1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 struct hstate *hstate; 50 long max_hpages; 51 long nr_inodes; 52 long min_hpages; 53 kuid_t uid; 54 kgid_t gid; 55 umode_t mode; 56 }; 57 58 int sysctl_hugetlb_shm_group; 59 60 enum { 61 Opt_size, Opt_nr_inodes, 62 Opt_mode, Opt_uid, Opt_gid, 63 Opt_pagesize, Opt_min_size, 64 Opt_err, 65 }; 66 67 static const match_table_t tokens = { 68 {Opt_size, "size=%s"}, 69 {Opt_nr_inodes, "nr_inodes=%s"}, 70 {Opt_mode, "mode=%o"}, 71 {Opt_uid, "uid=%u"}, 72 {Opt_gid, "gid=%u"}, 73 {Opt_pagesize, "pagesize=%s"}, 74 {Opt_min_size, "min_size=%s"}, 75 {Opt_err, NULL}, 76 }; 77 78 #ifdef CONFIG_NUMA 79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 80 struct inode *inode, pgoff_t index) 81 { 82 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 83 index); 84 } 85 86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 87 { 88 mpol_cond_put(vma->vm_policy); 89 } 90 #else 91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 92 struct inode *inode, pgoff_t index) 93 { 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 } 99 #endif 100 101 static void huge_pagevec_release(struct pagevec *pvec) 102 { 103 int i; 104 105 for (i = 0; i < pagevec_count(pvec); ++i) 106 put_page(pvec->pages[i]); 107 108 pagevec_reinit(pvec); 109 } 110 111 /* 112 * Mask used when checking the page offset value passed in via system 113 * calls. This value will be converted to a loff_t which is signed. 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 115 * value. The extra bit (- 1 in the shift value) is to take the sign 116 * bit into account. 117 */ 118 #define PGOFF_LOFFT_MAX \ 119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 /* 140 * page based offset in vm_pgoff could be sufficiently large to 141 * overflow a loff_t when converted to byte offset. This can 142 * only happen on architectures where sizeof(loff_t) == 143 * sizeof(unsigned long). So, only check in those instances. 144 */ 145 if (sizeof(unsigned long) == sizeof(loff_t)) { 146 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 147 return -EINVAL; 148 } 149 150 /* must be huge page aligned */ 151 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 152 return -EINVAL; 153 154 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 155 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 156 /* check for overflow */ 157 if (len < vma_len) 158 return -EINVAL; 159 160 inode_lock(inode); 161 file_accessed(file); 162 163 ret = -ENOMEM; 164 if (hugetlb_reserve_pages(inode, 165 vma->vm_pgoff >> huge_page_order(h), 166 len >> huge_page_shift(h), vma, 167 vma->vm_flags)) 168 goto out; 169 170 ret = 0; 171 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 172 i_size_write(inode, len); 173 out: 174 inode_unlock(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called under down_write(mmap_sem). 181 */ 182 183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 184 static unsigned long 185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 186 unsigned long len, unsigned long pgoff, unsigned long flags) 187 { 188 struct mm_struct *mm = current->mm; 189 struct vm_area_struct *vma; 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 if (len & ~huge_page_mask(h)) 194 return -EINVAL; 195 if (len > TASK_SIZE) 196 return -ENOMEM; 197 198 if (flags & MAP_FIXED) { 199 if (prepare_hugepage_range(file, addr, len)) 200 return -EINVAL; 201 return addr; 202 } 203 204 if (addr) { 205 addr = ALIGN(addr, huge_page_size(h)); 206 vma = find_vma(mm, addr); 207 if (TASK_SIZE - len >= addr && 208 (!vma || addr + len <= vm_start_gap(vma))) 209 return addr; 210 } 211 212 info.flags = 0; 213 info.length = len; 214 info.low_limit = TASK_UNMAPPED_BASE; 215 info.high_limit = TASK_SIZE; 216 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 217 info.align_offset = 0; 218 return vm_unmapped_area(&info); 219 } 220 #endif 221 222 static size_t 223 hugetlbfs_read_actor(struct page *page, unsigned long offset, 224 struct iov_iter *to, unsigned long size) 225 { 226 size_t copied = 0; 227 int i, chunksize; 228 229 /* Find which 4k chunk and offset with in that chunk */ 230 i = offset >> PAGE_SHIFT; 231 offset = offset & ~PAGE_MASK; 232 233 while (size) { 234 size_t n; 235 chunksize = PAGE_SIZE; 236 if (offset) 237 chunksize -= offset; 238 if (chunksize > size) 239 chunksize = size; 240 n = copy_page_to_iter(&page[i], offset, chunksize, to); 241 copied += n; 242 if (n != chunksize) 243 return copied; 244 offset = 0; 245 size -= chunksize; 246 i++; 247 } 248 return copied; 249 } 250 251 /* 252 * Support for read() - Find the page attached to f_mapping and copy out the 253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 254 * since it has PAGE_SIZE assumptions. 255 */ 256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 257 { 258 struct file *file = iocb->ki_filp; 259 struct hstate *h = hstate_file(file); 260 struct address_space *mapping = file->f_mapping; 261 struct inode *inode = mapping->host; 262 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 263 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 264 unsigned long end_index; 265 loff_t isize; 266 ssize_t retval = 0; 267 268 while (iov_iter_count(to)) { 269 struct page *page; 270 size_t nr, copied; 271 272 /* nr is the maximum number of bytes to copy from this page */ 273 nr = huge_page_size(h); 274 isize = i_size_read(inode); 275 if (!isize) 276 break; 277 end_index = (isize - 1) >> huge_page_shift(h); 278 if (index > end_index) 279 break; 280 if (index == end_index) { 281 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 282 if (nr <= offset) 283 break; 284 } 285 nr = nr - offset; 286 287 /* Find the page */ 288 page = find_lock_page(mapping, index); 289 if (unlikely(page == NULL)) { 290 /* 291 * We have a HOLE, zero out the user-buffer for the 292 * length of the hole or request. 293 */ 294 copied = iov_iter_zero(nr, to); 295 } else { 296 unlock_page(page); 297 298 /* 299 * We have the page, copy it to user space buffer. 300 */ 301 copied = hugetlbfs_read_actor(page, offset, to, nr); 302 put_page(page); 303 } 304 offset += copied; 305 retval += copied; 306 if (copied != nr && iov_iter_count(to)) { 307 if (!retval) 308 retval = -EFAULT; 309 break; 310 } 311 index += offset >> huge_page_shift(h); 312 offset &= ~huge_page_mask(h); 313 } 314 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 315 return retval; 316 } 317 318 static int hugetlbfs_write_begin(struct file *file, 319 struct address_space *mapping, 320 loff_t pos, unsigned len, unsigned flags, 321 struct page **pagep, void **fsdata) 322 { 323 return -EINVAL; 324 } 325 326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 327 loff_t pos, unsigned len, unsigned copied, 328 struct page *page, void *fsdata) 329 { 330 BUG(); 331 return -EINVAL; 332 } 333 334 static void remove_huge_page(struct page *page) 335 { 336 ClearPageDirty(page); 337 ClearPageUptodate(page); 338 delete_from_page_cache(page); 339 } 340 341 static void 342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 343 { 344 struct vm_area_struct *vma; 345 346 /* 347 * end == 0 indicates that the entire range after 348 * start should be unmapped. 349 */ 350 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 351 unsigned long v_offset; 352 unsigned long v_end; 353 354 /* 355 * Can the expression below overflow on 32-bit arches? 356 * No, because the interval tree returns us only those vmas 357 * which overlap the truncated area starting at pgoff, 358 * and no vma on a 32-bit arch can span beyond the 4GB. 359 */ 360 if (vma->vm_pgoff < start) 361 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 362 else 363 v_offset = 0; 364 365 if (!end) 366 v_end = vma->vm_end; 367 else { 368 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 369 + vma->vm_start; 370 if (v_end > vma->vm_end) 371 v_end = vma->vm_end; 372 } 373 374 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 375 NULL); 376 } 377 } 378 379 /* 380 * remove_inode_hugepages handles two distinct cases: truncation and hole 381 * punch. There are subtle differences in operation for each case. 382 * 383 * truncation is indicated by end of range being LLONG_MAX 384 * In this case, we first scan the range and release found pages. 385 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 386 * maps and global counts. 387 * hole punch is indicated if end is not LLONG_MAX 388 * In the hole punch case we scan the range and release found pages. 389 * Only when releasing a page is the associated region/reserv map 390 * deleted. The region/reserv map for ranges without associated 391 * pages are not modified. 392 * 393 * Callers of this routine must hold the i_mmap_rwsem in write mode to prevent 394 * races with page faults. 395 * 396 * Note: If the passed end of range value is beyond the end of file, but 397 * not LLONG_MAX this routine still performs a hole punch operation. 398 */ 399 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 400 loff_t lend) 401 { 402 struct hstate *h = hstate_inode(inode); 403 struct address_space *mapping = &inode->i_data; 404 const pgoff_t start = lstart >> huge_page_shift(h); 405 const pgoff_t end = lend >> huge_page_shift(h); 406 struct vm_area_struct pseudo_vma; 407 struct pagevec pvec; 408 pgoff_t next, index; 409 int i, freed = 0; 410 bool truncate_op = (lend == LLONG_MAX); 411 412 vma_init(&pseudo_vma, current->mm); 413 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 414 pagevec_init(&pvec); 415 next = start; 416 while (next < end) { 417 /* 418 * When no more pages are found, we are done. 419 */ 420 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 421 break; 422 423 for (i = 0; i < pagevec_count(&pvec); ++i) { 424 struct page *page = pvec.pages[i]; 425 426 index = page->index; 427 /* 428 * A mapped page is impossible as callers should unmap 429 * all references before calling. And, i_mmap_rwsem 430 * prevents the creation of additional mappings. 431 */ 432 VM_BUG_ON(page_mapped(page)); 433 434 lock_page(page); 435 /* 436 * We must free the huge page and remove from page 437 * cache (remove_huge_page) BEFORE removing the 438 * region/reserve map (hugetlb_unreserve_pages). In 439 * rare out of memory conditions, removal of the 440 * region/reserve map could fail. Correspondingly, 441 * the subpool and global reserve usage count can need 442 * to be adjusted. 443 */ 444 VM_BUG_ON(PagePrivate(page)); 445 remove_huge_page(page); 446 freed++; 447 if (!truncate_op) { 448 if (unlikely(hugetlb_unreserve_pages(inode, 449 index, index + 1, 1))) 450 hugetlb_fix_reserve_counts(inode); 451 } 452 453 unlock_page(page); 454 } 455 huge_pagevec_release(&pvec); 456 cond_resched(); 457 } 458 459 if (truncate_op) 460 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 461 } 462 463 static void hugetlbfs_evict_inode(struct inode *inode) 464 { 465 struct address_space *mapping = inode->i_mapping; 466 struct resv_map *resv_map; 467 468 /* 469 * The vfs layer guarantees that there are no other users of this 470 * inode. Therefore, it would be safe to call remove_inode_hugepages 471 * without holding i_mmap_rwsem. We acquire and hold here to be 472 * consistent with other callers. Since there will be no contention 473 * on the semaphore, overhead is negligible. 474 */ 475 i_mmap_lock_write(mapping); 476 remove_inode_hugepages(inode, 0, LLONG_MAX); 477 i_mmap_unlock_write(mapping); 478 479 resv_map = (struct resv_map *)inode->i_mapping->private_data; 480 /* root inode doesn't have the resv_map, so we should check it */ 481 if (resv_map) 482 resv_map_release(&resv_map->refs); 483 clear_inode(inode); 484 } 485 486 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 487 { 488 pgoff_t pgoff; 489 struct address_space *mapping = inode->i_mapping; 490 struct hstate *h = hstate_inode(inode); 491 492 BUG_ON(offset & ~huge_page_mask(h)); 493 pgoff = offset >> PAGE_SHIFT; 494 495 i_size_write(inode, offset); 496 i_mmap_lock_write(mapping); 497 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 498 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 499 remove_inode_hugepages(inode, offset, LLONG_MAX); 500 i_mmap_unlock_write(mapping); 501 return 0; 502 } 503 504 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 505 { 506 struct hstate *h = hstate_inode(inode); 507 loff_t hpage_size = huge_page_size(h); 508 loff_t hole_start, hole_end; 509 510 /* 511 * For hole punch round up the beginning offset of the hole and 512 * round down the end. 513 */ 514 hole_start = round_up(offset, hpage_size); 515 hole_end = round_down(offset + len, hpage_size); 516 517 if (hole_end > hole_start) { 518 struct address_space *mapping = inode->i_mapping; 519 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 520 521 inode_lock(inode); 522 523 /* protected by i_mutex */ 524 if (info->seals & F_SEAL_WRITE) { 525 inode_unlock(inode); 526 return -EPERM; 527 } 528 529 i_mmap_lock_write(mapping); 530 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 531 hugetlb_vmdelete_list(&mapping->i_mmap, 532 hole_start >> PAGE_SHIFT, 533 hole_end >> PAGE_SHIFT); 534 remove_inode_hugepages(inode, hole_start, hole_end); 535 i_mmap_unlock_write(mapping); 536 inode_unlock(inode); 537 } 538 539 return 0; 540 } 541 542 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 543 loff_t len) 544 { 545 struct inode *inode = file_inode(file); 546 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 547 struct address_space *mapping = inode->i_mapping; 548 struct hstate *h = hstate_inode(inode); 549 struct vm_area_struct pseudo_vma; 550 struct mm_struct *mm = current->mm; 551 loff_t hpage_size = huge_page_size(h); 552 unsigned long hpage_shift = huge_page_shift(h); 553 pgoff_t start, index, end; 554 int error; 555 u32 hash; 556 557 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 558 return -EOPNOTSUPP; 559 560 if (mode & FALLOC_FL_PUNCH_HOLE) 561 return hugetlbfs_punch_hole(inode, offset, len); 562 563 /* 564 * Default preallocate case. 565 * For this range, start is rounded down and end is rounded up 566 * as well as being converted to page offsets. 567 */ 568 start = offset >> hpage_shift; 569 end = (offset + len + hpage_size - 1) >> hpage_shift; 570 571 inode_lock(inode); 572 573 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 574 error = inode_newsize_ok(inode, offset + len); 575 if (error) 576 goto out; 577 578 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 579 error = -EPERM; 580 goto out; 581 } 582 583 /* 584 * Initialize a pseudo vma as this is required by the huge page 585 * allocation routines. If NUMA is configured, use page index 586 * as input to create an allocation policy. 587 */ 588 vma_init(&pseudo_vma, mm); 589 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 590 pseudo_vma.vm_file = file; 591 592 for (index = start; index < end; index++) { 593 /* 594 * This is supposed to be the vaddr where the page is being 595 * faulted in, but we have no vaddr here. 596 */ 597 struct page *page; 598 unsigned long addr; 599 int avoid_reserve = 0; 600 601 cond_resched(); 602 603 /* 604 * fallocate(2) manpage permits EINTR; we may have been 605 * interrupted because we are using up too much memory. 606 */ 607 if (signal_pending(current)) { 608 error = -EINTR; 609 break; 610 } 611 612 /* Set numa allocation policy based on index */ 613 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 614 615 /* addr is the offset within the file (zero based) */ 616 addr = index * hpage_size; 617 618 /* 619 * fault mutex taken here, protects against fault path 620 * and hole punch. inode_lock previously taken protects 621 * against truncation. 622 */ 623 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 624 index, addr); 625 mutex_lock(&hugetlb_fault_mutex_table[hash]); 626 627 /* See if already present in mapping to avoid alloc/free */ 628 page = find_get_page(mapping, index); 629 if (page) { 630 put_page(page); 631 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 632 hugetlb_drop_vma_policy(&pseudo_vma); 633 continue; 634 } 635 636 /* Allocate page and add to page cache */ 637 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 638 hugetlb_drop_vma_policy(&pseudo_vma); 639 if (IS_ERR(page)) { 640 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 641 error = PTR_ERR(page); 642 goto out; 643 } 644 clear_huge_page(page, addr, pages_per_huge_page(h)); 645 __SetPageUptodate(page); 646 error = huge_add_to_page_cache(page, mapping, index); 647 if (unlikely(error)) { 648 put_page(page); 649 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 650 goto out; 651 } 652 653 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 654 655 /* 656 * unlock_page because locked by add_to_page_cache() 657 * page_put due to reference from alloc_huge_page() 658 */ 659 unlock_page(page); 660 put_page(page); 661 } 662 663 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 664 i_size_write(inode, offset + len); 665 inode->i_ctime = current_time(inode); 666 out: 667 inode_unlock(inode); 668 return error; 669 } 670 671 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 672 { 673 struct inode *inode = d_inode(dentry); 674 struct hstate *h = hstate_inode(inode); 675 int error; 676 unsigned int ia_valid = attr->ia_valid; 677 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 678 679 BUG_ON(!inode); 680 681 error = setattr_prepare(dentry, attr); 682 if (error) 683 return error; 684 685 if (ia_valid & ATTR_SIZE) { 686 loff_t oldsize = inode->i_size; 687 loff_t newsize = attr->ia_size; 688 689 if (newsize & ~huge_page_mask(h)) 690 return -EINVAL; 691 /* protected by i_mutex */ 692 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 693 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 694 return -EPERM; 695 error = hugetlb_vmtruncate(inode, newsize); 696 if (error) 697 return error; 698 } 699 700 setattr_copy(inode, attr); 701 mark_inode_dirty(inode); 702 return 0; 703 } 704 705 static struct inode *hugetlbfs_get_root(struct super_block *sb, 706 struct hugetlbfs_config *config) 707 { 708 struct inode *inode; 709 710 inode = new_inode(sb); 711 if (inode) { 712 inode->i_ino = get_next_ino(); 713 inode->i_mode = S_IFDIR | config->mode; 714 inode->i_uid = config->uid; 715 inode->i_gid = config->gid; 716 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 717 inode->i_op = &hugetlbfs_dir_inode_operations; 718 inode->i_fop = &simple_dir_operations; 719 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 720 inc_nlink(inode); 721 lockdep_annotate_inode_mutex_key(inode); 722 } 723 return inode; 724 } 725 726 /* 727 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 728 * be taken from reclaim -- unlike regular filesystems. This needs an 729 * annotation because huge_pmd_share() does an allocation under hugetlb's 730 * i_mmap_rwsem. 731 */ 732 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 733 734 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 735 struct inode *dir, 736 umode_t mode, dev_t dev) 737 { 738 struct inode *inode; 739 struct resv_map *resv_map; 740 741 resv_map = resv_map_alloc(); 742 if (!resv_map) 743 return NULL; 744 745 inode = new_inode(sb); 746 if (inode) { 747 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 748 749 inode->i_ino = get_next_ino(); 750 inode_init_owner(inode, dir, mode); 751 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 752 &hugetlbfs_i_mmap_rwsem_key); 753 inode->i_mapping->a_ops = &hugetlbfs_aops; 754 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 755 inode->i_mapping->private_data = resv_map; 756 info->seals = F_SEAL_SEAL; 757 switch (mode & S_IFMT) { 758 default: 759 init_special_inode(inode, mode, dev); 760 break; 761 case S_IFREG: 762 inode->i_op = &hugetlbfs_inode_operations; 763 inode->i_fop = &hugetlbfs_file_operations; 764 break; 765 case S_IFDIR: 766 inode->i_op = &hugetlbfs_dir_inode_operations; 767 inode->i_fop = &simple_dir_operations; 768 769 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 770 inc_nlink(inode); 771 break; 772 case S_IFLNK: 773 inode->i_op = &page_symlink_inode_operations; 774 inode_nohighmem(inode); 775 break; 776 } 777 lockdep_annotate_inode_mutex_key(inode); 778 } else 779 kref_put(&resv_map->refs, resv_map_release); 780 781 return inode; 782 } 783 784 /* 785 * File creation. Allocate an inode, and we're done.. 786 */ 787 static int hugetlbfs_mknod(struct inode *dir, 788 struct dentry *dentry, umode_t mode, dev_t dev) 789 { 790 struct inode *inode; 791 int error = -ENOSPC; 792 793 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 794 if (inode) { 795 dir->i_ctime = dir->i_mtime = current_time(dir); 796 d_instantiate(dentry, inode); 797 dget(dentry); /* Extra count - pin the dentry in core */ 798 error = 0; 799 } 800 return error; 801 } 802 803 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 804 { 805 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 806 if (!retval) 807 inc_nlink(dir); 808 return retval; 809 } 810 811 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 812 { 813 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 814 } 815 816 static int hugetlbfs_symlink(struct inode *dir, 817 struct dentry *dentry, const char *symname) 818 { 819 struct inode *inode; 820 int error = -ENOSPC; 821 822 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 823 if (inode) { 824 int l = strlen(symname)+1; 825 error = page_symlink(inode, symname, l); 826 if (!error) { 827 d_instantiate(dentry, inode); 828 dget(dentry); 829 } else 830 iput(inode); 831 } 832 dir->i_ctime = dir->i_mtime = current_time(dir); 833 834 return error; 835 } 836 837 /* 838 * mark the head page dirty 839 */ 840 static int hugetlbfs_set_page_dirty(struct page *page) 841 { 842 struct page *head = compound_head(page); 843 844 SetPageDirty(head); 845 return 0; 846 } 847 848 static int hugetlbfs_migrate_page(struct address_space *mapping, 849 struct page *newpage, struct page *page, 850 enum migrate_mode mode) 851 { 852 int rc; 853 854 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 855 if (rc != MIGRATEPAGE_SUCCESS) 856 return rc; 857 if (mode != MIGRATE_SYNC_NO_COPY) 858 migrate_page_copy(newpage, page); 859 else 860 migrate_page_states(newpage, page); 861 862 return MIGRATEPAGE_SUCCESS; 863 } 864 865 static int hugetlbfs_error_remove_page(struct address_space *mapping, 866 struct page *page) 867 { 868 struct inode *inode = mapping->host; 869 pgoff_t index = page->index; 870 871 remove_huge_page(page); 872 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 873 hugetlb_fix_reserve_counts(inode); 874 875 return 0; 876 } 877 878 /* 879 * Display the mount options in /proc/mounts. 880 */ 881 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 882 { 883 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 884 struct hugepage_subpool *spool = sbinfo->spool; 885 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 886 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 887 char mod; 888 889 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 890 seq_printf(m, ",uid=%u", 891 from_kuid_munged(&init_user_ns, sbinfo->uid)); 892 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 893 seq_printf(m, ",gid=%u", 894 from_kgid_munged(&init_user_ns, sbinfo->gid)); 895 if (sbinfo->mode != 0755) 896 seq_printf(m, ",mode=%o", sbinfo->mode); 897 if (sbinfo->max_inodes != -1) 898 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 899 900 hpage_size /= 1024; 901 mod = 'K'; 902 if (hpage_size >= 1024) { 903 hpage_size /= 1024; 904 mod = 'M'; 905 } 906 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 907 if (spool) { 908 if (spool->max_hpages != -1) 909 seq_printf(m, ",size=%llu", 910 (unsigned long long)spool->max_hpages << hpage_shift); 911 if (spool->min_hpages != -1) 912 seq_printf(m, ",min_size=%llu", 913 (unsigned long long)spool->min_hpages << hpage_shift); 914 } 915 return 0; 916 } 917 918 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 919 { 920 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 921 struct hstate *h = hstate_inode(d_inode(dentry)); 922 923 buf->f_type = HUGETLBFS_MAGIC; 924 buf->f_bsize = huge_page_size(h); 925 if (sbinfo) { 926 spin_lock(&sbinfo->stat_lock); 927 /* If no limits set, just report 0 for max/free/used 928 * blocks, like simple_statfs() */ 929 if (sbinfo->spool) { 930 long free_pages; 931 932 spin_lock(&sbinfo->spool->lock); 933 buf->f_blocks = sbinfo->spool->max_hpages; 934 free_pages = sbinfo->spool->max_hpages 935 - sbinfo->spool->used_hpages; 936 buf->f_bavail = buf->f_bfree = free_pages; 937 spin_unlock(&sbinfo->spool->lock); 938 buf->f_files = sbinfo->max_inodes; 939 buf->f_ffree = sbinfo->free_inodes; 940 } 941 spin_unlock(&sbinfo->stat_lock); 942 } 943 buf->f_namelen = NAME_MAX; 944 return 0; 945 } 946 947 static void hugetlbfs_put_super(struct super_block *sb) 948 { 949 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 950 951 if (sbi) { 952 sb->s_fs_info = NULL; 953 954 if (sbi->spool) 955 hugepage_put_subpool(sbi->spool); 956 957 kfree(sbi); 958 } 959 } 960 961 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 962 { 963 if (sbinfo->free_inodes >= 0) { 964 spin_lock(&sbinfo->stat_lock); 965 if (unlikely(!sbinfo->free_inodes)) { 966 spin_unlock(&sbinfo->stat_lock); 967 return 0; 968 } 969 sbinfo->free_inodes--; 970 spin_unlock(&sbinfo->stat_lock); 971 } 972 973 return 1; 974 } 975 976 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 977 { 978 if (sbinfo->free_inodes >= 0) { 979 spin_lock(&sbinfo->stat_lock); 980 sbinfo->free_inodes++; 981 spin_unlock(&sbinfo->stat_lock); 982 } 983 } 984 985 986 static struct kmem_cache *hugetlbfs_inode_cachep; 987 988 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 989 { 990 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 991 struct hugetlbfs_inode_info *p; 992 993 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 994 return NULL; 995 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 996 if (unlikely(!p)) { 997 hugetlbfs_inc_free_inodes(sbinfo); 998 return NULL; 999 } 1000 1001 /* 1002 * Any time after allocation, hugetlbfs_destroy_inode can be called 1003 * for the inode. mpol_free_shared_policy is unconditionally called 1004 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1005 * in case of a quick call to destroy. 1006 * 1007 * Note that the policy is initialized even if we are creating a 1008 * private inode. This simplifies hugetlbfs_destroy_inode. 1009 */ 1010 mpol_shared_policy_init(&p->policy, NULL); 1011 1012 return &p->vfs_inode; 1013 } 1014 1015 static void hugetlbfs_i_callback(struct rcu_head *head) 1016 { 1017 struct inode *inode = container_of(head, struct inode, i_rcu); 1018 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1019 } 1020 1021 static void hugetlbfs_destroy_inode(struct inode *inode) 1022 { 1023 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1024 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1025 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1026 } 1027 1028 static const struct address_space_operations hugetlbfs_aops = { 1029 .write_begin = hugetlbfs_write_begin, 1030 .write_end = hugetlbfs_write_end, 1031 .set_page_dirty = hugetlbfs_set_page_dirty, 1032 .migratepage = hugetlbfs_migrate_page, 1033 .error_remove_page = hugetlbfs_error_remove_page, 1034 }; 1035 1036 1037 static void init_once(void *foo) 1038 { 1039 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1040 1041 inode_init_once(&ei->vfs_inode); 1042 } 1043 1044 const struct file_operations hugetlbfs_file_operations = { 1045 .read_iter = hugetlbfs_read_iter, 1046 .mmap = hugetlbfs_file_mmap, 1047 .fsync = noop_fsync, 1048 .get_unmapped_area = hugetlb_get_unmapped_area, 1049 .llseek = default_llseek, 1050 .fallocate = hugetlbfs_fallocate, 1051 }; 1052 1053 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1054 .create = hugetlbfs_create, 1055 .lookup = simple_lookup, 1056 .link = simple_link, 1057 .unlink = simple_unlink, 1058 .symlink = hugetlbfs_symlink, 1059 .mkdir = hugetlbfs_mkdir, 1060 .rmdir = simple_rmdir, 1061 .mknod = hugetlbfs_mknod, 1062 .rename = simple_rename, 1063 .setattr = hugetlbfs_setattr, 1064 }; 1065 1066 static const struct inode_operations hugetlbfs_inode_operations = { 1067 .setattr = hugetlbfs_setattr, 1068 }; 1069 1070 static const struct super_operations hugetlbfs_ops = { 1071 .alloc_inode = hugetlbfs_alloc_inode, 1072 .destroy_inode = hugetlbfs_destroy_inode, 1073 .evict_inode = hugetlbfs_evict_inode, 1074 .statfs = hugetlbfs_statfs, 1075 .put_super = hugetlbfs_put_super, 1076 .show_options = hugetlbfs_show_options, 1077 }; 1078 1079 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1080 1081 /* 1082 * Convert size option passed from command line to number of huge pages 1083 * in the pool specified by hstate. Size option could be in bytes 1084 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1085 */ 1086 static long 1087 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1088 enum hugetlbfs_size_type val_type) 1089 { 1090 if (val_type == NO_SIZE) 1091 return -1; 1092 1093 if (val_type == SIZE_PERCENT) { 1094 size_opt <<= huge_page_shift(h); 1095 size_opt *= h->max_huge_pages; 1096 do_div(size_opt, 100); 1097 } 1098 1099 size_opt >>= huge_page_shift(h); 1100 return size_opt; 1101 } 1102 1103 static int 1104 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1105 { 1106 char *p, *rest; 1107 substring_t args[MAX_OPT_ARGS]; 1108 int option; 1109 unsigned long long max_size_opt = 0, min_size_opt = 0; 1110 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1111 1112 if (!options) 1113 return 0; 1114 1115 while ((p = strsep(&options, ",")) != NULL) { 1116 int token; 1117 if (!*p) 1118 continue; 1119 1120 token = match_token(p, tokens, args); 1121 switch (token) { 1122 case Opt_uid: 1123 if (match_int(&args[0], &option)) 1124 goto bad_val; 1125 pconfig->uid = make_kuid(current_user_ns(), option); 1126 if (!uid_valid(pconfig->uid)) 1127 goto bad_val; 1128 break; 1129 1130 case Opt_gid: 1131 if (match_int(&args[0], &option)) 1132 goto bad_val; 1133 pconfig->gid = make_kgid(current_user_ns(), option); 1134 if (!gid_valid(pconfig->gid)) 1135 goto bad_val; 1136 break; 1137 1138 case Opt_mode: 1139 if (match_octal(&args[0], &option)) 1140 goto bad_val; 1141 pconfig->mode = option & 01777U; 1142 break; 1143 1144 case Opt_size: { 1145 /* memparse() will accept a K/M/G without a digit */ 1146 if (!isdigit(*args[0].from)) 1147 goto bad_val; 1148 max_size_opt = memparse(args[0].from, &rest); 1149 max_val_type = SIZE_STD; 1150 if (*rest == '%') 1151 max_val_type = SIZE_PERCENT; 1152 break; 1153 } 1154 1155 case Opt_nr_inodes: 1156 /* memparse() will accept a K/M/G without a digit */ 1157 if (!isdigit(*args[0].from)) 1158 goto bad_val; 1159 pconfig->nr_inodes = memparse(args[0].from, &rest); 1160 break; 1161 1162 case Opt_pagesize: { 1163 unsigned long ps; 1164 ps = memparse(args[0].from, &rest); 1165 pconfig->hstate = size_to_hstate(ps); 1166 if (!pconfig->hstate) { 1167 pr_err("Unsupported page size %lu MB\n", 1168 ps >> 20); 1169 return -EINVAL; 1170 } 1171 break; 1172 } 1173 1174 case Opt_min_size: { 1175 /* memparse() will accept a K/M/G without a digit */ 1176 if (!isdigit(*args[0].from)) 1177 goto bad_val; 1178 min_size_opt = memparse(args[0].from, &rest); 1179 min_val_type = SIZE_STD; 1180 if (*rest == '%') 1181 min_val_type = SIZE_PERCENT; 1182 break; 1183 } 1184 1185 default: 1186 pr_err("Bad mount option: \"%s\"\n", p); 1187 return -EINVAL; 1188 break; 1189 } 1190 } 1191 1192 /* 1193 * Use huge page pool size (in hstate) to convert the size 1194 * options to number of huge pages. If NO_SIZE, -1 is returned. 1195 */ 1196 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1197 max_size_opt, max_val_type); 1198 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1199 min_size_opt, min_val_type); 1200 1201 /* 1202 * If max_size was specified, then min_size must be smaller 1203 */ 1204 if (max_val_type > NO_SIZE && 1205 pconfig->min_hpages > pconfig->max_hpages) { 1206 pr_err("minimum size can not be greater than maximum size\n"); 1207 return -EINVAL; 1208 } 1209 1210 return 0; 1211 1212 bad_val: 1213 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1214 return -EINVAL; 1215 } 1216 1217 static int 1218 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1219 { 1220 int ret; 1221 struct hugetlbfs_config config; 1222 struct hugetlbfs_sb_info *sbinfo; 1223 1224 config.max_hpages = -1; /* No limit on size by default */ 1225 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1226 config.uid = current_fsuid(); 1227 config.gid = current_fsgid(); 1228 config.mode = 0755; 1229 config.hstate = &default_hstate; 1230 config.min_hpages = -1; /* No default minimum size */ 1231 ret = hugetlbfs_parse_options(data, &config); 1232 if (ret) 1233 return ret; 1234 1235 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1236 if (!sbinfo) 1237 return -ENOMEM; 1238 sb->s_fs_info = sbinfo; 1239 sbinfo->hstate = config.hstate; 1240 spin_lock_init(&sbinfo->stat_lock); 1241 sbinfo->max_inodes = config.nr_inodes; 1242 sbinfo->free_inodes = config.nr_inodes; 1243 sbinfo->spool = NULL; 1244 sbinfo->uid = config.uid; 1245 sbinfo->gid = config.gid; 1246 sbinfo->mode = config.mode; 1247 1248 /* 1249 * Allocate and initialize subpool if maximum or minimum size is 1250 * specified. Any needed reservations (for minimim size) are taken 1251 * taken when the subpool is created. 1252 */ 1253 if (config.max_hpages != -1 || config.min_hpages != -1) { 1254 sbinfo->spool = hugepage_new_subpool(config.hstate, 1255 config.max_hpages, 1256 config.min_hpages); 1257 if (!sbinfo->spool) 1258 goto out_free; 1259 } 1260 sb->s_maxbytes = MAX_LFS_FILESIZE; 1261 sb->s_blocksize = huge_page_size(config.hstate); 1262 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1263 sb->s_magic = HUGETLBFS_MAGIC; 1264 sb->s_op = &hugetlbfs_ops; 1265 sb->s_time_gran = 1; 1266 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1267 if (!sb->s_root) 1268 goto out_free; 1269 return 0; 1270 out_free: 1271 kfree(sbinfo->spool); 1272 kfree(sbinfo); 1273 return -ENOMEM; 1274 } 1275 1276 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1277 int flags, const char *dev_name, void *data) 1278 { 1279 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1280 } 1281 1282 static struct file_system_type hugetlbfs_fs_type = { 1283 .name = "hugetlbfs", 1284 .mount = hugetlbfs_mount, 1285 .kill_sb = kill_litter_super, 1286 }; 1287 1288 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1289 1290 static int can_do_hugetlb_shm(void) 1291 { 1292 kgid_t shm_group; 1293 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1294 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1295 } 1296 1297 static int get_hstate_idx(int page_size_log) 1298 { 1299 struct hstate *h = hstate_sizelog(page_size_log); 1300 1301 if (!h) 1302 return -1; 1303 return h - hstates; 1304 } 1305 1306 /* 1307 * Note that size should be aligned to proper hugepage size in caller side, 1308 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1309 */ 1310 struct file *hugetlb_file_setup(const char *name, size_t size, 1311 vm_flags_t acctflag, struct user_struct **user, 1312 int creat_flags, int page_size_log) 1313 { 1314 struct inode *inode; 1315 struct vfsmount *mnt; 1316 int hstate_idx; 1317 struct file *file; 1318 1319 hstate_idx = get_hstate_idx(page_size_log); 1320 if (hstate_idx < 0) 1321 return ERR_PTR(-ENODEV); 1322 1323 *user = NULL; 1324 mnt = hugetlbfs_vfsmount[hstate_idx]; 1325 if (!mnt) 1326 return ERR_PTR(-ENOENT); 1327 1328 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1329 *user = current_user(); 1330 if (user_shm_lock(size, *user)) { 1331 task_lock(current); 1332 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1333 current->comm, current->pid); 1334 task_unlock(current); 1335 } else { 1336 *user = NULL; 1337 return ERR_PTR(-EPERM); 1338 } 1339 } 1340 1341 file = ERR_PTR(-ENOSPC); 1342 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1343 if (!inode) 1344 goto out; 1345 if (creat_flags == HUGETLB_SHMFS_INODE) 1346 inode->i_flags |= S_PRIVATE; 1347 1348 inode->i_size = size; 1349 clear_nlink(inode); 1350 1351 if (hugetlb_reserve_pages(inode, 0, 1352 size >> huge_page_shift(hstate_inode(inode)), NULL, 1353 acctflag)) 1354 file = ERR_PTR(-ENOMEM); 1355 else 1356 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1357 &hugetlbfs_file_operations); 1358 if (!IS_ERR(file)) 1359 return file; 1360 1361 iput(inode); 1362 out: 1363 if (*user) { 1364 user_shm_unlock(size, *user); 1365 *user = NULL; 1366 } 1367 return file; 1368 } 1369 1370 static int __init init_hugetlbfs_fs(void) 1371 { 1372 struct hstate *h; 1373 int error; 1374 int i; 1375 1376 if (!hugepages_supported()) { 1377 pr_info("disabling because there are no supported hugepage sizes\n"); 1378 return -ENOTSUPP; 1379 } 1380 1381 error = -ENOMEM; 1382 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1383 sizeof(struct hugetlbfs_inode_info), 1384 0, SLAB_ACCOUNT, init_once); 1385 if (hugetlbfs_inode_cachep == NULL) 1386 goto out2; 1387 1388 error = register_filesystem(&hugetlbfs_fs_type); 1389 if (error) 1390 goto out; 1391 1392 i = 0; 1393 for_each_hstate(h) { 1394 char buf[50]; 1395 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1396 1397 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1398 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1399 buf); 1400 1401 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1402 pr_err("Cannot mount internal hugetlbfs for " 1403 "page size %uK", ps_kb); 1404 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1405 hugetlbfs_vfsmount[i] = NULL; 1406 } 1407 i++; 1408 } 1409 /* Non default hstates are optional */ 1410 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1411 return 0; 1412 1413 out: 1414 kmem_cache_destroy(hugetlbfs_inode_cachep); 1415 out2: 1416 return error; 1417 } 1418 fs_initcall(init_hugetlbfs_fs) 1419