1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32 ("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 loff_t len, vma_len; 135 int ret; 136 struct hstate *h = hstate_file(file); 137 138 /* 139 * vma address alignment (but not the pgoff alignment) has 140 * already been checked by prepare_hugepage_range. If you add 141 * any error returns here, do so after setting VM_HUGETLB, so 142 * is_vm_hugetlb_page tests below unmap_region go the right 143 * way when do_mmap unwinds (may be important on powerpc 144 * and ia64). 145 */ 146 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 147 vma->vm_ops = &hugetlb_vm_ops; 148 149 /* 150 * page based offset in vm_pgoff could be sufficiently large to 151 * overflow a loff_t when converted to byte offset. This can 152 * only happen on architectures where sizeof(loff_t) == 153 * sizeof(unsigned long). So, only check in those instances. 154 */ 155 if (sizeof(unsigned long) == sizeof(loff_t)) { 156 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 157 return -EINVAL; 158 } 159 160 /* must be huge page aligned */ 161 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 162 return -EINVAL; 163 164 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 165 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 166 /* check for overflow */ 167 if (len < vma_len) 168 return -EINVAL; 169 170 inode_lock(inode); 171 file_accessed(file); 172 173 ret = -ENOMEM; 174 if (!hugetlb_reserve_pages(inode, 175 vma->vm_pgoff >> huge_page_order(h), 176 len >> huge_page_shift(h), vma, 177 vma->vm_flags)) 178 goto out; 179 180 ret = 0; 181 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 182 i_size_write(inode, len); 183 out: 184 inode_unlock(inode); 185 186 return ret; 187 } 188 189 /* 190 * Called under mmap_write_lock(mm). 191 */ 192 193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 194 static unsigned long 195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 196 unsigned long len, unsigned long pgoff, unsigned long flags) 197 { 198 struct hstate *h = hstate_file(file); 199 struct vm_unmapped_area_info info; 200 201 info.flags = 0; 202 info.length = len; 203 info.low_limit = current->mm->mmap_base; 204 info.high_limit = TASK_SIZE; 205 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 206 info.align_offset = 0; 207 return vm_unmapped_area(&info); 208 } 209 210 static unsigned long 211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 212 unsigned long len, unsigned long pgoff, unsigned long flags) 213 { 214 struct hstate *h = hstate_file(file); 215 struct vm_unmapped_area_info info; 216 217 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 218 info.length = len; 219 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 220 info.high_limit = current->mm->mmap_base; 221 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 222 info.align_offset = 0; 223 addr = vm_unmapped_area(&info); 224 225 /* 226 * A failed mmap() very likely causes application failure, 227 * so fall back to the bottom-up function here. This scenario 228 * can happen with large stack limits and large mmap() 229 * allocations. 230 */ 231 if (unlikely(offset_in_page(addr))) { 232 VM_BUG_ON(addr != -ENOMEM); 233 info.flags = 0; 234 info.low_limit = current->mm->mmap_base; 235 info.high_limit = TASK_SIZE; 236 addr = vm_unmapped_area(&info); 237 } 238 239 return addr; 240 } 241 242 static unsigned long 243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 244 unsigned long len, unsigned long pgoff, unsigned long flags) 245 { 246 struct mm_struct *mm = current->mm; 247 struct vm_area_struct *vma; 248 struct hstate *h = hstate_file(file); 249 250 if (len & ~huge_page_mask(h)) 251 return -EINVAL; 252 if (len > TASK_SIZE) 253 return -ENOMEM; 254 255 if (flags & MAP_FIXED) { 256 if (prepare_hugepage_range(file, addr, len)) 257 return -EINVAL; 258 return addr; 259 } 260 261 if (addr) { 262 addr = ALIGN(addr, huge_page_size(h)); 263 vma = find_vma(mm, addr); 264 if (TASK_SIZE - len >= addr && 265 (!vma || addr + len <= vm_start_gap(vma))) 266 return addr; 267 } 268 269 /* 270 * Use mm->get_unmapped_area value as a hint to use topdown routine. 271 * If architectures have special needs, they should define their own 272 * version of hugetlb_get_unmapped_area. 273 */ 274 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 275 return hugetlb_get_unmapped_area_topdown(file, addr, len, 276 pgoff, flags); 277 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 278 pgoff, flags); 279 } 280 #endif 281 282 static size_t 283 hugetlbfs_read_actor(struct page *page, unsigned long offset, 284 struct iov_iter *to, unsigned long size) 285 { 286 size_t copied = 0; 287 int i, chunksize; 288 289 /* Find which 4k chunk and offset with in that chunk */ 290 i = offset >> PAGE_SHIFT; 291 offset = offset & ~PAGE_MASK; 292 293 while (size) { 294 size_t n; 295 chunksize = PAGE_SIZE; 296 if (offset) 297 chunksize -= offset; 298 if (chunksize > size) 299 chunksize = size; 300 n = copy_page_to_iter(&page[i], offset, chunksize, to); 301 copied += n; 302 if (n != chunksize) 303 return copied; 304 offset = 0; 305 size -= chunksize; 306 i++; 307 } 308 return copied; 309 } 310 311 /* 312 * Support for read() - Find the page attached to f_mapping and copy out the 313 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 314 * since it has PAGE_SIZE assumptions. 315 */ 316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 317 { 318 struct file *file = iocb->ki_filp; 319 struct hstate *h = hstate_file(file); 320 struct address_space *mapping = file->f_mapping; 321 struct inode *inode = mapping->host; 322 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 323 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 324 unsigned long end_index; 325 loff_t isize; 326 ssize_t retval = 0; 327 328 while (iov_iter_count(to)) { 329 struct page *page; 330 size_t nr, copied; 331 332 /* nr is the maximum number of bytes to copy from this page */ 333 nr = huge_page_size(h); 334 isize = i_size_read(inode); 335 if (!isize) 336 break; 337 end_index = (isize - 1) >> huge_page_shift(h); 338 if (index > end_index) 339 break; 340 if (index == end_index) { 341 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 342 if (nr <= offset) 343 break; 344 } 345 nr = nr - offset; 346 347 /* Find the page */ 348 page = find_lock_page(mapping, index); 349 if (unlikely(page == NULL)) { 350 /* 351 * We have a HOLE, zero out the user-buffer for the 352 * length of the hole or request. 353 */ 354 copied = iov_iter_zero(nr, to); 355 } else { 356 unlock_page(page); 357 358 /* 359 * We have the page, copy it to user space buffer. 360 */ 361 copied = hugetlbfs_read_actor(page, offset, to, nr); 362 put_page(page); 363 } 364 offset += copied; 365 retval += copied; 366 if (copied != nr && iov_iter_count(to)) { 367 if (!retval) 368 retval = -EFAULT; 369 break; 370 } 371 index += offset >> huge_page_shift(h); 372 offset &= ~huge_page_mask(h); 373 } 374 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 375 return retval; 376 } 377 378 static int hugetlbfs_write_begin(struct file *file, 379 struct address_space *mapping, 380 loff_t pos, unsigned len, unsigned flags, 381 struct page **pagep, void **fsdata) 382 { 383 return -EINVAL; 384 } 385 386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 387 loff_t pos, unsigned len, unsigned copied, 388 struct page *page, void *fsdata) 389 { 390 BUG(); 391 return -EINVAL; 392 } 393 394 static void remove_huge_page(struct page *page) 395 { 396 ClearPageDirty(page); 397 ClearPageUptodate(page); 398 delete_from_page_cache(page); 399 } 400 401 static void 402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 403 { 404 struct vm_area_struct *vma; 405 406 /* 407 * end == 0 indicates that the entire range after 408 * start should be unmapped. 409 */ 410 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 411 unsigned long v_offset; 412 unsigned long v_end; 413 414 /* 415 * Can the expression below overflow on 32-bit arches? 416 * No, because the interval tree returns us only those vmas 417 * which overlap the truncated area starting at pgoff, 418 * and no vma on a 32-bit arch can span beyond the 4GB. 419 */ 420 if (vma->vm_pgoff < start) 421 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 422 else 423 v_offset = 0; 424 425 if (!end) 426 v_end = vma->vm_end; 427 else { 428 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 429 + vma->vm_start; 430 if (v_end > vma->vm_end) 431 v_end = vma->vm_end; 432 } 433 434 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 435 NULL); 436 } 437 } 438 439 /* 440 * remove_inode_hugepages handles two distinct cases: truncation and hole 441 * punch. There are subtle differences in operation for each case. 442 * 443 * truncation is indicated by end of range being LLONG_MAX 444 * In this case, we first scan the range and release found pages. 445 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 446 * maps and global counts. Page faults can not race with truncation 447 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 448 * page faults in the truncated range by checking i_size. i_size is 449 * modified while holding i_mmap_rwsem. 450 * hole punch is indicated if end is not LLONG_MAX 451 * In the hole punch case we scan the range and release found pages. 452 * Only when releasing a page is the associated region/reserve map 453 * deleted. The region/reserve map for ranges without associated 454 * pages are not modified. Page faults can race with hole punch. 455 * This is indicated if we find a mapped page. 456 * Note: If the passed end of range value is beyond the end of file, but 457 * not LLONG_MAX this routine still performs a hole punch operation. 458 */ 459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 460 loff_t lend) 461 { 462 struct hstate *h = hstate_inode(inode); 463 struct address_space *mapping = &inode->i_data; 464 const pgoff_t start = lstart >> huge_page_shift(h); 465 const pgoff_t end = lend >> huge_page_shift(h); 466 struct vm_area_struct pseudo_vma; 467 struct pagevec pvec; 468 pgoff_t next, index; 469 int i, freed = 0; 470 bool truncate_op = (lend == LLONG_MAX); 471 472 vma_init(&pseudo_vma, current->mm); 473 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 474 pagevec_init(&pvec); 475 next = start; 476 while (next < end) { 477 /* 478 * When no more pages are found, we are done. 479 */ 480 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 481 break; 482 483 for (i = 0; i < pagevec_count(&pvec); ++i) { 484 struct page *page = pvec.pages[i]; 485 u32 hash; 486 487 index = page->index; 488 hash = hugetlb_fault_mutex_hash(mapping, index); 489 if (!truncate_op) { 490 /* 491 * Only need to hold the fault mutex in the 492 * hole punch case. This prevents races with 493 * page faults. Races are not possible in the 494 * case of truncation. 495 */ 496 mutex_lock(&hugetlb_fault_mutex_table[hash]); 497 } 498 499 /* 500 * If page is mapped, it was faulted in after being 501 * unmapped in caller. Unmap (again) now after taking 502 * the fault mutex. The mutex will prevent faults 503 * until we finish removing the page. 504 * 505 * This race can only happen in the hole punch case. 506 * Getting here in a truncate operation is a bug. 507 */ 508 if (unlikely(page_mapped(page))) { 509 BUG_ON(truncate_op); 510 511 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 512 i_mmap_lock_write(mapping); 513 mutex_lock(&hugetlb_fault_mutex_table[hash]); 514 hugetlb_vmdelete_list(&mapping->i_mmap, 515 index * pages_per_huge_page(h), 516 (index + 1) * pages_per_huge_page(h)); 517 i_mmap_unlock_write(mapping); 518 } 519 520 lock_page(page); 521 /* 522 * We must free the huge page and remove from page 523 * cache (remove_huge_page) BEFORE removing the 524 * region/reserve map (hugetlb_unreserve_pages). In 525 * rare out of memory conditions, removal of the 526 * region/reserve map could fail. Correspondingly, 527 * the subpool and global reserve usage count can need 528 * to be adjusted. 529 */ 530 VM_BUG_ON(PagePrivate(page)); 531 remove_huge_page(page); 532 freed++; 533 if (!truncate_op) { 534 if (unlikely(hugetlb_unreserve_pages(inode, 535 index, index + 1, 1))) 536 hugetlb_fix_reserve_counts(inode); 537 } 538 539 unlock_page(page); 540 if (!truncate_op) 541 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 542 } 543 huge_pagevec_release(&pvec); 544 cond_resched(); 545 } 546 547 if (truncate_op) 548 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 549 } 550 551 static void hugetlbfs_evict_inode(struct inode *inode) 552 { 553 struct resv_map *resv_map; 554 555 remove_inode_hugepages(inode, 0, LLONG_MAX); 556 557 /* 558 * Get the resv_map from the address space embedded in the inode. 559 * This is the address space which points to any resv_map allocated 560 * at inode creation time. If this is a device special inode, 561 * i_mapping may not point to the original address space. 562 */ 563 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 564 /* Only regular and link inodes have associated reserve maps */ 565 if (resv_map) 566 resv_map_release(&resv_map->refs); 567 clear_inode(inode); 568 } 569 570 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 571 { 572 pgoff_t pgoff; 573 struct address_space *mapping = inode->i_mapping; 574 struct hstate *h = hstate_inode(inode); 575 576 BUG_ON(offset & ~huge_page_mask(h)); 577 pgoff = offset >> PAGE_SHIFT; 578 579 i_mmap_lock_write(mapping); 580 i_size_write(inode, offset); 581 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 582 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 583 i_mmap_unlock_write(mapping); 584 remove_inode_hugepages(inode, offset, LLONG_MAX); 585 } 586 587 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 588 { 589 struct hstate *h = hstate_inode(inode); 590 loff_t hpage_size = huge_page_size(h); 591 loff_t hole_start, hole_end; 592 593 /* 594 * For hole punch round up the beginning offset of the hole and 595 * round down the end. 596 */ 597 hole_start = round_up(offset, hpage_size); 598 hole_end = round_down(offset + len, hpage_size); 599 600 if (hole_end > hole_start) { 601 struct address_space *mapping = inode->i_mapping; 602 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 603 604 inode_lock(inode); 605 606 /* protected by i_rwsem */ 607 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 608 inode_unlock(inode); 609 return -EPERM; 610 } 611 612 i_mmap_lock_write(mapping); 613 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 614 hugetlb_vmdelete_list(&mapping->i_mmap, 615 hole_start >> PAGE_SHIFT, 616 hole_end >> PAGE_SHIFT); 617 i_mmap_unlock_write(mapping); 618 remove_inode_hugepages(inode, hole_start, hole_end); 619 inode_unlock(inode); 620 } 621 622 return 0; 623 } 624 625 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 626 loff_t len) 627 { 628 struct inode *inode = file_inode(file); 629 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 630 struct address_space *mapping = inode->i_mapping; 631 struct hstate *h = hstate_inode(inode); 632 struct vm_area_struct pseudo_vma; 633 struct mm_struct *mm = current->mm; 634 loff_t hpage_size = huge_page_size(h); 635 unsigned long hpage_shift = huge_page_shift(h); 636 pgoff_t start, index, end; 637 int error; 638 u32 hash; 639 640 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 641 return -EOPNOTSUPP; 642 643 if (mode & FALLOC_FL_PUNCH_HOLE) 644 return hugetlbfs_punch_hole(inode, offset, len); 645 646 /* 647 * Default preallocate case. 648 * For this range, start is rounded down and end is rounded up 649 * as well as being converted to page offsets. 650 */ 651 start = offset >> hpage_shift; 652 end = (offset + len + hpage_size - 1) >> hpage_shift; 653 654 inode_lock(inode); 655 656 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 657 error = inode_newsize_ok(inode, offset + len); 658 if (error) 659 goto out; 660 661 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 662 error = -EPERM; 663 goto out; 664 } 665 666 /* 667 * Initialize a pseudo vma as this is required by the huge page 668 * allocation routines. If NUMA is configured, use page index 669 * as input to create an allocation policy. 670 */ 671 vma_init(&pseudo_vma, mm); 672 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 673 pseudo_vma.vm_file = file; 674 675 for (index = start; index < end; index++) { 676 /* 677 * This is supposed to be the vaddr where the page is being 678 * faulted in, but we have no vaddr here. 679 */ 680 struct page *page; 681 unsigned long addr; 682 683 cond_resched(); 684 685 /* 686 * fallocate(2) manpage permits EINTR; we may have been 687 * interrupted because we are using up too much memory. 688 */ 689 if (signal_pending(current)) { 690 error = -EINTR; 691 break; 692 } 693 694 /* Set numa allocation policy based on index */ 695 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 696 697 /* addr is the offset within the file (zero based) */ 698 addr = index * hpage_size; 699 700 /* 701 * fault mutex taken here, protects against fault path 702 * and hole punch. inode_lock previously taken protects 703 * against truncation. 704 */ 705 hash = hugetlb_fault_mutex_hash(mapping, index); 706 mutex_lock(&hugetlb_fault_mutex_table[hash]); 707 708 /* See if already present in mapping to avoid alloc/free */ 709 page = find_get_page(mapping, index); 710 if (page) { 711 put_page(page); 712 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 713 hugetlb_drop_vma_policy(&pseudo_vma); 714 continue; 715 } 716 717 /* 718 * Allocate page without setting the avoid_reserve argument. 719 * There certainly are no reserves associated with the 720 * pseudo_vma. However, there could be shared mappings with 721 * reserves for the file at the inode level. If we fallocate 722 * pages in these areas, we need to consume the reserves 723 * to keep reservation accounting consistent. 724 */ 725 page = alloc_huge_page(&pseudo_vma, addr, 0); 726 hugetlb_drop_vma_policy(&pseudo_vma); 727 if (IS_ERR(page)) { 728 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 729 error = PTR_ERR(page); 730 goto out; 731 } 732 clear_huge_page(page, addr, pages_per_huge_page(h)); 733 __SetPageUptodate(page); 734 error = huge_add_to_page_cache(page, mapping, index); 735 if (unlikely(error)) { 736 put_page(page); 737 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 738 goto out; 739 } 740 741 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 742 743 SetHPageMigratable(page); 744 /* 745 * unlock_page because locked by add_to_page_cache() 746 * put_page() due to reference from alloc_huge_page() 747 */ 748 unlock_page(page); 749 put_page(page); 750 } 751 752 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 753 i_size_write(inode, offset + len); 754 inode->i_ctime = current_time(inode); 755 out: 756 inode_unlock(inode); 757 return error; 758 } 759 760 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 761 struct dentry *dentry, struct iattr *attr) 762 { 763 struct inode *inode = d_inode(dentry); 764 struct hstate *h = hstate_inode(inode); 765 int error; 766 unsigned int ia_valid = attr->ia_valid; 767 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 768 769 error = setattr_prepare(&init_user_ns, dentry, attr); 770 if (error) 771 return error; 772 773 if (ia_valid & ATTR_SIZE) { 774 loff_t oldsize = inode->i_size; 775 loff_t newsize = attr->ia_size; 776 777 if (newsize & ~huge_page_mask(h)) 778 return -EINVAL; 779 /* protected by i_rwsem */ 780 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 781 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 782 return -EPERM; 783 hugetlb_vmtruncate(inode, newsize); 784 } 785 786 setattr_copy(&init_user_ns, inode, attr); 787 mark_inode_dirty(inode); 788 return 0; 789 } 790 791 static struct inode *hugetlbfs_get_root(struct super_block *sb, 792 struct hugetlbfs_fs_context *ctx) 793 { 794 struct inode *inode; 795 796 inode = new_inode(sb); 797 if (inode) { 798 inode->i_ino = get_next_ino(); 799 inode->i_mode = S_IFDIR | ctx->mode; 800 inode->i_uid = ctx->uid; 801 inode->i_gid = ctx->gid; 802 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 803 inode->i_op = &hugetlbfs_dir_inode_operations; 804 inode->i_fop = &simple_dir_operations; 805 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 806 inc_nlink(inode); 807 lockdep_annotate_inode_mutex_key(inode); 808 } 809 return inode; 810 } 811 812 /* 813 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 814 * be taken from reclaim -- unlike regular filesystems. This needs an 815 * annotation because huge_pmd_share() does an allocation under hugetlb's 816 * i_mmap_rwsem. 817 */ 818 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 819 820 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 821 struct inode *dir, 822 umode_t mode, dev_t dev) 823 { 824 struct inode *inode; 825 struct resv_map *resv_map = NULL; 826 827 /* 828 * Reserve maps are only needed for inodes that can have associated 829 * page allocations. 830 */ 831 if (S_ISREG(mode) || S_ISLNK(mode)) { 832 resv_map = resv_map_alloc(); 833 if (!resv_map) 834 return NULL; 835 } 836 837 inode = new_inode(sb); 838 if (inode) { 839 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 840 841 inode->i_ino = get_next_ino(); 842 inode_init_owner(&init_user_ns, inode, dir, mode); 843 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 844 &hugetlbfs_i_mmap_rwsem_key); 845 inode->i_mapping->a_ops = &hugetlbfs_aops; 846 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 847 inode->i_mapping->private_data = resv_map; 848 info->seals = F_SEAL_SEAL; 849 switch (mode & S_IFMT) { 850 default: 851 init_special_inode(inode, mode, dev); 852 break; 853 case S_IFREG: 854 inode->i_op = &hugetlbfs_inode_operations; 855 inode->i_fop = &hugetlbfs_file_operations; 856 break; 857 case S_IFDIR: 858 inode->i_op = &hugetlbfs_dir_inode_operations; 859 inode->i_fop = &simple_dir_operations; 860 861 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 862 inc_nlink(inode); 863 break; 864 case S_IFLNK: 865 inode->i_op = &page_symlink_inode_operations; 866 inode_nohighmem(inode); 867 break; 868 } 869 lockdep_annotate_inode_mutex_key(inode); 870 } else { 871 if (resv_map) 872 kref_put(&resv_map->refs, resv_map_release); 873 } 874 875 return inode; 876 } 877 878 /* 879 * File creation. Allocate an inode, and we're done.. 880 */ 881 static int do_hugetlbfs_mknod(struct inode *dir, 882 struct dentry *dentry, 883 umode_t mode, 884 dev_t dev, 885 bool tmpfile) 886 { 887 struct inode *inode; 888 int error = -ENOSPC; 889 890 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 891 if (inode) { 892 dir->i_ctime = dir->i_mtime = current_time(dir); 893 if (tmpfile) { 894 d_tmpfile(dentry, inode); 895 } else { 896 d_instantiate(dentry, inode); 897 dget(dentry);/* Extra count - pin the dentry in core */ 898 } 899 error = 0; 900 } 901 return error; 902 } 903 904 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 905 struct dentry *dentry, umode_t mode, dev_t dev) 906 { 907 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 908 } 909 910 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 911 struct dentry *dentry, umode_t mode) 912 { 913 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 914 mode | S_IFDIR, 0); 915 if (!retval) 916 inc_nlink(dir); 917 return retval; 918 } 919 920 static int hugetlbfs_create(struct user_namespace *mnt_userns, 921 struct inode *dir, struct dentry *dentry, 922 umode_t mode, bool excl) 923 { 924 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 925 } 926 927 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 928 struct inode *dir, struct dentry *dentry, 929 umode_t mode) 930 { 931 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 932 } 933 934 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 935 struct inode *dir, struct dentry *dentry, 936 const char *symname) 937 { 938 struct inode *inode; 939 int error = -ENOSPC; 940 941 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 942 if (inode) { 943 int l = strlen(symname)+1; 944 error = page_symlink(inode, symname, l); 945 if (!error) { 946 d_instantiate(dentry, inode); 947 dget(dentry); 948 } else 949 iput(inode); 950 } 951 dir->i_ctime = dir->i_mtime = current_time(dir); 952 953 return error; 954 } 955 956 static int hugetlbfs_migrate_page(struct address_space *mapping, 957 struct page *newpage, struct page *page, 958 enum migrate_mode mode) 959 { 960 int rc; 961 962 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 963 if (rc != MIGRATEPAGE_SUCCESS) 964 return rc; 965 966 if (hugetlb_page_subpool(page)) { 967 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page)); 968 hugetlb_set_page_subpool(page, NULL); 969 } 970 971 if (mode != MIGRATE_SYNC_NO_COPY) 972 migrate_page_copy(newpage, page); 973 else 974 migrate_page_states(newpage, page); 975 976 return MIGRATEPAGE_SUCCESS; 977 } 978 979 static int hugetlbfs_error_remove_page(struct address_space *mapping, 980 struct page *page) 981 { 982 struct inode *inode = mapping->host; 983 pgoff_t index = page->index; 984 985 remove_huge_page(page); 986 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 987 hugetlb_fix_reserve_counts(inode); 988 989 return 0; 990 } 991 992 /* 993 * Display the mount options in /proc/mounts. 994 */ 995 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 996 { 997 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 998 struct hugepage_subpool *spool = sbinfo->spool; 999 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1000 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1001 char mod; 1002 1003 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1004 seq_printf(m, ",uid=%u", 1005 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1006 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1007 seq_printf(m, ",gid=%u", 1008 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1009 if (sbinfo->mode != 0755) 1010 seq_printf(m, ",mode=%o", sbinfo->mode); 1011 if (sbinfo->max_inodes != -1) 1012 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1013 1014 hpage_size /= 1024; 1015 mod = 'K'; 1016 if (hpage_size >= 1024) { 1017 hpage_size /= 1024; 1018 mod = 'M'; 1019 } 1020 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1021 if (spool) { 1022 if (spool->max_hpages != -1) 1023 seq_printf(m, ",size=%llu", 1024 (unsigned long long)spool->max_hpages << hpage_shift); 1025 if (spool->min_hpages != -1) 1026 seq_printf(m, ",min_size=%llu", 1027 (unsigned long long)spool->min_hpages << hpage_shift); 1028 } 1029 return 0; 1030 } 1031 1032 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1033 { 1034 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1035 struct hstate *h = hstate_inode(d_inode(dentry)); 1036 1037 buf->f_type = HUGETLBFS_MAGIC; 1038 buf->f_bsize = huge_page_size(h); 1039 if (sbinfo) { 1040 spin_lock(&sbinfo->stat_lock); 1041 /* If no limits set, just report 0 for max/free/used 1042 * blocks, like simple_statfs() */ 1043 if (sbinfo->spool) { 1044 long free_pages; 1045 1046 spin_lock(&sbinfo->spool->lock); 1047 buf->f_blocks = sbinfo->spool->max_hpages; 1048 free_pages = sbinfo->spool->max_hpages 1049 - sbinfo->spool->used_hpages; 1050 buf->f_bavail = buf->f_bfree = free_pages; 1051 spin_unlock(&sbinfo->spool->lock); 1052 buf->f_files = sbinfo->max_inodes; 1053 buf->f_ffree = sbinfo->free_inodes; 1054 } 1055 spin_unlock(&sbinfo->stat_lock); 1056 } 1057 buf->f_namelen = NAME_MAX; 1058 return 0; 1059 } 1060 1061 static void hugetlbfs_put_super(struct super_block *sb) 1062 { 1063 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1064 1065 if (sbi) { 1066 sb->s_fs_info = NULL; 1067 1068 if (sbi->spool) 1069 hugepage_put_subpool(sbi->spool); 1070 1071 kfree(sbi); 1072 } 1073 } 1074 1075 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1076 { 1077 if (sbinfo->free_inodes >= 0) { 1078 spin_lock(&sbinfo->stat_lock); 1079 if (unlikely(!sbinfo->free_inodes)) { 1080 spin_unlock(&sbinfo->stat_lock); 1081 return 0; 1082 } 1083 sbinfo->free_inodes--; 1084 spin_unlock(&sbinfo->stat_lock); 1085 } 1086 1087 return 1; 1088 } 1089 1090 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1091 { 1092 if (sbinfo->free_inodes >= 0) { 1093 spin_lock(&sbinfo->stat_lock); 1094 sbinfo->free_inodes++; 1095 spin_unlock(&sbinfo->stat_lock); 1096 } 1097 } 1098 1099 1100 static struct kmem_cache *hugetlbfs_inode_cachep; 1101 1102 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1103 { 1104 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1105 struct hugetlbfs_inode_info *p; 1106 1107 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1108 return NULL; 1109 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1110 if (unlikely(!p)) { 1111 hugetlbfs_inc_free_inodes(sbinfo); 1112 return NULL; 1113 } 1114 1115 /* 1116 * Any time after allocation, hugetlbfs_destroy_inode can be called 1117 * for the inode. mpol_free_shared_policy is unconditionally called 1118 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1119 * in case of a quick call to destroy. 1120 * 1121 * Note that the policy is initialized even if we are creating a 1122 * private inode. This simplifies hugetlbfs_destroy_inode. 1123 */ 1124 mpol_shared_policy_init(&p->policy, NULL); 1125 1126 return &p->vfs_inode; 1127 } 1128 1129 static void hugetlbfs_free_inode(struct inode *inode) 1130 { 1131 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1132 } 1133 1134 static void hugetlbfs_destroy_inode(struct inode *inode) 1135 { 1136 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1137 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1138 } 1139 1140 static const struct address_space_operations hugetlbfs_aops = { 1141 .write_begin = hugetlbfs_write_begin, 1142 .write_end = hugetlbfs_write_end, 1143 .set_page_dirty = __set_page_dirty_no_writeback, 1144 .migratepage = hugetlbfs_migrate_page, 1145 .error_remove_page = hugetlbfs_error_remove_page, 1146 }; 1147 1148 1149 static void init_once(void *foo) 1150 { 1151 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1152 1153 inode_init_once(&ei->vfs_inode); 1154 } 1155 1156 const struct file_operations hugetlbfs_file_operations = { 1157 .read_iter = hugetlbfs_read_iter, 1158 .mmap = hugetlbfs_file_mmap, 1159 .fsync = noop_fsync, 1160 .get_unmapped_area = hugetlb_get_unmapped_area, 1161 .llseek = default_llseek, 1162 .fallocate = hugetlbfs_fallocate, 1163 }; 1164 1165 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1166 .create = hugetlbfs_create, 1167 .lookup = simple_lookup, 1168 .link = simple_link, 1169 .unlink = simple_unlink, 1170 .symlink = hugetlbfs_symlink, 1171 .mkdir = hugetlbfs_mkdir, 1172 .rmdir = simple_rmdir, 1173 .mknod = hugetlbfs_mknod, 1174 .rename = simple_rename, 1175 .setattr = hugetlbfs_setattr, 1176 .tmpfile = hugetlbfs_tmpfile, 1177 }; 1178 1179 static const struct inode_operations hugetlbfs_inode_operations = { 1180 .setattr = hugetlbfs_setattr, 1181 }; 1182 1183 static const struct super_operations hugetlbfs_ops = { 1184 .alloc_inode = hugetlbfs_alloc_inode, 1185 .free_inode = hugetlbfs_free_inode, 1186 .destroy_inode = hugetlbfs_destroy_inode, 1187 .evict_inode = hugetlbfs_evict_inode, 1188 .statfs = hugetlbfs_statfs, 1189 .put_super = hugetlbfs_put_super, 1190 .show_options = hugetlbfs_show_options, 1191 }; 1192 1193 /* 1194 * Convert size option passed from command line to number of huge pages 1195 * in the pool specified by hstate. Size option could be in bytes 1196 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1197 */ 1198 static long 1199 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1200 enum hugetlbfs_size_type val_type) 1201 { 1202 if (val_type == NO_SIZE) 1203 return -1; 1204 1205 if (val_type == SIZE_PERCENT) { 1206 size_opt <<= huge_page_shift(h); 1207 size_opt *= h->max_huge_pages; 1208 do_div(size_opt, 100); 1209 } 1210 1211 size_opt >>= huge_page_shift(h); 1212 return size_opt; 1213 } 1214 1215 /* 1216 * Parse one mount parameter. 1217 */ 1218 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1219 { 1220 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1221 struct fs_parse_result result; 1222 char *rest; 1223 unsigned long ps; 1224 int opt; 1225 1226 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1227 if (opt < 0) 1228 return opt; 1229 1230 switch (opt) { 1231 case Opt_uid: 1232 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1233 if (!uid_valid(ctx->uid)) 1234 goto bad_val; 1235 return 0; 1236 1237 case Opt_gid: 1238 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1239 if (!gid_valid(ctx->gid)) 1240 goto bad_val; 1241 return 0; 1242 1243 case Opt_mode: 1244 ctx->mode = result.uint_32 & 01777U; 1245 return 0; 1246 1247 case Opt_size: 1248 /* memparse() will accept a K/M/G without a digit */ 1249 if (!isdigit(param->string[0])) 1250 goto bad_val; 1251 ctx->max_size_opt = memparse(param->string, &rest); 1252 ctx->max_val_type = SIZE_STD; 1253 if (*rest == '%') 1254 ctx->max_val_type = SIZE_PERCENT; 1255 return 0; 1256 1257 case Opt_nr_inodes: 1258 /* memparse() will accept a K/M/G without a digit */ 1259 if (!isdigit(param->string[0])) 1260 goto bad_val; 1261 ctx->nr_inodes = memparse(param->string, &rest); 1262 return 0; 1263 1264 case Opt_pagesize: 1265 ps = memparse(param->string, &rest); 1266 ctx->hstate = size_to_hstate(ps); 1267 if (!ctx->hstate) { 1268 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1269 return -EINVAL; 1270 } 1271 return 0; 1272 1273 case Opt_min_size: 1274 /* memparse() will accept a K/M/G without a digit */ 1275 if (!isdigit(param->string[0])) 1276 goto bad_val; 1277 ctx->min_size_opt = memparse(param->string, &rest); 1278 ctx->min_val_type = SIZE_STD; 1279 if (*rest == '%') 1280 ctx->min_val_type = SIZE_PERCENT; 1281 return 0; 1282 1283 default: 1284 return -EINVAL; 1285 } 1286 1287 bad_val: 1288 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1289 param->string, param->key); 1290 } 1291 1292 /* 1293 * Validate the parsed options. 1294 */ 1295 static int hugetlbfs_validate(struct fs_context *fc) 1296 { 1297 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1298 1299 /* 1300 * Use huge page pool size (in hstate) to convert the size 1301 * options to number of huge pages. If NO_SIZE, -1 is returned. 1302 */ 1303 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1304 ctx->max_size_opt, 1305 ctx->max_val_type); 1306 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1307 ctx->min_size_opt, 1308 ctx->min_val_type); 1309 1310 /* 1311 * If max_size was specified, then min_size must be smaller 1312 */ 1313 if (ctx->max_val_type > NO_SIZE && 1314 ctx->min_hpages > ctx->max_hpages) { 1315 pr_err("Minimum size can not be greater than maximum size\n"); 1316 return -EINVAL; 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int 1323 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1324 { 1325 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1326 struct hugetlbfs_sb_info *sbinfo; 1327 1328 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1329 if (!sbinfo) 1330 return -ENOMEM; 1331 sb->s_fs_info = sbinfo; 1332 spin_lock_init(&sbinfo->stat_lock); 1333 sbinfo->hstate = ctx->hstate; 1334 sbinfo->max_inodes = ctx->nr_inodes; 1335 sbinfo->free_inodes = ctx->nr_inodes; 1336 sbinfo->spool = NULL; 1337 sbinfo->uid = ctx->uid; 1338 sbinfo->gid = ctx->gid; 1339 sbinfo->mode = ctx->mode; 1340 1341 /* 1342 * Allocate and initialize subpool if maximum or minimum size is 1343 * specified. Any needed reservations (for minimum size) are taken 1344 * taken when the subpool is created. 1345 */ 1346 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1347 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1348 ctx->max_hpages, 1349 ctx->min_hpages); 1350 if (!sbinfo->spool) 1351 goto out_free; 1352 } 1353 sb->s_maxbytes = MAX_LFS_FILESIZE; 1354 sb->s_blocksize = huge_page_size(ctx->hstate); 1355 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1356 sb->s_magic = HUGETLBFS_MAGIC; 1357 sb->s_op = &hugetlbfs_ops; 1358 sb->s_time_gran = 1; 1359 1360 /* 1361 * Due to the special and limited functionality of hugetlbfs, it does 1362 * not work well as a stacking filesystem. 1363 */ 1364 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1365 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1366 if (!sb->s_root) 1367 goto out_free; 1368 return 0; 1369 out_free: 1370 kfree(sbinfo->spool); 1371 kfree(sbinfo); 1372 return -ENOMEM; 1373 } 1374 1375 static int hugetlbfs_get_tree(struct fs_context *fc) 1376 { 1377 int err = hugetlbfs_validate(fc); 1378 if (err) 1379 return err; 1380 return get_tree_nodev(fc, hugetlbfs_fill_super); 1381 } 1382 1383 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1384 { 1385 kfree(fc->fs_private); 1386 } 1387 1388 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1389 .free = hugetlbfs_fs_context_free, 1390 .parse_param = hugetlbfs_parse_param, 1391 .get_tree = hugetlbfs_get_tree, 1392 }; 1393 1394 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1395 { 1396 struct hugetlbfs_fs_context *ctx; 1397 1398 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1399 if (!ctx) 1400 return -ENOMEM; 1401 1402 ctx->max_hpages = -1; /* No limit on size by default */ 1403 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1404 ctx->uid = current_fsuid(); 1405 ctx->gid = current_fsgid(); 1406 ctx->mode = 0755; 1407 ctx->hstate = &default_hstate; 1408 ctx->min_hpages = -1; /* No default minimum size */ 1409 ctx->max_val_type = NO_SIZE; 1410 ctx->min_val_type = NO_SIZE; 1411 fc->fs_private = ctx; 1412 fc->ops = &hugetlbfs_fs_context_ops; 1413 return 0; 1414 } 1415 1416 static struct file_system_type hugetlbfs_fs_type = { 1417 .name = "hugetlbfs", 1418 .init_fs_context = hugetlbfs_init_fs_context, 1419 .parameters = hugetlb_fs_parameters, 1420 .kill_sb = kill_litter_super, 1421 }; 1422 1423 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1424 1425 static int can_do_hugetlb_shm(void) 1426 { 1427 kgid_t shm_group; 1428 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1429 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1430 } 1431 1432 static int get_hstate_idx(int page_size_log) 1433 { 1434 struct hstate *h = hstate_sizelog(page_size_log); 1435 1436 if (!h) 1437 return -1; 1438 return h - hstates; 1439 } 1440 1441 /* 1442 * Note that size should be aligned to proper hugepage size in caller side, 1443 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1444 */ 1445 struct file *hugetlb_file_setup(const char *name, size_t size, 1446 vm_flags_t acctflag, struct user_struct **user, 1447 int creat_flags, int page_size_log) 1448 { 1449 struct inode *inode; 1450 struct vfsmount *mnt; 1451 int hstate_idx; 1452 struct file *file; 1453 1454 hstate_idx = get_hstate_idx(page_size_log); 1455 if (hstate_idx < 0) 1456 return ERR_PTR(-ENODEV); 1457 1458 *user = NULL; 1459 mnt = hugetlbfs_vfsmount[hstate_idx]; 1460 if (!mnt) 1461 return ERR_PTR(-ENOENT); 1462 1463 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1464 *user = current_user(); 1465 if (user_shm_lock(size, *user)) { 1466 task_lock(current); 1467 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1468 current->comm, current->pid); 1469 task_unlock(current); 1470 } else { 1471 *user = NULL; 1472 return ERR_PTR(-EPERM); 1473 } 1474 } 1475 1476 file = ERR_PTR(-ENOSPC); 1477 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1478 if (!inode) 1479 goto out; 1480 if (creat_flags == HUGETLB_SHMFS_INODE) 1481 inode->i_flags |= S_PRIVATE; 1482 1483 inode->i_size = size; 1484 clear_nlink(inode); 1485 1486 if (!hugetlb_reserve_pages(inode, 0, 1487 size >> huge_page_shift(hstate_inode(inode)), NULL, 1488 acctflag)) 1489 file = ERR_PTR(-ENOMEM); 1490 else 1491 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1492 &hugetlbfs_file_operations); 1493 if (!IS_ERR(file)) 1494 return file; 1495 1496 iput(inode); 1497 out: 1498 if (*user) { 1499 user_shm_unlock(size, *user); 1500 *user = NULL; 1501 } 1502 return file; 1503 } 1504 1505 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1506 { 1507 struct fs_context *fc; 1508 struct vfsmount *mnt; 1509 1510 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1511 if (IS_ERR(fc)) { 1512 mnt = ERR_CAST(fc); 1513 } else { 1514 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1515 ctx->hstate = h; 1516 mnt = fc_mount(fc); 1517 put_fs_context(fc); 1518 } 1519 if (IS_ERR(mnt)) 1520 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1521 huge_page_size(h) >> 10); 1522 return mnt; 1523 } 1524 1525 static int __init init_hugetlbfs_fs(void) 1526 { 1527 struct vfsmount *mnt; 1528 struct hstate *h; 1529 int error; 1530 int i; 1531 1532 if (!hugepages_supported()) { 1533 pr_info("disabling because there are no supported hugepage sizes\n"); 1534 return -ENOTSUPP; 1535 } 1536 1537 error = -ENOMEM; 1538 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1539 sizeof(struct hugetlbfs_inode_info), 1540 0, SLAB_ACCOUNT, init_once); 1541 if (hugetlbfs_inode_cachep == NULL) 1542 goto out; 1543 1544 error = register_filesystem(&hugetlbfs_fs_type); 1545 if (error) 1546 goto out_free; 1547 1548 /* default hstate mount is required */ 1549 mnt = mount_one_hugetlbfs(&default_hstate); 1550 if (IS_ERR(mnt)) { 1551 error = PTR_ERR(mnt); 1552 goto out_unreg; 1553 } 1554 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1555 1556 /* other hstates are optional */ 1557 i = 0; 1558 for_each_hstate(h) { 1559 if (i == default_hstate_idx) { 1560 i++; 1561 continue; 1562 } 1563 1564 mnt = mount_one_hugetlbfs(h); 1565 if (IS_ERR(mnt)) 1566 hugetlbfs_vfsmount[i] = NULL; 1567 else 1568 hugetlbfs_vfsmount[i] = mnt; 1569 i++; 1570 } 1571 1572 return 0; 1573 1574 out_unreg: 1575 (void)unregister_filesystem(&hugetlbfs_fs_type); 1576 out_free: 1577 kmem_cache_destroy(hugetlbfs_inode_cachep); 1578 out: 1579 return error; 1580 } 1581 fs_initcall(init_hugetlbfs_fs) 1582