xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 96cafb9c)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49 
50 struct hugetlbfs_fs_context {
51 	struct hstate		*hstate;
52 	unsigned long long	max_size_opt;
53 	unsigned long long	min_size_opt;
54 	long			max_hpages;
55 	long			nr_inodes;
56 	long			min_hpages;
57 	enum hugetlbfs_size_type max_val_type;
58 	enum hugetlbfs_size_type min_val_type;
59 	kuid_t			uid;
60 	kgid_t			gid;
61 	umode_t			mode;
62 };
63 
64 int sysctl_hugetlb_shm_group;
65 
66 enum hugetlb_param {
67 	Opt_gid,
68 	Opt_min_size,
69 	Opt_mode,
70 	Opt_nr_inodes,
71 	Opt_pagesize,
72 	Opt_size,
73 	Opt_uid,
74 };
75 
76 static const struct fs_parameter_spec hugetlb_param_specs[] = {
77 	fsparam_u32   ("gid",		Opt_gid),
78 	fsparam_string("min_size",	Opt_min_size),
79 	fsparam_u32   ("mode",		Opt_mode),
80 	fsparam_string("nr_inodes",	Opt_nr_inodes),
81 	fsparam_string("pagesize",	Opt_pagesize),
82 	fsparam_string("size",		Opt_size),
83 	fsparam_u32   ("uid",		Opt_uid),
84 	{}
85 };
86 
87 static const struct fs_parameter_description hugetlb_fs_parameters = {
88 	.specs		= hugetlb_param_specs,
89 };
90 
91 #ifdef CONFIG_NUMA
92 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
93 					struct inode *inode, pgoff_t index)
94 {
95 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
96 							index);
97 }
98 
99 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
100 {
101 	mpol_cond_put(vma->vm_policy);
102 }
103 #else
104 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
105 					struct inode *inode, pgoff_t index)
106 {
107 }
108 
109 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
110 {
111 }
112 #endif
113 
114 static void huge_pagevec_release(struct pagevec *pvec)
115 {
116 	int i;
117 
118 	for (i = 0; i < pagevec_count(pvec); ++i)
119 		put_page(pvec->pages[i]);
120 
121 	pagevec_reinit(pvec);
122 }
123 
124 /*
125  * Mask used when checking the page offset value passed in via system
126  * calls.  This value will be converted to a loff_t which is signed.
127  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
128  * value.  The extra bit (- 1 in the shift value) is to take the sign
129  * bit into account.
130  */
131 #define PGOFF_LOFFT_MAX \
132 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
133 
134 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
135 {
136 	struct inode *inode = file_inode(file);
137 	loff_t len, vma_len;
138 	int ret;
139 	struct hstate *h = hstate_file(file);
140 
141 	/*
142 	 * vma address alignment (but not the pgoff alignment) has
143 	 * already been checked by prepare_hugepage_range.  If you add
144 	 * any error returns here, do so after setting VM_HUGETLB, so
145 	 * is_vm_hugetlb_page tests below unmap_region go the right
146 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
147 	 * and ia64).
148 	 */
149 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
150 	vma->vm_ops = &hugetlb_vm_ops;
151 
152 	/*
153 	 * page based offset in vm_pgoff could be sufficiently large to
154 	 * overflow a loff_t when converted to byte offset.  This can
155 	 * only happen on architectures where sizeof(loff_t) ==
156 	 * sizeof(unsigned long).  So, only check in those instances.
157 	 */
158 	if (sizeof(unsigned long) == sizeof(loff_t)) {
159 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
160 			return -EINVAL;
161 	}
162 
163 	/* must be huge page aligned */
164 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
165 		return -EINVAL;
166 
167 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
168 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
169 	/* check for overflow */
170 	if (len < vma_len)
171 		return -EINVAL;
172 
173 	inode_lock(inode);
174 	file_accessed(file);
175 
176 	ret = -ENOMEM;
177 	if (hugetlb_reserve_pages(inode,
178 				vma->vm_pgoff >> huge_page_order(h),
179 				len >> huge_page_shift(h), vma,
180 				vma->vm_flags))
181 		goto out;
182 
183 	ret = 0;
184 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
185 		i_size_write(inode, len);
186 out:
187 	inode_unlock(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called under down_write(mmap_sem).
194  */
195 
196 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
197 static unsigned long
198 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
199 		unsigned long len, unsigned long pgoff, unsigned long flags)
200 {
201 	struct mm_struct *mm = current->mm;
202 	struct vm_area_struct *vma;
203 	struct hstate *h = hstate_file(file);
204 	struct vm_unmapped_area_info info;
205 
206 	if (len & ~huge_page_mask(h))
207 		return -EINVAL;
208 	if (len > TASK_SIZE)
209 		return -ENOMEM;
210 
211 	if (flags & MAP_FIXED) {
212 		if (prepare_hugepage_range(file, addr, len))
213 			return -EINVAL;
214 		return addr;
215 	}
216 
217 	if (addr) {
218 		addr = ALIGN(addr, huge_page_size(h));
219 		vma = find_vma(mm, addr);
220 		if (TASK_SIZE - len >= addr &&
221 		    (!vma || addr + len <= vm_start_gap(vma)))
222 			return addr;
223 	}
224 
225 	info.flags = 0;
226 	info.length = len;
227 	info.low_limit = TASK_UNMAPPED_BASE;
228 	info.high_limit = TASK_SIZE;
229 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
230 	info.align_offset = 0;
231 	return vm_unmapped_area(&info);
232 }
233 #endif
234 
235 static size_t
236 hugetlbfs_read_actor(struct page *page, unsigned long offset,
237 			struct iov_iter *to, unsigned long size)
238 {
239 	size_t copied = 0;
240 	int i, chunksize;
241 
242 	/* Find which 4k chunk and offset with in that chunk */
243 	i = offset >> PAGE_SHIFT;
244 	offset = offset & ~PAGE_MASK;
245 
246 	while (size) {
247 		size_t n;
248 		chunksize = PAGE_SIZE;
249 		if (offset)
250 			chunksize -= offset;
251 		if (chunksize > size)
252 			chunksize = size;
253 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
254 		copied += n;
255 		if (n != chunksize)
256 			return copied;
257 		offset = 0;
258 		size -= chunksize;
259 		i++;
260 	}
261 	return copied;
262 }
263 
264 /*
265  * Support for read() - Find the page attached to f_mapping and copy out the
266  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
267  * since it has PAGE_SIZE assumptions.
268  */
269 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
270 {
271 	struct file *file = iocb->ki_filp;
272 	struct hstate *h = hstate_file(file);
273 	struct address_space *mapping = file->f_mapping;
274 	struct inode *inode = mapping->host;
275 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
276 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
277 	unsigned long end_index;
278 	loff_t isize;
279 	ssize_t retval = 0;
280 
281 	while (iov_iter_count(to)) {
282 		struct page *page;
283 		size_t nr, copied;
284 
285 		/* nr is the maximum number of bytes to copy from this page */
286 		nr = huge_page_size(h);
287 		isize = i_size_read(inode);
288 		if (!isize)
289 			break;
290 		end_index = (isize - 1) >> huge_page_shift(h);
291 		if (index > end_index)
292 			break;
293 		if (index == end_index) {
294 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
295 			if (nr <= offset)
296 				break;
297 		}
298 		nr = nr - offset;
299 
300 		/* Find the page */
301 		page = find_lock_page(mapping, index);
302 		if (unlikely(page == NULL)) {
303 			/*
304 			 * We have a HOLE, zero out the user-buffer for the
305 			 * length of the hole or request.
306 			 */
307 			copied = iov_iter_zero(nr, to);
308 		} else {
309 			unlock_page(page);
310 
311 			/*
312 			 * We have the page, copy it to user space buffer.
313 			 */
314 			copied = hugetlbfs_read_actor(page, offset, to, nr);
315 			put_page(page);
316 		}
317 		offset += copied;
318 		retval += copied;
319 		if (copied != nr && iov_iter_count(to)) {
320 			if (!retval)
321 				retval = -EFAULT;
322 			break;
323 		}
324 		index += offset >> huge_page_shift(h);
325 		offset &= ~huge_page_mask(h);
326 	}
327 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
328 	return retval;
329 }
330 
331 static int hugetlbfs_write_begin(struct file *file,
332 			struct address_space *mapping,
333 			loff_t pos, unsigned len, unsigned flags,
334 			struct page **pagep, void **fsdata)
335 {
336 	return -EINVAL;
337 }
338 
339 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
340 			loff_t pos, unsigned len, unsigned copied,
341 			struct page *page, void *fsdata)
342 {
343 	BUG();
344 	return -EINVAL;
345 }
346 
347 static void remove_huge_page(struct page *page)
348 {
349 	ClearPageDirty(page);
350 	ClearPageUptodate(page);
351 	delete_from_page_cache(page);
352 }
353 
354 static void
355 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
356 {
357 	struct vm_area_struct *vma;
358 
359 	/*
360 	 * end == 0 indicates that the entire range after
361 	 * start should be unmapped.
362 	 */
363 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
364 		unsigned long v_offset;
365 		unsigned long v_end;
366 
367 		/*
368 		 * Can the expression below overflow on 32-bit arches?
369 		 * No, because the interval tree returns us only those vmas
370 		 * which overlap the truncated area starting at pgoff,
371 		 * and no vma on a 32-bit arch can span beyond the 4GB.
372 		 */
373 		if (vma->vm_pgoff < start)
374 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
375 		else
376 			v_offset = 0;
377 
378 		if (!end)
379 			v_end = vma->vm_end;
380 		else {
381 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
382 							+ vma->vm_start;
383 			if (v_end > vma->vm_end)
384 				v_end = vma->vm_end;
385 		}
386 
387 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
388 									NULL);
389 	}
390 }
391 
392 /*
393  * remove_inode_hugepages handles two distinct cases: truncation and hole
394  * punch.  There are subtle differences in operation for each case.
395  *
396  * truncation is indicated by end of range being LLONG_MAX
397  *	In this case, we first scan the range and release found pages.
398  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
399  *	maps and global counts.  Page faults can not race with truncation
400  *	in this routine.  hugetlb_no_page() prevents page faults in the
401  *	truncated range.  It checks i_size before allocation, and again after
402  *	with the page table lock for the page held.  The same lock must be
403  *	acquired to unmap a page.
404  * hole punch is indicated if end is not LLONG_MAX
405  *	In the hole punch case we scan the range and release found pages.
406  *	Only when releasing a page is the associated region/reserv map
407  *	deleted.  The region/reserv map for ranges without associated
408  *	pages are not modified.  Page faults can race with hole punch.
409  *	This is indicated if we find a mapped page.
410  * Note: If the passed end of range value is beyond the end of file, but
411  * not LLONG_MAX this routine still performs a hole punch operation.
412  */
413 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
414 				   loff_t lend)
415 {
416 	struct hstate *h = hstate_inode(inode);
417 	struct address_space *mapping = &inode->i_data;
418 	const pgoff_t start = lstart >> huge_page_shift(h);
419 	const pgoff_t end = lend >> huge_page_shift(h);
420 	struct vm_area_struct pseudo_vma;
421 	struct pagevec pvec;
422 	pgoff_t next, index;
423 	int i, freed = 0;
424 	bool truncate_op = (lend == LLONG_MAX);
425 
426 	vma_init(&pseudo_vma, current->mm);
427 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
428 	pagevec_init(&pvec);
429 	next = start;
430 	while (next < end) {
431 		/*
432 		 * When no more pages are found, we are done.
433 		 */
434 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
435 			break;
436 
437 		for (i = 0; i < pagevec_count(&pvec); ++i) {
438 			struct page *page = pvec.pages[i];
439 			u32 hash;
440 
441 			index = page->index;
442 			hash = hugetlb_fault_mutex_hash(mapping, index);
443 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
444 
445 			/*
446 			 * If page is mapped, it was faulted in after being
447 			 * unmapped in caller.  Unmap (again) now after taking
448 			 * the fault mutex.  The mutex will prevent faults
449 			 * until we finish removing the page.
450 			 *
451 			 * This race can only happen in the hole punch case.
452 			 * Getting here in a truncate operation is a bug.
453 			 */
454 			if (unlikely(page_mapped(page))) {
455 				BUG_ON(truncate_op);
456 
457 				i_mmap_lock_write(mapping);
458 				hugetlb_vmdelete_list(&mapping->i_mmap,
459 					index * pages_per_huge_page(h),
460 					(index + 1) * pages_per_huge_page(h));
461 				i_mmap_unlock_write(mapping);
462 			}
463 
464 			lock_page(page);
465 			/*
466 			 * We must free the huge page and remove from page
467 			 * cache (remove_huge_page) BEFORE removing the
468 			 * region/reserve map (hugetlb_unreserve_pages).  In
469 			 * rare out of memory conditions, removal of the
470 			 * region/reserve map could fail. Correspondingly,
471 			 * the subpool and global reserve usage count can need
472 			 * to be adjusted.
473 			 */
474 			VM_BUG_ON(PagePrivate(page));
475 			remove_huge_page(page);
476 			freed++;
477 			if (!truncate_op) {
478 				if (unlikely(hugetlb_unreserve_pages(inode,
479 							index, index + 1, 1)))
480 					hugetlb_fix_reserve_counts(inode);
481 			}
482 
483 			unlock_page(page);
484 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
485 		}
486 		huge_pagevec_release(&pvec);
487 		cond_resched();
488 	}
489 
490 	if (truncate_op)
491 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
492 }
493 
494 static void hugetlbfs_evict_inode(struct inode *inode)
495 {
496 	struct resv_map *resv_map;
497 
498 	remove_inode_hugepages(inode, 0, LLONG_MAX);
499 
500 	/*
501 	 * Get the resv_map from the address space embedded in the inode.
502 	 * This is the address space which points to any resv_map allocated
503 	 * at inode creation time.  If this is a device special inode,
504 	 * i_mapping may not point to the original address space.
505 	 */
506 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
507 	/* Only regular and link inodes have associated reserve maps */
508 	if (resv_map)
509 		resv_map_release(&resv_map->refs);
510 	clear_inode(inode);
511 }
512 
513 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
514 {
515 	pgoff_t pgoff;
516 	struct address_space *mapping = inode->i_mapping;
517 	struct hstate *h = hstate_inode(inode);
518 
519 	BUG_ON(offset & ~huge_page_mask(h));
520 	pgoff = offset >> PAGE_SHIFT;
521 
522 	i_size_write(inode, offset);
523 	i_mmap_lock_write(mapping);
524 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
525 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
526 	i_mmap_unlock_write(mapping);
527 	remove_inode_hugepages(inode, offset, LLONG_MAX);
528 	return 0;
529 }
530 
531 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
532 {
533 	struct hstate *h = hstate_inode(inode);
534 	loff_t hpage_size = huge_page_size(h);
535 	loff_t hole_start, hole_end;
536 
537 	/*
538 	 * For hole punch round up the beginning offset of the hole and
539 	 * round down the end.
540 	 */
541 	hole_start = round_up(offset, hpage_size);
542 	hole_end = round_down(offset + len, hpage_size);
543 
544 	if (hole_end > hole_start) {
545 		struct address_space *mapping = inode->i_mapping;
546 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
547 
548 		inode_lock(inode);
549 
550 		/* protected by i_mutex */
551 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
552 			inode_unlock(inode);
553 			return -EPERM;
554 		}
555 
556 		i_mmap_lock_write(mapping);
557 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
558 			hugetlb_vmdelete_list(&mapping->i_mmap,
559 						hole_start >> PAGE_SHIFT,
560 						hole_end  >> PAGE_SHIFT);
561 		i_mmap_unlock_write(mapping);
562 		remove_inode_hugepages(inode, hole_start, hole_end);
563 		inode_unlock(inode);
564 	}
565 
566 	return 0;
567 }
568 
569 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
570 				loff_t len)
571 {
572 	struct inode *inode = file_inode(file);
573 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
574 	struct address_space *mapping = inode->i_mapping;
575 	struct hstate *h = hstate_inode(inode);
576 	struct vm_area_struct pseudo_vma;
577 	struct mm_struct *mm = current->mm;
578 	loff_t hpage_size = huge_page_size(h);
579 	unsigned long hpage_shift = huge_page_shift(h);
580 	pgoff_t start, index, end;
581 	int error;
582 	u32 hash;
583 
584 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
585 		return -EOPNOTSUPP;
586 
587 	if (mode & FALLOC_FL_PUNCH_HOLE)
588 		return hugetlbfs_punch_hole(inode, offset, len);
589 
590 	/*
591 	 * Default preallocate case.
592 	 * For this range, start is rounded down and end is rounded up
593 	 * as well as being converted to page offsets.
594 	 */
595 	start = offset >> hpage_shift;
596 	end = (offset + len + hpage_size - 1) >> hpage_shift;
597 
598 	inode_lock(inode);
599 
600 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
601 	error = inode_newsize_ok(inode, offset + len);
602 	if (error)
603 		goto out;
604 
605 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
606 		error = -EPERM;
607 		goto out;
608 	}
609 
610 	/*
611 	 * Initialize a pseudo vma as this is required by the huge page
612 	 * allocation routines.  If NUMA is configured, use page index
613 	 * as input to create an allocation policy.
614 	 */
615 	vma_init(&pseudo_vma, mm);
616 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
617 	pseudo_vma.vm_file = file;
618 
619 	for (index = start; index < end; index++) {
620 		/*
621 		 * This is supposed to be the vaddr where the page is being
622 		 * faulted in, but we have no vaddr here.
623 		 */
624 		struct page *page;
625 		unsigned long addr;
626 		int avoid_reserve = 0;
627 
628 		cond_resched();
629 
630 		/*
631 		 * fallocate(2) manpage permits EINTR; we may have been
632 		 * interrupted because we are using up too much memory.
633 		 */
634 		if (signal_pending(current)) {
635 			error = -EINTR;
636 			break;
637 		}
638 
639 		/* Set numa allocation policy based on index */
640 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
641 
642 		/* addr is the offset within the file (zero based) */
643 		addr = index * hpage_size;
644 
645 		/* mutex taken here, fault path and hole punch */
646 		hash = hugetlb_fault_mutex_hash(mapping, index);
647 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
648 
649 		/* See if already present in mapping to avoid alloc/free */
650 		page = find_get_page(mapping, index);
651 		if (page) {
652 			put_page(page);
653 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
654 			hugetlb_drop_vma_policy(&pseudo_vma);
655 			continue;
656 		}
657 
658 		/* Allocate page and add to page cache */
659 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
660 		hugetlb_drop_vma_policy(&pseudo_vma);
661 		if (IS_ERR(page)) {
662 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
663 			error = PTR_ERR(page);
664 			goto out;
665 		}
666 		clear_huge_page(page, addr, pages_per_huge_page(h));
667 		__SetPageUptodate(page);
668 		error = huge_add_to_page_cache(page, mapping, index);
669 		if (unlikely(error)) {
670 			put_page(page);
671 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
672 			goto out;
673 		}
674 
675 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
676 
677 		/*
678 		 * unlock_page because locked by add_to_page_cache()
679 		 * page_put due to reference from alloc_huge_page()
680 		 */
681 		unlock_page(page);
682 		put_page(page);
683 	}
684 
685 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
686 		i_size_write(inode, offset + len);
687 	inode->i_ctime = current_time(inode);
688 out:
689 	inode_unlock(inode);
690 	return error;
691 }
692 
693 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
694 {
695 	struct inode *inode = d_inode(dentry);
696 	struct hstate *h = hstate_inode(inode);
697 	int error;
698 	unsigned int ia_valid = attr->ia_valid;
699 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
700 
701 	BUG_ON(!inode);
702 
703 	error = setattr_prepare(dentry, attr);
704 	if (error)
705 		return error;
706 
707 	if (ia_valid & ATTR_SIZE) {
708 		loff_t oldsize = inode->i_size;
709 		loff_t newsize = attr->ia_size;
710 
711 		if (newsize & ~huge_page_mask(h))
712 			return -EINVAL;
713 		/* protected by i_mutex */
714 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
715 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
716 			return -EPERM;
717 		error = hugetlb_vmtruncate(inode, newsize);
718 		if (error)
719 			return error;
720 	}
721 
722 	setattr_copy(inode, attr);
723 	mark_inode_dirty(inode);
724 	return 0;
725 }
726 
727 static struct inode *hugetlbfs_get_root(struct super_block *sb,
728 					struct hugetlbfs_fs_context *ctx)
729 {
730 	struct inode *inode;
731 
732 	inode = new_inode(sb);
733 	if (inode) {
734 		inode->i_ino = get_next_ino();
735 		inode->i_mode = S_IFDIR | ctx->mode;
736 		inode->i_uid = ctx->uid;
737 		inode->i_gid = ctx->gid;
738 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
739 		inode->i_op = &hugetlbfs_dir_inode_operations;
740 		inode->i_fop = &simple_dir_operations;
741 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
742 		inc_nlink(inode);
743 		lockdep_annotate_inode_mutex_key(inode);
744 	}
745 	return inode;
746 }
747 
748 /*
749  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
750  * be taken from reclaim -- unlike regular filesystems. This needs an
751  * annotation because huge_pmd_share() does an allocation under hugetlb's
752  * i_mmap_rwsem.
753  */
754 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
755 
756 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
757 					struct inode *dir,
758 					umode_t mode, dev_t dev)
759 {
760 	struct inode *inode;
761 	struct resv_map *resv_map = NULL;
762 
763 	/*
764 	 * Reserve maps are only needed for inodes that can have associated
765 	 * page allocations.
766 	 */
767 	if (S_ISREG(mode) || S_ISLNK(mode)) {
768 		resv_map = resv_map_alloc();
769 		if (!resv_map)
770 			return NULL;
771 	}
772 
773 	inode = new_inode(sb);
774 	if (inode) {
775 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
776 
777 		inode->i_ino = get_next_ino();
778 		inode_init_owner(inode, dir, mode);
779 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
780 				&hugetlbfs_i_mmap_rwsem_key);
781 		inode->i_mapping->a_ops = &hugetlbfs_aops;
782 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
783 		inode->i_mapping->private_data = resv_map;
784 		info->seals = F_SEAL_SEAL;
785 		switch (mode & S_IFMT) {
786 		default:
787 			init_special_inode(inode, mode, dev);
788 			break;
789 		case S_IFREG:
790 			inode->i_op = &hugetlbfs_inode_operations;
791 			inode->i_fop = &hugetlbfs_file_operations;
792 			break;
793 		case S_IFDIR:
794 			inode->i_op = &hugetlbfs_dir_inode_operations;
795 			inode->i_fop = &simple_dir_operations;
796 
797 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
798 			inc_nlink(inode);
799 			break;
800 		case S_IFLNK:
801 			inode->i_op = &page_symlink_inode_operations;
802 			inode_nohighmem(inode);
803 			break;
804 		}
805 		lockdep_annotate_inode_mutex_key(inode);
806 	} else {
807 		if (resv_map)
808 			kref_put(&resv_map->refs, resv_map_release);
809 	}
810 
811 	return inode;
812 }
813 
814 /*
815  * File creation. Allocate an inode, and we're done..
816  */
817 static int do_hugetlbfs_mknod(struct inode *dir,
818 			struct dentry *dentry,
819 			umode_t mode,
820 			dev_t dev,
821 			bool tmpfile)
822 {
823 	struct inode *inode;
824 	int error = -ENOSPC;
825 
826 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
827 	if (inode) {
828 		dir->i_ctime = dir->i_mtime = current_time(dir);
829 		if (tmpfile) {
830 			d_tmpfile(dentry, inode);
831 		} else {
832 			d_instantiate(dentry, inode);
833 			dget(dentry);/* Extra count - pin the dentry in core */
834 		}
835 		error = 0;
836 	}
837 	return error;
838 }
839 
840 static int hugetlbfs_mknod(struct inode *dir,
841 			struct dentry *dentry, umode_t mode, dev_t dev)
842 {
843 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
844 }
845 
846 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
847 {
848 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
849 	if (!retval)
850 		inc_nlink(dir);
851 	return retval;
852 }
853 
854 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
855 {
856 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
857 }
858 
859 static int hugetlbfs_tmpfile(struct inode *dir,
860 			struct dentry *dentry, umode_t mode)
861 {
862 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
863 }
864 
865 static int hugetlbfs_symlink(struct inode *dir,
866 			struct dentry *dentry, const char *symname)
867 {
868 	struct inode *inode;
869 	int error = -ENOSPC;
870 
871 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
872 	if (inode) {
873 		int l = strlen(symname)+1;
874 		error = page_symlink(inode, symname, l);
875 		if (!error) {
876 			d_instantiate(dentry, inode);
877 			dget(dentry);
878 		} else
879 			iput(inode);
880 	}
881 	dir->i_ctime = dir->i_mtime = current_time(dir);
882 
883 	return error;
884 }
885 
886 /*
887  * mark the head page dirty
888  */
889 static int hugetlbfs_set_page_dirty(struct page *page)
890 {
891 	struct page *head = compound_head(page);
892 
893 	SetPageDirty(head);
894 	return 0;
895 }
896 
897 static int hugetlbfs_migrate_page(struct address_space *mapping,
898 				struct page *newpage, struct page *page,
899 				enum migrate_mode mode)
900 {
901 	int rc;
902 
903 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
904 	if (rc != MIGRATEPAGE_SUCCESS)
905 		return rc;
906 
907 	/*
908 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
909 	 * new page.  PagePrivate is not associated with page_private for
910 	 * hugetlb pages and can not be set here as only page_huge_active
911 	 * pages can be migrated.
912 	 */
913 	if (page_private(page)) {
914 		set_page_private(newpage, page_private(page));
915 		set_page_private(page, 0);
916 	}
917 
918 	if (mode != MIGRATE_SYNC_NO_COPY)
919 		migrate_page_copy(newpage, page);
920 	else
921 		migrate_page_states(newpage, page);
922 
923 	return MIGRATEPAGE_SUCCESS;
924 }
925 
926 static int hugetlbfs_error_remove_page(struct address_space *mapping,
927 				struct page *page)
928 {
929 	struct inode *inode = mapping->host;
930 	pgoff_t index = page->index;
931 
932 	remove_huge_page(page);
933 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
934 		hugetlb_fix_reserve_counts(inode);
935 
936 	return 0;
937 }
938 
939 /*
940  * Display the mount options in /proc/mounts.
941  */
942 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
943 {
944 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
945 	struct hugepage_subpool *spool = sbinfo->spool;
946 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
947 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
948 	char mod;
949 
950 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
951 		seq_printf(m, ",uid=%u",
952 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
953 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
954 		seq_printf(m, ",gid=%u",
955 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
956 	if (sbinfo->mode != 0755)
957 		seq_printf(m, ",mode=%o", sbinfo->mode);
958 	if (sbinfo->max_inodes != -1)
959 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
960 
961 	hpage_size /= 1024;
962 	mod = 'K';
963 	if (hpage_size >= 1024) {
964 		hpage_size /= 1024;
965 		mod = 'M';
966 	}
967 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
968 	if (spool) {
969 		if (spool->max_hpages != -1)
970 			seq_printf(m, ",size=%llu",
971 				   (unsigned long long)spool->max_hpages << hpage_shift);
972 		if (spool->min_hpages != -1)
973 			seq_printf(m, ",min_size=%llu",
974 				   (unsigned long long)spool->min_hpages << hpage_shift);
975 	}
976 	return 0;
977 }
978 
979 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
980 {
981 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
982 	struct hstate *h = hstate_inode(d_inode(dentry));
983 
984 	buf->f_type = HUGETLBFS_MAGIC;
985 	buf->f_bsize = huge_page_size(h);
986 	if (sbinfo) {
987 		spin_lock(&sbinfo->stat_lock);
988 		/* If no limits set, just report 0 for max/free/used
989 		 * blocks, like simple_statfs() */
990 		if (sbinfo->spool) {
991 			long free_pages;
992 
993 			spin_lock(&sbinfo->spool->lock);
994 			buf->f_blocks = sbinfo->spool->max_hpages;
995 			free_pages = sbinfo->spool->max_hpages
996 				- sbinfo->spool->used_hpages;
997 			buf->f_bavail = buf->f_bfree = free_pages;
998 			spin_unlock(&sbinfo->spool->lock);
999 			buf->f_files = sbinfo->max_inodes;
1000 			buf->f_ffree = sbinfo->free_inodes;
1001 		}
1002 		spin_unlock(&sbinfo->stat_lock);
1003 	}
1004 	buf->f_namelen = NAME_MAX;
1005 	return 0;
1006 }
1007 
1008 static void hugetlbfs_put_super(struct super_block *sb)
1009 {
1010 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1011 
1012 	if (sbi) {
1013 		sb->s_fs_info = NULL;
1014 
1015 		if (sbi->spool)
1016 			hugepage_put_subpool(sbi->spool);
1017 
1018 		kfree(sbi);
1019 	}
1020 }
1021 
1022 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1023 {
1024 	if (sbinfo->free_inodes >= 0) {
1025 		spin_lock(&sbinfo->stat_lock);
1026 		if (unlikely(!sbinfo->free_inodes)) {
1027 			spin_unlock(&sbinfo->stat_lock);
1028 			return 0;
1029 		}
1030 		sbinfo->free_inodes--;
1031 		spin_unlock(&sbinfo->stat_lock);
1032 	}
1033 
1034 	return 1;
1035 }
1036 
1037 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1038 {
1039 	if (sbinfo->free_inodes >= 0) {
1040 		spin_lock(&sbinfo->stat_lock);
1041 		sbinfo->free_inodes++;
1042 		spin_unlock(&sbinfo->stat_lock);
1043 	}
1044 }
1045 
1046 
1047 static struct kmem_cache *hugetlbfs_inode_cachep;
1048 
1049 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1050 {
1051 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1052 	struct hugetlbfs_inode_info *p;
1053 
1054 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1055 		return NULL;
1056 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1057 	if (unlikely(!p)) {
1058 		hugetlbfs_inc_free_inodes(sbinfo);
1059 		return NULL;
1060 	}
1061 
1062 	/*
1063 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1064 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1065 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1066 	 * in case of a quick call to destroy.
1067 	 *
1068 	 * Note that the policy is initialized even if we are creating a
1069 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1070 	 */
1071 	mpol_shared_policy_init(&p->policy, NULL);
1072 
1073 	return &p->vfs_inode;
1074 }
1075 
1076 static void hugetlbfs_free_inode(struct inode *inode)
1077 {
1078 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1079 }
1080 
1081 static void hugetlbfs_destroy_inode(struct inode *inode)
1082 {
1083 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1084 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1085 }
1086 
1087 static const struct address_space_operations hugetlbfs_aops = {
1088 	.write_begin	= hugetlbfs_write_begin,
1089 	.write_end	= hugetlbfs_write_end,
1090 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1091 	.migratepage    = hugetlbfs_migrate_page,
1092 	.error_remove_page	= hugetlbfs_error_remove_page,
1093 };
1094 
1095 
1096 static void init_once(void *foo)
1097 {
1098 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1099 
1100 	inode_init_once(&ei->vfs_inode);
1101 }
1102 
1103 const struct file_operations hugetlbfs_file_operations = {
1104 	.read_iter		= hugetlbfs_read_iter,
1105 	.mmap			= hugetlbfs_file_mmap,
1106 	.fsync			= noop_fsync,
1107 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1108 	.llseek			= default_llseek,
1109 	.fallocate		= hugetlbfs_fallocate,
1110 };
1111 
1112 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1113 	.create		= hugetlbfs_create,
1114 	.lookup		= simple_lookup,
1115 	.link		= simple_link,
1116 	.unlink		= simple_unlink,
1117 	.symlink	= hugetlbfs_symlink,
1118 	.mkdir		= hugetlbfs_mkdir,
1119 	.rmdir		= simple_rmdir,
1120 	.mknod		= hugetlbfs_mknod,
1121 	.rename		= simple_rename,
1122 	.setattr	= hugetlbfs_setattr,
1123 	.tmpfile	= hugetlbfs_tmpfile,
1124 };
1125 
1126 static const struct inode_operations hugetlbfs_inode_operations = {
1127 	.setattr	= hugetlbfs_setattr,
1128 };
1129 
1130 static const struct super_operations hugetlbfs_ops = {
1131 	.alloc_inode    = hugetlbfs_alloc_inode,
1132 	.free_inode     = hugetlbfs_free_inode,
1133 	.destroy_inode  = hugetlbfs_destroy_inode,
1134 	.evict_inode	= hugetlbfs_evict_inode,
1135 	.statfs		= hugetlbfs_statfs,
1136 	.put_super	= hugetlbfs_put_super,
1137 	.show_options	= hugetlbfs_show_options,
1138 };
1139 
1140 /*
1141  * Convert size option passed from command line to number of huge pages
1142  * in the pool specified by hstate.  Size option could be in bytes
1143  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1144  */
1145 static long
1146 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1147 			 enum hugetlbfs_size_type val_type)
1148 {
1149 	if (val_type == NO_SIZE)
1150 		return -1;
1151 
1152 	if (val_type == SIZE_PERCENT) {
1153 		size_opt <<= huge_page_shift(h);
1154 		size_opt *= h->max_huge_pages;
1155 		do_div(size_opt, 100);
1156 	}
1157 
1158 	size_opt >>= huge_page_shift(h);
1159 	return size_opt;
1160 }
1161 
1162 /*
1163  * Parse one mount parameter.
1164  */
1165 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1166 {
1167 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1168 	struct fs_parse_result result;
1169 	char *rest;
1170 	unsigned long ps;
1171 	int opt;
1172 
1173 	opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result);
1174 	if (opt < 0)
1175 		return opt;
1176 
1177 	switch (opt) {
1178 	case Opt_uid:
1179 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1180 		if (!uid_valid(ctx->uid))
1181 			goto bad_val;
1182 		return 0;
1183 
1184 	case Opt_gid:
1185 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1186 		if (!gid_valid(ctx->gid))
1187 			goto bad_val;
1188 		return 0;
1189 
1190 	case Opt_mode:
1191 		ctx->mode = result.uint_32 & 01777U;
1192 		return 0;
1193 
1194 	case Opt_size:
1195 		/* memparse() will accept a K/M/G without a digit */
1196 		if (!isdigit(param->string[0]))
1197 			goto bad_val;
1198 		ctx->max_size_opt = memparse(param->string, &rest);
1199 		ctx->max_val_type = SIZE_STD;
1200 		if (*rest == '%')
1201 			ctx->max_val_type = SIZE_PERCENT;
1202 		return 0;
1203 
1204 	case Opt_nr_inodes:
1205 		/* memparse() will accept a K/M/G without a digit */
1206 		if (!isdigit(param->string[0]))
1207 			goto bad_val;
1208 		ctx->nr_inodes = memparse(param->string, &rest);
1209 		return 0;
1210 
1211 	case Opt_pagesize:
1212 		ps = memparse(param->string, &rest);
1213 		ctx->hstate = size_to_hstate(ps);
1214 		if (!ctx->hstate) {
1215 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1216 			return -EINVAL;
1217 		}
1218 		return 0;
1219 
1220 	case Opt_min_size:
1221 		/* memparse() will accept a K/M/G without a digit */
1222 		if (!isdigit(param->string[0]))
1223 			goto bad_val;
1224 		ctx->min_size_opt = memparse(param->string, &rest);
1225 		ctx->min_val_type = SIZE_STD;
1226 		if (*rest == '%')
1227 			ctx->min_val_type = SIZE_PERCENT;
1228 		return 0;
1229 
1230 	default:
1231 		return -EINVAL;
1232 	}
1233 
1234 bad_val:
1235 	return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n",
1236 		      param->string, param->key);
1237 }
1238 
1239 /*
1240  * Validate the parsed options.
1241  */
1242 static int hugetlbfs_validate(struct fs_context *fc)
1243 {
1244 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1245 
1246 	/*
1247 	 * Use huge page pool size (in hstate) to convert the size
1248 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1249 	 */
1250 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1251 						   ctx->max_size_opt,
1252 						   ctx->max_val_type);
1253 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1254 						   ctx->min_size_opt,
1255 						   ctx->min_val_type);
1256 
1257 	/*
1258 	 * If max_size was specified, then min_size must be smaller
1259 	 */
1260 	if (ctx->max_val_type > NO_SIZE &&
1261 	    ctx->min_hpages > ctx->max_hpages) {
1262 		pr_err("Minimum size can not be greater than maximum size\n");
1263 		return -EINVAL;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static int
1270 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1271 {
1272 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1273 	struct hugetlbfs_sb_info *sbinfo;
1274 
1275 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1276 	if (!sbinfo)
1277 		return -ENOMEM;
1278 	sb->s_fs_info = sbinfo;
1279 	spin_lock_init(&sbinfo->stat_lock);
1280 	sbinfo->hstate		= ctx->hstate;
1281 	sbinfo->max_inodes	= ctx->nr_inodes;
1282 	sbinfo->free_inodes	= ctx->nr_inodes;
1283 	sbinfo->spool		= NULL;
1284 	sbinfo->uid		= ctx->uid;
1285 	sbinfo->gid		= ctx->gid;
1286 	sbinfo->mode		= ctx->mode;
1287 
1288 	/*
1289 	 * Allocate and initialize subpool if maximum or minimum size is
1290 	 * specified.  Any needed reservations (for minimim size) are taken
1291 	 * taken when the subpool is created.
1292 	 */
1293 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1294 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1295 						     ctx->max_hpages,
1296 						     ctx->min_hpages);
1297 		if (!sbinfo->spool)
1298 			goto out_free;
1299 	}
1300 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1301 	sb->s_blocksize = huge_page_size(ctx->hstate);
1302 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1303 	sb->s_magic = HUGETLBFS_MAGIC;
1304 	sb->s_op = &hugetlbfs_ops;
1305 	sb->s_time_gran = 1;
1306 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1307 	if (!sb->s_root)
1308 		goto out_free;
1309 	return 0;
1310 out_free:
1311 	kfree(sbinfo->spool);
1312 	kfree(sbinfo);
1313 	return -ENOMEM;
1314 }
1315 
1316 static int hugetlbfs_get_tree(struct fs_context *fc)
1317 {
1318 	int err = hugetlbfs_validate(fc);
1319 	if (err)
1320 		return err;
1321 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1322 }
1323 
1324 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1325 {
1326 	kfree(fc->fs_private);
1327 }
1328 
1329 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1330 	.free		= hugetlbfs_fs_context_free,
1331 	.parse_param	= hugetlbfs_parse_param,
1332 	.get_tree	= hugetlbfs_get_tree,
1333 };
1334 
1335 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1336 {
1337 	struct hugetlbfs_fs_context *ctx;
1338 
1339 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1340 	if (!ctx)
1341 		return -ENOMEM;
1342 
1343 	ctx->max_hpages	= -1; /* No limit on size by default */
1344 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1345 	ctx->uid	= current_fsuid();
1346 	ctx->gid	= current_fsgid();
1347 	ctx->mode	= 0755;
1348 	ctx->hstate	= &default_hstate;
1349 	ctx->min_hpages	= -1; /* No default minimum size */
1350 	ctx->max_val_type = NO_SIZE;
1351 	ctx->min_val_type = NO_SIZE;
1352 	fc->fs_private = ctx;
1353 	fc->ops	= &hugetlbfs_fs_context_ops;
1354 	return 0;
1355 }
1356 
1357 static struct file_system_type hugetlbfs_fs_type = {
1358 	.name			= "hugetlbfs",
1359 	.init_fs_context	= hugetlbfs_init_fs_context,
1360 	.parameters		= &hugetlb_fs_parameters,
1361 	.kill_sb		= kill_litter_super,
1362 };
1363 
1364 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1365 
1366 static int can_do_hugetlb_shm(void)
1367 {
1368 	kgid_t shm_group;
1369 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1370 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1371 }
1372 
1373 static int get_hstate_idx(int page_size_log)
1374 {
1375 	struct hstate *h = hstate_sizelog(page_size_log);
1376 
1377 	if (!h)
1378 		return -1;
1379 	return h - hstates;
1380 }
1381 
1382 /*
1383  * Note that size should be aligned to proper hugepage size in caller side,
1384  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1385  */
1386 struct file *hugetlb_file_setup(const char *name, size_t size,
1387 				vm_flags_t acctflag, struct user_struct **user,
1388 				int creat_flags, int page_size_log)
1389 {
1390 	struct inode *inode;
1391 	struct vfsmount *mnt;
1392 	int hstate_idx;
1393 	struct file *file;
1394 
1395 	hstate_idx = get_hstate_idx(page_size_log);
1396 	if (hstate_idx < 0)
1397 		return ERR_PTR(-ENODEV);
1398 
1399 	*user = NULL;
1400 	mnt = hugetlbfs_vfsmount[hstate_idx];
1401 	if (!mnt)
1402 		return ERR_PTR(-ENOENT);
1403 
1404 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1405 		*user = current_user();
1406 		if (user_shm_lock(size, *user)) {
1407 			task_lock(current);
1408 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1409 				current->comm, current->pid);
1410 			task_unlock(current);
1411 		} else {
1412 			*user = NULL;
1413 			return ERR_PTR(-EPERM);
1414 		}
1415 	}
1416 
1417 	file = ERR_PTR(-ENOSPC);
1418 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1419 	if (!inode)
1420 		goto out;
1421 	if (creat_flags == HUGETLB_SHMFS_INODE)
1422 		inode->i_flags |= S_PRIVATE;
1423 
1424 	inode->i_size = size;
1425 	clear_nlink(inode);
1426 
1427 	if (hugetlb_reserve_pages(inode, 0,
1428 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1429 			acctflag))
1430 		file = ERR_PTR(-ENOMEM);
1431 	else
1432 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1433 					&hugetlbfs_file_operations);
1434 	if (!IS_ERR(file))
1435 		return file;
1436 
1437 	iput(inode);
1438 out:
1439 	if (*user) {
1440 		user_shm_unlock(size, *user);
1441 		*user = NULL;
1442 	}
1443 	return file;
1444 }
1445 
1446 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1447 {
1448 	struct fs_context *fc;
1449 	struct vfsmount *mnt;
1450 
1451 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1452 	if (IS_ERR(fc)) {
1453 		mnt = ERR_CAST(fc);
1454 	} else {
1455 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1456 		ctx->hstate = h;
1457 		mnt = fc_mount(fc);
1458 		put_fs_context(fc);
1459 	}
1460 	if (IS_ERR(mnt))
1461 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1462 		       1U << (h->order + PAGE_SHIFT - 10));
1463 	return mnt;
1464 }
1465 
1466 static int __init init_hugetlbfs_fs(void)
1467 {
1468 	struct vfsmount *mnt;
1469 	struct hstate *h;
1470 	int error;
1471 	int i;
1472 
1473 	if (!hugepages_supported()) {
1474 		pr_info("disabling because there are no supported hugepage sizes\n");
1475 		return -ENOTSUPP;
1476 	}
1477 
1478 	error = -ENOMEM;
1479 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1480 					sizeof(struct hugetlbfs_inode_info),
1481 					0, SLAB_ACCOUNT, init_once);
1482 	if (hugetlbfs_inode_cachep == NULL)
1483 		goto out;
1484 
1485 	error = register_filesystem(&hugetlbfs_fs_type);
1486 	if (error)
1487 		goto out_free;
1488 
1489 	/* default hstate mount is required */
1490 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1491 	if (IS_ERR(mnt)) {
1492 		error = PTR_ERR(mnt);
1493 		goto out_unreg;
1494 	}
1495 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1496 
1497 	/* other hstates are optional */
1498 	i = 0;
1499 	for_each_hstate(h) {
1500 		if (i == default_hstate_idx) {
1501 			i++;
1502 			continue;
1503 		}
1504 
1505 		mnt = mount_one_hugetlbfs(h);
1506 		if (IS_ERR(mnt))
1507 			hugetlbfs_vfsmount[i] = NULL;
1508 		else
1509 			hugetlbfs_vfsmount[i] = mnt;
1510 		i++;
1511 	}
1512 
1513 	return 0;
1514 
1515  out_unreg:
1516 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1517  out_free:
1518 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1519  out:
1520 	return error;
1521 }
1522 fs_initcall(init_hugetlbfs_fs)
1523