * folio_put() due to reference from alloc_hugetlb_folio() 939 */ 940 folio_unlock(folio); 941 folio_put(folio); 942 } 943 944 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 945 i_size_write(inode, offset + len); 946 inode_set_ctime_current(inode); 947 out: 948 inode_unlock(inode); 949 return error; 950 } 951 952 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 953 struct dentry *dentry, struct iattr *attr) 954 { 955 struct inode *inode = d_inode(dentry); 956 struct hstate *h = hstate_inode(inode); 957 int error; 958 unsigned int ia_valid = attr->ia_valid; 959 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 960 961 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 962 if (error) 963 return error; 964 965 if (ia_valid & ATTR_SIZE) { 966 loff_t oldsize = inode->i_size; 967 loff_t newsize = attr->ia_size; 968 969 if (newsize & ~huge_page_mask(h)) 970 return -EINVAL; 971 /* protected by i_rwsem */ 972 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 973 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 974 return -EPERM; 975 hugetlb_vmtruncate(inode, newsize); 976 } 977 978 setattr_copy(&nop_mnt_idmap, inode, attr); 979 mark_inode_dirty(inode); 980 return 0; 981 } 982 983 static struct inode *hugetlbfs_get_root(struct super_block *sb, 984 struct hugetlbfs_fs_context *ctx) 985 { 986 struct inode *inode; 987 988 inode = new_inode(sb); 989 if (inode) { 990 inode->i_ino = get_next_ino(); 991 inode->i_mode = S_IFDIR | ctx->mode; 992 inode->i_uid = ctx->uid; 993 inode->i_gid = ctx->gid; 994 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 995 inode->i_op = &hugetlbfs_dir_inode_operations; 996 inode->i_fop = &simple_dir_operations; 997 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 998 inc_nlink(inode); 999 lockdep_annotate_inode_mutex_key(inode); 1000 } 1001 return inode; 1002 } 1003 1004 /* 1005 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 1006 * be taken from reclaim -- unlike regular filesystems. This needs an 1007 * annotation because huge_pmd_share() does an allocation under hugetlb's 1008 * i_mmap_rwsem. 1009 */ 1010 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 1011 1012 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 1013 struct inode *dir, 1014 umode_t mode, dev_t dev) 1015 { 1016 struct inode *inode; 1017 struct resv_map *resv_map = NULL; 1018 1019 /* 1020 * Reserve maps are only needed for inodes that can have associated 1021 * page allocations. 1022 */ 1023 if (S_ISREG(mode) || S_ISLNK(mode)) { 1024 resv_map = resv_map_alloc(); 1025 if (!resv_map) 1026 return NULL; 1027 } 1028 1029 inode = new_inode(sb); 1030 if (inode) { 1031 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 1032 1033 inode->i_ino = get_next_ino(); 1034 inode_init_owner(&nop_mnt_idmap, inode, dir, mode); 1035 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 1036 &hugetlbfs_i_mmap_rwsem_key); 1037 inode->i_mapping->a_ops = &hugetlbfs_aops; 1038 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 1039 inode->i_mapping->private_data = resv_map; 1040 info->seals = F_SEAL_SEAL; 1041 switch (mode & S_IFMT) { 1042 default: 1043 init_special_inode(inode, mode, dev); 1044 break; 1045 case S_IFREG: 1046 inode->i_op = &hugetlbfs_inode_operations; 1047 inode->i_fop = &hugetlbfs_file_operations; 1048 break; 1049 case S_IFDIR: 1050 inode->i_op = &hugetlbfs_dir_inode_operations; 1051 inode->i_fop = &simple_dir_operations; 1052 1053 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 1054 inc_nlink(inode); 1055 break; 1056 case S_IFLNK: 1057 inode->i_op = &page_symlink_inode_operations; 1058 inode_nohighmem(inode); 1059 break; 1060 } 1061 lockdep_annotate_inode_mutex_key(inode); 1062 } else { 1063 if (resv_map) 1064 kref_put(&resv_map->refs, resv_map_release); 1065 } 1066 1067 return inode; 1068 } 1069 1070 /* 1071 * File creation. Allocate an inode, and we're done.. 1072 */ 1073 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 1074 struct dentry *dentry, umode_t mode, dev_t dev) 1075 { 1076 struct inode *inode; 1077 1078 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 1079 if (!inode) 1080 return -ENOSPC; 1081 dir->i_mtime = inode_set_ctime_current(dir); 1082 d_instantiate(dentry, inode); 1083 dget(dentry);/* Extra count - pin the dentry in core */ 1084 return 0; 1085 } 1086 1087 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 1088 struct dentry *dentry, umode_t mode) 1089 { 1090 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, 1091 mode | S_IFDIR, 0); 1092 if (!retval) 1093 inc_nlink(dir); 1094 return retval; 1095 } 1096 1097 static int hugetlbfs_create(struct mnt_idmap *idmap, 1098 struct inode *dir, struct dentry *dentry, 1099 umode_t mode, bool excl) 1100 { 1101 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0); 1102 } 1103 1104 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1105 struct inode *dir, struct file *file, 1106 umode_t mode) 1107 { 1108 struct inode *inode; 1109 1110 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0); 1111 if (!inode) 1112 return -ENOSPC; 1113 dir->i_mtime = inode_set_ctime_current(dir); 1114 d_tmpfile(file, inode); 1115 return finish_open_simple(file, 0); 1116 } 1117 1118 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1119 struct inode *dir, struct dentry *dentry, 1120 const char *symname) 1121 { 1122 struct inode *inode; 1123 int error = -ENOSPC; 1124 1125 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 1126 if (inode) { 1127 int l = strlen(symname)+1; 1128 error = page_symlink(inode, symname, l); 1129 if (!error) { 1130 d_instantiate(dentry, inode); 1131 dget(dentry); 1132 } else 1133 iput(inode); 1134 } 1135 dir->i_mtime = inode_set_ctime_current(dir); 1136 1137 return error; 1138 } 1139 1140 #ifdef CONFIG_MIGRATION 1141 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1142 struct folio *dst, struct folio *src, 1143 enum migrate_mode mode) 1144 { 1145 int rc; 1146 1147 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1148 if (rc != MIGRATEPAGE_SUCCESS) 1149 return rc; 1150 1151 if (hugetlb_folio_subpool(src)) { 1152 hugetlb_set_folio_subpool(dst, 1153 hugetlb_folio_subpool(src)); 1154 hugetlb_set_folio_subpool(src, NULL); 1155 } 1156 1157 if (mode != MIGRATE_SYNC_NO_COPY) 1158 folio_migrate_copy(dst, src); 1159 else 1160 folio_migrate_flags(dst, src); 1161 1162 return MIGRATEPAGE_SUCCESS; 1163 } 1164 #else 1165 #define hugetlbfs_migrate_folio NULL 1166 #endif 1167 1168 static int hugetlbfs_error_remove_page(struct address_space *mapping, 1169 struct page *page) 1170 { 1171 return 0; 1172 } 1173 1174 /* 1175 * Display the mount options in /proc/mounts. 1176 */ 1177 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1178 { 1179 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1180 struct hugepage_subpool *spool = sbinfo->spool; 1181 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1182 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1183 char mod; 1184 1185 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1186 seq_printf(m, ",uid=%u", 1187 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1188 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1189 seq_printf(m, ",gid=%u", 1190 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1191 if (sbinfo->mode != 0755) 1192 seq_printf(m, ",mode=%o", sbinfo->mode); 1193 if (sbinfo->max_inodes != -1) 1194 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1195 1196 hpage_size /= 1024; 1197 mod = 'K'; 1198 if (hpage_size >= 1024) { 1199 hpage_size /= 1024; 1200 mod = 'M'; 1201 } 1202 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1203 if (spool) { 1204 if (spool->max_hpages != -1) 1205 seq_printf(m, ",size=%llu", 1206 (unsigned long long)spool->max_hpages << hpage_shift); 1207 if (spool->min_hpages != -1) 1208 seq_printf(m, ",min_size=%llu", 1209 (unsigned long long)spool->min_hpages << hpage_shift); 1210 } 1211 return 0; 1212 } 1213 1214 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1215 { 1216 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1217 struct hstate *h = hstate_inode(d_inode(dentry)); 1218 1219 buf->f_type = HUGETLBFS_MAGIC; 1220 buf->f_bsize = huge_page_size(h); 1221 if (sbinfo) { 1222 spin_lock(&sbinfo->stat_lock); 1223 /* If no limits set, just report 0 or -1 for max/free/used 1224 * blocks, like simple_statfs() */ 1225 if (sbinfo->spool) { 1226 long free_pages; 1227 1228 spin_lock_irq(&sbinfo->spool->lock); 1229 buf->f_blocks = sbinfo->spool->max_hpages; 1230 free_pages = sbinfo->spool->max_hpages 1231 - sbinfo->spool->used_hpages; 1232 buf->f_bavail = buf->f_bfree = free_pages; 1233 spin_unlock_irq(&sbinfo->spool->lock); 1234 buf->f_files = sbinfo->max_inodes; 1235 buf->f_ffree = sbinfo->free_inodes; 1236 } 1237 spin_unlock(&sbinfo->stat_lock); 1238 } 1239 buf->f_namelen = NAME_MAX; 1240 return 0; 1241 } 1242 1243 static void hugetlbfs_put_super(struct super_block *sb) 1244 { 1245 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1246 1247 if (sbi) { 1248 sb->s_fs_info = NULL; 1249 1250 if (sbi->spool) 1251 hugepage_put_subpool(sbi->spool); 1252 1253 kfree(sbi); 1254 } 1255 } 1256 1257 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1258 { 1259 if (sbinfo->free_inodes >= 0) { 1260 spin_lock(&sbinfo->stat_lock); 1261 if (unlikely(!sbinfo->free_inodes)) { 1262 spin_unlock(&sbinfo->stat_lock); 1263 return 0; 1264 } 1265 sbinfo->free_inodes--; 1266 spin_unlock(&sbinfo->stat_lock); 1267 } 1268 1269 return 1; 1270 } 1271 1272 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1273 { 1274 if (sbinfo->free_inodes >= 0) { 1275 spin_lock(&sbinfo->stat_lock); 1276 sbinfo->free_inodes++; 1277 spin_unlock(&sbinfo->stat_lock); 1278 } 1279 } 1280 1281 1282 static struct kmem_cache *hugetlbfs_inode_cachep; 1283 1284 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1285 { 1286 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1287 struct hugetlbfs_inode_info *p; 1288 1289 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1290 return NULL; 1291 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1292 if (unlikely(!p)) { 1293 hugetlbfs_inc_free_inodes(sbinfo); 1294 return NULL; 1295 } 1296 1297 /* 1298 * Any time after allocation, hugetlbfs_destroy_inode can be called 1299 * for the inode. mpol_free_shared_policy is unconditionally called 1300 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1301 * in case of a quick call to destroy. 1302 * 1303 * Note that the policy is initialized even if we are creating a 1304 * private inode. This simplifies hugetlbfs_destroy_inode. 1305 */ 1306 mpol_shared_policy_init(&p->policy, NULL); 1307 1308 return &p->vfs_inode; 1309 } 1310 1311 static void hugetlbfs_free_inode(struct inode *inode) 1312 { 1313 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1314 } 1315 1316 static void hugetlbfs_destroy_inode(struct inode *inode) 1317 { 1318 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1319 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1320 } 1321 1322 static const struct address_space_operations hugetlbfs_aops = { 1323 .write_begin = hugetlbfs_write_begin, 1324 .write_end = hugetlbfs_write_end, 1325 .dirty_folio = noop_dirty_folio, 1326 .migrate_folio = hugetlbfs_migrate_folio, 1327 .error_remove_page = hugetlbfs_error_remove_page, 1328 }; 1329 1330 1331 static void init_once(void *foo) 1332 { 1333 struct hugetlbfs_inode_info *ei = foo; 1334 1335 inode_init_once(&ei->vfs_inode); 1336 } 1337 1338 const struct file_operations hugetlbfs_file_operations = { 1339 .read_iter = hugetlbfs_read_iter, 1340 .mmap = hugetlbfs_file_mmap, 1341 .fsync = noop_fsync, 1342 .get_unmapped_area = hugetlb_get_unmapped_area, 1343 .llseek = default_llseek, 1344 .fallocate = hugetlbfs_fallocate, 1345 }; 1346 1347 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1348 .create = hugetlbfs_create, 1349 .lookup = simple_lookup, 1350 .link = simple_link, 1351 .unlink = simple_unlink, 1352 .symlink = hugetlbfs_symlink, 1353 .mkdir = hugetlbfs_mkdir, 1354 .rmdir = simple_rmdir, 1355 .mknod = hugetlbfs_mknod, 1356 .rename = simple_rename, 1357 .setattr = hugetlbfs_setattr, 1358 .tmpfile = hugetlbfs_tmpfile, 1359 }; 1360 1361 static const struct inode_operations hugetlbfs_inode_operations = { 1362 .setattr = hugetlbfs_setattr, 1363 }; 1364 1365 static const struct super_operations hugetlbfs_ops = { 1366 .alloc_inode = hugetlbfs_alloc_inode, 1367 .free_inode = hugetlbfs_free_inode, 1368 .destroy_inode = hugetlbfs_destroy_inode, 1369 .evict_inode = hugetlbfs_evict_inode, 1370 .statfs = hugetlbfs_statfs, 1371 .put_super = hugetlbfs_put_super, 1372 .show_options = hugetlbfs_show_options, 1373 }; 1374 1375 /* 1376 * Convert size option passed from command line to number of huge pages 1377 * in the pool specified by hstate. Size option could be in bytes 1378 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1379 */ 1380 static long 1381 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1382 enum hugetlbfs_size_type val_type) 1383 { 1384 if (val_type == NO_SIZE) 1385 return -1; 1386 1387 if (val_type == SIZE_PERCENT) { 1388 size_opt <<= huge_page_shift(h); 1389 size_opt *= h->max_huge_pages; 1390 do_div(size_opt, 100); 1391 } 1392 1393 size_opt >>= huge_page_shift(h); 1394 return size_opt; 1395 } 1396 1397 /* 1398 * Parse one mount parameter. 1399 */ 1400 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1401 { 1402 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1403 struct fs_parse_result result; 1404 struct hstate *h; 1405 char *rest; 1406 unsigned long ps; 1407 int opt; 1408 1409 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1410 if (opt < 0) 1411 return opt; 1412 1413 switch (opt) { 1414 case Opt_uid: 1415 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1416 if (!uid_valid(ctx->uid)) 1417 goto bad_val; 1418 return 0; 1419 1420 case Opt_gid: 1421 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1422 if (!gid_valid(ctx->gid)) 1423 goto bad_val; 1424 return 0; 1425 1426 case Opt_mode: 1427 ctx->mode = result.uint_32 & 01777U; 1428 return 0; 1429 1430 case Opt_size: 1431 /* memparse() will accept a K/M/G without a digit */ 1432 if (!param->string || !isdigit(param->string[0])) 1433 goto bad_val; 1434 ctx->max_size_opt = memparse(param->string, &rest); 1435 ctx->max_val_type = SIZE_STD; 1436 if (*rest == '%') 1437 ctx->max_val_type = SIZE_PERCENT; 1438 return 0; 1439 1440 case Opt_nr_inodes: 1441 /* memparse() will accept a K/M/G without a digit */ 1442 if (!param->string || !isdigit(param->string[0])) 1443 goto bad_val; 1444 ctx->nr_inodes = memparse(param->string, &rest); 1445 return 0; 1446 1447 case Opt_pagesize: 1448 ps = memparse(param->string, &rest); 1449 h = size_to_hstate(ps); 1450 if (!h) { 1451 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1452 return -EINVAL; 1453 } 1454 ctx->hstate = h; 1455 return 0; 1456 1457 case Opt_min_size: 1458 /* memparse() will accept a K/M/G without a digit */ 1459 if (!param->string || !isdigit(param->string[0])) 1460 goto bad_val; 1461 ctx->min_size_opt = memparse(param->string, &rest); 1462 ctx->min_val_type = SIZE_STD; 1463 if (*rest == '%') 1464 ctx->min_val_type = SIZE_PERCENT; 1465 return 0; 1466 1467 default: 1468 return -EINVAL; 1469 } 1470 1471 bad_val: 1472 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1473 param->string, param->key); 1474 } 1475 1476 /* 1477 * Validate the parsed options. 1478 */ 1479 static int hugetlbfs_validate(struct fs_context *fc) 1480 { 1481 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1482 1483 /* 1484 * Use huge page pool size (in hstate) to convert the size 1485 * options to number of huge pages. If NO_SIZE, -1 is returned. 1486 */ 1487 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1488 ctx->max_size_opt, 1489 ctx->max_val_type); 1490 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1491 ctx->min_size_opt, 1492 ctx->min_val_type); 1493 1494 /* 1495 * If max_size was specified, then min_size must be smaller 1496 */ 1497 if (ctx->max_val_type > NO_SIZE && 1498 ctx->min_hpages > ctx->max_hpages) { 1499 pr_err("Minimum size can not be greater than maximum size\n"); 1500 return -EINVAL; 1501 } 1502 1503 return 0; 1504 } 1505 1506 static int 1507 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1508 { 1509 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1510 struct hugetlbfs_sb_info *sbinfo; 1511 1512 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1513 if (!sbinfo) 1514 return -ENOMEM; 1515 sb->s_fs_info = sbinfo; 1516 spin_lock_init(&sbinfo->stat_lock); 1517 sbinfo->hstate = ctx->hstate; 1518 sbinfo->max_inodes = ctx->nr_inodes; 1519 sbinfo->free_inodes = ctx->nr_inodes; 1520 sbinfo->spool = NULL; 1521 sbinfo->uid = ctx->uid; 1522 sbinfo->gid = ctx->gid; 1523 sbinfo->mode = ctx->mode; 1524 1525 /* 1526 * Allocate and initialize subpool if maximum or minimum size is 1527 * specified. Any needed reservations (for minimum size) are taken 1528 * when the subpool is created. 1529 */ 1530 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1531 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1532 ctx->max_hpages, 1533 ctx->min_hpages); 1534 if (!sbinfo->spool) 1535 goto out_free; 1536 } 1537 sb->s_maxbytes = MAX_LFS_FILESIZE; 1538 sb->s_blocksize = huge_page_size(ctx->hstate); 1539 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1540 sb->s_magic = HUGETLBFS_MAGIC; 1541 sb->s_op = &hugetlbfs_ops; 1542 sb->s_time_gran = 1; 1543 1544 /* 1545 * Due to the special and limited functionality of hugetlbfs, it does 1546 * not work well as a stacking filesystem. 1547 */ 1548 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1549 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1550 if (!sb->s_root) 1551 goto out_free; 1552 return 0; 1553 out_free: 1554 kfree(sbinfo->spool); 1555 kfree(sbinfo); 1556 return -ENOMEM; 1557 } 1558 1559 static int hugetlbfs_get_tree(struct fs_context *fc) 1560 { 1561 int err = hugetlbfs_validate(fc); 1562 if (err) 1563 return err; 1564 return get_tree_nodev(fc, hugetlbfs_fill_super); 1565 } 1566 1567 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1568 { 1569 kfree(fc->fs_private); 1570 } 1571 1572 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1573 .free = hugetlbfs_fs_context_free, 1574 .parse_param = hugetlbfs_parse_param, 1575 .get_tree = hugetlbfs_get_tree, 1576 }; 1577 1578 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1579 { 1580 struct hugetlbfs_fs_context *ctx; 1581 1582 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1583 if (!ctx) 1584 return -ENOMEM; 1585 1586 ctx->max_hpages = -1; /* No limit on size by default */ 1587 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1588 ctx->uid = current_fsuid(); 1589 ctx->gid = current_fsgid(); 1590 ctx->mode = 0755; 1591 ctx->hstate = &default_hstate; 1592 ctx->min_hpages = -1; /* No default minimum size */ 1593 ctx->max_val_type = NO_SIZE; 1594 ctx->min_val_type = NO_SIZE; 1595 fc->fs_private = ctx; 1596 fc->ops = &hugetlbfs_fs_context_ops; 1597 return 0; 1598 } 1599 1600 static struct file_system_type hugetlbfs_fs_type = { 1601 .name = "hugetlbfs", 1602 .init_fs_context = hugetlbfs_init_fs_context, 1603 .parameters = hugetlb_fs_parameters, 1604 .kill_sb = kill_litter_super, 1605 }; 1606 1607 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1608 1609 static int can_do_hugetlb_shm(void) 1610 { 1611 kgid_t shm_group; 1612 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1613 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1614 } 1615 1616 static int get_hstate_idx(int page_size_log) 1617 { 1618 struct hstate *h = hstate_sizelog(page_size_log); 1619 1620 if (!h) 1621 return -1; 1622 return hstate_index(h); 1623 } 1624 1625 /* 1626 * Note that size should be aligned to proper hugepage size in caller side, 1627 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1628 */ 1629 struct file *hugetlb_file_setup(const char *name, size_t size, 1630 vm_flags_t acctflag, int creat_flags, 1631 int page_size_log) 1632 { 1633 struct inode *inode; 1634 struct vfsmount *mnt; 1635 int hstate_idx; 1636 struct file *file; 1637 1638 hstate_idx = get_hstate_idx(page_size_log); 1639 if (hstate_idx < 0) 1640 return ERR_PTR(-ENODEV); 1641 1642 mnt = hugetlbfs_vfsmount[hstate_idx]; 1643 if (!mnt) 1644 return ERR_PTR(-ENOENT); 1645 1646 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1647 struct ucounts *ucounts = current_ucounts(); 1648 1649 if (user_shm_lock(size, ucounts)) { 1650 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1651 current->comm, current->pid); 1652 user_shm_unlock(size, ucounts); 1653 } 1654 return ERR_PTR(-EPERM); 1655 } 1656 1657 file = ERR_PTR(-ENOSPC); 1658 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1659 if (!inode) 1660 goto out; 1661 if (creat_flags == HUGETLB_SHMFS_INODE) 1662 inode->i_flags |= S_PRIVATE; 1663 1664 inode->i_size = size; 1665 clear_nlink(inode); 1666 1667 if (!hugetlb_reserve_pages(inode, 0, 1668 size >> huge_page_shift(hstate_inode(inode)), NULL, 1669 acctflag)) 1670 file = ERR_PTR(-ENOMEM); 1671 else 1672 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1673 &hugetlbfs_file_operations); 1674 if (!IS_ERR(file)) 1675 return file; 1676 1677 iput(inode); 1678 out: 1679 return file; 1680 } 1681 1682 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1683 { 1684 struct fs_context *fc; 1685 struct vfsmount *mnt; 1686 1687 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1688 if (IS_ERR(fc)) { 1689 mnt = ERR_CAST(fc); 1690 } else { 1691 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1692 ctx->hstate = h; 1693 mnt = fc_mount(fc); 1694 put_fs_context(fc); 1695 } 1696 if (IS_ERR(mnt)) 1697 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1698 huge_page_size(h) / SZ_1K); 1699 return mnt; 1700 } 1701 1702 static int __init init_hugetlbfs_fs(void) 1703 { 1704 struct vfsmount *mnt; 1705 struct hstate *h; 1706 int error; 1707 int i; 1708 1709 if (!hugepages_supported()) { 1710 pr_info("disabling because there are no supported hugepage sizes\n"); 1711 return -ENOTSUPP; 1712 } 1713 1714 error = -ENOMEM; 1715 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1716 sizeof(struct hugetlbfs_inode_info), 1717 0, SLAB_ACCOUNT, init_once); 1718 if (hugetlbfs_inode_cachep == NULL) 1719 goto out; 1720 1721 error = register_filesystem(&hugetlbfs_fs_type); 1722 if (error) 1723 goto out_free; 1724 1725 /* default hstate mount is required */ 1726 mnt = mount_one_hugetlbfs(&default_hstate); 1727 if (IS_ERR(mnt)) { 1728 error = PTR_ERR(mnt); 1729 goto out_unreg; 1730 } 1731 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1732 1733 /* other hstates are optional */ 1734 i = 0; 1735 for_each_hstate(h) { 1736 if (i == default_hstate_idx) { 1737 i++; 1738 continue; 1739 } 1740 1741 mnt = mount_one_hugetlbfs(h); 1742 if (IS_ERR(mnt)) 1743 hugetlbfs_vfsmount[i] = NULL; 1744 else 1745 hugetlbfs_vfsmount[i] = mnt; 1746 i++; 1747 } 1748 1749 return 0; 1750 1751 out_unreg: 1752 (void)unregister_filesystem(&hugetlbfs_fs_type); 1753 out_free: 1754 kmem_cache_destroy(hugetlbfs_inode_cachep); 1755 out: 1756 return error; 1757 } 1758 fs_initcall(init_hugetlbfs_fs) 1759