xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision a48acad789ff33d90e079311ed0323e5e5fc5cbd)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 #ifdef CONFIG_NUMA
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 					struct inode *inode, pgoff_t index)
89 {
90 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 							index);
92 }
93 
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 	mpol_cond_put(vma->vm_policy);
97 }
98 #else
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 					struct inode *inode, pgoff_t index)
101 {
102 }
103 
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108 
109 /*
110  * Mask used when checking the page offset value passed in via system
111  * calls.  This value will be converted to a loff_t which is signed.
112  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113  * value.  The extra bit (- 1 in the shift value) is to take the sign
114  * bit into account.
115  */
116 #define PGOFF_LOFFT_MAX \
117 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118 
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 	struct inode *inode = file_inode(file);
122 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 	loff_t len, vma_len;
124 	int ret;
125 	struct hstate *h = hstate_file(file);
126 
127 	/*
128 	 * vma address alignment (but not the pgoff alignment) has
129 	 * already been checked by prepare_hugepage_range.  If you add
130 	 * any error returns here, do so after setting VM_HUGETLB, so
131 	 * is_vm_hugetlb_page tests below unmap_region go the right
132 	 * way when do_mmap unwinds (may be important on powerpc
133 	 * and ia64).
134 	 */
135 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
136 	vma->vm_ops = &hugetlb_vm_ops;
137 
138 	ret = seal_check_future_write(info->seals, vma);
139 	if (ret)
140 		return ret;
141 
142 	/*
143 	 * page based offset in vm_pgoff could be sufficiently large to
144 	 * overflow a loff_t when converted to byte offset.  This can
145 	 * only happen on architectures where sizeof(loff_t) ==
146 	 * sizeof(unsigned long).  So, only check in those instances.
147 	 */
148 	if (sizeof(unsigned long) == sizeof(loff_t)) {
149 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 			return -EINVAL;
151 	}
152 
153 	/* must be huge page aligned */
154 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
155 		return -EINVAL;
156 
157 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 	/* check for overflow */
160 	if (len < vma_len)
161 		return -EINVAL;
162 
163 	inode_lock(inode);
164 	file_accessed(file);
165 
166 	ret = -ENOMEM;
167 	if (!hugetlb_reserve_pages(inode,
168 				vma->vm_pgoff >> huge_page_order(h),
169 				len >> huge_page_shift(h), vma,
170 				vma->vm_flags))
171 		goto out;
172 
173 	ret = 0;
174 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 		i_size_write(inode, len);
176 out:
177 	inode_unlock(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called under mmap_write_lock(mm).
184  */
185 
186 static unsigned long
187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 		unsigned long len, unsigned long pgoff, unsigned long flags)
189 {
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	info.flags = 0;
194 	info.length = len;
195 	info.low_limit = current->mm->mmap_base;
196 	info.high_limit = arch_get_mmap_end(addr, len, flags);
197 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 	info.align_offset = 0;
199 	return vm_unmapped_area(&info);
200 }
201 
202 static unsigned long
203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 		unsigned long len, unsigned long pgoff, unsigned long flags)
205 {
206 	struct hstate *h = hstate_file(file);
207 	struct vm_unmapped_area_info info;
208 
209 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 	info.length = len;
211 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
212 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 	info.align_offset = 0;
215 	addr = vm_unmapped_area(&info);
216 
217 	/*
218 	 * A failed mmap() very likely causes application failure,
219 	 * so fall back to the bottom-up function here. This scenario
220 	 * can happen with large stack limits and large mmap()
221 	 * allocations.
222 	 */
223 	if (unlikely(offset_in_page(addr))) {
224 		VM_BUG_ON(addr != -ENOMEM);
225 		info.flags = 0;
226 		info.low_limit = current->mm->mmap_base;
227 		info.high_limit = arch_get_mmap_end(addr, len, flags);
228 		addr = vm_unmapped_area(&info);
229 	}
230 
231 	return addr;
232 }
233 
234 unsigned long
235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 				  unsigned long len, unsigned long pgoff,
237 				  unsigned long flags)
238 {
239 	struct mm_struct *mm = current->mm;
240 	struct vm_area_struct *vma;
241 	struct hstate *h = hstate_file(file);
242 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
243 
244 	if (len & ~huge_page_mask(h))
245 		return -EINVAL;
246 	if (len > TASK_SIZE)
247 		return -ENOMEM;
248 
249 	if (flags & MAP_FIXED) {
250 		if (prepare_hugepage_range(file, addr, len))
251 			return -EINVAL;
252 		return addr;
253 	}
254 
255 	if (addr) {
256 		addr = ALIGN(addr, huge_page_size(h));
257 		vma = find_vma(mm, addr);
258 		if (mmap_end - len >= addr &&
259 		    (!vma || addr + len <= vm_start_gap(vma)))
260 			return addr;
261 	}
262 
263 	/*
264 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 	 * If architectures have special needs, they should define their own
266 	 * version of hugetlb_get_unmapped_area.
267 	 */
268 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 				pgoff, flags);
271 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 			pgoff, flags);
273 }
274 
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276 static unsigned long
277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 			  unsigned long len, unsigned long pgoff,
279 			  unsigned long flags)
280 {
281 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282 }
283 #endif
284 
285 /*
286  * Support for read() - Find the page attached to f_mapping and copy out the
287  * data. This provides functionality similar to filemap_read().
288  */
289 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
290 {
291 	struct file *file = iocb->ki_filp;
292 	struct hstate *h = hstate_file(file);
293 	struct address_space *mapping = file->f_mapping;
294 	struct inode *inode = mapping->host;
295 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
296 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
297 	unsigned long end_index;
298 	loff_t isize;
299 	ssize_t retval = 0;
300 
301 	while (iov_iter_count(to)) {
302 		struct page *page;
303 		size_t nr, copied;
304 
305 		/* nr is the maximum number of bytes to copy from this page */
306 		nr = huge_page_size(h);
307 		isize = i_size_read(inode);
308 		if (!isize)
309 			break;
310 		end_index = (isize - 1) >> huge_page_shift(h);
311 		if (index > end_index)
312 			break;
313 		if (index == end_index) {
314 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
315 			if (nr <= offset)
316 				break;
317 		}
318 		nr = nr - offset;
319 
320 		/* Find the page */
321 		page = find_lock_page(mapping, index);
322 		if (unlikely(page == NULL)) {
323 			/*
324 			 * We have a HOLE, zero out the user-buffer for the
325 			 * length of the hole or request.
326 			 */
327 			copied = iov_iter_zero(nr, to);
328 		} else {
329 			unlock_page(page);
330 
331 			if (PageHWPoison(page)) {
332 				put_page(page);
333 				retval = -EIO;
334 				break;
335 			}
336 
337 			/*
338 			 * We have the page, copy it to user space buffer.
339 			 */
340 			copied = copy_page_to_iter(page, offset, nr, to);
341 			put_page(page);
342 		}
343 		offset += copied;
344 		retval += copied;
345 		if (copied != nr && iov_iter_count(to)) {
346 			if (!retval)
347 				retval = -EFAULT;
348 			break;
349 		}
350 		index += offset >> huge_page_shift(h);
351 		offset &= ~huge_page_mask(h);
352 	}
353 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
354 	return retval;
355 }
356 
357 static int hugetlbfs_write_begin(struct file *file,
358 			struct address_space *mapping,
359 			loff_t pos, unsigned len,
360 			struct page **pagep, void **fsdata)
361 {
362 	return -EINVAL;
363 }
364 
365 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
366 			loff_t pos, unsigned len, unsigned copied,
367 			struct page *page, void *fsdata)
368 {
369 	BUG();
370 	return -EINVAL;
371 }
372 
373 static void hugetlb_delete_from_page_cache(struct page *page)
374 {
375 	ClearPageDirty(page);
376 	ClearPageUptodate(page);
377 	delete_from_page_cache(page);
378 }
379 
380 /*
381  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
382  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
383  * mutex for the page in the mapping.  So, we can not race with page being
384  * faulted into the vma.
385  */
386 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
387 				unsigned long addr, struct page *page)
388 {
389 	pte_t *ptep, pte;
390 
391 	ptep = huge_pte_offset(vma->vm_mm, addr,
392 			huge_page_size(hstate_vma(vma)));
393 
394 	if (!ptep)
395 		return false;
396 
397 	pte = huge_ptep_get(ptep);
398 	if (huge_pte_none(pte) || !pte_present(pte))
399 		return false;
400 
401 	if (pte_page(pte) == page)
402 		return true;
403 
404 	return false;
405 }
406 
407 /*
408  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
409  * No, because the interval tree returns us only those vmas
410  * which overlap the truncated area starting at pgoff,
411  * and no vma on a 32-bit arch can span beyond the 4GB.
412  */
413 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
414 {
415 	if (vma->vm_pgoff < start)
416 		return (start - vma->vm_pgoff) << PAGE_SHIFT;
417 	else
418 		return 0;
419 }
420 
421 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
422 {
423 	unsigned long t_end;
424 
425 	if (!end)
426 		return vma->vm_end;
427 
428 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
429 	if (t_end > vma->vm_end)
430 		t_end = vma->vm_end;
431 	return t_end;
432 }
433 
434 /*
435  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
436  * this folio can be created while executing the routine.
437  */
438 static void hugetlb_unmap_file_folio(struct hstate *h,
439 					struct address_space *mapping,
440 					struct folio *folio, pgoff_t index)
441 {
442 	struct rb_root_cached *root = &mapping->i_mmap;
443 	struct hugetlb_vma_lock *vma_lock;
444 	struct page *page = &folio->page;
445 	struct vm_area_struct *vma;
446 	unsigned long v_start;
447 	unsigned long v_end;
448 	pgoff_t start, end;
449 
450 	start = index * pages_per_huge_page(h);
451 	end = (index + 1) * pages_per_huge_page(h);
452 
453 	i_mmap_lock_write(mapping);
454 retry:
455 	vma_lock = NULL;
456 	vma_interval_tree_foreach(vma, root, start, end - 1) {
457 		v_start = vma_offset_start(vma, start);
458 		v_end = vma_offset_end(vma, end);
459 
460 		if (!hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page))
461 			continue;
462 
463 		if (!hugetlb_vma_trylock_write(vma)) {
464 			vma_lock = vma->vm_private_data;
465 			/*
466 			 * If we can not get vma lock, we need to drop
467 			 * immap_sema and take locks in order.  First,
468 			 * take a ref on the vma_lock structure so that
469 			 * we can be guaranteed it will not go away when
470 			 * dropping immap_sema.
471 			 */
472 			kref_get(&vma_lock->refs);
473 			break;
474 		}
475 
476 		unmap_hugepage_range(vma, vma->vm_start + v_start, v_end,
477 				NULL, ZAP_FLAG_DROP_MARKER);
478 		hugetlb_vma_unlock_write(vma);
479 	}
480 
481 	i_mmap_unlock_write(mapping);
482 
483 	if (vma_lock) {
484 		/*
485 		 * Wait on vma_lock.  We know it is still valid as we have
486 		 * a reference.  We must 'open code' vma locking as we do
487 		 * not know if vma_lock is still attached to vma.
488 		 */
489 		down_write(&vma_lock->rw_sema);
490 		i_mmap_lock_write(mapping);
491 
492 		vma = vma_lock->vma;
493 		if (!vma) {
494 			/*
495 			 * If lock is no longer attached to vma, then just
496 			 * unlock, drop our reference and retry looking for
497 			 * other vmas.
498 			 */
499 			up_write(&vma_lock->rw_sema);
500 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
501 			goto retry;
502 		}
503 
504 		/*
505 		 * vma_lock is still attached to vma.  Check to see if vma
506 		 * still maps page and if so, unmap.
507 		 */
508 		v_start = vma_offset_start(vma, start);
509 		v_end = vma_offset_end(vma, end);
510 		if (hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page))
511 			unmap_hugepage_range(vma, vma->vm_start + v_start,
512 						v_end, NULL,
513 						ZAP_FLAG_DROP_MARKER);
514 
515 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
516 		hugetlb_vma_unlock_write(vma);
517 
518 		goto retry;
519 	}
520 }
521 
522 static void
523 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
524 		      zap_flags_t zap_flags)
525 {
526 	struct vm_area_struct *vma;
527 
528 	/*
529 	 * end == 0 indicates that the entire range after start should be
530 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
531 	 * an inclusive "last".
532 	 */
533 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
534 		unsigned long v_start;
535 		unsigned long v_end;
536 
537 		if (!hugetlb_vma_trylock_write(vma))
538 			continue;
539 
540 		v_start = vma_offset_start(vma, start);
541 		v_end = vma_offset_end(vma, end);
542 
543 		unmap_hugepage_range(vma, vma->vm_start + v_start, v_end,
544 				     NULL, zap_flags);
545 
546 		/*
547 		 * Note that vma lock only exists for shared/non-private
548 		 * vmas.  Therefore, lock is not held when calling
549 		 * unmap_hugepage_range for private vmas.
550 		 */
551 		hugetlb_vma_unlock_write(vma);
552 	}
553 }
554 
555 /*
556  * Called with hugetlb fault mutex held.
557  * Returns true if page was actually removed, false otherwise.
558  */
559 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
560 					struct address_space *mapping,
561 					struct folio *folio, pgoff_t index,
562 					bool truncate_op)
563 {
564 	bool ret = false;
565 
566 	/*
567 	 * If folio is mapped, it was faulted in after being
568 	 * unmapped in caller.  Unmap (again) while holding
569 	 * the fault mutex.  The mutex will prevent faults
570 	 * until we finish removing the folio.
571 	 */
572 	if (unlikely(folio_mapped(folio)))
573 		hugetlb_unmap_file_folio(h, mapping, folio, index);
574 
575 	folio_lock(folio);
576 	/*
577 	 * We must remove the folio from page cache before removing
578 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
579 	 * rare out of memory conditions, removal of the region/reserve
580 	 * map could fail.  Correspondingly, the subpool and global
581 	 * reserve usage count can need to be adjusted.
582 	 */
583 	VM_BUG_ON(HPageRestoreReserve(&folio->page));
584 	hugetlb_delete_from_page_cache(&folio->page);
585 	ret = true;
586 	if (!truncate_op) {
587 		if (unlikely(hugetlb_unreserve_pages(inode, index,
588 							index + 1, 1)))
589 			hugetlb_fix_reserve_counts(inode);
590 	}
591 
592 	folio_unlock(folio);
593 	return ret;
594 }
595 
596 /*
597  * remove_inode_hugepages handles two distinct cases: truncation and hole
598  * punch.  There are subtle differences in operation for each case.
599  *
600  * truncation is indicated by end of range being LLONG_MAX
601  *	In this case, we first scan the range and release found pages.
602  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
603  *	maps and global counts.  Page faults can race with truncation.
604  *	During faults, hugetlb_no_page() checks i_size before page allocation,
605  *	and again after obtaining page table lock.  It will 'back out'
606  *	allocations in the truncated range.
607  * hole punch is indicated if end is not LLONG_MAX
608  *	In the hole punch case we scan the range and release found pages.
609  *	Only when releasing a page is the associated region/reserve map
610  *	deleted.  The region/reserve map for ranges without associated
611  *	pages are not modified.  Page faults can race with hole punch.
612  *	This is indicated if we find a mapped page.
613  * Note: If the passed end of range value is beyond the end of file, but
614  * not LLONG_MAX this routine still performs a hole punch operation.
615  */
616 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
617 				   loff_t lend)
618 {
619 	struct hstate *h = hstate_inode(inode);
620 	struct address_space *mapping = &inode->i_data;
621 	const pgoff_t start = lstart >> huge_page_shift(h);
622 	const pgoff_t end = lend >> huge_page_shift(h);
623 	struct folio_batch fbatch;
624 	pgoff_t next, index;
625 	int i, freed = 0;
626 	bool truncate_op = (lend == LLONG_MAX);
627 
628 	folio_batch_init(&fbatch);
629 	next = start;
630 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
631 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
632 			struct folio *folio = fbatch.folios[i];
633 			u32 hash = 0;
634 
635 			index = folio->index;
636 			hash = hugetlb_fault_mutex_hash(mapping, index);
637 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
638 
639 			/*
640 			 * Remove folio that was part of folio_batch.
641 			 */
642 			if (remove_inode_single_folio(h, inode, mapping, folio,
643 							index, truncate_op))
644 				freed++;
645 
646 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
647 		}
648 		folio_batch_release(&fbatch);
649 		cond_resched();
650 	}
651 
652 	if (truncate_op)
653 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
654 }
655 
656 static void hugetlbfs_evict_inode(struct inode *inode)
657 {
658 	struct resv_map *resv_map;
659 
660 	remove_inode_hugepages(inode, 0, LLONG_MAX);
661 
662 	/*
663 	 * Get the resv_map from the address space embedded in the inode.
664 	 * This is the address space which points to any resv_map allocated
665 	 * at inode creation time.  If this is a device special inode,
666 	 * i_mapping may not point to the original address space.
667 	 */
668 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
669 	/* Only regular and link inodes have associated reserve maps */
670 	if (resv_map)
671 		resv_map_release(&resv_map->refs);
672 	clear_inode(inode);
673 }
674 
675 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
676 {
677 	pgoff_t pgoff;
678 	struct address_space *mapping = inode->i_mapping;
679 	struct hstate *h = hstate_inode(inode);
680 
681 	BUG_ON(offset & ~huge_page_mask(h));
682 	pgoff = offset >> PAGE_SHIFT;
683 
684 	i_size_write(inode, offset);
685 	i_mmap_lock_write(mapping);
686 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
687 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
688 				      ZAP_FLAG_DROP_MARKER);
689 	i_mmap_unlock_write(mapping);
690 	remove_inode_hugepages(inode, offset, LLONG_MAX);
691 }
692 
693 static void hugetlbfs_zero_partial_page(struct hstate *h,
694 					struct address_space *mapping,
695 					loff_t start,
696 					loff_t end)
697 {
698 	pgoff_t idx = start >> huge_page_shift(h);
699 	struct folio *folio;
700 
701 	folio = filemap_lock_folio(mapping, idx);
702 	if (!folio)
703 		return;
704 
705 	start = start & ~huge_page_mask(h);
706 	end = end & ~huge_page_mask(h);
707 	if (!end)
708 		end = huge_page_size(h);
709 
710 	folio_zero_segment(folio, (size_t)start, (size_t)end);
711 
712 	folio_unlock(folio);
713 	folio_put(folio);
714 }
715 
716 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
717 {
718 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
719 	struct address_space *mapping = inode->i_mapping;
720 	struct hstate *h = hstate_inode(inode);
721 	loff_t hpage_size = huge_page_size(h);
722 	loff_t hole_start, hole_end;
723 
724 	/*
725 	 * hole_start and hole_end indicate the full pages within the hole.
726 	 */
727 	hole_start = round_up(offset, hpage_size);
728 	hole_end = round_down(offset + len, hpage_size);
729 
730 	inode_lock(inode);
731 
732 	/* protected by i_rwsem */
733 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
734 		inode_unlock(inode);
735 		return -EPERM;
736 	}
737 
738 	i_mmap_lock_write(mapping);
739 
740 	/* If range starts before first full page, zero partial page. */
741 	if (offset < hole_start)
742 		hugetlbfs_zero_partial_page(h, mapping,
743 				offset, min(offset + len, hole_start));
744 
745 	/* Unmap users of full pages in the hole. */
746 	if (hole_end > hole_start) {
747 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
748 			hugetlb_vmdelete_list(&mapping->i_mmap,
749 					      hole_start >> PAGE_SHIFT,
750 					      hole_end >> PAGE_SHIFT, 0);
751 	}
752 
753 	/* If range extends beyond last full page, zero partial page. */
754 	if ((offset + len) > hole_end && (offset + len) > hole_start)
755 		hugetlbfs_zero_partial_page(h, mapping,
756 				hole_end, offset + len);
757 
758 	i_mmap_unlock_write(mapping);
759 
760 	/* Remove full pages from the file. */
761 	if (hole_end > hole_start)
762 		remove_inode_hugepages(inode, hole_start, hole_end);
763 
764 	inode_unlock(inode);
765 
766 	return 0;
767 }
768 
769 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
770 				loff_t len)
771 {
772 	struct inode *inode = file_inode(file);
773 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
774 	struct address_space *mapping = inode->i_mapping;
775 	struct hstate *h = hstate_inode(inode);
776 	struct vm_area_struct pseudo_vma;
777 	struct mm_struct *mm = current->mm;
778 	loff_t hpage_size = huge_page_size(h);
779 	unsigned long hpage_shift = huge_page_shift(h);
780 	pgoff_t start, index, end;
781 	int error;
782 	u32 hash;
783 
784 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
785 		return -EOPNOTSUPP;
786 
787 	if (mode & FALLOC_FL_PUNCH_HOLE)
788 		return hugetlbfs_punch_hole(inode, offset, len);
789 
790 	/*
791 	 * Default preallocate case.
792 	 * For this range, start is rounded down and end is rounded up
793 	 * as well as being converted to page offsets.
794 	 */
795 	start = offset >> hpage_shift;
796 	end = (offset + len + hpage_size - 1) >> hpage_shift;
797 
798 	inode_lock(inode);
799 
800 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
801 	error = inode_newsize_ok(inode, offset + len);
802 	if (error)
803 		goto out;
804 
805 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
806 		error = -EPERM;
807 		goto out;
808 	}
809 
810 	/*
811 	 * Initialize a pseudo vma as this is required by the huge page
812 	 * allocation routines.  If NUMA is configured, use page index
813 	 * as input to create an allocation policy.
814 	 */
815 	vma_init(&pseudo_vma, mm);
816 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
817 	pseudo_vma.vm_file = file;
818 
819 	for (index = start; index < end; index++) {
820 		/*
821 		 * This is supposed to be the vaddr where the page is being
822 		 * faulted in, but we have no vaddr here.
823 		 */
824 		struct page *page;
825 		unsigned long addr;
826 
827 		cond_resched();
828 
829 		/*
830 		 * fallocate(2) manpage permits EINTR; we may have been
831 		 * interrupted because we are using up too much memory.
832 		 */
833 		if (signal_pending(current)) {
834 			error = -EINTR;
835 			break;
836 		}
837 
838 		/* Set numa allocation policy based on index */
839 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
840 
841 		/* addr is the offset within the file (zero based) */
842 		addr = index * hpage_size;
843 
844 		/* mutex taken here, fault path and hole punch */
845 		hash = hugetlb_fault_mutex_hash(mapping, index);
846 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
847 
848 		/* See if already present in mapping to avoid alloc/free */
849 		page = find_get_page(mapping, index);
850 		if (page) {
851 			put_page(page);
852 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
853 			hugetlb_drop_vma_policy(&pseudo_vma);
854 			continue;
855 		}
856 
857 		/*
858 		 * Allocate page without setting the avoid_reserve argument.
859 		 * There certainly are no reserves associated with the
860 		 * pseudo_vma.  However, there could be shared mappings with
861 		 * reserves for the file at the inode level.  If we fallocate
862 		 * pages in these areas, we need to consume the reserves
863 		 * to keep reservation accounting consistent.
864 		 */
865 		page = alloc_huge_page(&pseudo_vma, addr, 0);
866 		hugetlb_drop_vma_policy(&pseudo_vma);
867 		if (IS_ERR(page)) {
868 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
869 			error = PTR_ERR(page);
870 			goto out;
871 		}
872 		clear_huge_page(page, addr, pages_per_huge_page(h));
873 		__SetPageUptodate(page);
874 		error = hugetlb_add_to_page_cache(page, mapping, index);
875 		if (unlikely(error)) {
876 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
877 			put_page(page);
878 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
879 			goto out;
880 		}
881 
882 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
883 
884 		SetHPageMigratable(page);
885 		/*
886 		 * unlock_page because locked by hugetlb_add_to_page_cache()
887 		 * put_page() due to reference from alloc_huge_page()
888 		 */
889 		unlock_page(page);
890 		put_page(page);
891 	}
892 
893 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
894 		i_size_write(inode, offset + len);
895 	inode->i_ctime = current_time(inode);
896 out:
897 	inode_unlock(inode);
898 	return error;
899 }
900 
901 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
902 			     struct dentry *dentry, struct iattr *attr)
903 {
904 	struct inode *inode = d_inode(dentry);
905 	struct hstate *h = hstate_inode(inode);
906 	int error;
907 	unsigned int ia_valid = attr->ia_valid;
908 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
909 
910 	error = setattr_prepare(&init_user_ns, dentry, attr);
911 	if (error)
912 		return error;
913 
914 	if (ia_valid & ATTR_SIZE) {
915 		loff_t oldsize = inode->i_size;
916 		loff_t newsize = attr->ia_size;
917 
918 		if (newsize & ~huge_page_mask(h))
919 			return -EINVAL;
920 		/* protected by i_rwsem */
921 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
922 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
923 			return -EPERM;
924 		hugetlb_vmtruncate(inode, newsize);
925 	}
926 
927 	setattr_copy(&init_user_ns, inode, attr);
928 	mark_inode_dirty(inode);
929 	return 0;
930 }
931 
932 static struct inode *hugetlbfs_get_root(struct super_block *sb,
933 					struct hugetlbfs_fs_context *ctx)
934 {
935 	struct inode *inode;
936 
937 	inode = new_inode(sb);
938 	if (inode) {
939 		inode->i_ino = get_next_ino();
940 		inode->i_mode = S_IFDIR | ctx->mode;
941 		inode->i_uid = ctx->uid;
942 		inode->i_gid = ctx->gid;
943 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
944 		inode->i_op = &hugetlbfs_dir_inode_operations;
945 		inode->i_fop = &simple_dir_operations;
946 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
947 		inc_nlink(inode);
948 		lockdep_annotate_inode_mutex_key(inode);
949 	}
950 	return inode;
951 }
952 
953 /*
954  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
955  * be taken from reclaim -- unlike regular filesystems. This needs an
956  * annotation because huge_pmd_share() does an allocation under hugetlb's
957  * i_mmap_rwsem.
958  */
959 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
960 
961 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
962 					struct inode *dir,
963 					umode_t mode, dev_t dev)
964 {
965 	struct inode *inode;
966 	struct resv_map *resv_map = NULL;
967 
968 	/*
969 	 * Reserve maps are only needed for inodes that can have associated
970 	 * page allocations.
971 	 */
972 	if (S_ISREG(mode) || S_ISLNK(mode)) {
973 		resv_map = resv_map_alloc();
974 		if (!resv_map)
975 			return NULL;
976 	}
977 
978 	inode = new_inode(sb);
979 	if (inode) {
980 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
981 
982 		inode->i_ino = get_next_ino();
983 		inode_init_owner(&init_user_ns, inode, dir, mode);
984 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
985 				&hugetlbfs_i_mmap_rwsem_key);
986 		inode->i_mapping->a_ops = &hugetlbfs_aops;
987 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
988 		inode->i_mapping->private_data = resv_map;
989 		info->seals = F_SEAL_SEAL;
990 		switch (mode & S_IFMT) {
991 		default:
992 			init_special_inode(inode, mode, dev);
993 			break;
994 		case S_IFREG:
995 			inode->i_op = &hugetlbfs_inode_operations;
996 			inode->i_fop = &hugetlbfs_file_operations;
997 			break;
998 		case S_IFDIR:
999 			inode->i_op = &hugetlbfs_dir_inode_operations;
1000 			inode->i_fop = &simple_dir_operations;
1001 
1002 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1003 			inc_nlink(inode);
1004 			break;
1005 		case S_IFLNK:
1006 			inode->i_op = &page_symlink_inode_operations;
1007 			inode_nohighmem(inode);
1008 			break;
1009 		}
1010 		lockdep_annotate_inode_mutex_key(inode);
1011 	} else {
1012 		if (resv_map)
1013 			kref_put(&resv_map->refs, resv_map_release);
1014 	}
1015 
1016 	return inode;
1017 }
1018 
1019 /*
1020  * File creation. Allocate an inode, and we're done..
1021  */
1022 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
1023 			   struct dentry *dentry, umode_t mode, dev_t dev)
1024 {
1025 	struct inode *inode;
1026 
1027 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1028 	if (!inode)
1029 		return -ENOSPC;
1030 	dir->i_ctime = dir->i_mtime = current_time(dir);
1031 	d_instantiate(dentry, inode);
1032 	dget(dentry);/* Extra count - pin the dentry in core */
1033 	return 0;
1034 }
1035 
1036 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
1037 			   struct dentry *dentry, umode_t mode)
1038 {
1039 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
1040 				     mode | S_IFDIR, 0);
1041 	if (!retval)
1042 		inc_nlink(dir);
1043 	return retval;
1044 }
1045 
1046 static int hugetlbfs_create(struct user_namespace *mnt_userns,
1047 			    struct inode *dir, struct dentry *dentry,
1048 			    umode_t mode, bool excl)
1049 {
1050 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
1051 }
1052 
1053 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
1054 			     struct inode *dir, struct file *file,
1055 			     umode_t mode)
1056 {
1057 	struct inode *inode;
1058 
1059 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1060 	if (!inode)
1061 		return -ENOSPC;
1062 	dir->i_ctime = dir->i_mtime = current_time(dir);
1063 	d_tmpfile(file, inode);
1064 	return finish_open_simple(file, 0);
1065 }
1066 
1067 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
1068 			     struct inode *dir, struct dentry *dentry,
1069 			     const char *symname)
1070 {
1071 	struct inode *inode;
1072 	int error = -ENOSPC;
1073 
1074 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1075 	if (inode) {
1076 		int l = strlen(symname)+1;
1077 		error = page_symlink(inode, symname, l);
1078 		if (!error) {
1079 			d_instantiate(dentry, inode);
1080 			dget(dentry);
1081 		} else
1082 			iput(inode);
1083 	}
1084 	dir->i_ctime = dir->i_mtime = current_time(dir);
1085 
1086 	return error;
1087 }
1088 
1089 #ifdef CONFIG_MIGRATION
1090 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1091 				struct folio *dst, struct folio *src,
1092 				enum migrate_mode mode)
1093 {
1094 	int rc;
1095 
1096 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1097 	if (rc != MIGRATEPAGE_SUCCESS)
1098 		return rc;
1099 
1100 	if (hugetlb_page_subpool(&src->page)) {
1101 		hugetlb_set_page_subpool(&dst->page,
1102 					hugetlb_page_subpool(&src->page));
1103 		hugetlb_set_page_subpool(&src->page, NULL);
1104 	}
1105 
1106 	if (mode != MIGRATE_SYNC_NO_COPY)
1107 		folio_migrate_copy(dst, src);
1108 	else
1109 		folio_migrate_flags(dst, src);
1110 
1111 	return MIGRATEPAGE_SUCCESS;
1112 }
1113 #else
1114 #define hugetlbfs_migrate_folio NULL
1115 #endif
1116 
1117 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1118 				struct page *page)
1119 {
1120 	return 0;
1121 }
1122 
1123 /*
1124  * Display the mount options in /proc/mounts.
1125  */
1126 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1127 {
1128 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1129 	struct hugepage_subpool *spool = sbinfo->spool;
1130 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1131 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1132 	char mod;
1133 
1134 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1135 		seq_printf(m, ",uid=%u",
1136 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1137 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1138 		seq_printf(m, ",gid=%u",
1139 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1140 	if (sbinfo->mode != 0755)
1141 		seq_printf(m, ",mode=%o", sbinfo->mode);
1142 	if (sbinfo->max_inodes != -1)
1143 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1144 
1145 	hpage_size /= 1024;
1146 	mod = 'K';
1147 	if (hpage_size >= 1024) {
1148 		hpage_size /= 1024;
1149 		mod = 'M';
1150 	}
1151 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1152 	if (spool) {
1153 		if (spool->max_hpages != -1)
1154 			seq_printf(m, ",size=%llu",
1155 				   (unsigned long long)spool->max_hpages << hpage_shift);
1156 		if (spool->min_hpages != -1)
1157 			seq_printf(m, ",min_size=%llu",
1158 				   (unsigned long long)spool->min_hpages << hpage_shift);
1159 	}
1160 	return 0;
1161 }
1162 
1163 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1164 {
1165 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1166 	struct hstate *h = hstate_inode(d_inode(dentry));
1167 
1168 	buf->f_type = HUGETLBFS_MAGIC;
1169 	buf->f_bsize = huge_page_size(h);
1170 	if (sbinfo) {
1171 		spin_lock(&sbinfo->stat_lock);
1172 		/* If no limits set, just report 0 or -1 for max/free/used
1173 		 * blocks, like simple_statfs() */
1174 		if (sbinfo->spool) {
1175 			long free_pages;
1176 
1177 			spin_lock_irq(&sbinfo->spool->lock);
1178 			buf->f_blocks = sbinfo->spool->max_hpages;
1179 			free_pages = sbinfo->spool->max_hpages
1180 				- sbinfo->spool->used_hpages;
1181 			buf->f_bavail = buf->f_bfree = free_pages;
1182 			spin_unlock_irq(&sbinfo->spool->lock);
1183 			buf->f_files = sbinfo->max_inodes;
1184 			buf->f_ffree = sbinfo->free_inodes;
1185 		}
1186 		spin_unlock(&sbinfo->stat_lock);
1187 	}
1188 	buf->f_namelen = NAME_MAX;
1189 	return 0;
1190 }
1191 
1192 static void hugetlbfs_put_super(struct super_block *sb)
1193 {
1194 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1195 
1196 	if (sbi) {
1197 		sb->s_fs_info = NULL;
1198 
1199 		if (sbi->spool)
1200 			hugepage_put_subpool(sbi->spool);
1201 
1202 		kfree(sbi);
1203 	}
1204 }
1205 
1206 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1207 {
1208 	if (sbinfo->free_inodes >= 0) {
1209 		spin_lock(&sbinfo->stat_lock);
1210 		if (unlikely(!sbinfo->free_inodes)) {
1211 			spin_unlock(&sbinfo->stat_lock);
1212 			return 0;
1213 		}
1214 		sbinfo->free_inodes--;
1215 		spin_unlock(&sbinfo->stat_lock);
1216 	}
1217 
1218 	return 1;
1219 }
1220 
1221 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1222 {
1223 	if (sbinfo->free_inodes >= 0) {
1224 		spin_lock(&sbinfo->stat_lock);
1225 		sbinfo->free_inodes++;
1226 		spin_unlock(&sbinfo->stat_lock);
1227 	}
1228 }
1229 
1230 
1231 static struct kmem_cache *hugetlbfs_inode_cachep;
1232 
1233 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1234 {
1235 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1236 	struct hugetlbfs_inode_info *p;
1237 
1238 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1239 		return NULL;
1240 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1241 	if (unlikely(!p)) {
1242 		hugetlbfs_inc_free_inodes(sbinfo);
1243 		return NULL;
1244 	}
1245 
1246 	/*
1247 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1248 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1249 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1250 	 * in case of a quick call to destroy.
1251 	 *
1252 	 * Note that the policy is initialized even if we are creating a
1253 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1254 	 */
1255 	mpol_shared_policy_init(&p->policy, NULL);
1256 
1257 	return &p->vfs_inode;
1258 }
1259 
1260 static void hugetlbfs_free_inode(struct inode *inode)
1261 {
1262 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1263 }
1264 
1265 static void hugetlbfs_destroy_inode(struct inode *inode)
1266 {
1267 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1268 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1269 }
1270 
1271 static const struct address_space_operations hugetlbfs_aops = {
1272 	.write_begin	= hugetlbfs_write_begin,
1273 	.write_end	= hugetlbfs_write_end,
1274 	.dirty_folio	= noop_dirty_folio,
1275 	.migrate_folio  = hugetlbfs_migrate_folio,
1276 	.error_remove_page	= hugetlbfs_error_remove_page,
1277 };
1278 
1279 
1280 static void init_once(void *foo)
1281 {
1282 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1283 
1284 	inode_init_once(&ei->vfs_inode);
1285 }
1286 
1287 const struct file_operations hugetlbfs_file_operations = {
1288 	.read_iter		= hugetlbfs_read_iter,
1289 	.mmap			= hugetlbfs_file_mmap,
1290 	.fsync			= noop_fsync,
1291 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1292 	.llseek			= default_llseek,
1293 	.fallocate		= hugetlbfs_fallocate,
1294 };
1295 
1296 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1297 	.create		= hugetlbfs_create,
1298 	.lookup		= simple_lookup,
1299 	.link		= simple_link,
1300 	.unlink		= simple_unlink,
1301 	.symlink	= hugetlbfs_symlink,
1302 	.mkdir		= hugetlbfs_mkdir,
1303 	.rmdir		= simple_rmdir,
1304 	.mknod		= hugetlbfs_mknod,
1305 	.rename		= simple_rename,
1306 	.setattr	= hugetlbfs_setattr,
1307 	.tmpfile	= hugetlbfs_tmpfile,
1308 };
1309 
1310 static const struct inode_operations hugetlbfs_inode_operations = {
1311 	.setattr	= hugetlbfs_setattr,
1312 };
1313 
1314 static const struct super_operations hugetlbfs_ops = {
1315 	.alloc_inode    = hugetlbfs_alloc_inode,
1316 	.free_inode     = hugetlbfs_free_inode,
1317 	.destroy_inode  = hugetlbfs_destroy_inode,
1318 	.evict_inode	= hugetlbfs_evict_inode,
1319 	.statfs		= hugetlbfs_statfs,
1320 	.put_super	= hugetlbfs_put_super,
1321 	.show_options	= hugetlbfs_show_options,
1322 };
1323 
1324 /*
1325  * Convert size option passed from command line to number of huge pages
1326  * in the pool specified by hstate.  Size option could be in bytes
1327  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1328  */
1329 static long
1330 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1331 			 enum hugetlbfs_size_type val_type)
1332 {
1333 	if (val_type == NO_SIZE)
1334 		return -1;
1335 
1336 	if (val_type == SIZE_PERCENT) {
1337 		size_opt <<= huge_page_shift(h);
1338 		size_opt *= h->max_huge_pages;
1339 		do_div(size_opt, 100);
1340 	}
1341 
1342 	size_opt >>= huge_page_shift(h);
1343 	return size_opt;
1344 }
1345 
1346 /*
1347  * Parse one mount parameter.
1348  */
1349 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1350 {
1351 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1352 	struct fs_parse_result result;
1353 	char *rest;
1354 	unsigned long ps;
1355 	int opt;
1356 
1357 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1358 	if (opt < 0)
1359 		return opt;
1360 
1361 	switch (opt) {
1362 	case Opt_uid:
1363 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1364 		if (!uid_valid(ctx->uid))
1365 			goto bad_val;
1366 		return 0;
1367 
1368 	case Opt_gid:
1369 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1370 		if (!gid_valid(ctx->gid))
1371 			goto bad_val;
1372 		return 0;
1373 
1374 	case Opt_mode:
1375 		ctx->mode = result.uint_32 & 01777U;
1376 		return 0;
1377 
1378 	case Opt_size:
1379 		/* memparse() will accept a K/M/G without a digit */
1380 		if (!isdigit(param->string[0]))
1381 			goto bad_val;
1382 		ctx->max_size_opt = memparse(param->string, &rest);
1383 		ctx->max_val_type = SIZE_STD;
1384 		if (*rest == '%')
1385 			ctx->max_val_type = SIZE_PERCENT;
1386 		return 0;
1387 
1388 	case Opt_nr_inodes:
1389 		/* memparse() will accept a K/M/G without a digit */
1390 		if (!isdigit(param->string[0]))
1391 			goto bad_val;
1392 		ctx->nr_inodes = memparse(param->string, &rest);
1393 		return 0;
1394 
1395 	case Opt_pagesize:
1396 		ps = memparse(param->string, &rest);
1397 		ctx->hstate = size_to_hstate(ps);
1398 		if (!ctx->hstate) {
1399 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1400 			return -EINVAL;
1401 		}
1402 		return 0;
1403 
1404 	case Opt_min_size:
1405 		/* memparse() will accept a K/M/G without a digit */
1406 		if (!isdigit(param->string[0]))
1407 			goto bad_val;
1408 		ctx->min_size_opt = memparse(param->string, &rest);
1409 		ctx->min_val_type = SIZE_STD;
1410 		if (*rest == '%')
1411 			ctx->min_val_type = SIZE_PERCENT;
1412 		return 0;
1413 
1414 	default:
1415 		return -EINVAL;
1416 	}
1417 
1418 bad_val:
1419 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1420 		      param->string, param->key);
1421 }
1422 
1423 /*
1424  * Validate the parsed options.
1425  */
1426 static int hugetlbfs_validate(struct fs_context *fc)
1427 {
1428 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1429 
1430 	/*
1431 	 * Use huge page pool size (in hstate) to convert the size
1432 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1433 	 */
1434 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1435 						   ctx->max_size_opt,
1436 						   ctx->max_val_type);
1437 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1438 						   ctx->min_size_opt,
1439 						   ctx->min_val_type);
1440 
1441 	/*
1442 	 * If max_size was specified, then min_size must be smaller
1443 	 */
1444 	if (ctx->max_val_type > NO_SIZE &&
1445 	    ctx->min_hpages > ctx->max_hpages) {
1446 		pr_err("Minimum size can not be greater than maximum size\n");
1447 		return -EINVAL;
1448 	}
1449 
1450 	return 0;
1451 }
1452 
1453 static int
1454 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1455 {
1456 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1457 	struct hugetlbfs_sb_info *sbinfo;
1458 
1459 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1460 	if (!sbinfo)
1461 		return -ENOMEM;
1462 	sb->s_fs_info = sbinfo;
1463 	spin_lock_init(&sbinfo->stat_lock);
1464 	sbinfo->hstate		= ctx->hstate;
1465 	sbinfo->max_inodes	= ctx->nr_inodes;
1466 	sbinfo->free_inodes	= ctx->nr_inodes;
1467 	sbinfo->spool		= NULL;
1468 	sbinfo->uid		= ctx->uid;
1469 	sbinfo->gid		= ctx->gid;
1470 	sbinfo->mode		= ctx->mode;
1471 
1472 	/*
1473 	 * Allocate and initialize subpool if maximum or minimum size is
1474 	 * specified.  Any needed reservations (for minimum size) are taken
1475 	 * when the subpool is created.
1476 	 */
1477 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1478 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1479 						     ctx->max_hpages,
1480 						     ctx->min_hpages);
1481 		if (!sbinfo->spool)
1482 			goto out_free;
1483 	}
1484 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1485 	sb->s_blocksize = huge_page_size(ctx->hstate);
1486 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1487 	sb->s_magic = HUGETLBFS_MAGIC;
1488 	sb->s_op = &hugetlbfs_ops;
1489 	sb->s_time_gran = 1;
1490 
1491 	/*
1492 	 * Due to the special and limited functionality of hugetlbfs, it does
1493 	 * not work well as a stacking filesystem.
1494 	 */
1495 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1496 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1497 	if (!sb->s_root)
1498 		goto out_free;
1499 	return 0;
1500 out_free:
1501 	kfree(sbinfo->spool);
1502 	kfree(sbinfo);
1503 	return -ENOMEM;
1504 }
1505 
1506 static int hugetlbfs_get_tree(struct fs_context *fc)
1507 {
1508 	int err = hugetlbfs_validate(fc);
1509 	if (err)
1510 		return err;
1511 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1512 }
1513 
1514 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1515 {
1516 	kfree(fc->fs_private);
1517 }
1518 
1519 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1520 	.free		= hugetlbfs_fs_context_free,
1521 	.parse_param	= hugetlbfs_parse_param,
1522 	.get_tree	= hugetlbfs_get_tree,
1523 };
1524 
1525 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1526 {
1527 	struct hugetlbfs_fs_context *ctx;
1528 
1529 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1530 	if (!ctx)
1531 		return -ENOMEM;
1532 
1533 	ctx->max_hpages	= -1; /* No limit on size by default */
1534 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1535 	ctx->uid	= current_fsuid();
1536 	ctx->gid	= current_fsgid();
1537 	ctx->mode	= 0755;
1538 	ctx->hstate	= &default_hstate;
1539 	ctx->min_hpages	= -1; /* No default minimum size */
1540 	ctx->max_val_type = NO_SIZE;
1541 	ctx->min_val_type = NO_SIZE;
1542 	fc->fs_private = ctx;
1543 	fc->ops	= &hugetlbfs_fs_context_ops;
1544 	return 0;
1545 }
1546 
1547 static struct file_system_type hugetlbfs_fs_type = {
1548 	.name			= "hugetlbfs",
1549 	.init_fs_context	= hugetlbfs_init_fs_context,
1550 	.parameters		= hugetlb_fs_parameters,
1551 	.kill_sb		= kill_litter_super,
1552 };
1553 
1554 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1555 
1556 static int can_do_hugetlb_shm(void)
1557 {
1558 	kgid_t shm_group;
1559 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1560 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1561 }
1562 
1563 static int get_hstate_idx(int page_size_log)
1564 {
1565 	struct hstate *h = hstate_sizelog(page_size_log);
1566 
1567 	if (!h)
1568 		return -1;
1569 	return hstate_index(h);
1570 }
1571 
1572 /*
1573  * Note that size should be aligned to proper hugepage size in caller side,
1574  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1575  */
1576 struct file *hugetlb_file_setup(const char *name, size_t size,
1577 				vm_flags_t acctflag, int creat_flags,
1578 				int page_size_log)
1579 {
1580 	struct inode *inode;
1581 	struct vfsmount *mnt;
1582 	int hstate_idx;
1583 	struct file *file;
1584 
1585 	hstate_idx = get_hstate_idx(page_size_log);
1586 	if (hstate_idx < 0)
1587 		return ERR_PTR(-ENODEV);
1588 
1589 	mnt = hugetlbfs_vfsmount[hstate_idx];
1590 	if (!mnt)
1591 		return ERR_PTR(-ENOENT);
1592 
1593 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1594 		struct ucounts *ucounts = current_ucounts();
1595 
1596 		if (user_shm_lock(size, ucounts)) {
1597 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1598 				current->comm, current->pid);
1599 			user_shm_unlock(size, ucounts);
1600 		}
1601 		return ERR_PTR(-EPERM);
1602 	}
1603 
1604 	file = ERR_PTR(-ENOSPC);
1605 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1606 	if (!inode)
1607 		goto out;
1608 	if (creat_flags == HUGETLB_SHMFS_INODE)
1609 		inode->i_flags |= S_PRIVATE;
1610 
1611 	inode->i_size = size;
1612 	clear_nlink(inode);
1613 
1614 	if (!hugetlb_reserve_pages(inode, 0,
1615 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1616 			acctflag))
1617 		file = ERR_PTR(-ENOMEM);
1618 	else
1619 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1620 					&hugetlbfs_file_operations);
1621 	if (!IS_ERR(file))
1622 		return file;
1623 
1624 	iput(inode);
1625 out:
1626 	return file;
1627 }
1628 
1629 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1630 {
1631 	struct fs_context *fc;
1632 	struct vfsmount *mnt;
1633 
1634 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1635 	if (IS_ERR(fc)) {
1636 		mnt = ERR_CAST(fc);
1637 	} else {
1638 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1639 		ctx->hstate = h;
1640 		mnt = fc_mount(fc);
1641 		put_fs_context(fc);
1642 	}
1643 	if (IS_ERR(mnt))
1644 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1645 		       huge_page_size(h) / SZ_1K);
1646 	return mnt;
1647 }
1648 
1649 static int __init init_hugetlbfs_fs(void)
1650 {
1651 	struct vfsmount *mnt;
1652 	struct hstate *h;
1653 	int error;
1654 	int i;
1655 
1656 	if (!hugepages_supported()) {
1657 		pr_info("disabling because there are no supported hugepage sizes\n");
1658 		return -ENOTSUPP;
1659 	}
1660 
1661 	error = -ENOMEM;
1662 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1663 					sizeof(struct hugetlbfs_inode_info),
1664 					0, SLAB_ACCOUNT, init_once);
1665 	if (hugetlbfs_inode_cachep == NULL)
1666 		goto out;
1667 
1668 	error = register_filesystem(&hugetlbfs_fs_type);
1669 	if (error)
1670 		goto out_free;
1671 
1672 	/* default hstate mount is required */
1673 	mnt = mount_one_hugetlbfs(&default_hstate);
1674 	if (IS_ERR(mnt)) {
1675 		error = PTR_ERR(mnt);
1676 		goto out_unreg;
1677 	}
1678 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1679 
1680 	/* other hstates are optional */
1681 	i = 0;
1682 	for_each_hstate(h) {
1683 		if (i == default_hstate_idx) {
1684 			i++;
1685 			continue;
1686 		}
1687 
1688 		mnt = mount_one_hugetlbfs(h);
1689 		if (IS_ERR(mnt))
1690 			hugetlbfs_vfsmount[i] = NULL;
1691 		else
1692 			hugetlbfs_vfsmount[i] = mnt;
1693 		i++;
1694 	}
1695 
1696 	return 0;
1697 
1698  out_unreg:
1699 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1700  out_free:
1701 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1702  out:
1703 	return error;
1704 }
1705 fs_initcall(init_hugetlbfs_fs)
1706