xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 struct hugetlbfs_config {
49 	struct hstate		*hstate;
50 	long			max_hpages;
51 	long			nr_inodes;
52 	long			min_hpages;
53 	kuid_t			uid;
54 	kgid_t			gid;
55 	umode_t			mode;
56 };
57 
58 int sysctl_hugetlb_shm_group;
59 
60 enum {
61 	Opt_size, Opt_nr_inodes,
62 	Opt_mode, Opt_uid, Opt_gid,
63 	Opt_pagesize, Opt_min_size,
64 	Opt_err,
65 };
66 
67 static const match_table_t tokens = {
68 	{Opt_size,	"size=%s"},
69 	{Opt_nr_inodes,	"nr_inodes=%s"},
70 	{Opt_mode,	"mode=%o"},
71 	{Opt_uid,	"uid=%u"},
72 	{Opt_gid,	"gid=%u"},
73 	{Opt_pagesize,	"pagesize=%s"},
74 	{Opt_min_size,	"min_size=%s"},
75 	{Opt_err,	NULL},
76 };
77 
78 #ifdef CONFIG_NUMA
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
80 					struct inode *inode, pgoff_t index)
81 {
82 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
83 							index);
84 }
85 
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
87 {
88 	mpol_cond_put(vma->vm_policy);
89 }
90 #else
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
92 					struct inode *inode, pgoff_t index)
93 {
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 }
99 #endif
100 
101 static void huge_pagevec_release(struct pagevec *pvec)
102 {
103 	int i;
104 
105 	for (i = 0; i < pagevec_count(pvec); ++i)
106 		put_page(pvec->pages[i]);
107 
108 	pagevec_reinit(pvec);
109 }
110 
111 /*
112  * Mask used when checking the page offset value passed in via system
113  * calls.  This value will be converted to a loff_t which is signed.
114  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115  * value.  The extra bit (- 1 in the shift value) is to take the sign
116  * bit into account.
117  */
118 #define PGOFF_LOFFT_MAX \
119 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
120 
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 	struct inode *inode = file_inode(file);
124 	loff_t len, vma_len;
125 	int ret;
126 	struct hstate *h = hstate_file(file);
127 
128 	/*
129 	 * vma address alignment (but not the pgoff alignment) has
130 	 * already been checked by prepare_hugepage_range.  If you add
131 	 * any error returns here, do so after setting VM_HUGETLB, so
132 	 * is_vm_hugetlb_page tests below unmap_region go the right
133 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 	 * and ia64).
135 	 */
136 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 	vma->vm_ops = &hugetlb_vm_ops;
138 
139 	/*
140 	 * page based offset in vm_pgoff could be sufficiently large to
141 	 * overflow a loff_t when converted to byte offset.  This can
142 	 * only happen on architectures where sizeof(loff_t) ==
143 	 * sizeof(unsigned long).  So, only check in those instances.
144 	 */
145 	if (sizeof(unsigned long) == sizeof(loff_t)) {
146 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
147 			return -EINVAL;
148 	}
149 
150 	/* must be huge page aligned */
151 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
152 		return -EINVAL;
153 
154 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
155 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
156 	/* check for overflow */
157 	if (len < vma_len)
158 		return -EINVAL;
159 
160 	inode_lock(inode);
161 	file_accessed(file);
162 
163 	ret = -ENOMEM;
164 	if (hugetlb_reserve_pages(inode,
165 				vma->vm_pgoff >> huge_page_order(h),
166 				len >> huge_page_shift(h), vma,
167 				vma->vm_flags))
168 		goto out;
169 
170 	ret = 0;
171 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
172 		i_size_write(inode, len);
173 out:
174 	inode_unlock(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called under down_write(mmap_sem).
181  */
182 
183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
184 static unsigned long
185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
186 		unsigned long len, unsigned long pgoff, unsigned long flags)
187 {
188 	struct mm_struct *mm = current->mm;
189 	struct vm_area_struct *vma;
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	if (len & ~huge_page_mask(h))
194 		return -EINVAL;
195 	if (len > TASK_SIZE)
196 		return -ENOMEM;
197 
198 	if (flags & MAP_FIXED) {
199 		if (prepare_hugepage_range(file, addr, len))
200 			return -EINVAL;
201 		return addr;
202 	}
203 
204 	if (addr) {
205 		addr = ALIGN(addr, huge_page_size(h));
206 		vma = find_vma(mm, addr);
207 		if (TASK_SIZE - len >= addr &&
208 		    (!vma || addr + len <= vm_start_gap(vma)))
209 			return addr;
210 	}
211 
212 	info.flags = 0;
213 	info.length = len;
214 	info.low_limit = TASK_UNMAPPED_BASE;
215 	info.high_limit = TASK_SIZE;
216 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
217 	info.align_offset = 0;
218 	return vm_unmapped_area(&info);
219 }
220 #endif
221 
222 static size_t
223 hugetlbfs_read_actor(struct page *page, unsigned long offset,
224 			struct iov_iter *to, unsigned long size)
225 {
226 	size_t copied = 0;
227 	int i, chunksize;
228 
229 	/* Find which 4k chunk and offset with in that chunk */
230 	i = offset >> PAGE_SHIFT;
231 	offset = offset & ~PAGE_MASK;
232 
233 	while (size) {
234 		size_t n;
235 		chunksize = PAGE_SIZE;
236 		if (offset)
237 			chunksize -= offset;
238 		if (chunksize > size)
239 			chunksize = size;
240 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
241 		copied += n;
242 		if (n != chunksize)
243 			return copied;
244 		offset = 0;
245 		size -= chunksize;
246 		i++;
247 	}
248 	return copied;
249 }
250 
251 /*
252  * Support for read() - Find the page attached to f_mapping and copy out the
253  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
254  * since it has PAGE_SIZE assumptions.
255  */
256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
257 {
258 	struct file *file = iocb->ki_filp;
259 	struct hstate *h = hstate_file(file);
260 	struct address_space *mapping = file->f_mapping;
261 	struct inode *inode = mapping->host;
262 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
263 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
264 	unsigned long end_index;
265 	loff_t isize;
266 	ssize_t retval = 0;
267 
268 	while (iov_iter_count(to)) {
269 		struct page *page;
270 		size_t nr, copied;
271 
272 		/* nr is the maximum number of bytes to copy from this page */
273 		nr = huge_page_size(h);
274 		isize = i_size_read(inode);
275 		if (!isize)
276 			break;
277 		end_index = (isize - 1) >> huge_page_shift(h);
278 		if (index > end_index)
279 			break;
280 		if (index == end_index) {
281 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
282 			if (nr <= offset)
283 				break;
284 		}
285 		nr = nr - offset;
286 
287 		/* Find the page */
288 		page = find_lock_page(mapping, index);
289 		if (unlikely(page == NULL)) {
290 			/*
291 			 * We have a HOLE, zero out the user-buffer for the
292 			 * length of the hole or request.
293 			 */
294 			copied = iov_iter_zero(nr, to);
295 		} else {
296 			unlock_page(page);
297 
298 			/*
299 			 * We have the page, copy it to user space buffer.
300 			 */
301 			copied = hugetlbfs_read_actor(page, offset, to, nr);
302 			put_page(page);
303 		}
304 		offset += copied;
305 		retval += copied;
306 		if (copied != nr && iov_iter_count(to)) {
307 			if (!retval)
308 				retval = -EFAULT;
309 			break;
310 		}
311 		index += offset >> huge_page_shift(h);
312 		offset &= ~huge_page_mask(h);
313 	}
314 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
315 	return retval;
316 }
317 
318 static int hugetlbfs_write_begin(struct file *file,
319 			struct address_space *mapping,
320 			loff_t pos, unsigned len, unsigned flags,
321 			struct page **pagep, void **fsdata)
322 {
323 	return -EINVAL;
324 }
325 
326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
327 			loff_t pos, unsigned len, unsigned copied,
328 			struct page *page, void *fsdata)
329 {
330 	BUG();
331 	return -EINVAL;
332 }
333 
334 static void remove_huge_page(struct page *page)
335 {
336 	ClearPageDirty(page);
337 	ClearPageUptodate(page);
338 	delete_from_page_cache(page);
339 }
340 
341 static void
342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
343 {
344 	struct vm_area_struct *vma;
345 
346 	/*
347 	 * end == 0 indicates that the entire range after
348 	 * start should be unmapped.
349 	 */
350 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
351 		unsigned long v_offset;
352 		unsigned long v_end;
353 
354 		/*
355 		 * Can the expression below overflow on 32-bit arches?
356 		 * No, because the interval tree returns us only those vmas
357 		 * which overlap the truncated area starting at pgoff,
358 		 * and no vma on a 32-bit arch can span beyond the 4GB.
359 		 */
360 		if (vma->vm_pgoff < start)
361 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
362 		else
363 			v_offset = 0;
364 
365 		if (!end)
366 			v_end = vma->vm_end;
367 		else {
368 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
369 							+ vma->vm_start;
370 			if (v_end > vma->vm_end)
371 				v_end = vma->vm_end;
372 		}
373 
374 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
375 									NULL);
376 	}
377 }
378 
379 /*
380  * remove_inode_hugepages handles two distinct cases: truncation and hole
381  * punch.  There are subtle differences in operation for each case.
382  *
383  * truncation is indicated by end of range being LLONG_MAX
384  *	In this case, we first scan the range and release found pages.
385  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
386  *	maps and global counts.
387  * hole punch is indicated if end is not LLONG_MAX
388  *	In the hole punch case we scan the range and release found pages.
389  *	Only when releasing a page is the associated region/reserv map
390  *	deleted.  The region/reserv map for ranges without associated
391  *	pages are not modified.
392  *
393  * Callers of this routine must hold the i_mmap_rwsem in write mode to prevent
394  * races with page faults.
395  *
396  * Note: If the passed end of range value is beyond the end of file, but
397  * not LLONG_MAX this routine still performs a hole punch operation.
398  */
399 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
400 				   loff_t lend)
401 {
402 	struct hstate *h = hstate_inode(inode);
403 	struct address_space *mapping = &inode->i_data;
404 	const pgoff_t start = lstart >> huge_page_shift(h);
405 	const pgoff_t end = lend >> huge_page_shift(h);
406 	struct vm_area_struct pseudo_vma;
407 	struct pagevec pvec;
408 	pgoff_t next, index;
409 	int i, freed = 0;
410 	bool truncate_op = (lend == LLONG_MAX);
411 
412 	vma_init(&pseudo_vma, current->mm);
413 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
414 	pagevec_init(&pvec);
415 	next = start;
416 	while (next < end) {
417 		/*
418 		 * When no more pages are found, we are done.
419 		 */
420 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
421 			break;
422 
423 		for (i = 0; i < pagevec_count(&pvec); ++i) {
424 			struct page *page = pvec.pages[i];
425 
426 			index = page->index;
427 			/*
428 			 * A mapped page is impossible as callers should unmap
429 			 * all references before calling.  And, i_mmap_rwsem
430 			 * prevents the creation of additional mappings.
431 			 */
432 			VM_BUG_ON(page_mapped(page));
433 
434 			lock_page(page);
435 			/*
436 			 * We must free the huge page and remove from page
437 			 * cache (remove_huge_page) BEFORE removing the
438 			 * region/reserve map (hugetlb_unreserve_pages).  In
439 			 * rare out of memory conditions, removal of the
440 			 * region/reserve map could fail. Correspondingly,
441 			 * the subpool and global reserve usage count can need
442 			 * to be adjusted.
443 			 */
444 			VM_BUG_ON(PagePrivate(page));
445 			remove_huge_page(page);
446 			freed++;
447 			if (!truncate_op) {
448 				if (unlikely(hugetlb_unreserve_pages(inode,
449 							index, index + 1, 1)))
450 					hugetlb_fix_reserve_counts(inode);
451 			}
452 
453 			unlock_page(page);
454 		}
455 		huge_pagevec_release(&pvec);
456 		cond_resched();
457 	}
458 
459 	if (truncate_op)
460 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
461 }
462 
463 static void hugetlbfs_evict_inode(struct inode *inode)
464 {
465 	struct address_space *mapping = inode->i_mapping;
466 	struct resv_map *resv_map;
467 
468 	/*
469 	 * The vfs layer guarantees that there are no other users of this
470 	 * inode.  Therefore, it would be safe to call remove_inode_hugepages
471 	 * without holding i_mmap_rwsem.  We acquire and hold here to be
472 	 * consistent with other callers.  Since there will be no contention
473 	 * on the semaphore, overhead is negligible.
474 	 */
475 	i_mmap_lock_write(mapping);
476 	remove_inode_hugepages(inode, 0, LLONG_MAX);
477 	i_mmap_unlock_write(mapping);
478 
479 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
480 	/* root inode doesn't have the resv_map, so we should check it */
481 	if (resv_map)
482 		resv_map_release(&resv_map->refs);
483 	clear_inode(inode);
484 }
485 
486 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
487 {
488 	pgoff_t pgoff;
489 	struct address_space *mapping = inode->i_mapping;
490 	struct hstate *h = hstate_inode(inode);
491 
492 	BUG_ON(offset & ~huge_page_mask(h));
493 	pgoff = offset >> PAGE_SHIFT;
494 
495 	i_size_write(inode, offset);
496 	i_mmap_lock_write(mapping);
497 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
498 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
499 	remove_inode_hugepages(inode, offset, LLONG_MAX);
500 	i_mmap_unlock_write(mapping);
501 	return 0;
502 }
503 
504 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
505 {
506 	struct hstate *h = hstate_inode(inode);
507 	loff_t hpage_size = huge_page_size(h);
508 	loff_t hole_start, hole_end;
509 
510 	/*
511 	 * For hole punch round up the beginning offset of the hole and
512 	 * round down the end.
513 	 */
514 	hole_start = round_up(offset, hpage_size);
515 	hole_end = round_down(offset + len, hpage_size);
516 
517 	if (hole_end > hole_start) {
518 		struct address_space *mapping = inode->i_mapping;
519 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
520 
521 		inode_lock(inode);
522 
523 		/* protected by i_mutex */
524 		if (info->seals & F_SEAL_WRITE) {
525 			inode_unlock(inode);
526 			return -EPERM;
527 		}
528 
529 		i_mmap_lock_write(mapping);
530 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
531 			hugetlb_vmdelete_list(&mapping->i_mmap,
532 						hole_start >> PAGE_SHIFT,
533 						hole_end  >> PAGE_SHIFT);
534 		remove_inode_hugepages(inode, hole_start, hole_end);
535 		i_mmap_unlock_write(mapping);
536 		inode_unlock(inode);
537 	}
538 
539 	return 0;
540 }
541 
542 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
543 				loff_t len)
544 {
545 	struct inode *inode = file_inode(file);
546 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
547 	struct address_space *mapping = inode->i_mapping;
548 	struct hstate *h = hstate_inode(inode);
549 	struct vm_area_struct pseudo_vma;
550 	struct mm_struct *mm = current->mm;
551 	loff_t hpage_size = huge_page_size(h);
552 	unsigned long hpage_shift = huge_page_shift(h);
553 	pgoff_t start, index, end;
554 	int error;
555 	u32 hash;
556 
557 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
558 		return -EOPNOTSUPP;
559 
560 	if (mode & FALLOC_FL_PUNCH_HOLE)
561 		return hugetlbfs_punch_hole(inode, offset, len);
562 
563 	/*
564 	 * Default preallocate case.
565 	 * For this range, start is rounded down and end is rounded up
566 	 * as well as being converted to page offsets.
567 	 */
568 	start = offset >> hpage_shift;
569 	end = (offset + len + hpage_size - 1) >> hpage_shift;
570 
571 	inode_lock(inode);
572 
573 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
574 	error = inode_newsize_ok(inode, offset + len);
575 	if (error)
576 		goto out;
577 
578 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
579 		error = -EPERM;
580 		goto out;
581 	}
582 
583 	/*
584 	 * Initialize a pseudo vma as this is required by the huge page
585 	 * allocation routines.  If NUMA is configured, use page index
586 	 * as input to create an allocation policy.
587 	 */
588 	vma_init(&pseudo_vma, mm);
589 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
590 	pseudo_vma.vm_file = file;
591 
592 	for (index = start; index < end; index++) {
593 		/*
594 		 * This is supposed to be the vaddr where the page is being
595 		 * faulted in, but we have no vaddr here.
596 		 */
597 		struct page *page;
598 		unsigned long addr;
599 		int avoid_reserve = 0;
600 
601 		cond_resched();
602 
603 		/*
604 		 * fallocate(2) manpage permits EINTR; we may have been
605 		 * interrupted because we are using up too much memory.
606 		 */
607 		if (signal_pending(current)) {
608 			error = -EINTR;
609 			break;
610 		}
611 
612 		/* Set numa allocation policy based on index */
613 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
614 
615 		/* addr is the offset within the file (zero based) */
616 		addr = index * hpage_size;
617 
618 		/*
619 		 * fault mutex taken here, protects against fault path
620 		 * and hole punch.  inode_lock previously taken protects
621 		 * against truncation.
622 		 */
623 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
624 						index, addr);
625 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
626 
627 		/* See if already present in mapping to avoid alloc/free */
628 		page = find_get_page(mapping, index);
629 		if (page) {
630 			put_page(page);
631 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
632 			hugetlb_drop_vma_policy(&pseudo_vma);
633 			continue;
634 		}
635 
636 		/* Allocate page and add to page cache */
637 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
638 		hugetlb_drop_vma_policy(&pseudo_vma);
639 		if (IS_ERR(page)) {
640 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
641 			error = PTR_ERR(page);
642 			goto out;
643 		}
644 		clear_huge_page(page, addr, pages_per_huge_page(h));
645 		__SetPageUptodate(page);
646 		error = huge_add_to_page_cache(page, mapping, index);
647 		if (unlikely(error)) {
648 			put_page(page);
649 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
650 			goto out;
651 		}
652 
653 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
654 
655 		/*
656 		 * unlock_page because locked by add_to_page_cache()
657 		 * page_put due to reference from alloc_huge_page()
658 		 */
659 		unlock_page(page);
660 		put_page(page);
661 	}
662 
663 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
664 		i_size_write(inode, offset + len);
665 	inode->i_ctime = current_time(inode);
666 out:
667 	inode_unlock(inode);
668 	return error;
669 }
670 
671 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
672 {
673 	struct inode *inode = d_inode(dentry);
674 	struct hstate *h = hstate_inode(inode);
675 	int error;
676 	unsigned int ia_valid = attr->ia_valid;
677 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
678 
679 	BUG_ON(!inode);
680 
681 	error = setattr_prepare(dentry, attr);
682 	if (error)
683 		return error;
684 
685 	if (ia_valid & ATTR_SIZE) {
686 		loff_t oldsize = inode->i_size;
687 		loff_t newsize = attr->ia_size;
688 
689 		if (newsize & ~huge_page_mask(h))
690 			return -EINVAL;
691 		/* protected by i_mutex */
692 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
693 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
694 			return -EPERM;
695 		error = hugetlb_vmtruncate(inode, newsize);
696 		if (error)
697 			return error;
698 	}
699 
700 	setattr_copy(inode, attr);
701 	mark_inode_dirty(inode);
702 	return 0;
703 }
704 
705 static struct inode *hugetlbfs_get_root(struct super_block *sb,
706 					struct hugetlbfs_config *config)
707 {
708 	struct inode *inode;
709 
710 	inode = new_inode(sb);
711 	if (inode) {
712 		inode->i_ino = get_next_ino();
713 		inode->i_mode = S_IFDIR | config->mode;
714 		inode->i_uid = config->uid;
715 		inode->i_gid = config->gid;
716 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
717 		inode->i_op = &hugetlbfs_dir_inode_operations;
718 		inode->i_fop = &simple_dir_operations;
719 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
720 		inc_nlink(inode);
721 		lockdep_annotate_inode_mutex_key(inode);
722 	}
723 	return inode;
724 }
725 
726 /*
727  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
728  * be taken from reclaim -- unlike regular filesystems. This needs an
729  * annotation because huge_pmd_share() does an allocation under hugetlb's
730  * i_mmap_rwsem.
731  */
732 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
733 
734 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
735 					struct inode *dir,
736 					umode_t mode, dev_t dev)
737 {
738 	struct inode *inode;
739 	struct resv_map *resv_map;
740 
741 	resv_map = resv_map_alloc();
742 	if (!resv_map)
743 		return NULL;
744 
745 	inode = new_inode(sb);
746 	if (inode) {
747 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
748 
749 		inode->i_ino = get_next_ino();
750 		inode_init_owner(inode, dir, mode);
751 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
752 				&hugetlbfs_i_mmap_rwsem_key);
753 		inode->i_mapping->a_ops = &hugetlbfs_aops;
754 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
755 		inode->i_mapping->private_data = resv_map;
756 		info->seals = F_SEAL_SEAL;
757 		switch (mode & S_IFMT) {
758 		default:
759 			init_special_inode(inode, mode, dev);
760 			break;
761 		case S_IFREG:
762 			inode->i_op = &hugetlbfs_inode_operations;
763 			inode->i_fop = &hugetlbfs_file_operations;
764 			break;
765 		case S_IFDIR:
766 			inode->i_op = &hugetlbfs_dir_inode_operations;
767 			inode->i_fop = &simple_dir_operations;
768 
769 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
770 			inc_nlink(inode);
771 			break;
772 		case S_IFLNK:
773 			inode->i_op = &page_symlink_inode_operations;
774 			inode_nohighmem(inode);
775 			break;
776 		}
777 		lockdep_annotate_inode_mutex_key(inode);
778 	} else
779 		kref_put(&resv_map->refs, resv_map_release);
780 
781 	return inode;
782 }
783 
784 /*
785  * File creation. Allocate an inode, and we're done..
786  */
787 static int hugetlbfs_mknod(struct inode *dir,
788 			struct dentry *dentry, umode_t mode, dev_t dev)
789 {
790 	struct inode *inode;
791 	int error = -ENOSPC;
792 
793 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
794 	if (inode) {
795 		dir->i_ctime = dir->i_mtime = current_time(dir);
796 		d_instantiate(dentry, inode);
797 		dget(dentry);	/* Extra count - pin the dentry in core */
798 		error = 0;
799 	}
800 	return error;
801 }
802 
803 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
804 {
805 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
806 	if (!retval)
807 		inc_nlink(dir);
808 	return retval;
809 }
810 
811 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
812 {
813 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
814 }
815 
816 static int hugetlbfs_symlink(struct inode *dir,
817 			struct dentry *dentry, const char *symname)
818 {
819 	struct inode *inode;
820 	int error = -ENOSPC;
821 
822 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
823 	if (inode) {
824 		int l = strlen(symname)+1;
825 		error = page_symlink(inode, symname, l);
826 		if (!error) {
827 			d_instantiate(dentry, inode);
828 			dget(dentry);
829 		} else
830 			iput(inode);
831 	}
832 	dir->i_ctime = dir->i_mtime = current_time(dir);
833 
834 	return error;
835 }
836 
837 /*
838  * mark the head page dirty
839  */
840 static int hugetlbfs_set_page_dirty(struct page *page)
841 {
842 	struct page *head = compound_head(page);
843 
844 	SetPageDirty(head);
845 	return 0;
846 }
847 
848 static int hugetlbfs_migrate_page(struct address_space *mapping,
849 				struct page *newpage, struct page *page,
850 				enum migrate_mode mode)
851 {
852 	int rc;
853 
854 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
855 	if (rc != MIGRATEPAGE_SUCCESS)
856 		return rc;
857 	if (mode != MIGRATE_SYNC_NO_COPY)
858 		migrate_page_copy(newpage, page);
859 	else
860 		migrate_page_states(newpage, page);
861 
862 	return MIGRATEPAGE_SUCCESS;
863 }
864 
865 static int hugetlbfs_error_remove_page(struct address_space *mapping,
866 				struct page *page)
867 {
868 	struct inode *inode = mapping->host;
869 	pgoff_t index = page->index;
870 
871 	remove_huge_page(page);
872 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
873 		hugetlb_fix_reserve_counts(inode);
874 
875 	return 0;
876 }
877 
878 /*
879  * Display the mount options in /proc/mounts.
880  */
881 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
882 {
883 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
884 	struct hugepage_subpool *spool = sbinfo->spool;
885 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
886 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
887 	char mod;
888 
889 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
890 		seq_printf(m, ",uid=%u",
891 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
892 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
893 		seq_printf(m, ",gid=%u",
894 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
895 	if (sbinfo->mode != 0755)
896 		seq_printf(m, ",mode=%o", sbinfo->mode);
897 	if (sbinfo->max_inodes != -1)
898 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
899 
900 	hpage_size /= 1024;
901 	mod = 'K';
902 	if (hpage_size >= 1024) {
903 		hpage_size /= 1024;
904 		mod = 'M';
905 	}
906 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
907 	if (spool) {
908 		if (spool->max_hpages != -1)
909 			seq_printf(m, ",size=%llu",
910 				   (unsigned long long)spool->max_hpages << hpage_shift);
911 		if (spool->min_hpages != -1)
912 			seq_printf(m, ",min_size=%llu",
913 				   (unsigned long long)spool->min_hpages << hpage_shift);
914 	}
915 	return 0;
916 }
917 
918 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
919 {
920 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
921 	struct hstate *h = hstate_inode(d_inode(dentry));
922 
923 	buf->f_type = HUGETLBFS_MAGIC;
924 	buf->f_bsize = huge_page_size(h);
925 	if (sbinfo) {
926 		spin_lock(&sbinfo->stat_lock);
927 		/* If no limits set, just report 0 for max/free/used
928 		 * blocks, like simple_statfs() */
929 		if (sbinfo->spool) {
930 			long free_pages;
931 
932 			spin_lock(&sbinfo->spool->lock);
933 			buf->f_blocks = sbinfo->spool->max_hpages;
934 			free_pages = sbinfo->spool->max_hpages
935 				- sbinfo->spool->used_hpages;
936 			buf->f_bavail = buf->f_bfree = free_pages;
937 			spin_unlock(&sbinfo->spool->lock);
938 			buf->f_files = sbinfo->max_inodes;
939 			buf->f_ffree = sbinfo->free_inodes;
940 		}
941 		spin_unlock(&sbinfo->stat_lock);
942 	}
943 	buf->f_namelen = NAME_MAX;
944 	return 0;
945 }
946 
947 static void hugetlbfs_put_super(struct super_block *sb)
948 {
949 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
950 
951 	if (sbi) {
952 		sb->s_fs_info = NULL;
953 
954 		if (sbi->spool)
955 			hugepage_put_subpool(sbi->spool);
956 
957 		kfree(sbi);
958 	}
959 }
960 
961 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
962 {
963 	if (sbinfo->free_inodes >= 0) {
964 		spin_lock(&sbinfo->stat_lock);
965 		if (unlikely(!sbinfo->free_inodes)) {
966 			spin_unlock(&sbinfo->stat_lock);
967 			return 0;
968 		}
969 		sbinfo->free_inodes--;
970 		spin_unlock(&sbinfo->stat_lock);
971 	}
972 
973 	return 1;
974 }
975 
976 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
977 {
978 	if (sbinfo->free_inodes >= 0) {
979 		spin_lock(&sbinfo->stat_lock);
980 		sbinfo->free_inodes++;
981 		spin_unlock(&sbinfo->stat_lock);
982 	}
983 }
984 
985 
986 static struct kmem_cache *hugetlbfs_inode_cachep;
987 
988 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
989 {
990 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
991 	struct hugetlbfs_inode_info *p;
992 
993 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
994 		return NULL;
995 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
996 	if (unlikely(!p)) {
997 		hugetlbfs_inc_free_inodes(sbinfo);
998 		return NULL;
999 	}
1000 
1001 	/*
1002 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1003 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1004 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1005 	 * in case of a quick call to destroy.
1006 	 *
1007 	 * Note that the policy is initialized even if we are creating a
1008 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1009 	 */
1010 	mpol_shared_policy_init(&p->policy, NULL);
1011 
1012 	return &p->vfs_inode;
1013 }
1014 
1015 static void hugetlbfs_i_callback(struct rcu_head *head)
1016 {
1017 	struct inode *inode = container_of(head, struct inode, i_rcu);
1018 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1019 }
1020 
1021 static void hugetlbfs_destroy_inode(struct inode *inode)
1022 {
1023 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1024 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1025 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1026 }
1027 
1028 static const struct address_space_operations hugetlbfs_aops = {
1029 	.write_begin	= hugetlbfs_write_begin,
1030 	.write_end	= hugetlbfs_write_end,
1031 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1032 	.migratepage    = hugetlbfs_migrate_page,
1033 	.error_remove_page	= hugetlbfs_error_remove_page,
1034 };
1035 
1036 
1037 static void init_once(void *foo)
1038 {
1039 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1040 
1041 	inode_init_once(&ei->vfs_inode);
1042 }
1043 
1044 const struct file_operations hugetlbfs_file_operations = {
1045 	.read_iter		= hugetlbfs_read_iter,
1046 	.mmap			= hugetlbfs_file_mmap,
1047 	.fsync			= noop_fsync,
1048 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1049 	.llseek			= default_llseek,
1050 	.fallocate		= hugetlbfs_fallocate,
1051 };
1052 
1053 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1054 	.create		= hugetlbfs_create,
1055 	.lookup		= simple_lookup,
1056 	.link		= simple_link,
1057 	.unlink		= simple_unlink,
1058 	.symlink	= hugetlbfs_symlink,
1059 	.mkdir		= hugetlbfs_mkdir,
1060 	.rmdir		= simple_rmdir,
1061 	.mknod		= hugetlbfs_mknod,
1062 	.rename		= simple_rename,
1063 	.setattr	= hugetlbfs_setattr,
1064 };
1065 
1066 static const struct inode_operations hugetlbfs_inode_operations = {
1067 	.setattr	= hugetlbfs_setattr,
1068 };
1069 
1070 static const struct super_operations hugetlbfs_ops = {
1071 	.alloc_inode    = hugetlbfs_alloc_inode,
1072 	.destroy_inode  = hugetlbfs_destroy_inode,
1073 	.evict_inode	= hugetlbfs_evict_inode,
1074 	.statfs		= hugetlbfs_statfs,
1075 	.put_super	= hugetlbfs_put_super,
1076 	.show_options	= hugetlbfs_show_options,
1077 };
1078 
1079 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1080 
1081 /*
1082  * Convert size option passed from command line to number of huge pages
1083  * in the pool specified by hstate.  Size option could be in bytes
1084  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1085  */
1086 static long
1087 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1088 			 enum hugetlbfs_size_type val_type)
1089 {
1090 	if (val_type == NO_SIZE)
1091 		return -1;
1092 
1093 	if (val_type == SIZE_PERCENT) {
1094 		size_opt <<= huge_page_shift(h);
1095 		size_opt *= h->max_huge_pages;
1096 		do_div(size_opt, 100);
1097 	}
1098 
1099 	size_opt >>= huge_page_shift(h);
1100 	return size_opt;
1101 }
1102 
1103 static int
1104 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1105 {
1106 	char *p, *rest;
1107 	substring_t args[MAX_OPT_ARGS];
1108 	int option;
1109 	unsigned long long max_size_opt = 0, min_size_opt = 0;
1110 	enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1111 
1112 	if (!options)
1113 		return 0;
1114 
1115 	while ((p = strsep(&options, ",")) != NULL) {
1116 		int token;
1117 		if (!*p)
1118 			continue;
1119 
1120 		token = match_token(p, tokens, args);
1121 		switch (token) {
1122 		case Opt_uid:
1123 			if (match_int(&args[0], &option))
1124  				goto bad_val;
1125 			pconfig->uid = make_kuid(current_user_ns(), option);
1126 			if (!uid_valid(pconfig->uid))
1127 				goto bad_val;
1128 			break;
1129 
1130 		case Opt_gid:
1131 			if (match_int(&args[0], &option))
1132  				goto bad_val;
1133 			pconfig->gid = make_kgid(current_user_ns(), option);
1134 			if (!gid_valid(pconfig->gid))
1135 				goto bad_val;
1136 			break;
1137 
1138 		case Opt_mode:
1139 			if (match_octal(&args[0], &option))
1140  				goto bad_val;
1141 			pconfig->mode = option & 01777U;
1142 			break;
1143 
1144 		case Opt_size: {
1145 			/* memparse() will accept a K/M/G without a digit */
1146 			if (!isdigit(*args[0].from))
1147 				goto bad_val;
1148 			max_size_opt = memparse(args[0].from, &rest);
1149 			max_val_type = SIZE_STD;
1150 			if (*rest == '%')
1151 				max_val_type = SIZE_PERCENT;
1152 			break;
1153 		}
1154 
1155 		case Opt_nr_inodes:
1156 			/* memparse() will accept a K/M/G without a digit */
1157 			if (!isdigit(*args[0].from))
1158 				goto bad_val;
1159 			pconfig->nr_inodes = memparse(args[0].from, &rest);
1160 			break;
1161 
1162 		case Opt_pagesize: {
1163 			unsigned long ps;
1164 			ps = memparse(args[0].from, &rest);
1165 			pconfig->hstate = size_to_hstate(ps);
1166 			if (!pconfig->hstate) {
1167 				pr_err("Unsupported page size %lu MB\n",
1168 					ps >> 20);
1169 				return -EINVAL;
1170 			}
1171 			break;
1172 		}
1173 
1174 		case Opt_min_size: {
1175 			/* memparse() will accept a K/M/G without a digit */
1176 			if (!isdigit(*args[0].from))
1177 				goto bad_val;
1178 			min_size_opt = memparse(args[0].from, &rest);
1179 			min_val_type = SIZE_STD;
1180 			if (*rest == '%')
1181 				min_val_type = SIZE_PERCENT;
1182 			break;
1183 		}
1184 
1185 		default:
1186 			pr_err("Bad mount option: \"%s\"\n", p);
1187 			return -EINVAL;
1188 			break;
1189 		}
1190 	}
1191 
1192 	/*
1193 	 * Use huge page pool size (in hstate) to convert the size
1194 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1195 	 */
1196 	pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1197 						max_size_opt, max_val_type);
1198 	pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1199 						min_size_opt, min_val_type);
1200 
1201 	/*
1202 	 * If max_size was specified, then min_size must be smaller
1203 	 */
1204 	if (max_val_type > NO_SIZE &&
1205 	    pconfig->min_hpages > pconfig->max_hpages) {
1206 		pr_err("minimum size can not be greater than maximum size\n");
1207 		return -EINVAL;
1208 	}
1209 
1210 	return 0;
1211 
1212 bad_val:
1213 	pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1214  	return -EINVAL;
1215 }
1216 
1217 static int
1218 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1219 {
1220 	int ret;
1221 	struct hugetlbfs_config config;
1222 	struct hugetlbfs_sb_info *sbinfo;
1223 
1224 	config.max_hpages = -1; /* No limit on size by default */
1225 	config.nr_inodes = -1; /* No limit on number of inodes by default */
1226 	config.uid = current_fsuid();
1227 	config.gid = current_fsgid();
1228 	config.mode = 0755;
1229 	config.hstate = &default_hstate;
1230 	config.min_hpages = -1; /* No default minimum size */
1231 	ret = hugetlbfs_parse_options(data, &config);
1232 	if (ret)
1233 		return ret;
1234 
1235 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1236 	if (!sbinfo)
1237 		return -ENOMEM;
1238 	sb->s_fs_info = sbinfo;
1239 	sbinfo->hstate = config.hstate;
1240 	spin_lock_init(&sbinfo->stat_lock);
1241 	sbinfo->max_inodes = config.nr_inodes;
1242 	sbinfo->free_inodes = config.nr_inodes;
1243 	sbinfo->spool = NULL;
1244 	sbinfo->uid = config.uid;
1245 	sbinfo->gid = config.gid;
1246 	sbinfo->mode = config.mode;
1247 
1248 	/*
1249 	 * Allocate and initialize subpool if maximum or minimum size is
1250 	 * specified.  Any needed reservations (for minimim size) are taken
1251 	 * taken when the subpool is created.
1252 	 */
1253 	if (config.max_hpages != -1 || config.min_hpages != -1) {
1254 		sbinfo->spool = hugepage_new_subpool(config.hstate,
1255 							config.max_hpages,
1256 							config.min_hpages);
1257 		if (!sbinfo->spool)
1258 			goto out_free;
1259 	}
1260 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1261 	sb->s_blocksize = huge_page_size(config.hstate);
1262 	sb->s_blocksize_bits = huge_page_shift(config.hstate);
1263 	sb->s_magic = HUGETLBFS_MAGIC;
1264 	sb->s_op = &hugetlbfs_ops;
1265 	sb->s_time_gran = 1;
1266 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1267 	if (!sb->s_root)
1268 		goto out_free;
1269 	return 0;
1270 out_free:
1271 	kfree(sbinfo->spool);
1272 	kfree(sbinfo);
1273 	return -ENOMEM;
1274 }
1275 
1276 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1277 	int flags, const char *dev_name, void *data)
1278 {
1279 	return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1280 }
1281 
1282 static struct file_system_type hugetlbfs_fs_type = {
1283 	.name		= "hugetlbfs",
1284 	.mount		= hugetlbfs_mount,
1285 	.kill_sb	= kill_litter_super,
1286 };
1287 
1288 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1289 
1290 static int can_do_hugetlb_shm(void)
1291 {
1292 	kgid_t shm_group;
1293 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1294 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1295 }
1296 
1297 static int get_hstate_idx(int page_size_log)
1298 {
1299 	struct hstate *h = hstate_sizelog(page_size_log);
1300 
1301 	if (!h)
1302 		return -1;
1303 	return h - hstates;
1304 }
1305 
1306 /*
1307  * Note that size should be aligned to proper hugepage size in caller side,
1308  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1309  */
1310 struct file *hugetlb_file_setup(const char *name, size_t size,
1311 				vm_flags_t acctflag, struct user_struct **user,
1312 				int creat_flags, int page_size_log)
1313 {
1314 	struct inode *inode;
1315 	struct vfsmount *mnt;
1316 	int hstate_idx;
1317 	struct file *file;
1318 
1319 	hstate_idx = get_hstate_idx(page_size_log);
1320 	if (hstate_idx < 0)
1321 		return ERR_PTR(-ENODEV);
1322 
1323 	*user = NULL;
1324 	mnt = hugetlbfs_vfsmount[hstate_idx];
1325 	if (!mnt)
1326 		return ERR_PTR(-ENOENT);
1327 
1328 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1329 		*user = current_user();
1330 		if (user_shm_lock(size, *user)) {
1331 			task_lock(current);
1332 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1333 				current->comm, current->pid);
1334 			task_unlock(current);
1335 		} else {
1336 			*user = NULL;
1337 			return ERR_PTR(-EPERM);
1338 		}
1339 	}
1340 
1341 	file = ERR_PTR(-ENOSPC);
1342 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1343 	if (!inode)
1344 		goto out;
1345 	if (creat_flags == HUGETLB_SHMFS_INODE)
1346 		inode->i_flags |= S_PRIVATE;
1347 
1348 	inode->i_size = size;
1349 	clear_nlink(inode);
1350 
1351 	if (hugetlb_reserve_pages(inode, 0,
1352 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1353 			acctflag))
1354 		file = ERR_PTR(-ENOMEM);
1355 	else
1356 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1357 					&hugetlbfs_file_operations);
1358 	if (!IS_ERR(file))
1359 		return file;
1360 
1361 	iput(inode);
1362 out:
1363 	if (*user) {
1364 		user_shm_unlock(size, *user);
1365 		*user = NULL;
1366 	}
1367 	return file;
1368 }
1369 
1370 static int __init init_hugetlbfs_fs(void)
1371 {
1372 	struct hstate *h;
1373 	int error;
1374 	int i;
1375 
1376 	if (!hugepages_supported()) {
1377 		pr_info("disabling because there are no supported hugepage sizes\n");
1378 		return -ENOTSUPP;
1379 	}
1380 
1381 	error = -ENOMEM;
1382 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1383 					sizeof(struct hugetlbfs_inode_info),
1384 					0, SLAB_ACCOUNT, init_once);
1385 	if (hugetlbfs_inode_cachep == NULL)
1386 		goto out2;
1387 
1388 	error = register_filesystem(&hugetlbfs_fs_type);
1389 	if (error)
1390 		goto out;
1391 
1392 	i = 0;
1393 	for_each_hstate(h) {
1394 		char buf[50];
1395 		unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1396 
1397 		snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1398 		hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1399 							buf);
1400 
1401 		if (IS_ERR(hugetlbfs_vfsmount[i])) {
1402 			pr_err("Cannot mount internal hugetlbfs for "
1403 				"page size %uK", ps_kb);
1404 			error = PTR_ERR(hugetlbfs_vfsmount[i]);
1405 			hugetlbfs_vfsmount[i] = NULL;
1406 		}
1407 		i++;
1408 	}
1409 	/* Non default hstates are optional */
1410 	if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1411 		return 0;
1412 
1413  out:
1414 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1415  out2:
1416 	return error;
1417 }
1418 fs_initcall(init_hugetlbfs_fs)
1419