1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 49 50 struct hugetlbfs_fs_context { 51 struct hstate *hstate; 52 unsigned long long max_size_opt; 53 unsigned long long min_size_opt; 54 long max_hpages; 55 long nr_inodes; 56 long min_hpages; 57 enum hugetlbfs_size_type max_val_type; 58 enum hugetlbfs_size_type min_val_type; 59 kuid_t uid; 60 kgid_t gid; 61 umode_t mode; 62 }; 63 64 int sysctl_hugetlb_shm_group; 65 66 enum hugetlb_param { 67 Opt_gid, 68 Opt_min_size, 69 Opt_mode, 70 Opt_nr_inodes, 71 Opt_pagesize, 72 Opt_size, 73 Opt_uid, 74 }; 75 76 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 77 fsparam_u32 ("gid", Opt_gid), 78 fsparam_string("min_size", Opt_min_size), 79 fsparam_u32 ("mode", Opt_mode), 80 fsparam_string("nr_inodes", Opt_nr_inodes), 81 fsparam_string("pagesize", Opt_pagesize), 82 fsparam_string("size", Opt_size), 83 fsparam_u32 ("uid", Opt_uid), 84 {} 85 }; 86 87 #ifdef CONFIG_NUMA 88 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 89 struct inode *inode, pgoff_t index) 90 { 91 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 92 index); 93 } 94 95 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 96 { 97 mpol_cond_put(vma->vm_policy); 98 } 99 #else 100 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 101 struct inode *inode, pgoff_t index) 102 { 103 } 104 105 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 106 { 107 } 108 #endif 109 110 static void huge_pagevec_release(struct pagevec *pvec) 111 { 112 int i; 113 114 for (i = 0; i < pagevec_count(pvec); ++i) 115 put_page(pvec->pages[i]); 116 117 pagevec_reinit(pvec); 118 } 119 120 /* 121 * Mask used when checking the page offset value passed in via system 122 * calls. This value will be converted to a loff_t which is signed. 123 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 124 * value. The extra bit (- 1 in the shift value) is to take the sign 125 * bit into account. 126 */ 127 #define PGOFF_LOFFT_MAX \ 128 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 129 130 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 131 { 132 struct inode *inode = file_inode(file); 133 loff_t len, vma_len; 134 int ret; 135 struct hstate *h = hstate_file(file); 136 137 /* 138 * vma address alignment (but not the pgoff alignment) has 139 * already been checked by prepare_hugepage_range. If you add 140 * any error returns here, do so after setting VM_HUGETLB, so 141 * is_vm_hugetlb_page tests below unmap_region go the right 142 * way when do_mmap_pgoff unwinds (may be important on powerpc 143 * and ia64). 144 */ 145 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 146 vma->vm_ops = &hugetlb_vm_ops; 147 148 /* 149 * page based offset in vm_pgoff could be sufficiently large to 150 * overflow a loff_t when converted to byte offset. This can 151 * only happen on architectures where sizeof(loff_t) == 152 * sizeof(unsigned long). So, only check in those instances. 153 */ 154 if (sizeof(unsigned long) == sizeof(loff_t)) { 155 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 156 return -EINVAL; 157 } 158 159 /* must be huge page aligned */ 160 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 161 return -EINVAL; 162 163 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 164 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 165 /* check for overflow */ 166 if (len < vma_len) 167 return -EINVAL; 168 169 inode_lock(inode); 170 file_accessed(file); 171 172 ret = -ENOMEM; 173 if (hugetlb_reserve_pages(inode, 174 vma->vm_pgoff >> huge_page_order(h), 175 len >> huge_page_shift(h), vma, 176 vma->vm_flags)) 177 goto out; 178 179 ret = 0; 180 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 181 i_size_write(inode, len); 182 out: 183 inode_unlock(inode); 184 185 return ret; 186 } 187 188 /* 189 * Called under down_write(mmap_sem). 190 */ 191 192 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 193 static unsigned long 194 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 195 unsigned long len, unsigned long pgoff, unsigned long flags) 196 { 197 struct mm_struct *mm = current->mm; 198 struct vm_area_struct *vma; 199 struct hstate *h = hstate_file(file); 200 struct vm_unmapped_area_info info; 201 202 if (len & ~huge_page_mask(h)) 203 return -EINVAL; 204 if (len > TASK_SIZE) 205 return -ENOMEM; 206 207 if (flags & MAP_FIXED) { 208 if (prepare_hugepage_range(file, addr, len)) 209 return -EINVAL; 210 return addr; 211 } 212 213 if (addr) { 214 addr = ALIGN(addr, huge_page_size(h)); 215 vma = find_vma(mm, addr); 216 if (TASK_SIZE - len >= addr && 217 (!vma || addr + len <= vm_start_gap(vma))) 218 return addr; 219 } 220 221 info.flags = 0; 222 info.length = len; 223 info.low_limit = TASK_UNMAPPED_BASE; 224 info.high_limit = TASK_SIZE; 225 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 226 info.align_offset = 0; 227 return vm_unmapped_area(&info); 228 } 229 #endif 230 231 static size_t 232 hugetlbfs_read_actor(struct page *page, unsigned long offset, 233 struct iov_iter *to, unsigned long size) 234 { 235 size_t copied = 0; 236 int i, chunksize; 237 238 /* Find which 4k chunk and offset with in that chunk */ 239 i = offset >> PAGE_SHIFT; 240 offset = offset & ~PAGE_MASK; 241 242 while (size) { 243 size_t n; 244 chunksize = PAGE_SIZE; 245 if (offset) 246 chunksize -= offset; 247 if (chunksize > size) 248 chunksize = size; 249 n = copy_page_to_iter(&page[i], offset, chunksize, to); 250 copied += n; 251 if (n != chunksize) 252 return copied; 253 offset = 0; 254 size -= chunksize; 255 i++; 256 } 257 return copied; 258 } 259 260 /* 261 * Support for read() - Find the page attached to f_mapping and copy out the 262 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 263 * since it has PAGE_SIZE assumptions. 264 */ 265 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 266 { 267 struct file *file = iocb->ki_filp; 268 struct hstate *h = hstate_file(file); 269 struct address_space *mapping = file->f_mapping; 270 struct inode *inode = mapping->host; 271 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 272 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 273 unsigned long end_index; 274 loff_t isize; 275 ssize_t retval = 0; 276 277 while (iov_iter_count(to)) { 278 struct page *page; 279 size_t nr, copied; 280 281 /* nr is the maximum number of bytes to copy from this page */ 282 nr = huge_page_size(h); 283 isize = i_size_read(inode); 284 if (!isize) 285 break; 286 end_index = (isize - 1) >> huge_page_shift(h); 287 if (index > end_index) 288 break; 289 if (index == end_index) { 290 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 291 if (nr <= offset) 292 break; 293 } 294 nr = nr - offset; 295 296 /* Find the page */ 297 page = find_lock_page(mapping, index); 298 if (unlikely(page == NULL)) { 299 /* 300 * We have a HOLE, zero out the user-buffer for the 301 * length of the hole or request. 302 */ 303 copied = iov_iter_zero(nr, to); 304 } else { 305 unlock_page(page); 306 307 /* 308 * We have the page, copy it to user space buffer. 309 */ 310 copied = hugetlbfs_read_actor(page, offset, to, nr); 311 put_page(page); 312 } 313 offset += copied; 314 retval += copied; 315 if (copied != nr && iov_iter_count(to)) { 316 if (!retval) 317 retval = -EFAULT; 318 break; 319 } 320 index += offset >> huge_page_shift(h); 321 offset &= ~huge_page_mask(h); 322 } 323 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 324 return retval; 325 } 326 327 static int hugetlbfs_write_begin(struct file *file, 328 struct address_space *mapping, 329 loff_t pos, unsigned len, unsigned flags, 330 struct page **pagep, void **fsdata) 331 { 332 return -EINVAL; 333 } 334 335 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 336 loff_t pos, unsigned len, unsigned copied, 337 struct page *page, void *fsdata) 338 { 339 BUG(); 340 return -EINVAL; 341 } 342 343 static void remove_huge_page(struct page *page) 344 { 345 ClearPageDirty(page); 346 ClearPageUptodate(page); 347 delete_from_page_cache(page); 348 } 349 350 static void 351 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 352 { 353 struct vm_area_struct *vma; 354 355 /* 356 * end == 0 indicates that the entire range after 357 * start should be unmapped. 358 */ 359 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 360 unsigned long v_offset; 361 unsigned long v_end; 362 363 /* 364 * Can the expression below overflow on 32-bit arches? 365 * No, because the interval tree returns us only those vmas 366 * which overlap the truncated area starting at pgoff, 367 * and no vma on a 32-bit arch can span beyond the 4GB. 368 */ 369 if (vma->vm_pgoff < start) 370 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 371 else 372 v_offset = 0; 373 374 if (!end) 375 v_end = vma->vm_end; 376 else { 377 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 378 + vma->vm_start; 379 if (v_end > vma->vm_end) 380 v_end = vma->vm_end; 381 } 382 383 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 384 NULL); 385 } 386 } 387 388 /* 389 * remove_inode_hugepages handles two distinct cases: truncation and hole 390 * punch. There are subtle differences in operation for each case. 391 * 392 * truncation is indicated by end of range being LLONG_MAX 393 * In this case, we first scan the range and release found pages. 394 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 395 * maps and global counts. Page faults can not race with truncation 396 * in this routine. hugetlb_no_page() prevents page faults in the 397 * truncated range. It checks i_size before allocation, and again after 398 * with the page table lock for the page held. The same lock must be 399 * acquired to unmap a page. 400 * hole punch is indicated if end is not LLONG_MAX 401 * In the hole punch case we scan the range and release found pages. 402 * Only when releasing a page is the associated region/reserv map 403 * deleted. The region/reserv map for ranges without associated 404 * pages are not modified. Page faults can race with hole punch. 405 * This is indicated if we find a mapped page. 406 * Note: If the passed end of range value is beyond the end of file, but 407 * not LLONG_MAX this routine still performs a hole punch operation. 408 */ 409 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 410 loff_t lend) 411 { 412 struct hstate *h = hstate_inode(inode); 413 struct address_space *mapping = &inode->i_data; 414 const pgoff_t start = lstart >> huge_page_shift(h); 415 const pgoff_t end = lend >> huge_page_shift(h); 416 struct vm_area_struct pseudo_vma; 417 struct pagevec pvec; 418 pgoff_t next, index; 419 int i, freed = 0; 420 bool truncate_op = (lend == LLONG_MAX); 421 422 vma_init(&pseudo_vma, current->mm); 423 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 424 pagevec_init(&pvec); 425 next = start; 426 while (next < end) { 427 /* 428 * When no more pages are found, we are done. 429 */ 430 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 431 break; 432 433 for (i = 0; i < pagevec_count(&pvec); ++i) { 434 struct page *page = pvec.pages[i]; 435 u32 hash; 436 437 index = page->index; 438 hash = hugetlb_fault_mutex_hash(mapping, index); 439 mutex_lock(&hugetlb_fault_mutex_table[hash]); 440 441 /* 442 * If page is mapped, it was faulted in after being 443 * unmapped in caller. Unmap (again) now after taking 444 * the fault mutex. The mutex will prevent faults 445 * until we finish removing the page. 446 * 447 * This race can only happen in the hole punch case. 448 * Getting here in a truncate operation is a bug. 449 */ 450 if (unlikely(page_mapped(page))) { 451 BUG_ON(truncate_op); 452 453 i_mmap_lock_write(mapping); 454 hugetlb_vmdelete_list(&mapping->i_mmap, 455 index * pages_per_huge_page(h), 456 (index + 1) * pages_per_huge_page(h)); 457 i_mmap_unlock_write(mapping); 458 } 459 460 lock_page(page); 461 /* 462 * We must free the huge page and remove from page 463 * cache (remove_huge_page) BEFORE removing the 464 * region/reserve map (hugetlb_unreserve_pages). In 465 * rare out of memory conditions, removal of the 466 * region/reserve map could fail. Correspondingly, 467 * the subpool and global reserve usage count can need 468 * to be adjusted. 469 */ 470 VM_BUG_ON(PagePrivate(page)); 471 remove_huge_page(page); 472 freed++; 473 if (!truncate_op) { 474 if (unlikely(hugetlb_unreserve_pages(inode, 475 index, index + 1, 1))) 476 hugetlb_fix_reserve_counts(inode); 477 } 478 479 unlock_page(page); 480 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 481 } 482 huge_pagevec_release(&pvec); 483 cond_resched(); 484 } 485 486 if (truncate_op) 487 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 488 } 489 490 static void hugetlbfs_evict_inode(struct inode *inode) 491 { 492 struct resv_map *resv_map; 493 494 remove_inode_hugepages(inode, 0, LLONG_MAX); 495 496 /* 497 * Get the resv_map from the address space embedded in the inode. 498 * This is the address space which points to any resv_map allocated 499 * at inode creation time. If this is a device special inode, 500 * i_mapping may not point to the original address space. 501 */ 502 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 503 /* Only regular and link inodes have associated reserve maps */ 504 if (resv_map) 505 resv_map_release(&resv_map->refs); 506 clear_inode(inode); 507 } 508 509 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 510 { 511 pgoff_t pgoff; 512 struct address_space *mapping = inode->i_mapping; 513 struct hstate *h = hstate_inode(inode); 514 515 BUG_ON(offset & ~huge_page_mask(h)); 516 pgoff = offset >> PAGE_SHIFT; 517 518 i_size_write(inode, offset); 519 i_mmap_lock_write(mapping); 520 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 521 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 522 i_mmap_unlock_write(mapping); 523 remove_inode_hugepages(inode, offset, LLONG_MAX); 524 return 0; 525 } 526 527 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 528 { 529 struct hstate *h = hstate_inode(inode); 530 loff_t hpage_size = huge_page_size(h); 531 loff_t hole_start, hole_end; 532 533 /* 534 * For hole punch round up the beginning offset of the hole and 535 * round down the end. 536 */ 537 hole_start = round_up(offset, hpage_size); 538 hole_end = round_down(offset + len, hpage_size); 539 540 if (hole_end > hole_start) { 541 struct address_space *mapping = inode->i_mapping; 542 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 543 544 inode_lock(inode); 545 546 /* protected by i_mutex */ 547 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 548 inode_unlock(inode); 549 return -EPERM; 550 } 551 552 i_mmap_lock_write(mapping); 553 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 554 hugetlb_vmdelete_list(&mapping->i_mmap, 555 hole_start >> PAGE_SHIFT, 556 hole_end >> PAGE_SHIFT); 557 i_mmap_unlock_write(mapping); 558 remove_inode_hugepages(inode, hole_start, hole_end); 559 inode_unlock(inode); 560 } 561 562 return 0; 563 } 564 565 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 566 loff_t len) 567 { 568 struct inode *inode = file_inode(file); 569 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 570 struct address_space *mapping = inode->i_mapping; 571 struct hstate *h = hstate_inode(inode); 572 struct vm_area_struct pseudo_vma; 573 struct mm_struct *mm = current->mm; 574 loff_t hpage_size = huge_page_size(h); 575 unsigned long hpage_shift = huge_page_shift(h); 576 pgoff_t start, index, end; 577 int error; 578 u32 hash; 579 580 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 581 return -EOPNOTSUPP; 582 583 if (mode & FALLOC_FL_PUNCH_HOLE) 584 return hugetlbfs_punch_hole(inode, offset, len); 585 586 /* 587 * Default preallocate case. 588 * For this range, start is rounded down and end is rounded up 589 * as well as being converted to page offsets. 590 */ 591 start = offset >> hpage_shift; 592 end = (offset + len + hpage_size - 1) >> hpage_shift; 593 594 inode_lock(inode); 595 596 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 597 error = inode_newsize_ok(inode, offset + len); 598 if (error) 599 goto out; 600 601 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 602 error = -EPERM; 603 goto out; 604 } 605 606 /* 607 * Initialize a pseudo vma as this is required by the huge page 608 * allocation routines. If NUMA is configured, use page index 609 * as input to create an allocation policy. 610 */ 611 vma_init(&pseudo_vma, mm); 612 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 613 pseudo_vma.vm_file = file; 614 615 for (index = start; index < end; index++) { 616 /* 617 * This is supposed to be the vaddr where the page is being 618 * faulted in, but we have no vaddr here. 619 */ 620 struct page *page; 621 unsigned long addr; 622 int avoid_reserve = 0; 623 624 cond_resched(); 625 626 /* 627 * fallocate(2) manpage permits EINTR; we may have been 628 * interrupted because we are using up too much memory. 629 */ 630 if (signal_pending(current)) { 631 error = -EINTR; 632 break; 633 } 634 635 /* Set numa allocation policy based on index */ 636 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 637 638 /* addr is the offset within the file (zero based) */ 639 addr = index * hpage_size; 640 641 /* mutex taken here, fault path and hole punch */ 642 hash = hugetlb_fault_mutex_hash(mapping, index); 643 mutex_lock(&hugetlb_fault_mutex_table[hash]); 644 645 /* See if already present in mapping to avoid alloc/free */ 646 page = find_get_page(mapping, index); 647 if (page) { 648 put_page(page); 649 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 650 hugetlb_drop_vma_policy(&pseudo_vma); 651 continue; 652 } 653 654 /* Allocate page and add to page cache */ 655 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 656 hugetlb_drop_vma_policy(&pseudo_vma); 657 if (IS_ERR(page)) { 658 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 659 error = PTR_ERR(page); 660 goto out; 661 } 662 clear_huge_page(page, addr, pages_per_huge_page(h)); 663 __SetPageUptodate(page); 664 error = huge_add_to_page_cache(page, mapping, index); 665 if (unlikely(error)) { 666 put_page(page); 667 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 668 goto out; 669 } 670 671 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 672 673 /* 674 * unlock_page because locked by add_to_page_cache() 675 * page_put due to reference from alloc_huge_page() 676 */ 677 unlock_page(page); 678 put_page(page); 679 } 680 681 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 682 i_size_write(inode, offset + len); 683 inode->i_ctime = current_time(inode); 684 out: 685 inode_unlock(inode); 686 return error; 687 } 688 689 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 690 { 691 struct inode *inode = d_inode(dentry); 692 struct hstate *h = hstate_inode(inode); 693 int error; 694 unsigned int ia_valid = attr->ia_valid; 695 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 696 697 BUG_ON(!inode); 698 699 error = setattr_prepare(dentry, attr); 700 if (error) 701 return error; 702 703 if (ia_valid & ATTR_SIZE) { 704 loff_t oldsize = inode->i_size; 705 loff_t newsize = attr->ia_size; 706 707 if (newsize & ~huge_page_mask(h)) 708 return -EINVAL; 709 /* protected by i_mutex */ 710 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 711 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 712 return -EPERM; 713 error = hugetlb_vmtruncate(inode, newsize); 714 if (error) 715 return error; 716 } 717 718 setattr_copy(inode, attr); 719 mark_inode_dirty(inode); 720 return 0; 721 } 722 723 static struct inode *hugetlbfs_get_root(struct super_block *sb, 724 struct hugetlbfs_fs_context *ctx) 725 { 726 struct inode *inode; 727 728 inode = new_inode(sb); 729 if (inode) { 730 inode->i_ino = get_next_ino(); 731 inode->i_mode = S_IFDIR | ctx->mode; 732 inode->i_uid = ctx->uid; 733 inode->i_gid = ctx->gid; 734 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 735 inode->i_op = &hugetlbfs_dir_inode_operations; 736 inode->i_fop = &simple_dir_operations; 737 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 738 inc_nlink(inode); 739 lockdep_annotate_inode_mutex_key(inode); 740 } 741 return inode; 742 } 743 744 /* 745 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 746 * be taken from reclaim -- unlike regular filesystems. This needs an 747 * annotation because huge_pmd_share() does an allocation under hugetlb's 748 * i_mmap_rwsem. 749 */ 750 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 751 752 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 753 struct inode *dir, 754 umode_t mode, dev_t dev) 755 { 756 struct inode *inode; 757 struct resv_map *resv_map = NULL; 758 759 /* 760 * Reserve maps are only needed for inodes that can have associated 761 * page allocations. 762 */ 763 if (S_ISREG(mode) || S_ISLNK(mode)) { 764 resv_map = resv_map_alloc(); 765 if (!resv_map) 766 return NULL; 767 } 768 769 inode = new_inode(sb); 770 if (inode) { 771 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 772 773 inode->i_ino = get_next_ino(); 774 inode_init_owner(inode, dir, mode); 775 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 776 &hugetlbfs_i_mmap_rwsem_key); 777 inode->i_mapping->a_ops = &hugetlbfs_aops; 778 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 779 inode->i_mapping->private_data = resv_map; 780 info->seals = F_SEAL_SEAL; 781 switch (mode & S_IFMT) { 782 default: 783 init_special_inode(inode, mode, dev); 784 break; 785 case S_IFREG: 786 inode->i_op = &hugetlbfs_inode_operations; 787 inode->i_fop = &hugetlbfs_file_operations; 788 break; 789 case S_IFDIR: 790 inode->i_op = &hugetlbfs_dir_inode_operations; 791 inode->i_fop = &simple_dir_operations; 792 793 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 794 inc_nlink(inode); 795 break; 796 case S_IFLNK: 797 inode->i_op = &page_symlink_inode_operations; 798 inode_nohighmem(inode); 799 break; 800 } 801 lockdep_annotate_inode_mutex_key(inode); 802 } else { 803 if (resv_map) 804 kref_put(&resv_map->refs, resv_map_release); 805 } 806 807 return inode; 808 } 809 810 /* 811 * File creation. Allocate an inode, and we're done.. 812 */ 813 static int do_hugetlbfs_mknod(struct inode *dir, 814 struct dentry *dentry, 815 umode_t mode, 816 dev_t dev, 817 bool tmpfile) 818 { 819 struct inode *inode; 820 int error = -ENOSPC; 821 822 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 823 if (inode) { 824 dir->i_ctime = dir->i_mtime = current_time(dir); 825 if (tmpfile) { 826 d_tmpfile(dentry, inode); 827 } else { 828 d_instantiate(dentry, inode); 829 dget(dentry);/* Extra count - pin the dentry in core */ 830 } 831 error = 0; 832 } 833 return error; 834 } 835 836 static int hugetlbfs_mknod(struct inode *dir, 837 struct dentry *dentry, umode_t mode, dev_t dev) 838 { 839 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 840 } 841 842 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 843 { 844 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 845 if (!retval) 846 inc_nlink(dir); 847 return retval; 848 } 849 850 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 851 { 852 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 853 } 854 855 static int hugetlbfs_tmpfile(struct inode *dir, 856 struct dentry *dentry, umode_t mode) 857 { 858 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 859 } 860 861 static int hugetlbfs_symlink(struct inode *dir, 862 struct dentry *dentry, const char *symname) 863 { 864 struct inode *inode; 865 int error = -ENOSPC; 866 867 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 868 if (inode) { 869 int l = strlen(symname)+1; 870 error = page_symlink(inode, symname, l); 871 if (!error) { 872 d_instantiate(dentry, inode); 873 dget(dentry); 874 } else 875 iput(inode); 876 } 877 dir->i_ctime = dir->i_mtime = current_time(dir); 878 879 return error; 880 } 881 882 /* 883 * mark the head page dirty 884 */ 885 static int hugetlbfs_set_page_dirty(struct page *page) 886 { 887 struct page *head = compound_head(page); 888 889 SetPageDirty(head); 890 return 0; 891 } 892 893 static int hugetlbfs_migrate_page(struct address_space *mapping, 894 struct page *newpage, struct page *page, 895 enum migrate_mode mode) 896 { 897 int rc; 898 899 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 900 if (rc != MIGRATEPAGE_SUCCESS) 901 return rc; 902 903 /* 904 * page_private is subpool pointer in hugetlb pages. Transfer to 905 * new page. PagePrivate is not associated with page_private for 906 * hugetlb pages and can not be set here as only page_huge_active 907 * pages can be migrated. 908 */ 909 if (page_private(page)) { 910 set_page_private(newpage, page_private(page)); 911 set_page_private(page, 0); 912 } 913 914 if (mode != MIGRATE_SYNC_NO_COPY) 915 migrate_page_copy(newpage, page); 916 else 917 migrate_page_states(newpage, page); 918 919 return MIGRATEPAGE_SUCCESS; 920 } 921 922 static int hugetlbfs_error_remove_page(struct address_space *mapping, 923 struct page *page) 924 { 925 struct inode *inode = mapping->host; 926 pgoff_t index = page->index; 927 928 remove_huge_page(page); 929 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 930 hugetlb_fix_reserve_counts(inode); 931 932 return 0; 933 } 934 935 /* 936 * Display the mount options in /proc/mounts. 937 */ 938 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 939 { 940 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 941 struct hugepage_subpool *spool = sbinfo->spool; 942 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 943 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 944 char mod; 945 946 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 947 seq_printf(m, ",uid=%u", 948 from_kuid_munged(&init_user_ns, sbinfo->uid)); 949 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 950 seq_printf(m, ",gid=%u", 951 from_kgid_munged(&init_user_ns, sbinfo->gid)); 952 if (sbinfo->mode != 0755) 953 seq_printf(m, ",mode=%o", sbinfo->mode); 954 if (sbinfo->max_inodes != -1) 955 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 956 957 hpage_size /= 1024; 958 mod = 'K'; 959 if (hpage_size >= 1024) { 960 hpage_size /= 1024; 961 mod = 'M'; 962 } 963 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 964 if (spool) { 965 if (spool->max_hpages != -1) 966 seq_printf(m, ",size=%llu", 967 (unsigned long long)spool->max_hpages << hpage_shift); 968 if (spool->min_hpages != -1) 969 seq_printf(m, ",min_size=%llu", 970 (unsigned long long)spool->min_hpages << hpage_shift); 971 } 972 return 0; 973 } 974 975 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 976 { 977 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 978 struct hstate *h = hstate_inode(d_inode(dentry)); 979 980 buf->f_type = HUGETLBFS_MAGIC; 981 buf->f_bsize = huge_page_size(h); 982 if (sbinfo) { 983 spin_lock(&sbinfo->stat_lock); 984 /* If no limits set, just report 0 for max/free/used 985 * blocks, like simple_statfs() */ 986 if (sbinfo->spool) { 987 long free_pages; 988 989 spin_lock(&sbinfo->spool->lock); 990 buf->f_blocks = sbinfo->spool->max_hpages; 991 free_pages = sbinfo->spool->max_hpages 992 - sbinfo->spool->used_hpages; 993 buf->f_bavail = buf->f_bfree = free_pages; 994 spin_unlock(&sbinfo->spool->lock); 995 buf->f_files = sbinfo->max_inodes; 996 buf->f_ffree = sbinfo->free_inodes; 997 } 998 spin_unlock(&sbinfo->stat_lock); 999 } 1000 buf->f_namelen = NAME_MAX; 1001 return 0; 1002 } 1003 1004 static void hugetlbfs_put_super(struct super_block *sb) 1005 { 1006 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1007 1008 if (sbi) { 1009 sb->s_fs_info = NULL; 1010 1011 if (sbi->spool) 1012 hugepage_put_subpool(sbi->spool); 1013 1014 kfree(sbi); 1015 } 1016 } 1017 1018 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1019 { 1020 if (sbinfo->free_inodes >= 0) { 1021 spin_lock(&sbinfo->stat_lock); 1022 if (unlikely(!sbinfo->free_inodes)) { 1023 spin_unlock(&sbinfo->stat_lock); 1024 return 0; 1025 } 1026 sbinfo->free_inodes--; 1027 spin_unlock(&sbinfo->stat_lock); 1028 } 1029 1030 return 1; 1031 } 1032 1033 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1034 { 1035 if (sbinfo->free_inodes >= 0) { 1036 spin_lock(&sbinfo->stat_lock); 1037 sbinfo->free_inodes++; 1038 spin_unlock(&sbinfo->stat_lock); 1039 } 1040 } 1041 1042 1043 static struct kmem_cache *hugetlbfs_inode_cachep; 1044 1045 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1046 { 1047 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1048 struct hugetlbfs_inode_info *p; 1049 1050 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1051 return NULL; 1052 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1053 if (unlikely(!p)) { 1054 hugetlbfs_inc_free_inodes(sbinfo); 1055 return NULL; 1056 } 1057 1058 /* 1059 * Any time after allocation, hugetlbfs_destroy_inode can be called 1060 * for the inode. mpol_free_shared_policy is unconditionally called 1061 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1062 * in case of a quick call to destroy. 1063 * 1064 * Note that the policy is initialized even if we are creating a 1065 * private inode. This simplifies hugetlbfs_destroy_inode. 1066 */ 1067 mpol_shared_policy_init(&p->policy, NULL); 1068 1069 return &p->vfs_inode; 1070 } 1071 1072 static void hugetlbfs_free_inode(struct inode *inode) 1073 { 1074 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1075 } 1076 1077 static void hugetlbfs_destroy_inode(struct inode *inode) 1078 { 1079 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1080 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1081 } 1082 1083 static const struct address_space_operations hugetlbfs_aops = { 1084 .write_begin = hugetlbfs_write_begin, 1085 .write_end = hugetlbfs_write_end, 1086 .set_page_dirty = hugetlbfs_set_page_dirty, 1087 .migratepage = hugetlbfs_migrate_page, 1088 .error_remove_page = hugetlbfs_error_remove_page, 1089 }; 1090 1091 1092 static void init_once(void *foo) 1093 { 1094 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1095 1096 inode_init_once(&ei->vfs_inode); 1097 } 1098 1099 const struct file_operations hugetlbfs_file_operations = { 1100 .read_iter = hugetlbfs_read_iter, 1101 .mmap = hugetlbfs_file_mmap, 1102 .fsync = noop_fsync, 1103 .get_unmapped_area = hugetlb_get_unmapped_area, 1104 .llseek = default_llseek, 1105 .fallocate = hugetlbfs_fallocate, 1106 }; 1107 1108 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1109 .create = hugetlbfs_create, 1110 .lookup = simple_lookup, 1111 .link = simple_link, 1112 .unlink = simple_unlink, 1113 .symlink = hugetlbfs_symlink, 1114 .mkdir = hugetlbfs_mkdir, 1115 .rmdir = simple_rmdir, 1116 .mknod = hugetlbfs_mknod, 1117 .rename = simple_rename, 1118 .setattr = hugetlbfs_setattr, 1119 .tmpfile = hugetlbfs_tmpfile, 1120 }; 1121 1122 static const struct inode_operations hugetlbfs_inode_operations = { 1123 .setattr = hugetlbfs_setattr, 1124 }; 1125 1126 static const struct super_operations hugetlbfs_ops = { 1127 .alloc_inode = hugetlbfs_alloc_inode, 1128 .free_inode = hugetlbfs_free_inode, 1129 .destroy_inode = hugetlbfs_destroy_inode, 1130 .evict_inode = hugetlbfs_evict_inode, 1131 .statfs = hugetlbfs_statfs, 1132 .put_super = hugetlbfs_put_super, 1133 .show_options = hugetlbfs_show_options, 1134 }; 1135 1136 /* 1137 * Convert size option passed from command line to number of huge pages 1138 * in the pool specified by hstate. Size option could be in bytes 1139 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1140 */ 1141 static long 1142 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1143 enum hugetlbfs_size_type val_type) 1144 { 1145 if (val_type == NO_SIZE) 1146 return -1; 1147 1148 if (val_type == SIZE_PERCENT) { 1149 size_opt <<= huge_page_shift(h); 1150 size_opt *= h->max_huge_pages; 1151 do_div(size_opt, 100); 1152 } 1153 1154 size_opt >>= huge_page_shift(h); 1155 return size_opt; 1156 } 1157 1158 /* 1159 * Parse one mount parameter. 1160 */ 1161 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1162 { 1163 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1164 struct fs_parse_result result; 1165 char *rest; 1166 unsigned long ps; 1167 int opt; 1168 1169 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1170 if (opt < 0) 1171 return opt; 1172 1173 switch (opt) { 1174 case Opt_uid: 1175 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1176 if (!uid_valid(ctx->uid)) 1177 goto bad_val; 1178 return 0; 1179 1180 case Opt_gid: 1181 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1182 if (!gid_valid(ctx->gid)) 1183 goto bad_val; 1184 return 0; 1185 1186 case Opt_mode: 1187 ctx->mode = result.uint_32 & 01777U; 1188 return 0; 1189 1190 case Opt_size: 1191 /* memparse() will accept a K/M/G without a digit */ 1192 if (!isdigit(param->string[0])) 1193 goto bad_val; 1194 ctx->max_size_opt = memparse(param->string, &rest); 1195 ctx->max_val_type = SIZE_STD; 1196 if (*rest == '%') 1197 ctx->max_val_type = SIZE_PERCENT; 1198 return 0; 1199 1200 case Opt_nr_inodes: 1201 /* memparse() will accept a K/M/G without a digit */ 1202 if (!isdigit(param->string[0])) 1203 goto bad_val; 1204 ctx->nr_inodes = memparse(param->string, &rest); 1205 return 0; 1206 1207 case Opt_pagesize: 1208 ps = memparse(param->string, &rest); 1209 ctx->hstate = size_to_hstate(ps); 1210 if (!ctx->hstate) { 1211 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1212 return -EINVAL; 1213 } 1214 return 0; 1215 1216 case Opt_min_size: 1217 /* memparse() will accept a K/M/G without a digit */ 1218 if (!isdigit(param->string[0])) 1219 goto bad_val; 1220 ctx->min_size_opt = memparse(param->string, &rest); 1221 ctx->min_val_type = SIZE_STD; 1222 if (*rest == '%') 1223 ctx->min_val_type = SIZE_PERCENT; 1224 return 0; 1225 1226 default: 1227 return -EINVAL; 1228 } 1229 1230 bad_val: 1231 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1232 param->string, param->key); 1233 } 1234 1235 /* 1236 * Validate the parsed options. 1237 */ 1238 static int hugetlbfs_validate(struct fs_context *fc) 1239 { 1240 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1241 1242 /* 1243 * Use huge page pool size (in hstate) to convert the size 1244 * options to number of huge pages. If NO_SIZE, -1 is returned. 1245 */ 1246 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1247 ctx->max_size_opt, 1248 ctx->max_val_type); 1249 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1250 ctx->min_size_opt, 1251 ctx->min_val_type); 1252 1253 /* 1254 * If max_size was specified, then min_size must be smaller 1255 */ 1256 if (ctx->max_val_type > NO_SIZE && 1257 ctx->min_hpages > ctx->max_hpages) { 1258 pr_err("Minimum size can not be greater than maximum size\n"); 1259 return -EINVAL; 1260 } 1261 1262 return 0; 1263 } 1264 1265 static int 1266 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1267 { 1268 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1269 struct hugetlbfs_sb_info *sbinfo; 1270 1271 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1272 if (!sbinfo) 1273 return -ENOMEM; 1274 sb->s_fs_info = sbinfo; 1275 spin_lock_init(&sbinfo->stat_lock); 1276 sbinfo->hstate = ctx->hstate; 1277 sbinfo->max_inodes = ctx->nr_inodes; 1278 sbinfo->free_inodes = ctx->nr_inodes; 1279 sbinfo->spool = NULL; 1280 sbinfo->uid = ctx->uid; 1281 sbinfo->gid = ctx->gid; 1282 sbinfo->mode = ctx->mode; 1283 1284 /* 1285 * Allocate and initialize subpool if maximum or minimum size is 1286 * specified. Any needed reservations (for minimim size) are taken 1287 * taken when the subpool is created. 1288 */ 1289 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1290 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1291 ctx->max_hpages, 1292 ctx->min_hpages); 1293 if (!sbinfo->spool) 1294 goto out_free; 1295 } 1296 sb->s_maxbytes = MAX_LFS_FILESIZE; 1297 sb->s_blocksize = huge_page_size(ctx->hstate); 1298 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1299 sb->s_magic = HUGETLBFS_MAGIC; 1300 sb->s_op = &hugetlbfs_ops; 1301 sb->s_time_gran = 1; 1302 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1303 if (!sb->s_root) 1304 goto out_free; 1305 return 0; 1306 out_free: 1307 kfree(sbinfo->spool); 1308 kfree(sbinfo); 1309 return -ENOMEM; 1310 } 1311 1312 static int hugetlbfs_get_tree(struct fs_context *fc) 1313 { 1314 int err = hugetlbfs_validate(fc); 1315 if (err) 1316 return err; 1317 return get_tree_nodev(fc, hugetlbfs_fill_super); 1318 } 1319 1320 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1321 { 1322 kfree(fc->fs_private); 1323 } 1324 1325 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1326 .free = hugetlbfs_fs_context_free, 1327 .parse_param = hugetlbfs_parse_param, 1328 .get_tree = hugetlbfs_get_tree, 1329 }; 1330 1331 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1332 { 1333 struct hugetlbfs_fs_context *ctx; 1334 1335 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1336 if (!ctx) 1337 return -ENOMEM; 1338 1339 ctx->max_hpages = -1; /* No limit on size by default */ 1340 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1341 ctx->uid = current_fsuid(); 1342 ctx->gid = current_fsgid(); 1343 ctx->mode = 0755; 1344 ctx->hstate = &default_hstate; 1345 ctx->min_hpages = -1; /* No default minimum size */ 1346 ctx->max_val_type = NO_SIZE; 1347 ctx->min_val_type = NO_SIZE; 1348 fc->fs_private = ctx; 1349 fc->ops = &hugetlbfs_fs_context_ops; 1350 return 0; 1351 } 1352 1353 static struct file_system_type hugetlbfs_fs_type = { 1354 .name = "hugetlbfs", 1355 .init_fs_context = hugetlbfs_init_fs_context, 1356 .parameters = hugetlb_fs_parameters, 1357 .kill_sb = kill_litter_super, 1358 }; 1359 1360 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1361 1362 static int can_do_hugetlb_shm(void) 1363 { 1364 kgid_t shm_group; 1365 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1366 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1367 } 1368 1369 static int get_hstate_idx(int page_size_log) 1370 { 1371 struct hstate *h = hstate_sizelog(page_size_log); 1372 1373 if (!h) 1374 return -1; 1375 return h - hstates; 1376 } 1377 1378 /* 1379 * Note that size should be aligned to proper hugepage size in caller side, 1380 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1381 */ 1382 struct file *hugetlb_file_setup(const char *name, size_t size, 1383 vm_flags_t acctflag, struct user_struct **user, 1384 int creat_flags, int page_size_log) 1385 { 1386 struct inode *inode; 1387 struct vfsmount *mnt; 1388 int hstate_idx; 1389 struct file *file; 1390 1391 hstate_idx = get_hstate_idx(page_size_log); 1392 if (hstate_idx < 0) 1393 return ERR_PTR(-ENODEV); 1394 1395 *user = NULL; 1396 mnt = hugetlbfs_vfsmount[hstate_idx]; 1397 if (!mnt) 1398 return ERR_PTR(-ENOENT); 1399 1400 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1401 *user = current_user(); 1402 if (user_shm_lock(size, *user)) { 1403 task_lock(current); 1404 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1405 current->comm, current->pid); 1406 task_unlock(current); 1407 } else { 1408 *user = NULL; 1409 return ERR_PTR(-EPERM); 1410 } 1411 } 1412 1413 file = ERR_PTR(-ENOSPC); 1414 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1415 if (!inode) 1416 goto out; 1417 if (creat_flags == HUGETLB_SHMFS_INODE) 1418 inode->i_flags |= S_PRIVATE; 1419 1420 inode->i_size = size; 1421 clear_nlink(inode); 1422 1423 if (hugetlb_reserve_pages(inode, 0, 1424 size >> huge_page_shift(hstate_inode(inode)), NULL, 1425 acctflag)) 1426 file = ERR_PTR(-ENOMEM); 1427 else 1428 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1429 &hugetlbfs_file_operations); 1430 if (!IS_ERR(file)) 1431 return file; 1432 1433 iput(inode); 1434 out: 1435 if (*user) { 1436 user_shm_unlock(size, *user); 1437 *user = NULL; 1438 } 1439 return file; 1440 } 1441 1442 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1443 { 1444 struct fs_context *fc; 1445 struct vfsmount *mnt; 1446 1447 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1448 if (IS_ERR(fc)) { 1449 mnt = ERR_CAST(fc); 1450 } else { 1451 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1452 ctx->hstate = h; 1453 mnt = fc_mount(fc); 1454 put_fs_context(fc); 1455 } 1456 if (IS_ERR(mnt)) 1457 pr_err("Cannot mount internal hugetlbfs for page size %uK", 1458 1U << (h->order + PAGE_SHIFT - 10)); 1459 return mnt; 1460 } 1461 1462 static int __init init_hugetlbfs_fs(void) 1463 { 1464 struct vfsmount *mnt; 1465 struct hstate *h; 1466 int error; 1467 int i; 1468 1469 if (!hugepages_supported()) { 1470 pr_info("disabling because there are no supported hugepage sizes\n"); 1471 return -ENOTSUPP; 1472 } 1473 1474 error = -ENOMEM; 1475 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1476 sizeof(struct hugetlbfs_inode_info), 1477 0, SLAB_ACCOUNT, init_once); 1478 if (hugetlbfs_inode_cachep == NULL) 1479 goto out; 1480 1481 error = register_filesystem(&hugetlbfs_fs_type); 1482 if (error) 1483 goto out_free; 1484 1485 /* default hstate mount is required */ 1486 mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); 1487 if (IS_ERR(mnt)) { 1488 error = PTR_ERR(mnt); 1489 goto out_unreg; 1490 } 1491 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1492 1493 /* other hstates are optional */ 1494 i = 0; 1495 for_each_hstate(h) { 1496 if (i == default_hstate_idx) { 1497 i++; 1498 continue; 1499 } 1500 1501 mnt = mount_one_hugetlbfs(h); 1502 if (IS_ERR(mnt)) 1503 hugetlbfs_vfsmount[i] = NULL; 1504 else 1505 hugetlbfs_vfsmount[i] = mnt; 1506 i++; 1507 } 1508 1509 return 0; 1510 1511 out_unreg: 1512 (void)unregister_filesystem(&hugetlbfs_fs_type); 1513 out_free: 1514 kmem_cache_destroy(hugetlbfs_inode_cachep); 1515 out: 1516 return error; 1517 } 1518 fs_initcall(init_hugetlbfs_fs) 1519