1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 49 50 struct hugetlbfs_fs_context { 51 struct hstate *hstate; 52 unsigned long long max_size_opt; 53 unsigned long long min_size_opt; 54 long max_hpages; 55 long nr_inodes; 56 long min_hpages; 57 enum hugetlbfs_size_type max_val_type; 58 enum hugetlbfs_size_type min_val_type; 59 kuid_t uid; 60 kgid_t gid; 61 umode_t mode; 62 }; 63 64 int sysctl_hugetlb_shm_group; 65 66 enum hugetlb_param { 67 Opt_gid, 68 Opt_min_size, 69 Opt_mode, 70 Opt_nr_inodes, 71 Opt_pagesize, 72 Opt_size, 73 Opt_uid, 74 }; 75 76 static const struct fs_parameter_spec hugetlb_param_specs[] = { 77 fsparam_u32 ("gid", Opt_gid), 78 fsparam_string("min_size", Opt_min_size), 79 fsparam_u32 ("mode", Opt_mode), 80 fsparam_string("nr_inodes", Opt_nr_inodes), 81 fsparam_string("pagesize", Opt_pagesize), 82 fsparam_string("size", Opt_size), 83 fsparam_u32 ("uid", Opt_uid), 84 {} 85 }; 86 87 static const struct fs_parameter_description hugetlb_fs_parameters = { 88 .name = "hugetlbfs", 89 .specs = hugetlb_param_specs, 90 }; 91 92 #ifdef CONFIG_NUMA 93 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 94 struct inode *inode, pgoff_t index) 95 { 96 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 97 index); 98 } 99 100 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 101 { 102 mpol_cond_put(vma->vm_policy); 103 } 104 #else 105 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 106 struct inode *inode, pgoff_t index) 107 { 108 } 109 110 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 111 { 112 } 113 #endif 114 115 static void huge_pagevec_release(struct pagevec *pvec) 116 { 117 int i; 118 119 for (i = 0; i < pagevec_count(pvec); ++i) 120 put_page(pvec->pages[i]); 121 122 pagevec_reinit(pvec); 123 } 124 125 /* 126 * Mask used when checking the page offset value passed in via system 127 * calls. This value will be converted to a loff_t which is signed. 128 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 129 * value. The extra bit (- 1 in the shift value) is to take the sign 130 * bit into account. 131 */ 132 #define PGOFF_LOFFT_MAX \ 133 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 134 135 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 136 { 137 struct inode *inode = file_inode(file); 138 loff_t len, vma_len; 139 int ret; 140 struct hstate *h = hstate_file(file); 141 142 /* 143 * vma address alignment (but not the pgoff alignment) has 144 * already been checked by prepare_hugepage_range. If you add 145 * any error returns here, do so after setting VM_HUGETLB, so 146 * is_vm_hugetlb_page tests below unmap_region go the right 147 * way when do_mmap_pgoff unwinds (may be important on powerpc 148 * and ia64). 149 */ 150 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 151 vma->vm_ops = &hugetlb_vm_ops; 152 153 /* 154 * page based offset in vm_pgoff could be sufficiently large to 155 * overflow a loff_t when converted to byte offset. This can 156 * only happen on architectures where sizeof(loff_t) == 157 * sizeof(unsigned long). So, only check in those instances. 158 */ 159 if (sizeof(unsigned long) == sizeof(loff_t)) { 160 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 161 return -EINVAL; 162 } 163 164 /* must be huge page aligned */ 165 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 166 return -EINVAL; 167 168 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 169 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 170 /* check for overflow */ 171 if (len < vma_len) 172 return -EINVAL; 173 174 inode_lock(inode); 175 file_accessed(file); 176 177 ret = -ENOMEM; 178 if (hugetlb_reserve_pages(inode, 179 vma->vm_pgoff >> huge_page_order(h), 180 len >> huge_page_shift(h), vma, 181 vma->vm_flags)) 182 goto out; 183 184 ret = 0; 185 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 186 i_size_write(inode, len); 187 out: 188 inode_unlock(inode); 189 190 return ret; 191 } 192 193 /* 194 * Called under down_write(mmap_sem). 195 */ 196 197 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 198 static unsigned long 199 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 200 unsigned long len, unsigned long pgoff, unsigned long flags) 201 { 202 struct mm_struct *mm = current->mm; 203 struct vm_area_struct *vma; 204 struct hstate *h = hstate_file(file); 205 struct vm_unmapped_area_info info; 206 207 if (len & ~huge_page_mask(h)) 208 return -EINVAL; 209 if (len > TASK_SIZE) 210 return -ENOMEM; 211 212 if (flags & MAP_FIXED) { 213 if (prepare_hugepage_range(file, addr, len)) 214 return -EINVAL; 215 return addr; 216 } 217 218 if (addr) { 219 addr = ALIGN(addr, huge_page_size(h)); 220 vma = find_vma(mm, addr); 221 if (TASK_SIZE - len >= addr && 222 (!vma || addr + len <= vm_start_gap(vma))) 223 return addr; 224 } 225 226 info.flags = 0; 227 info.length = len; 228 info.low_limit = TASK_UNMAPPED_BASE; 229 info.high_limit = TASK_SIZE; 230 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 231 info.align_offset = 0; 232 return vm_unmapped_area(&info); 233 } 234 #endif 235 236 static size_t 237 hugetlbfs_read_actor(struct page *page, unsigned long offset, 238 struct iov_iter *to, unsigned long size) 239 { 240 size_t copied = 0; 241 int i, chunksize; 242 243 /* Find which 4k chunk and offset with in that chunk */ 244 i = offset >> PAGE_SHIFT; 245 offset = offset & ~PAGE_MASK; 246 247 while (size) { 248 size_t n; 249 chunksize = PAGE_SIZE; 250 if (offset) 251 chunksize -= offset; 252 if (chunksize > size) 253 chunksize = size; 254 n = copy_page_to_iter(&page[i], offset, chunksize, to); 255 copied += n; 256 if (n != chunksize) 257 return copied; 258 offset = 0; 259 size -= chunksize; 260 i++; 261 } 262 return copied; 263 } 264 265 /* 266 * Support for read() - Find the page attached to f_mapping and copy out the 267 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 268 * since it has PAGE_SIZE assumptions. 269 */ 270 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 271 { 272 struct file *file = iocb->ki_filp; 273 struct hstate *h = hstate_file(file); 274 struct address_space *mapping = file->f_mapping; 275 struct inode *inode = mapping->host; 276 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 277 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 278 unsigned long end_index; 279 loff_t isize; 280 ssize_t retval = 0; 281 282 while (iov_iter_count(to)) { 283 struct page *page; 284 size_t nr, copied; 285 286 /* nr is the maximum number of bytes to copy from this page */ 287 nr = huge_page_size(h); 288 isize = i_size_read(inode); 289 if (!isize) 290 break; 291 end_index = (isize - 1) >> huge_page_shift(h); 292 if (index > end_index) 293 break; 294 if (index == end_index) { 295 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 296 if (nr <= offset) 297 break; 298 } 299 nr = nr - offset; 300 301 /* Find the page */ 302 page = find_lock_page(mapping, index); 303 if (unlikely(page == NULL)) { 304 /* 305 * We have a HOLE, zero out the user-buffer for the 306 * length of the hole or request. 307 */ 308 copied = iov_iter_zero(nr, to); 309 } else { 310 unlock_page(page); 311 312 /* 313 * We have the page, copy it to user space buffer. 314 */ 315 copied = hugetlbfs_read_actor(page, offset, to, nr); 316 put_page(page); 317 } 318 offset += copied; 319 retval += copied; 320 if (copied != nr && iov_iter_count(to)) { 321 if (!retval) 322 retval = -EFAULT; 323 break; 324 } 325 index += offset >> huge_page_shift(h); 326 offset &= ~huge_page_mask(h); 327 } 328 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 329 return retval; 330 } 331 332 static int hugetlbfs_write_begin(struct file *file, 333 struct address_space *mapping, 334 loff_t pos, unsigned len, unsigned flags, 335 struct page **pagep, void **fsdata) 336 { 337 return -EINVAL; 338 } 339 340 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 341 loff_t pos, unsigned len, unsigned copied, 342 struct page *page, void *fsdata) 343 { 344 BUG(); 345 return -EINVAL; 346 } 347 348 static void remove_huge_page(struct page *page) 349 { 350 ClearPageDirty(page); 351 ClearPageUptodate(page); 352 delete_from_page_cache(page); 353 } 354 355 static void 356 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 357 { 358 struct vm_area_struct *vma; 359 360 /* 361 * end == 0 indicates that the entire range after 362 * start should be unmapped. 363 */ 364 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 365 unsigned long v_offset; 366 unsigned long v_end; 367 368 /* 369 * Can the expression below overflow on 32-bit arches? 370 * No, because the interval tree returns us only those vmas 371 * which overlap the truncated area starting at pgoff, 372 * and no vma on a 32-bit arch can span beyond the 4GB. 373 */ 374 if (vma->vm_pgoff < start) 375 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 376 else 377 v_offset = 0; 378 379 if (!end) 380 v_end = vma->vm_end; 381 else { 382 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 383 + vma->vm_start; 384 if (v_end > vma->vm_end) 385 v_end = vma->vm_end; 386 } 387 388 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 389 NULL); 390 } 391 } 392 393 /* 394 * remove_inode_hugepages handles two distinct cases: truncation and hole 395 * punch. There are subtle differences in operation for each case. 396 * 397 * truncation is indicated by end of range being LLONG_MAX 398 * In this case, we first scan the range and release found pages. 399 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 400 * maps and global counts. Page faults can not race with truncation 401 * in this routine. hugetlb_no_page() prevents page faults in the 402 * truncated range. It checks i_size before allocation, and again after 403 * with the page table lock for the page held. The same lock must be 404 * acquired to unmap a page. 405 * hole punch is indicated if end is not LLONG_MAX 406 * In the hole punch case we scan the range and release found pages. 407 * Only when releasing a page is the associated region/reserv map 408 * deleted. The region/reserv map for ranges without associated 409 * pages are not modified. Page faults can race with hole punch. 410 * This is indicated if we find a mapped page. 411 * Note: If the passed end of range value is beyond the end of file, but 412 * not LLONG_MAX this routine still performs a hole punch operation. 413 */ 414 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 415 loff_t lend) 416 { 417 struct hstate *h = hstate_inode(inode); 418 struct address_space *mapping = &inode->i_data; 419 const pgoff_t start = lstart >> huge_page_shift(h); 420 const pgoff_t end = lend >> huge_page_shift(h); 421 struct vm_area_struct pseudo_vma; 422 struct pagevec pvec; 423 pgoff_t next, index; 424 int i, freed = 0; 425 bool truncate_op = (lend == LLONG_MAX); 426 427 vma_init(&pseudo_vma, current->mm); 428 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 429 pagevec_init(&pvec); 430 next = start; 431 while (next < end) { 432 /* 433 * When no more pages are found, we are done. 434 */ 435 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 436 break; 437 438 for (i = 0; i < pagevec_count(&pvec); ++i) { 439 struct page *page = pvec.pages[i]; 440 u32 hash; 441 442 index = page->index; 443 hash = hugetlb_fault_mutex_hash(h, current->mm, 444 &pseudo_vma, 445 mapping, index, 0); 446 mutex_lock(&hugetlb_fault_mutex_table[hash]); 447 448 /* 449 * If page is mapped, it was faulted in after being 450 * unmapped in caller. Unmap (again) now after taking 451 * the fault mutex. The mutex will prevent faults 452 * until we finish removing the page. 453 * 454 * This race can only happen in the hole punch case. 455 * Getting here in a truncate operation is a bug. 456 */ 457 if (unlikely(page_mapped(page))) { 458 BUG_ON(truncate_op); 459 460 i_mmap_lock_write(mapping); 461 hugetlb_vmdelete_list(&mapping->i_mmap, 462 index * pages_per_huge_page(h), 463 (index + 1) * pages_per_huge_page(h)); 464 i_mmap_unlock_write(mapping); 465 } 466 467 lock_page(page); 468 /* 469 * We must free the huge page and remove from page 470 * cache (remove_huge_page) BEFORE removing the 471 * region/reserve map (hugetlb_unreserve_pages). In 472 * rare out of memory conditions, removal of the 473 * region/reserve map could fail. Correspondingly, 474 * the subpool and global reserve usage count can need 475 * to be adjusted. 476 */ 477 VM_BUG_ON(PagePrivate(page)); 478 remove_huge_page(page); 479 freed++; 480 if (!truncate_op) { 481 if (unlikely(hugetlb_unreserve_pages(inode, 482 index, index + 1, 1))) 483 hugetlb_fix_reserve_counts(inode); 484 } 485 486 unlock_page(page); 487 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 488 } 489 huge_pagevec_release(&pvec); 490 cond_resched(); 491 } 492 493 if (truncate_op) 494 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 495 } 496 497 static void hugetlbfs_evict_inode(struct inode *inode) 498 { 499 struct resv_map *resv_map; 500 501 remove_inode_hugepages(inode, 0, LLONG_MAX); 502 resv_map = (struct resv_map *)inode->i_mapping->private_data; 503 /* root inode doesn't have the resv_map, so we should check it */ 504 if (resv_map) 505 resv_map_release(&resv_map->refs); 506 clear_inode(inode); 507 } 508 509 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 510 { 511 pgoff_t pgoff; 512 struct address_space *mapping = inode->i_mapping; 513 struct hstate *h = hstate_inode(inode); 514 515 BUG_ON(offset & ~huge_page_mask(h)); 516 pgoff = offset >> PAGE_SHIFT; 517 518 i_size_write(inode, offset); 519 i_mmap_lock_write(mapping); 520 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 521 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 522 i_mmap_unlock_write(mapping); 523 remove_inode_hugepages(inode, offset, LLONG_MAX); 524 return 0; 525 } 526 527 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 528 { 529 struct hstate *h = hstate_inode(inode); 530 loff_t hpage_size = huge_page_size(h); 531 loff_t hole_start, hole_end; 532 533 /* 534 * For hole punch round up the beginning offset of the hole and 535 * round down the end. 536 */ 537 hole_start = round_up(offset, hpage_size); 538 hole_end = round_down(offset + len, hpage_size); 539 540 if (hole_end > hole_start) { 541 struct address_space *mapping = inode->i_mapping; 542 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 543 544 inode_lock(inode); 545 546 /* protected by i_mutex */ 547 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 548 inode_unlock(inode); 549 return -EPERM; 550 } 551 552 i_mmap_lock_write(mapping); 553 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 554 hugetlb_vmdelete_list(&mapping->i_mmap, 555 hole_start >> PAGE_SHIFT, 556 hole_end >> PAGE_SHIFT); 557 i_mmap_unlock_write(mapping); 558 remove_inode_hugepages(inode, hole_start, hole_end); 559 inode_unlock(inode); 560 } 561 562 return 0; 563 } 564 565 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 566 loff_t len) 567 { 568 struct inode *inode = file_inode(file); 569 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 570 struct address_space *mapping = inode->i_mapping; 571 struct hstate *h = hstate_inode(inode); 572 struct vm_area_struct pseudo_vma; 573 struct mm_struct *mm = current->mm; 574 loff_t hpage_size = huge_page_size(h); 575 unsigned long hpage_shift = huge_page_shift(h); 576 pgoff_t start, index, end; 577 int error; 578 u32 hash; 579 580 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 581 return -EOPNOTSUPP; 582 583 if (mode & FALLOC_FL_PUNCH_HOLE) 584 return hugetlbfs_punch_hole(inode, offset, len); 585 586 /* 587 * Default preallocate case. 588 * For this range, start is rounded down and end is rounded up 589 * as well as being converted to page offsets. 590 */ 591 start = offset >> hpage_shift; 592 end = (offset + len + hpage_size - 1) >> hpage_shift; 593 594 inode_lock(inode); 595 596 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 597 error = inode_newsize_ok(inode, offset + len); 598 if (error) 599 goto out; 600 601 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 602 error = -EPERM; 603 goto out; 604 } 605 606 /* 607 * Initialize a pseudo vma as this is required by the huge page 608 * allocation routines. If NUMA is configured, use page index 609 * as input to create an allocation policy. 610 */ 611 vma_init(&pseudo_vma, mm); 612 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 613 pseudo_vma.vm_file = file; 614 615 for (index = start; index < end; index++) { 616 /* 617 * This is supposed to be the vaddr where the page is being 618 * faulted in, but we have no vaddr here. 619 */ 620 struct page *page; 621 unsigned long addr; 622 int avoid_reserve = 0; 623 624 cond_resched(); 625 626 /* 627 * fallocate(2) manpage permits EINTR; we may have been 628 * interrupted because we are using up too much memory. 629 */ 630 if (signal_pending(current)) { 631 error = -EINTR; 632 break; 633 } 634 635 /* Set numa allocation policy based on index */ 636 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 637 638 /* addr is the offset within the file (zero based) */ 639 addr = index * hpage_size; 640 641 /* mutex taken here, fault path and hole punch */ 642 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 643 index, addr); 644 mutex_lock(&hugetlb_fault_mutex_table[hash]); 645 646 /* See if already present in mapping to avoid alloc/free */ 647 page = find_get_page(mapping, index); 648 if (page) { 649 put_page(page); 650 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 651 hugetlb_drop_vma_policy(&pseudo_vma); 652 continue; 653 } 654 655 /* Allocate page and add to page cache */ 656 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 657 hugetlb_drop_vma_policy(&pseudo_vma); 658 if (IS_ERR(page)) { 659 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 660 error = PTR_ERR(page); 661 goto out; 662 } 663 clear_huge_page(page, addr, pages_per_huge_page(h)); 664 __SetPageUptodate(page); 665 error = huge_add_to_page_cache(page, mapping, index); 666 if (unlikely(error)) { 667 put_page(page); 668 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 669 goto out; 670 } 671 672 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 673 674 /* 675 * unlock_page because locked by add_to_page_cache() 676 * page_put due to reference from alloc_huge_page() 677 */ 678 unlock_page(page); 679 put_page(page); 680 } 681 682 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 683 i_size_write(inode, offset + len); 684 inode->i_ctime = current_time(inode); 685 out: 686 inode_unlock(inode); 687 return error; 688 } 689 690 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 691 { 692 struct inode *inode = d_inode(dentry); 693 struct hstate *h = hstate_inode(inode); 694 int error; 695 unsigned int ia_valid = attr->ia_valid; 696 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 697 698 BUG_ON(!inode); 699 700 error = setattr_prepare(dentry, attr); 701 if (error) 702 return error; 703 704 if (ia_valid & ATTR_SIZE) { 705 loff_t oldsize = inode->i_size; 706 loff_t newsize = attr->ia_size; 707 708 if (newsize & ~huge_page_mask(h)) 709 return -EINVAL; 710 /* protected by i_mutex */ 711 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 712 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 713 return -EPERM; 714 error = hugetlb_vmtruncate(inode, newsize); 715 if (error) 716 return error; 717 } 718 719 setattr_copy(inode, attr); 720 mark_inode_dirty(inode); 721 return 0; 722 } 723 724 static struct inode *hugetlbfs_get_root(struct super_block *sb, 725 struct hugetlbfs_fs_context *ctx) 726 { 727 struct inode *inode; 728 729 inode = new_inode(sb); 730 if (inode) { 731 inode->i_ino = get_next_ino(); 732 inode->i_mode = S_IFDIR | ctx->mode; 733 inode->i_uid = ctx->uid; 734 inode->i_gid = ctx->gid; 735 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 736 inode->i_op = &hugetlbfs_dir_inode_operations; 737 inode->i_fop = &simple_dir_operations; 738 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 739 inc_nlink(inode); 740 lockdep_annotate_inode_mutex_key(inode); 741 } 742 return inode; 743 } 744 745 /* 746 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 747 * be taken from reclaim -- unlike regular filesystems. This needs an 748 * annotation because huge_pmd_share() does an allocation under hugetlb's 749 * i_mmap_rwsem. 750 */ 751 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 752 753 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 754 struct inode *dir, 755 umode_t mode, dev_t dev) 756 { 757 struct inode *inode; 758 struct resv_map *resv_map; 759 760 resv_map = resv_map_alloc(); 761 if (!resv_map) 762 return NULL; 763 764 inode = new_inode(sb); 765 if (inode) { 766 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 767 768 inode->i_ino = get_next_ino(); 769 inode_init_owner(inode, dir, mode); 770 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 771 &hugetlbfs_i_mmap_rwsem_key); 772 inode->i_mapping->a_ops = &hugetlbfs_aops; 773 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 774 inode->i_mapping->private_data = resv_map; 775 info->seals = F_SEAL_SEAL; 776 switch (mode & S_IFMT) { 777 default: 778 init_special_inode(inode, mode, dev); 779 break; 780 case S_IFREG: 781 inode->i_op = &hugetlbfs_inode_operations; 782 inode->i_fop = &hugetlbfs_file_operations; 783 break; 784 case S_IFDIR: 785 inode->i_op = &hugetlbfs_dir_inode_operations; 786 inode->i_fop = &simple_dir_operations; 787 788 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 789 inc_nlink(inode); 790 break; 791 case S_IFLNK: 792 inode->i_op = &page_symlink_inode_operations; 793 inode_nohighmem(inode); 794 break; 795 } 796 lockdep_annotate_inode_mutex_key(inode); 797 } else 798 kref_put(&resv_map->refs, resv_map_release); 799 800 return inode; 801 } 802 803 /* 804 * File creation. Allocate an inode, and we're done.. 805 */ 806 static int hugetlbfs_mknod(struct inode *dir, 807 struct dentry *dentry, umode_t mode, dev_t dev) 808 { 809 struct inode *inode; 810 int error = -ENOSPC; 811 812 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 813 if (inode) { 814 dir->i_ctime = dir->i_mtime = current_time(dir); 815 d_instantiate(dentry, inode); 816 dget(dentry); /* Extra count - pin the dentry in core */ 817 error = 0; 818 } 819 return error; 820 } 821 822 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 823 { 824 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 825 if (!retval) 826 inc_nlink(dir); 827 return retval; 828 } 829 830 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 831 { 832 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 833 } 834 835 static int hugetlbfs_symlink(struct inode *dir, 836 struct dentry *dentry, const char *symname) 837 { 838 struct inode *inode; 839 int error = -ENOSPC; 840 841 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 842 if (inode) { 843 int l = strlen(symname)+1; 844 error = page_symlink(inode, symname, l); 845 if (!error) { 846 d_instantiate(dentry, inode); 847 dget(dentry); 848 } else 849 iput(inode); 850 } 851 dir->i_ctime = dir->i_mtime = current_time(dir); 852 853 return error; 854 } 855 856 /* 857 * mark the head page dirty 858 */ 859 static int hugetlbfs_set_page_dirty(struct page *page) 860 { 861 struct page *head = compound_head(page); 862 863 SetPageDirty(head); 864 return 0; 865 } 866 867 static int hugetlbfs_migrate_page(struct address_space *mapping, 868 struct page *newpage, struct page *page, 869 enum migrate_mode mode) 870 { 871 int rc; 872 873 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 874 if (rc != MIGRATEPAGE_SUCCESS) 875 return rc; 876 877 /* 878 * page_private is subpool pointer in hugetlb pages. Transfer to 879 * new page. PagePrivate is not associated with page_private for 880 * hugetlb pages and can not be set here as only page_huge_active 881 * pages can be migrated. 882 */ 883 if (page_private(page)) { 884 set_page_private(newpage, page_private(page)); 885 set_page_private(page, 0); 886 } 887 888 if (mode != MIGRATE_SYNC_NO_COPY) 889 migrate_page_copy(newpage, page); 890 else 891 migrate_page_states(newpage, page); 892 893 return MIGRATEPAGE_SUCCESS; 894 } 895 896 static int hugetlbfs_error_remove_page(struct address_space *mapping, 897 struct page *page) 898 { 899 struct inode *inode = mapping->host; 900 pgoff_t index = page->index; 901 902 remove_huge_page(page); 903 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 904 hugetlb_fix_reserve_counts(inode); 905 906 return 0; 907 } 908 909 /* 910 * Display the mount options in /proc/mounts. 911 */ 912 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 913 { 914 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 915 struct hugepage_subpool *spool = sbinfo->spool; 916 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 917 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 918 char mod; 919 920 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 921 seq_printf(m, ",uid=%u", 922 from_kuid_munged(&init_user_ns, sbinfo->uid)); 923 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 924 seq_printf(m, ",gid=%u", 925 from_kgid_munged(&init_user_ns, sbinfo->gid)); 926 if (sbinfo->mode != 0755) 927 seq_printf(m, ",mode=%o", sbinfo->mode); 928 if (sbinfo->max_inodes != -1) 929 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 930 931 hpage_size /= 1024; 932 mod = 'K'; 933 if (hpage_size >= 1024) { 934 hpage_size /= 1024; 935 mod = 'M'; 936 } 937 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 938 if (spool) { 939 if (spool->max_hpages != -1) 940 seq_printf(m, ",size=%llu", 941 (unsigned long long)spool->max_hpages << hpage_shift); 942 if (spool->min_hpages != -1) 943 seq_printf(m, ",min_size=%llu", 944 (unsigned long long)spool->min_hpages << hpage_shift); 945 } 946 return 0; 947 } 948 949 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 950 { 951 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 952 struct hstate *h = hstate_inode(d_inode(dentry)); 953 954 buf->f_type = HUGETLBFS_MAGIC; 955 buf->f_bsize = huge_page_size(h); 956 if (sbinfo) { 957 spin_lock(&sbinfo->stat_lock); 958 /* If no limits set, just report 0 for max/free/used 959 * blocks, like simple_statfs() */ 960 if (sbinfo->spool) { 961 long free_pages; 962 963 spin_lock(&sbinfo->spool->lock); 964 buf->f_blocks = sbinfo->spool->max_hpages; 965 free_pages = sbinfo->spool->max_hpages 966 - sbinfo->spool->used_hpages; 967 buf->f_bavail = buf->f_bfree = free_pages; 968 spin_unlock(&sbinfo->spool->lock); 969 buf->f_files = sbinfo->max_inodes; 970 buf->f_ffree = sbinfo->free_inodes; 971 } 972 spin_unlock(&sbinfo->stat_lock); 973 } 974 buf->f_namelen = NAME_MAX; 975 return 0; 976 } 977 978 static void hugetlbfs_put_super(struct super_block *sb) 979 { 980 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 981 982 if (sbi) { 983 sb->s_fs_info = NULL; 984 985 if (sbi->spool) 986 hugepage_put_subpool(sbi->spool); 987 988 kfree(sbi); 989 } 990 } 991 992 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 993 { 994 if (sbinfo->free_inodes >= 0) { 995 spin_lock(&sbinfo->stat_lock); 996 if (unlikely(!sbinfo->free_inodes)) { 997 spin_unlock(&sbinfo->stat_lock); 998 return 0; 999 } 1000 sbinfo->free_inodes--; 1001 spin_unlock(&sbinfo->stat_lock); 1002 } 1003 1004 return 1; 1005 } 1006 1007 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1008 { 1009 if (sbinfo->free_inodes >= 0) { 1010 spin_lock(&sbinfo->stat_lock); 1011 sbinfo->free_inodes++; 1012 spin_unlock(&sbinfo->stat_lock); 1013 } 1014 } 1015 1016 1017 static struct kmem_cache *hugetlbfs_inode_cachep; 1018 1019 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1020 { 1021 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1022 struct hugetlbfs_inode_info *p; 1023 1024 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1025 return NULL; 1026 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1027 if (unlikely(!p)) { 1028 hugetlbfs_inc_free_inodes(sbinfo); 1029 return NULL; 1030 } 1031 1032 /* 1033 * Any time after allocation, hugetlbfs_destroy_inode can be called 1034 * for the inode. mpol_free_shared_policy is unconditionally called 1035 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1036 * in case of a quick call to destroy. 1037 * 1038 * Note that the policy is initialized even if we are creating a 1039 * private inode. This simplifies hugetlbfs_destroy_inode. 1040 */ 1041 mpol_shared_policy_init(&p->policy, NULL); 1042 1043 return &p->vfs_inode; 1044 } 1045 1046 static void hugetlbfs_i_callback(struct rcu_head *head) 1047 { 1048 struct inode *inode = container_of(head, struct inode, i_rcu); 1049 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1050 } 1051 1052 static void hugetlbfs_destroy_inode(struct inode *inode) 1053 { 1054 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1055 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1056 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1057 } 1058 1059 static const struct address_space_operations hugetlbfs_aops = { 1060 .write_begin = hugetlbfs_write_begin, 1061 .write_end = hugetlbfs_write_end, 1062 .set_page_dirty = hugetlbfs_set_page_dirty, 1063 .migratepage = hugetlbfs_migrate_page, 1064 .error_remove_page = hugetlbfs_error_remove_page, 1065 }; 1066 1067 1068 static void init_once(void *foo) 1069 { 1070 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1071 1072 inode_init_once(&ei->vfs_inode); 1073 } 1074 1075 const struct file_operations hugetlbfs_file_operations = { 1076 .read_iter = hugetlbfs_read_iter, 1077 .mmap = hugetlbfs_file_mmap, 1078 .fsync = noop_fsync, 1079 .get_unmapped_area = hugetlb_get_unmapped_area, 1080 .llseek = default_llseek, 1081 .fallocate = hugetlbfs_fallocate, 1082 }; 1083 1084 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1085 .create = hugetlbfs_create, 1086 .lookup = simple_lookup, 1087 .link = simple_link, 1088 .unlink = simple_unlink, 1089 .symlink = hugetlbfs_symlink, 1090 .mkdir = hugetlbfs_mkdir, 1091 .rmdir = simple_rmdir, 1092 .mknod = hugetlbfs_mknod, 1093 .rename = simple_rename, 1094 .setattr = hugetlbfs_setattr, 1095 }; 1096 1097 static const struct inode_operations hugetlbfs_inode_operations = { 1098 .setattr = hugetlbfs_setattr, 1099 }; 1100 1101 static const struct super_operations hugetlbfs_ops = { 1102 .alloc_inode = hugetlbfs_alloc_inode, 1103 .destroy_inode = hugetlbfs_destroy_inode, 1104 .evict_inode = hugetlbfs_evict_inode, 1105 .statfs = hugetlbfs_statfs, 1106 .put_super = hugetlbfs_put_super, 1107 .show_options = hugetlbfs_show_options, 1108 }; 1109 1110 /* 1111 * Convert size option passed from command line to number of huge pages 1112 * in the pool specified by hstate. Size option could be in bytes 1113 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1114 */ 1115 static long 1116 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1117 enum hugetlbfs_size_type val_type) 1118 { 1119 if (val_type == NO_SIZE) 1120 return -1; 1121 1122 if (val_type == SIZE_PERCENT) { 1123 size_opt <<= huge_page_shift(h); 1124 size_opt *= h->max_huge_pages; 1125 do_div(size_opt, 100); 1126 } 1127 1128 size_opt >>= huge_page_shift(h); 1129 return size_opt; 1130 } 1131 1132 /* 1133 * Parse one mount parameter. 1134 */ 1135 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1136 { 1137 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1138 struct fs_parse_result result; 1139 char *rest; 1140 unsigned long ps; 1141 int opt; 1142 1143 opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result); 1144 if (opt < 0) 1145 return opt; 1146 1147 switch (opt) { 1148 case Opt_uid: 1149 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1150 if (!uid_valid(ctx->uid)) 1151 goto bad_val; 1152 return 0; 1153 1154 case Opt_gid: 1155 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1156 if (!gid_valid(ctx->gid)) 1157 goto bad_val; 1158 return 0; 1159 1160 case Opt_mode: 1161 ctx->mode = result.uint_32 & 01777U; 1162 return 0; 1163 1164 case Opt_size: 1165 /* memparse() will accept a K/M/G without a digit */ 1166 if (!isdigit(param->string[0])) 1167 goto bad_val; 1168 ctx->max_size_opt = memparse(param->string, &rest); 1169 ctx->max_val_type = SIZE_STD; 1170 if (*rest == '%') 1171 ctx->max_val_type = SIZE_PERCENT; 1172 return 0; 1173 1174 case Opt_nr_inodes: 1175 /* memparse() will accept a K/M/G without a digit */ 1176 if (!isdigit(param->string[0])) 1177 goto bad_val; 1178 ctx->nr_inodes = memparse(param->string, &rest); 1179 return 0; 1180 1181 case Opt_pagesize: 1182 ps = memparse(param->string, &rest); 1183 ctx->hstate = size_to_hstate(ps); 1184 if (!ctx->hstate) { 1185 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1186 return -EINVAL; 1187 } 1188 return 0; 1189 1190 case Opt_min_size: 1191 /* memparse() will accept a K/M/G without a digit */ 1192 if (!isdigit(param->string[0])) 1193 goto bad_val; 1194 ctx->min_size_opt = memparse(param->string, &rest); 1195 ctx->min_val_type = SIZE_STD; 1196 if (*rest == '%') 1197 ctx->min_val_type = SIZE_PERCENT; 1198 return 0; 1199 1200 default: 1201 return -EINVAL; 1202 } 1203 1204 bad_val: 1205 return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n", 1206 param->string, param->key); 1207 } 1208 1209 /* 1210 * Validate the parsed options. 1211 */ 1212 static int hugetlbfs_validate(struct fs_context *fc) 1213 { 1214 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1215 1216 /* 1217 * Use huge page pool size (in hstate) to convert the size 1218 * options to number of huge pages. If NO_SIZE, -1 is returned. 1219 */ 1220 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1221 ctx->max_size_opt, 1222 ctx->max_val_type); 1223 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1224 ctx->min_size_opt, 1225 ctx->min_val_type); 1226 1227 /* 1228 * If max_size was specified, then min_size must be smaller 1229 */ 1230 if (ctx->max_val_type > NO_SIZE && 1231 ctx->min_hpages > ctx->max_hpages) { 1232 pr_err("Minimum size can not be greater than maximum size\n"); 1233 return -EINVAL; 1234 } 1235 1236 return 0; 1237 } 1238 1239 static int 1240 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1241 { 1242 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1243 struct hugetlbfs_sb_info *sbinfo; 1244 1245 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1246 if (!sbinfo) 1247 return -ENOMEM; 1248 sb->s_fs_info = sbinfo; 1249 spin_lock_init(&sbinfo->stat_lock); 1250 sbinfo->hstate = ctx->hstate; 1251 sbinfo->max_inodes = ctx->nr_inodes; 1252 sbinfo->free_inodes = ctx->nr_inodes; 1253 sbinfo->spool = NULL; 1254 sbinfo->uid = ctx->uid; 1255 sbinfo->gid = ctx->gid; 1256 sbinfo->mode = ctx->mode; 1257 1258 /* 1259 * Allocate and initialize subpool if maximum or minimum size is 1260 * specified. Any needed reservations (for minimim size) are taken 1261 * taken when the subpool is created. 1262 */ 1263 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1264 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1265 ctx->max_hpages, 1266 ctx->min_hpages); 1267 if (!sbinfo->spool) 1268 goto out_free; 1269 } 1270 sb->s_maxbytes = MAX_LFS_FILESIZE; 1271 sb->s_blocksize = huge_page_size(ctx->hstate); 1272 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1273 sb->s_magic = HUGETLBFS_MAGIC; 1274 sb->s_op = &hugetlbfs_ops; 1275 sb->s_time_gran = 1; 1276 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1277 if (!sb->s_root) 1278 goto out_free; 1279 return 0; 1280 out_free: 1281 kfree(sbinfo->spool); 1282 kfree(sbinfo); 1283 return -ENOMEM; 1284 } 1285 1286 static int hugetlbfs_get_tree(struct fs_context *fc) 1287 { 1288 int err = hugetlbfs_validate(fc); 1289 if (err) 1290 return err; 1291 return vfs_get_super(fc, vfs_get_independent_super, hugetlbfs_fill_super); 1292 } 1293 1294 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1295 { 1296 kfree(fc->fs_private); 1297 } 1298 1299 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1300 .free = hugetlbfs_fs_context_free, 1301 .parse_param = hugetlbfs_parse_param, 1302 .get_tree = hugetlbfs_get_tree, 1303 }; 1304 1305 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1306 { 1307 struct hugetlbfs_fs_context *ctx; 1308 1309 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1310 if (!ctx) 1311 return -ENOMEM; 1312 1313 ctx->max_hpages = -1; /* No limit on size by default */ 1314 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1315 ctx->uid = current_fsuid(); 1316 ctx->gid = current_fsgid(); 1317 ctx->mode = 0755; 1318 ctx->hstate = &default_hstate; 1319 ctx->min_hpages = -1; /* No default minimum size */ 1320 ctx->max_val_type = NO_SIZE; 1321 ctx->min_val_type = NO_SIZE; 1322 fc->fs_private = ctx; 1323 fc->ops = &hugetlbfs_fs_context_ops; 1324 return 0; 1325 } 1326 1327 static struct file_system_type hugetlbfs_fs_type = { 1328 .name = "hugetlbfs", 1329 .init_fs_context = hugetlbfs_init_fs_context, 1330 .parameters = &hugetlb_fs_parameters, 1331 .kill_sb = kill_litter_super, 1332 }; 1333 1334 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1335 1336 static int can_do_hugetlb_shm(void) 1337 { 1338 kgid_t shm_group; 1339 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1340 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1341 } 1342 1343 static int get_hstate_idx(int page_size_log) 1344 { 1345 struct hstate *h = hstate_sizelog(page_size_log); 1346 1347 if (!h) 1348 return -1; 1349 return h - hstates; 1350 } 1351 1352 /* 1353 * Note that size should be aligned to proper hugepage size in caller side, 1354 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1355 */ 1356 struct file *hugetlb_file_setup(const char *name, size_t size, 1357 vm_flags_t acctflag, struct user_struct **user, 1358 int creat_flags, int page_size_log) 1359 { 1360 struct inode *inode; 1361 struct vfsmount *mnt; 1362 int hstate_idx; 1363 struct file *file; 1364 1365 hstate_idx = get_hstate_idx(page_size_log); 1366 if (hstate_idx < 0) 1367 return ERR_PTR(-ENODEV); 1368 1369 *user = NULL; 1370 mnt = hugetlbfs_vfsmount[hstate_idx]; 1371 if (!mnt) 1372 return ERR_PTR(-ENOENT); 1373 1374 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1375 *user = current_user(); 1376 if (user_shm_lock(size, *user)) { 1377 task_lock(current); 1378 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1379 current->comm, current->pid); 1380 task_unlock(current); 1381 } else { 1382 *user = NULL; 1383 return ERR_PTR(-EPERM); 1384 } 1385 } 1386 1387 file = ERR_PTR(-ENOSPC); 1388 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1389 if (!inode) 1390 goto out; 1391 if (creat_flags == HUGETLB_SHMFS_INODE) 1392 inode->i_flags |= S_PRIVATE; 1393 1394 inode->i_size = size; 1395 clear_nlink(inode); 1396 1397 if (hugetlb_reserve_pages(inode, 0, 1398 size >> huge_page_shift(hstate_inode(inode)), NULL, 1399 acctflag)) 1400 file = ERR_PTR(-ENOMEM); 1401 else 1402 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1403 &hugetlbfs_file_operations); 1404 if (!IS_ERR(file)) 1405 return file; 1406 1407 iput(inode); 1408 out: 1409 if (*user) { 1410 user_shm_unlock(size, *user); 1411 *user = NULL; 1412 } 1413 return file; 1414 } 1415 1416 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1417 { 1418 struct fs_context *fc; 1419 struct vfsmount *mnt; 1420 1421 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1422 if (IS_ERR(fc)) { 1423 mnt = ERR_CAST(fc); 1424 } else { 1425 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1426 ctx->hstate = h; 1427 mnt = fc_mount(fc); 1428 put_fs_context(fc); 1429 } 1430 if (IS_ERR(mnt)) 1431 pr_err("Cannot mount internal hugetlbfs for page size %uK", 1432 1U << (h->order + PAGE_SHIFT - 10)); 1433 return mnt; 1434 } 1435 1436 static int __init init_hugetlbfs_fs(void) 1437 { 1438 struct vfsmount *mnt; 1439 struct hstate *h; 1440 int error; 1441 int i; 1442 1443 if (!hugepages_supported()) { 1444 pr_info("disabling because there are no supported hugepage sizes\n"); 1445 return -ENOTSUPP; 1446 } 1447 1448 error = -ENOMEM; 1449 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1450 sizeof(struct hugetlbfs_inode_info), 1451 0, SLAB_ACCOUNT, init_once); 1452 if (hugetlbfs_inode_cachep == NULL) 1453 goto out2; 1454 1455 error = register_filesystem(&hugetlbfs_fs_type); 1456 if (error) 1457 goto out; 1458 1459 i = 0; 1460 for_each_hstate(h) { 1461 mnt = mount_one_hugetlbfs(h); 1462 if (IS_ERR(mnt) && i == 0) { 1463 error = PTR_ERR(mnt); 1464 goto out; 1465 } 1466 hugetlbfs_vfsmount[i] = mnt; 1467 i++; 1468 } 1469 1470 return 0; 1471 1472 out: 1473 kmem_cache_destroy(hugetlbfs_inode_cachep); 1474 out2: 1475 return error; 1476 } 1477 fs_initcall(init_hugetlbfs_fs) 1478