1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 struct hstate *hstate; 50 long max_hpages; 51 long nr_inodes; 52 long min_hpages; 53 kuid_t uid; 54 kgid_t gid; 55 umode_t mode; 56 }; 57 58 int sysctl_hugetlb_shm_group; 59 60 enum { 61 Opt_size, Opt_nr_inodes, 62 Opt_mode, Opt_uid, Opt_gid, 63 Opt_pagesize, Opt_min_size, 64 Opt_err, 65 }; 66 67 static const match_table_t tokens = { 68 {Opt_size, "size=%s"}, 69 {Opt_nr_inodes, "nr_inodes=%s"}, 70 {Opt_mode, "mode=%o"}, 71 {Opt_uid, "uid=%u"}, 72 {Opt_gid, "gid=%u"}, 73 {Opt_pagesize, "pagesize=%s"}, 74 {Opt_min_size, "min_size=%s"}, 75 {Opt_err, NULL}, 76 }; 77 78 #ifdef CONFIG_NUMA 79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 80 struct inode *inode, pgoff_t index) 81 { 82 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 83 index); 84 } 85 86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 87 { 88 mpol_cond_put(vma->vm_policy); 89 } 90 #else 91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 92 struct inode *inode, pgoff_t index) 93 { 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 } 99 #endif 100 101 static void huge_pagevec_release(struct pagevec *pvec) 102 { 103 int i; 104 105 for (i = 0; i < pagevec_count(pvec); ++i) 106 put_page(pvec->pages[i]); 107 108 pagevec_reinit(pvec); 109 } 110 111 /* 112 * Mask used when checking the page offset value passed in via system 113 * calls. This value will be converted to a loff_t which is signed. 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 115 * value. The extra bit (- 1 in the shift value) is to take the sign 116 * bit into account. 117 */ 118 #define PGOFF_LOFFT_MAX \ 119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 /* 140 * page based offset in vm_pgoff could be sufficiently large to 141 * overflow a loff_t when converted to byte offset. This can 142 * only happen on architectures where sizeof(loff_t) == 143 * sizeof(unsigned long). So, only check in those instances. 144 */ 145 if (sizeof(unsigned long) == sizeof(loff_t)) { 146 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 147 return -EINVAL; 148 } 149 150 /* must be huge page aligned */ 151 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 152 return -EINVAL; 153 154 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 155 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 156 /* check for overflow */ 157 if (len < vma_len) 158 return -EINVAL; 159 160 inode_lock(inode); 161 file_accessed(file); 162 163 ret = -ENOMEM; 164 if (hugetlb_reserve_pages(inode, 165 vma->vm_pgoff >> huge_page_order(h), 166 len >> huge_page_shift(h), vma, 167 vma->vm_flags)) 168 goto out; 169 170 ret = 0; 171 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 172 i_size_write(inode, len); 173 out: 174 inode_unlock(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called under down_write(mmap_sem). 181 */ 182 183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 184 static unsigned long 185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 186 unsigned long len, unsigned long pgoff, unsigned long flags) 187 { 188 struct mm_struct *mm = current->mm; 189 struct vm_area_struct *vma; 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 if (len & ~huge_page_mask(h)) 194 return -EINVAL; 195 if (len > TASK_SIZE) 196 return -ENOMEM; 197 198 if (flags & MAP_FIXED) { 199 if (prepare_hugepage_range(file, addr, len)) 200 return -EINVAL; 201 return addr; 202 } 203 204 if (addr) { 205 addr = ALIGN(addr, huge_page_size(h)); 206 vma = find_vma(mm, addr); 207 if (TASK_SIZE - len >= addr && 208 (!vma || addr + len <= vm_start_gap(vma))) 209 return addr; 210 } 211 212 info.flags = 0; 213 info.length = len; 214 info.low_limit = TASK_UNMAPPED_BASE; 215 info.high_limit = TASK_SIZE; 216 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 217 info.align_offset = 0; 218 return vm_unmapped_area(&info); 219 } 220 #endif 221 222 static size_t 223 hugetlbfs_read_actor(struct page *page, unsigned long offset, 224 struct iov_iter *to, unsigned long size) 225 { 226 size_t copied = 0; 227 int i, chunksize; 228 229 /* Find which 4k chunk and offset with in that chunk */ 230 i = offset >> PAGE_SHIFT; 231 offset = offset & ~PAGE_MASK; 232 233 while (size) { 234 size_t n; 235 chunksize = PAGE_SIZE; 236 if (offset) 237 chunksize -= offset; 238 if (chunksize > size) 239 chunksize = size; 240 n = copy_page_to_iter(&page[i], offset, chunksize, to); 241 copied += n; 242 if (n != chunksize) 243 return copied; 244 offset = 0; 245 size -= chunksize; 246 i++; 247 } 248 return copied; 249 } 250 251 /* 252 * Support for read() - Find the page attached to f_mapping and copy out the 253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 254 * since it has PAGE_SIZE assumptions. 255 */ 256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 257 { 258 struct file *file = iocb->ki_filp; 259 struct hstate *h = hstate_file(file); 260 struct address_space *mapping = file->f_mapping; 261 struct inode *inode = mapping->host; 262 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 263 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 264 unsigned long end_index; 265 loff_t isize; 266 ssize_t retval = 0; 267 268 while (iov_iter_count(to)) { 269 struct page *page; 270 size_t nr, copied; 271 272 /* nr is the maximum number of bytes to copy from this page */ 273 nr = huge_page_size(h); 274 isize = i_size_read(inode); 275 if (!isize) 276 break; 277 end_index = (isize - 1) >> huge_page_shift(h); 278 if (index > end_index) 279 break; 280 if (index == end_index) { 281 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 282 if (nr <= offset) 283 break; 284 } 285 nr = nr - offset; 286 287 /* Find the page */ 288 page = find_lock_page(mapping, index); 289 if (unlikely(page == NULL)) { 290 /* 291 * We have a HOLE, zero out the user-buffer for the 292 * length of the hole or request. 293 */ 294 copied = iov_iter_zero(nr, to); 295 } else { 296 unlock_page(page); 297 298 /* 299 * We have the page, copy it to user space buffer. 300 */ 301 copied = hugetlbfs_read_actor(page, offset, to, nr); 302 put_page(page); 303 } 304 offset += copied; 305 retval += copied; 306 if (copied != nr && iov_iter_count(to)) { 307 if (!retval) 308 retval = -EFAULT; 309 break; 310 } 311 index += offset >> huge_page_shift(h); 312 offset &= ~huge_page_mask(h); 313 } 314 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 315 return retval; 316 } 317 318 static int hugetlbfs_write_begin(struct file *file, 319 struct address_space *mapping, 320 loff_t pos, unsigned len, unsigned flags, 321 struct page **pagep, void **fsdata) 322 { 323 return -EINVAL; 324 } 325 326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 327 loff_t pos, unsigned len, unsigned copied, 328 struct page *page, void *fsdata) 329 { 330 BUG(); 331 return -EINVAL; 332 } 333 334 static void remove_huge_page(struct page *page) 335 { 336 ClearPageDirty(page); 337 ClearPageUptodate(page); 338 delete_from_page_cache(page); 339 } 340 341 static void 342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 343 { 344 struct vm_area_struct *vma; 345 346 /* 347 * end == 0 indicates that the entire range after 348 * start should be unmapped. 349 */ 350 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 351 unsigned long v_offset; 352 unsigned long v_end; 353 354 /* 355 * Can the expression below overflow on 32-bit arches? 356 * No, because the interval tree returns us only those vmas 357 * which overlap the truncated area starting at pgoff, 358 * and no vma on a 32-bit arch can span beyond the 4GB. 359 */ 360 if (vma->vm_pgoff < start) 361 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 362 else 363 v_offset = 0; 364 365 if (!end) 366 v_end = vma->vm_end; 367 else { 368 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 369 + vma->vm_start; 370 if (v_end > vma->vm_end) 371 v_end = vma->vm_end; 372 } 373 374 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 375 NULL); 376 } 377 } 378 379 /* 380 * remove_inode_hugepages handles two distinct cases: truncation and hole 381 * punch. There are subtle differences in operation for each case. 382 * 383 * truncation is indicated by end of range being LLONG_MAX 384 * In this case, we first scan the range and release found pages. 385 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 386 * maps and global counts. Page faults can not race with truncation 387 * in this routine. hugetlb_no_page() prevents page faults in the 388 * truncated range. It checks i_size before allocation, and again after 389 * with the page table lock for the page held. The same lock must be 390 * acquired to unmap a page. 391 * hole punch is indicated if end is not LLONG_MAX 392 * In the hole punch case we scan the range and release found pages. 393 * Only when releasing a page is the associated region/reserv map 394 * deleted. The region/reserv map for ranges without associated 395 * pages are not modified. Page faults can race with hole punch. 396 * This is indicated if we find a mapped page. 397 * Note: If the passed end of range value is beyond the end of file, but 398 * not LLONG_MAX this routine still performs a hole punch operation. 399 */ 400 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 401 loff_t lend) 402 { 403 struct hstate *h = hstate_inode(inode); 404 struct address_space *mapping = &inode->i_data; 405 const pgoff_t start = lstart >> huge_page_shift(h); 406 const pgoff_t end = lend >> huge_page_shift(h); 407 struct vm_area_struct pseudo_vma; 408 struct pagevec pvec; 409 pgoff_t next, index; 410 int i, freed = 0; 411 bool truncate_op = (lend == LLONG_MAX); 412 413 vma_init(&pseudo_vma, current->mm); 414 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 415 pagevec_init(&pvec); 416 next = start; 417 while (next < end) { 418 /* 419 * When no more pages are found, we are done. 420 */ 421 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 422 break; 423 424 for (i = 0; i < pagevec_count(&pvec); ++i) { 425 struct page *page = pvec.pages[i]; 426 u32 hash; 427 428 index = page->index; 429 hash = hugetlb_fault_mutex_hash(h, current->mm, 430 &pseudo_vma, 431 mapping, index, 0); 432 mutex_lock(&hugetlb_fault_mutex_table[hash]); 433 434 /* 435 * If page is mapped, it was faulted in after being 436 * unmapped in caller. Unmap (again) now after taking 437 * the fault mutex. The mutex will prevent faults 438 * until we finish removing the page. 439 * 440 * This race can only happen in the hole punch case. 441 * Getting here in a truncate operation is a bug. 442 */ 443 if (unlikely(page_mapped(page))) { 444 BUG_ON(truncate_op); 445 446 i_mmap_lock_write(mapping); 447 hugetlb_vmdelete_list(&mapping->i_mmap, 448 index * pages_per_huge_page(h), 449 (index + 1) * pages_per_huge_page(h)); 450 i_mmap_unlock_write(mapping); 451 } 452 453 lock_page(page); 454 /* 455 * We must free the huge page and remove from page 456 * cache (remove_huge_page) BEFORE removing the 457 * region/reserve map (hugetlb_unreserve_pages). In 458 * rare out of memory conditions, removal of the 459 * region/reserve map could fail. Correspondingly, 460 * the subpool and global reserve usage count can need 461 * to be adjusted. 462 */ 463 VM_BUG_ON(PagePrivate(page)); 464 remove_huge_page(page); 465 freed++; 466 if (!truncate_op) { 467 if (unlikely(hugetlb_unreserve_pages(inode, 468 index, index + 1, 1))) 469 hugetlb_fix_reserve_counts(inode); 470 } 471 472 unlock_page(page); 473 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 474 } 475 huge_pagevec_release(&pvec); 476 cond_resched(); 477 } 478 479 if (truncate_op) 480 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 481 } 482 483 static void hugetlbfs_evict_inode(struct inode *inode) 484 { 485 struct resv_map *resv_map; 486 487 remove_inode_hugepages(inode, 0, LLONG_MAX); 488 resv_map = (struct resv_map *)inode->i_mapping->private_data; 489 /* root inode doesn't have the resv_map, so we should check it */ 490 if (resv_map) 491 resv_map_release(&resv_map->refs); 492 clear_inode(inode); 493 } 494 495 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 496 { 497 pgoff_t pgoff; 498 struct address_space *mapping = inode->i_mapping; 499 struct hstate *h = hstate_inode(inode); 500 501 BUG_ON(offset & ~huge_page_mask(h)); 502 pgoff = offset >> PAGE_SHIFT; 503 504 i_size_write(inode, offset); 505 i_mmap_lock_write(mapping); 506 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 507 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 508 i_mmap_unlock_write(mapping); 509 remove_inode_hugepages(inode, offset, LLONG_MAX); 510 return 0; 511 } 512 513 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 514 { 515 struct hstate *h = hstate_inode(inode); 516 loff_t hpage_size = huge_page_size(h); 517 loff_t hole_start, hole_end; 518 519 /* 520 * For hole punch round up the beginning offset of the hole and 521 * round down the end. 522 */ 523 hole_start = round_up(offset, hpage_size); 524 hole_end = round_down(offset + len, hpage_size); 525 526 if (hole_end > hole_start) { 527 struct address_space *mapping = inode->i_mapping; 528 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 529 530 inode_lock(inode); 531 532 /* protected by i_mutex */ 533 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 534 inode_unlock(inode); 535 return -EPERM; 536 } 537 538 i_mmap_lock_write(mapping); 539 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 540 hugetlb_vmdelete_list(&mapping->i_mmap, 541 hole_start >> PAGE_SHIFT, 542 hole_end >> PAGE_SHIFT); 543 i_mmap_unlock_write(mapping); 544 remove_inode_hugepages(inode, hole_start, hole_end); 545 inode_unlock(inode); 546 } 547 548 return 0; 549 } 550 551 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 552 loff_t len) 553 { 554 struct inode *inode = file_inode(file); 555 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 556 struct address_space *mapping = inode->i_mapping; 557 struct hstate *h = hstate_inode(inode); 558 struct vm_area_struct pseudo_vma; 559 struct mm_struct *mm = current->mm; 560 loff_t hpage_size = huge_page_size(h); 561 unsigned long hpage_shift = huge_page_shift(h); 562 pgoff_t start, index, end; 563 int error; 564 u32 hash; 565 566 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 567 return -EOPNOTSUPP; 568 569 if (mode & FALLOC_FL_PUNCH_HOLE) 570 return hugetlbfs_punch_hole(inode, offset, len); 571 572 /* 573 * Default preallocate case. 574 * For this range, start is rounded down and end is rounded up 575 * as well as being converted to page offsets. 576 */ 577 start = offset >> hpage_shift; 578 end = (offset + len + hpage_size - 1) >> hpage_shift; 579 580 inode_lock(inode); 581 582 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 583 error = inode_newsize_ok(inode, offset + len); 584 if (error) 585 goto out; 586 587 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 588 error = -EPERM; 589 goto out; 590 } 591 592 /* 593 * Initialize a pseudo vma as this is required by the huge page 594 * allocation routines. If NUMA is configured, use page index 595 * as input to create an allocation policy. 596 */ 597 vma_init(&pseudo_vma, mm); 598 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 599 pseudo_vma.vm_file = file; 600 601 for (index = start; index < end; index++) { 602 /* 603 * This is supposed to be the vaddr where the page is being 604 * faulted in, but we have no vaddr here. 605 */ 606 struct page *page; 607 unsigned long addr; 608 int avoid_reserve = 0; 609 610 cond_resched(); 611 612 /* 613 * fallocate(2) manpage permits EINTR; we may have been 614 * interrupted because we are using up too much memory. 615 */ 616 if (signal_pending(current)) { 617 error = -EINTR; 618 break; 619 } 620 621 /* Set numa allocation policy based on index */ 622 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 623 624 /* addr is the offset within the file (zero based) */ 625 addr = index * hpage_size; 626 627 /* mutex taken here, fault path and hole punch */ 628 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 629 index, addr); 630 mutex_lock(&hugetlb_fault_mutex_table[hash]); 631 632 /* See if already present in mapping to avoid alloc/free */ 633 page = find_get_page(mapping, index); 634 if (page) { 635 put_page(page); 636 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 637 hugetlb_drop_vma_policy(&pseudo_vma); 638 continue; 639 } 640 641 /* Allocate page and add to page cache */ 642 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 643 hugetlb_drop_vma_policy(&pseudo_vma); 644 if (IS_ERR(page)) { 645 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 646 error = PTR_ERR(page); 647 goto out; 648 } 649 clear_huge_page(page, addr, pages_per_huge_page(h)); 650 __SetPageUptodate(page); 651 error = huge_add_to_page_cache(page, mapping, index); 652 if (unlikely(error)) { 653 put_page(page); 654 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 655 goto out; 656 } 657 658 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 659 660 /* 661 * unlock_page because locked by add_to_page_cache() 662 * page_put due to reference from alloc_huge_page() 663 */ 664 unlock_page(page); 665 put_page(page); 666 } 667 668 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 669 i_size_write(inode, offset + len); 670 inode->i_ctime = current_time(inode); 671 out: 672 inode_unlock(inode); 673 return error; 674 } 675 676 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 677 { 678 struct inode *inode = d_inode(dentry); 679 struct hstate *h = hstate_inode(inode); 680 int error; 681 unsigned int ia_valid = attr->ia_valid; 682 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 683 684 BUG_ON(!inode); 685 686 error = setattr_prepare(dentry, attr); 687 if (error) 688 return error; 689 690 if (ia_valid & ATTR_SIZE) { 691 loff_t oldsize = inode->i_size; 692 loff_t newsize = attr->ia_size; 693 694 if (newsize & ~huge_page_mask(h)) 695 return -EINVAL; 696 /* protected by i_mutex */ 697 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 698 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 699 return -EPERM; 700 error = hugetlb_vmtruncate(inode, newsize); 701 if (error) 702 return error; 703 } 704 705 setattr_copy(inode, attr); 706 mark_inode_dirty(inode); 707 return 0; 708 } 709 710 static struct inode *hugetlbfs_get_root(struct super_block *sb, 711 struct hugetlbfs_config *config) 712 { 713 struct inode *inode; 714 715 inode = new_inode(sb); 716 if (inode) { 717 inode->i_ino = get_next_ino(); 718 inode->i_mode = S_IFDIR | config->mode; 719 inode->i_uid = config->uid; 720 inode->i_gid = config->gid; 721 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 722 inode->i_op = &hugetlbfs_dir_inode_operations; 723 inode->i_fop = &simple_dir_operations; 724 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 725 inc_nlink(inode); 726 lockdep_annotate_inode_mutex_key(inode); 727 } 728 return inode; 729 } 730 731 /* 732 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 733 * be taken from reclaim -- unlike regular filesystems. This needs an 734 * annotation because huge_pmd_share() does an allocation under hugetlb's 735 * i_mmap_rwsem. 736 */ 737 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 738 739 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 740 struct inode *dir, 741 umode_t mode, dev_t dev) 742 { 743 struct inode *inode; 744 struct resv_map *resv_map; 745 746 resv_map = resv_map_alloc(); 747 if (!resv_map) 748 return NULL; 749 750 inode = new_inode(sb); 751 if (inode) { 752 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 753 754 inode->i_ino = get_next_ino(); 755 inode_init_owner(inode, dir, mode); 756 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 757 &hugetlbfs_i_mmap_rwsem_key); 758 inode->i_mapping->a_ops = &hugetlbfs_aops; 759 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 760 inode->i_mapping->private_data = resv_map; 761 info->seals = F_SEAL_SEAL; 762 switch (mode & S_IFMT) { 763 default: 764 init_special_inode(inode, mode, dev); 765 break; 766 case S_IFREG: 767 inode->i_op = &hugetlbfs_inode_operations; 768 inode->i_fop = &hugetlbfs_file_operations; 769 break; 770 case S_IFDIR: 771 inode->i_op = &hugetlbfs_dir_inode_operations; 772 inode->i_fop = &simple_dir_operations; 773 774 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 775 inc_nlink(inode); 776 break; 777 case S_IFLNK: 778 inode->i_op = &page_symlink_inode_operations; 779 inode_nohighmem(inode); 780 break; 781 } 782 lockdep_annotate_inode_mutex_key(inode); 783 } else 784 kref_put(&resv_map->refs, resv_map_release); 785 786 return inode; 787 } 788 789 /* 790 * File creation. Allocate an inode, and we're done.. 791 */ 792 static int hugetlbfs_mknod(struct inode *dir, 793 struct dentry *dentry, umode_t mode, dev_t dev) 794 { 795 struct inode *inode; 796 int error = -ENOSPC; 797 798 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 799 if (inode) { 800 dir->i_ctime = dir->i_mtime = current_time(dir); 801 d_instantiate(dentry, inode); 802 dget(dentry); /* Extra count - pin the dentry in core */ 803 error = 0; 804 } 805 return error; 806 } 807 808 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 809 { 810 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 811 if (!retval) 812 inc_nlink(dir); 813 return retval; 814 } 815 816 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 817 { 818 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 819 } 820 821 static int hugetlbfs_symlink(struct inode *dir, 822 struct dentry *dentry, const char *symname) 823 { 824 struct inode *inode; 825 int error = -ENOSPC; 826 827 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 828 if (inode) { 829 int l = strlen(symname)+1; 830 error = page_symlink(inode, symname, l); 831 if (!error) { 832 d_instantiate(dentry, inode); 833 dget(dentry); 834 } else 835 iput(inode); 836 } 837 dir->i_ctime = dir->i_mtime = current_time(dir); 838 839 return error; 840 } 841 842 /* 843 * mark the head page dirty 844 */ 845 static int hugetlbfs_set_page_dirty(struct page *page) 846 { 847 struct page *head = compound_head(page); 848 849 SetPageDirty(head); 850 return 0; 851 } 852 853 static int hugetlbfs_migrate_page(struct address_space *mapping, 854 struct page *newpage, struct page *page, 855 enum migrate_mode mode) 856 { 857 int rc; 858 859 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 860 if (rc != MIGRATEPAGE_SUCCESS) 861 return rc; 862 863 /* 864 * page_private is subpool pointer in hugetlb pages. Transfer to 865 * new page. PagePrivate is not associated with page_private for 866 * hugetlb pages and can not be set here as only page_huge_active 867 * pages can be migrated. 868 */ 869 if (page_private(page)) { 870 set_page_private(newpage, page_private(page)); 871 set_page_private(page, 0); 872 } 873 874 if (mode != MIGRATE_SYNC_NO_COPY) 875 migrate_page_copy(newpage, page); 876 else 877 migrate_page_states(newpage, page); 878 879 return MIGRATEPAGE_SUCCESS; 880 } 881 882 static int hugetlbfs_error_remove_page(struct address_space *mapping, 883 struct page *page) 884 { 885 struct inode *inode = mapping->host; 886 pgoff_t index = page->index; 887 888 remove_huge_page(page); 889 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 890 hugetlb_fix_reserve_counts(inode); 891 892 return 0; 893 } 894 895 /* 896 * Display the mount options in /proc/mounts. 897 */ 898 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 899 { 900 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 901 struct hugepage_subpool *spool = sbinfo->spool; 902 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 903 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 904 char mod; 905 906 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 907 seq_printf(m, ",uid=%u", 908 from_kuid_munged(&init_user_ns, sbinfo->uid)); 909 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 910 seq_printf(m, ",gid=%u", 911 from_kgid_munged(&init_user_ns, sbinfo->gid)); 912 if (sbinfo->mode != 0755) 913 seq_printf(m, ",mode=%o", sbinfo->mode); 914 if (sbinfo->max_inodes != -1) 915 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 916 917 hpage_size /= 1024; 918 mod = 'K'; 919 if (hpage_size >= 1024) { 920 hpage_size /= 1024; 921 mod = 'M'; 922 } 923 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 924 if (spool) { 925 if (spool->max_hpages != -1) 926 seq_printf(m, ",size=%llu", 927 (unsigned long long)spool->max_hpages << hpage_shift); 928 if (spool->min_hpages != -1) 929 seq_printf(m, ",min_size=%llu", 930 (unsigned long long)spool->min_hpages << hpage_shift); 931 } 932 return 0; 933 } 934 935 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 936 { 937 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 938 struct hstate *h = hstate_inode(d_inode(dentry)); 939 940 buf->f_type = HUGETLBFS_MAGIC; 941 buf->f_bsize = huge_page_size(h); 942 if (sbinfo) { 943 spin_lock(&sbinfo->stat_lock); 944 /* If no limits set, just report 0 for max/free/used 945 * blocks, like simple_statfs() */ 946 if (sbinfo->spool) { 947 long free_pages; 948 949 spin_lock(&sbinfo->spool->lock); 950 buf->f_blocks = sbinfo->spool->max_hpages; 951 free_pages = sbinfo->spool->max_hpages 952 - sbinfo->spool->used_hpages; 953 buf->f_bavail = buf->f_bfree = free_pages; 954 spin_unlock(&sbinfo->spool->lock); 955 buf->f_files = sbinfo->max_inodes; 956 buf->f_ffree = sbinfo->free_inodes; 957 } 958 spin_unlock(&sbinfo->stat_lock); 959 } 960 buf->f_namelen = NAME_MAX; 961 return 0; 962 } 963 964 static void hugetlbfs_put_super(struct super_block *sb) 965 { 966 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 967 968 if (sbi) { 969 sb->s_fs_info = NULL; 970 971 if (sbi->spool) 972 hugepage_put_subpool(sbi->spool); 973 974 kfree(sbi); 975 } 976 } 977 978 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 979 { 980 if (sbinfo->free_inodes >= 0) { 981 spin_lock(&sbinfo->stat_lock); 982 if (unlikely(!sbinfo->free_inodes)) { 983 spin_unlock(&sbinfo->stat_lock); 984 return 0; 985 } 986 sbinfo->free_inodes--; 987 spin_unlock(&sbinfo->stat_lock); 988 } 989 990 return 1; 991 } 992 993 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 994 { 995 if (sbinfo->free_inodes >= 0) { 996 spin_lock(&sbinfo->stat_lock); 997 sbinfo->free_inodes++; 998 spin_unlock(&sbinfo->stat_lock); 999 } 1000 } 1001 1002 1003 static struct kmem_cache *hugetlbfs_inode_cachep; 1004 1005 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1006 { 1007 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1008 struct hugetlbfs_inode_info *p; 1009 1010 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1011 return NULL; 1012 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1013 if (unlikely(!p)) { 1014 hugetlbfs_inc_free_inodes(sbinfo); 1015 return NULL; 1016 } 1017 1018 /* 1019 * Any time after allocation, hugetlbfs_destroy_inode can be called 1020 * for the inode. mpol_free_shared_policy is unconditionally called 1021 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1022 * in case of a quick call to destroy. 1023 * 1024 * Note that the policy is initialized even if we are creating a 1025 * private inode. This simplifies hugetlbfs_destroy_inode. 1026 */ 1027 mpol_shared_policy_init(&p->policy, NULL); 1028 1029 return &p->vfs_inode; 1030 } 1031 1032 static void hugetlbfs_i_callback(struct rcu_head *head) 1033 { 1034 struct inode *inode = container_of(head, struct inode, i_rcu); 1035 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1036 } 1037 1038 static void hugetlbfs_destroy_inode(struct inode *inode) 1039 { 1040 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1041 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1042 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1043 } 1044 1045 static const struct address_space_operations hugetlbfs_aops = { 1046 .write_begin = hugetlbfs_write_begin, 1047 .write_end = hugetlbfs_write_end, 1048 .set_page_dirty = hugetlbfs_set_page_dirty, 1049 .migratepage = hugetlbfs_migrate_page, 1050 .error_remove_page = hugetlbfs_error_remove_page, 1051 }; 1052 1053 1054 static void init_once(void *foo) 1055 { 1056 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1057 1058 inode_init_once(&ei->vfs_inode); 1059 } 1060 1061 const struct file_operations hugetlbfs_file_operations = { 1062 .read_iter = hugetlbfs_read_iter, 1063 .mmap = hugetlbfs_file_mmap, 1064 .fsync = noop_fsync, 1065 .get_unmapped_area = hugetlb_get_unmapped_area, 1066 .llseek = default_llseek, 1067 .fallocate = hugetlbfs_fallocate, 1068 }; 1069 1070 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1071 .create = hugetlbfs_create, 1072 .lookup = simple_lookup, 1073 .link = simple_link, 1074 .unlink = simple_unlink, 1075 .symlink = hugetlbfs_symlink, 1076 .mkdir = hugetlbfs_mkdir, 1077 .rmdir = simple_rmdir, 1078 .mknod = hugetlbfs_mknod, 1079 .rename = simple_rename, 1080 .setattr = hugetlbfs_setattr, 1081 }; 1082 1083 static const struct inode_operations hugetlbfs_inode_operations = { 1084 .setattr = hugetlbfs_setattr, 1085 }; 1086 1087 static const struct super_operations hugetlbfs_ops = { 1088 .alloc_inode = hugetlbfs_alloc_inode, 1089 .destroy_inode = hugetlbfs_destroy_inode, 1090 .evict_inode = hugetlbfs_evict_inode, 1091 .statfs = hugetlbfs_statfs, 1092 .put_super = hugetlbfs_put_super, 1093 .show_options = hugetlbfs_show_options, 1094 }; 1095 1096 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1097 1098 /* 1099 * Convert size option passed from command line to number of huge pages 1100 * in the pool specified by hstate. Size option could be in bytes 1101 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1102 */ 1103 static long 1104 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1105 enum hugetlbfs_size_type val_type) 1106 { 1107 if (val_type == NO_SIZE) 1108 return -1; 1109 1110 if (val_type == SIZE_PERCENT) { 1111 size_opt <<= huge_page_shift(h); 1112 size_opt *= h->max_huge_pages; 1113 do_div(size_opt, 100); 1114 } 1115 1116 size_opt >>= huge_page_shift(h); 1117 return size_opt; 1118 } 1119 1120 static int 1121 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1122 { 1123 char *p, *rest; 1124 substring_t args[MAX_OPT_ARGS]; 1125 int option; 1126 unsigned long long max_size_opt = 0, min_size_opt = 0; 1127 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1128 1129 if (!options) 1130 return 0; 1131 1132 while ((p = strsep(&options, ",")) != NULL) { 1133 int token; 1134 if (!*p) 1135 continue; 1136 1137 token = match_token(p, tokens, args); 1138 switch (token) { 1139 case Opt_uid: 1140 if (match_int(&args[0], &option)) 1141 goto bad_val; 1142 pconfig->uid = make_kuid(current_user_ns(), option); 1143 if (!uid_valid(pconfig->uid)) 1144 goto bad_val; 1145 break; 1146 1147 case Opt_gid: 1148 if (match_int(&args[0], &option)) 1149 goto bad_val; 1150 pconfig->gid = make_kgid(current_user_ns(), option); 1151 if (!gid_valid(pconfig->gid)) 1152 goto bad_val; 1153 break; 1154 1155 case Opt_mode: 1156 if (match_octal(&args[0], &option)) 1157 goto bad_val; 1158 pconfig->mode = option & 01777U; 1159 break; 1160 1161 case Opt_size: { 1162 /* memparse() will accept a K/M/G without a digit */ 1163 if (!isdigit(*args[0].from)) 1164 goto bad_val; 1165 max_size_opt = memparse(args[0].from, &rest); 1166 max_val_type = SIZE_STD; 1167 if (*rest == '%') 1168 max_val_type = SIZE_PERCENT; 1169 break; 1170 } 1171 1172 case Opt_nr_inodes: 1173 /* memparse() will accept a K/M/G without a digit */ 1174 if (!isdigit(*args[0].from)) 1175 goto bad_val; 1176 pconfig->nr_inodes = memparse(args[0].from, &rest); 1177 break; 1178 1179 case Opt_pagesize: { 1180 unsigned long ps; 1181 ps = memparse(args[0].from, &rest); 1182 pconfig->hstate = size_to_hstate(ps); 1183 if (!pconfig->hstate) { 1184 pr_err("Unsupported page size %lu MB\n", 1185 ps >> 20); 1186 return -EINVAL; 1187 } 1188 break; 1189 } 1190 1191 case Opt_min_size: { 1192 /* memparse() will accept a K/M/G without a digit */ 1193 if (!isdigit(*args[0].from)) 1194 goto bad_val; 1195 min_size_opt = memparse(args[0].from, &rest); 1196 min_val_type = SIZE_STD; 1197 if (*rest == '%') 1198 min_val_type = SIZE_PERCENT; 1199 break; 1200 } 1201 1202 default: 1203 pr_err("Bad mount option: \"%s\"\n", p); 1204 return -EINVAL; 1205 break; 1206 } 1207 } 1208 1209 /* 1210 * Use huge page pool size (in hstate) to convert the size 1211 * options to number of huge pages. If NO_SIZE, -1 is returned. 1212 */ 1213 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1214 max_size_opt, max_val_type); 1215 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1216 min_size_opt, min_val_type); 1217 1218 /* 1219 * If max_size was specified, then min_size must be smaller 1220 */ 1221 if (max_val_type > NO_SIZE && 1222 pconfig->min_hpages > pconfig->max_hpages) { 1223 pr_err("minimum size can not be greater than maximum size\n"); 1224 return -EINVAL; 1225 } 1226 1227 return 0; 1228 1229 bad_val: 1230 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1231 return -EINVAL; 1232 } 1233 1234 static int 1235 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1236 { 1237 int ret; 1238 struct hugetlbfs_config config; 1239 struct hugetlbfs_sb_info *sbinfo; 1240 1241 config.max_hpages = -1; /* No limit on size by default */ 1242 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1243 config.uid = current_fsuid(); 1244 config.gid = current_fsgid(); 1245 config.mode = 0755; 1246 config.hstate = &default_hstate; 1247 config.min_hpages = -1; /* No default minimum size */ 1248 ret = hugetlbfs_parse_options(data, &config); 1249 if (ret) 1250 return ret; 1251 1252 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1253 if (!sbinfo) 1254 return -ENOMEM; 1255 sb->s_fs_info = sbinfo; 1256 sbinfo->hstate = config.hstate; 1257 spin_lock_init(&sbinfo->stat_lock); 1258 sbinfo->max_inodes = config.nr_inodes; 1259 sbinfo->free_inodes = config.nr_inodes; 1260 sbinfo->spool = NULL; 1261 sbinfo->uid = config.uid; 1262 sbinfo->gid = config.gid; 1263 sbinfo->mode = config.mode; 1264 1265 /* 1266 * Allocate and initialize subpool if maximum or minimum size is 1267 * specified. Any needed reservations (for minimim size) are taken 1268 * taken when the subpool is created. 1269 */ 1270 if (config.max_hpages != -1 || config.min_hpages != -1) { 1271 sbinfo->spool = hugepage_new_subpool(config.hstate, 1272 config.max_hpages, 1273 config.min_hpages); 1274 if (!sbinfo->spool) 1275 goto out_free; 1276 } 1277 sb->s_maxbytes = MAX_LFS_FILESIZE; 1278 sb->s_blocksize = huge_page_size(config.hstate); 1279 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1280 sb->s_magic = HUGETLBFS_MAGIC; 1281 sb->s_op = &hugetlbfs_ops; 1282 sb->s_time_gran = 1; 1283 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1284 if (!sb->s_root) 1285 goto out_free; 1286 return 0; 1287 out_free: 1288 kfree(sbinfo->spool); 1289 kfree(sbinfo); 1290 return -ENOMEM; 1291 } 1292 1293 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1294 int flags, const char *dev_name, void *data) 1295 { 1296 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1297 } 1298 1299 static struct file_system_type hugetlbfs_fs_type = { 1300 .name = "hugetlbfs", 1301 .mount = hugetlbfs_mount, 1302 .kill_sb = kill_litter_super, 1303 }; 1304 1305 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1306 1307 static int can_do_hugetlb_shm(void) 1308 { 1309 kgid_t shm_group; 1310 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1311 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1312 } 1313 1314 static int get_hstate_idx(int page_size_log) 1315 { 1316 struct hstate *h = hstate_sizelog(page_size_log); 1317 1318 if (!h) 1319 return -1; 1320 return h - hstates; 1321 } 1322 1323 /* 1324 * Note that size should be aligned to proper hugepage size in caller side, 1325 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1326 */ 1327 struct file *hugetlb_file_setup(const char *name, size_t size, 1328 vm_flags_t acctflag, struct user_struct **user, 1329 int creat_flags, int page_size_log) 1330 { 1331 struct inode *inode; 1332 struct vfsmount *mnt; 1333 int hstate_idx; 1334 struct file *file; 1335 1336 hstate_idx = get_hstate_idx(page_size_log); 1337 if (hstate_idx < 0) 1338 return ERR_PTR(-ENODEV); 1339 1340 *user = NULL; 1341 mnt = hugetlbfs_vfsmount[hstate_idx]; 1342 if (!mnt) 1343 return ERR_PTR(-ENOENT); 1344 1345 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1346 *user = current_user(); 1347 if (user_shm_lock(size, *user)) { 1348 task_lock(current); 1349 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1350 current->comm, current->pid); 1351 task_unlock(current); 1352 } else { 1353 *user = NULL; 1354 return ERR_PTR(-EPERM); 1355 } 1356 } 1357 1358 file = ERR_PTR(-ENOSPC); 1359 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1360 if (!inode) 1361 goto out; 1362 if (creat_flags == HUGETLB_SHMFS_INODE) 1363 inode->i_flags |= S_PRIVATE; 1364 1365 inode->i_size = size; 1366 clear_nlink(inode); 1367 1368 if (hugetlb_reserve_pages(inode, 0, 1369 size >> huge_page_shift(hstate_inode(inode)), NULL, 1370 acctflag)) 1371 file = ERR_PTR(-ENOMEM); 1372 else 1373 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1374 &hugetlbfs_file_operations); 1375 if (!IS_ERR(file)) 1376 return file; 1377 1378 iput(inode); 1379 out: 1380 if (*user) { 1381 user_shm_unlock(size, *user); 1382 *user = NULL; 1383 } 1384 return file; 1385 } 1386 1387 static int __init init_hugetlbfs_fs(void) 1388 { 1389 struct hstate *h; 1390 int error; 1391 int i; 1392 1393 if (!hugepages_supported()) { 1394 pr_info("disabling because there are no supported hugepage sizes\n"); 1395 return -ENOTSUPP; 1396 } 1397 1398 error = -ENOMEM; 1399 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1400 sizeof(struct hugetlbfs_inode_info), 1401 0, SLAB_ACCOUNT, init_once); 1402 if (hugetlbfs_inode_cachep == NULL) 1403 goto out2; 1404 1405 error = register_filesystem(&hugetlbfs_fs_type); 1406 if (error) 1407 goto out; 1408 1409 i = 0; 1410 for_each_hstate(h) { 1411 char buf[50]; 1412 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1413 1414 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1415 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1416 buf); 1417 1418 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1419 pr_err("Cannot mount internal hugetlbfs for " 1420 "page size %uK", ps_kb); 1421 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1422 hugetlbfs_vfsmount[i] = NULL; 1423 } 1424 i++; 1425 } 1426 /* Non default hstates are optional */ 1427 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1428 return 0; 1429 1430 out: 1431 kmem_cache_destroy(hugetlbfs_inode_cachep); 1432 out2: 1433 return error; 1434 } 1435 fs_initcall(init_hugetlbfs_fs) 1436