xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 struct hugetlbfs_config {
49 	struct hstate		*hstate;
50 	long			max_hpages;
51 	long			nr_inodes;
52 	long			min_hpages;
53 	kuid_t			uid;
54 	kgid_t			gid;
55 	umode_t			mode;
56 };
57 
58 int sysctl_hugetlb_shm_group;
59 
60 enum {
61 	Opt_size, Opt_nr_inodes,
62 	Opt_mode, Opt_uid, Opt_gid,
63 	Opt_pagesize, Opt_min_size,
64 	Opt_err,
65 };
66 
67 static const match_table_t tokens = {
68 	{Opt_size,	"size=%s"},
69 	{Opt_nr_inodes,	"nr_inodes=%s"},
70 	{Opt_mode,	"mode=%o"},
71 	{Opt_uid,	"uid=%u"},
72 	{Opt_gid,	"gid=%u"},
73 	{Opt_pagesize,	"pagesize=%s"},
74 	{Opt_min_size,	"min_size=%s"},
75 	{Opt_err,	NULL},
76 };
77 
78 #ifdef CONFIG_NUMA
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
80 					struct inode *inode, pgoff_t index)
81 {
82 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
83 							index);
84 }
85 
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
87 {
88 	mpol_cond_put(vma->vm_policy);
89 }
90 #else
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
92 					struct inode *inode, pgoff_t index)
93 {
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 }
99 #endif
100 
101 static void huge_pagevec_release(struct pagevec *pvec)
102 {
103 	int i;
104 
105 	for (i = 0; i < pagevec_count(pvec); ++i)
106 		put_page(pvec->pages[i]);
107 
108 	pagevec_reinit(pvec);
109 }
110 
111 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
112 {
113 	struct inode *inode = file_inode(file);
114 	loff_t len, vma_len;
115 	int ret;
116 	struct hstate *h = hstate_file(file);
117 
118 	/*
119 	 * vma address alignment (but not the pgoff alignment) has
120 	 * already been checked by prepare_hugepage_range.  If you add
121 	 * any error returns here, do so after setting VM_HUGETLB, so
122 	 * is_vm_hugetlb_page tests below unmap_region go the right
123 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
124 	 * and ia64).
125 	 */
126 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
127 	vma->vm_ops = &hugetlb_vm_ops;
128 
129 	/*
130 	 * Offset passed to mmap (before page shift) could have been
131 	 * negative when represented as a (l)off_t.
132 	 */
133 	if (((loff_t)vma->vm_pgoff << PAGE_SHIFT) < 0)
134 		return -EINVAL;
135 
136 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
137 		return -EINVAL;
138 
139 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
140 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
141 	/* check for overflow */
142 	if (len < vma_len)
143 		return -EINVAL;
144 
145 	inode_lock(inode);
146 	file_accessed(file);
147 
148 	ret = -ENOMEM;
149 	if (hugetlb_reserve_pages(inode,
150 				vma->vm_pgoff >> huge_page_order(h),
151 				len >> huge_page_shift(h), vma,
152 				vma->vm_flags))
153 		goto out;
154 
155 	ret = 0;
156 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
157 		i_size_write(inode, len);
158 out:
159 	inode_unlock(inode);
160 
161 	return ret;
162 }
163 
164 /*
165  * Called under down_write(mmap_sem).
166  */
167 
168 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
169 static unsigned long
170 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
171 		unsigned long len, unsigned long pgoff, unsigned long flags)
172 {
173 	struct mm_struct *mm = current->mm;
174 	struct vm_area_struct *vma;
175 	struct hstate *h = hstate_file(file);
176 	struct vm_unmapped_area_info info;
177 
178 	if (len & ~huge_page_mask(h))
179 		return -EINVAL;
180 	if (len > TASK_SIZE)
181 		return -ENOMEM;
182 
183 	if (flags & MAP_FIXED) {
184 		if (prepare_hugepage_range(file, addr, len))
185 			return -EINVAL;
186 		return addr;
187 	}
188 
189 	if (addr) {
190 		addr = ALIGN(addr, huge_page_size(h));
191 		vma = find_vma(mm, addr);
192 		if (TASK_SIZE - len >= addr &&
193 		    (!vma || addr + len <= vm_start_gap(vma)))
194 			return addr;
195 	}
196 
197 	info.flags = 0;
198 	info.length = len;
199 	info.low_limit = TASK_UNMAPPED_BASE;
200 	info.high_limit = TASK_SIZE;
201 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
202 	info.align_offset = 0;
203 	return vm_unmapped_area(&info);
204 }
205 #endif
206 
207 static size_t
208 hugetlbfs_read_actor(struct page *page, unsigned long offset,
209 			struct iov_iter *to, unsigned long size)
210 {
211 	size_t copied = 0;
212 	int i, chunksize;
213 
214 	/* Find which 4k chunk and offset with in that chunk */
215 	i = offset >> PAGE_SHIFT;
216 	offset = offset & ~PAGE_MASK;
217 
218 	while (size) {
219 		size_t n;
220 		chunksize = PAGE_SIZE;
221 		if (offset)
222 			chunksize -= offset;
223 		if (chunksize > size)
224 			chunksize = size;
225 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
226 		copied += n;
227 		if (n != chunksize)
228 			return copied;
229 		offset = 0;
230 		size -= chunksize;
231 		i++;
232 	}
233 	return copied;
234 }
235 
236 /*
237  * Support for read() - Find the page attached to f_mapping and copy out the
238  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
239  * since it has PAGE_SIZE assumptions.
240  */
241 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
242 {
243 	struct file *file = iocb->ki_filp;
244 	struct hstate *h = hstate_file(file);
245 	struct address_space *mapping = file->f_mapping;
246 	struct inode *inode = mapping->host;
247 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
248 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
249 	unsigned long end_index;
250 	loff_t isize;
251 	ssize_t retval = 0;
252 
253 	while (iov_iter_count(to)) {
254 		struct page *page;
255 		size_t nr, copied;
256 
257 		/* nr is the maximum number of bytes to copy from this page */
258 		nr = huge_page_size(h);
259 		isize = i_size_read(inode);
260 		if (!isize)
261 			break;
262 		end_index = (isize - 1) >> huge_page_shift(h);
263 		if (index > end_index)
264 			break;
265 		if (index == end_index) {
266 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
267 			if (nr <= offset)
268 				break;
269 		}
270 		nr = nr - offset;
271 
272 		/* Find the page */
273 		page = find_lock_page(mapping, index);
274 		if (unlikely(page == NULL)) {
275 			/*
276 			 * We have a HOLE, zero out the user-buffer for the
277 			 * length of the hole or request.
278 			 */
279 			copied = iov_iter_zero(nr, to);
280 		} else {
281 			unlock_page(page);
282 
283 			/*
284 			 * We have the page, copy it to user space buffer.
285 			 */
286 			copied = hugetlbfs_read_actor(page, offset, to, nr);
287 			put_page(page);
288 		}
289 		offset += copied;
290 		retval += copied;
291 		if (copied != nr && iov_iter_count(to)) {
292 			if (!retval)
293 				retval = -EFAULT;
294 			break;
295 		}
296 		index += offset >> huge_page_shift(h);
297 		offset &= ~huge_page_mask(h);
298 	}
299 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
300 	return retval;
301 }
302 
303 static int hugetlbfs_write_begin(struct file *file,
304 			struct address_space *mapping,
305 			loff_t pos, unsigned len, unsigned flags,
306 			struct page **pagep, void **fsdata)
307 {
308 	return -EINVAL;
309 }
310 
311 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
312 			loff_t pos, unsigned len, unsigned copied,
313 			struct page *page, void *fsdata)
314 {
315 	BUG();
316 	return -EINVAL;
317 }
318 
319 static void remove_huge_page(struct page *page)
320 {
321 	ClearPageDirty(page);
322 	ClearPageUptodate(page);
323 	delete_from_page_cache(page);
324 }
325 
326 static void
327 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
328 {
329 	struct vm_area_struct *vma;
330 
331 	/*
332 	 * end == 0 indicates that the entire range after
333 	 * start should be unmapped.
334 	 */
335 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
336 		unsigned long v_offset;
337 		unsigned long v_end;
338 
339 		/*
340 		 * Can the expression below overflow on 32-bit arches?
341 		 * No, because the interval tree returns us only those vmas
342 		 * which overlap the truncated area starting at pgoff,
343 		 * and no vma on a 32-bit arch can span beyond the 4GB.
344 		 */
345 		if (vma->vm_pgoff < start)
346 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
347 		else
348 			v_offset = 0;
349 
350 		if (!end)
351 			v_end = vma->vm_end;
352 		else {
353 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
354 							+ vma->vm_start;
355 			if (v_end > vma->vm_end)
356 				v_end = vma->vm_end;
357 		}
358 
359 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
360 									NULL);
361 	}
362 }
363 
364 /*
365  * remove_inode_hugepages handles two distinct cases: truncation and hole
366  * punch.  There are subtle differences in operation for each case.
367  *
368  * truncation is indicated by end of range being LLONG_MAX
369  *	In this case, we first scan the range and release found pages.
370  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
371  *	maps and global counts.  Page faults can not race with truncation
372  *	in this routine.  hugetlb_no_page() prevents page faults in the
373  *	truncated range.  It checks i_size before allocation, and again after
374  *	with the page table lock for the page held.  The same lock must be
375  *	acquired to unmap a page.
376  * hole punch is indicated if end is not LLONG_MAX
377  *	In the hole punch case we scan the range and release found pages.
378  *	Only when releasing a page is the associated region/reserv map
379  *	deleted.  The region/reserv map for ranges without associated
380  *	pages are not modified.  Page faults can race with hole punch.
381  *	This is indicated if we find a mapped page.
382  * Note: If the passed end of range value is beyond the end of file, but
383  * not LLONG_MAX this routine still performs a hole punch operation.
384  */
385 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
386 				   loff_t lend)
387 {
388 	struct hstate *h = hstate_inode(inode);
389 	struct address_space *mapping = &inode->i_data;
390 	const pgoff_t start = lstart >> huge_page_shift(h);
391 	const pgoff_t end = lend >> huge_page_shift(h);
392 	struct vm_area_struct pseudo_vma;
393 	struct pagevec pvec;
394 	pgoff_t next, index;
395 	int i, freed = 0;
396 	bool truncate_op = (lend == LLONG_MAX);
397 
398 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
399 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
400 	pagevec_init(&pvec);
401 	next = start;
402 	while (next < end) {
403 		/*
404 		 * When no more pages are found, we are done.
405 		 */
406 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
407 			break;
408 
409 		for (i = 0; i < pagevec_count(&pvec); ++i) {
410 			struct page *page = pvec.pages[i];
411 			u32 hash;
412 
413 			index = page->index;
414 			hash = hugetlb_fault_mutex_hash(h, current->mm,
415 							&pseudo_vma,
416 							mapping, index, 0);
417 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
418 
419 			/*
420 			 * If page is mapped, it was faulted in after being
421 			 * unmapped in caller.  Unmap (again) now after taking
422 			 * the fault mutex.  The mutex will prevent faults
423 			 * until we finish removing the page.
424 			 *
425 			 * This race can only happen in the hole punch case.
426 			 * Getting here in a truncate operation is a bug.
427 			 */
428 			if (unlikely(page_mapped(page))) {
429 				BUG_ON(truncate_op);
430 
431 				i_mmap_lock_write(mapping);
432 				hugetlb_vmdelete_list(&mapping->i_mmap,
433 					index * pages_per_huge_page(h),
434 					(index + 1) * pages_per_huge_page(h));
435 				i_mmap_unlock_write(mapping);
436 			}
437 
438 			lock_page(page);
439 			/*
440 			 * We must free the huge page and remove from page
441 			 * cache (remove_huge_page) BEFORE removing the
442 			 * region/reserve map (hugetlb_unreserve_pages).  In
443 			 * rare out of memory conditions, removal of the
444 			 * region/reserve map could fail. Correspondingly,
445 			 * the subpool and global reserve usage count can need
446 			 * to be adjusted.
447 			 */
448 			VM_BUG_ON(PagePrivate(page));
449 			remove_huge_page(page);
450 			freed++;
451 			if (!truncate_op) {
452 				if (unlikely(hugetlb_unreserve_pages(inode,
453 							index, index + 1, 1)))
454 					hugetlb_fix_reserve_counts(inode);
455 			}
456 
457 			unlock_page(page);
458 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
459 		}
460 		huge_pagevec_release(&pvec);
461 		cond_resched();
462 	}
463 
464 	if (truncate_op)
465 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
466 }
467 
468 static void hugetlbfs_evict_inode(struct inode *inode)
469 {
470 	struct resv_map *resv_map;
471 
472 	remove_inode_hugepages(inode, 0, LLONG_MAX);
473 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
474 	/* root inode doesn't have the resv_map, so we should check it */
475 	if (resv_map)
476 		resv_map_release(&resv_map->refs);
477 	clear_inode(inode);
478 }
479 
480 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
481 {
482 	pgoff_t pgoff;
483 	struct address_space *mapping = inode->i_mapping;
484 	struct hstate *h = hstate_inode(inode);
485 
486 	BUG_ON(offset & ~huge_page_mask(h));
487 	pgoff = offset >> PAGE_SHIFT;
488 
489 	i_size_write(inode, offset);
490 	i_mmap_lock_write(mapping);
491 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
492 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
493 	i_mmap_unlock_write(mapping);
494 	remove_inode_hugepages(inode, offset, LLONG_MAX);
495 	return 0;
496 }
497 
498 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
499 {
500 	struct hstate *h = hstate_inode(inode);
501 	loff_t hpage_size = huge_page_size(h);
502 	loff_t hole_start, hole_end;
503 
504 	/*
505 	 * For hole punch round up the beginning offset of the hole and
506 	 * round down the end.
507 	 */
508 	hole_start = round_up(offset, hpage_size);
509 	hole_end = round_down(offset + len, hpage_size);
510 
511 	if (hole_end > hole_start) {
512 		struct address_space *mapping = inode->i_mapping;
513 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
514 
515 		inode_lock(inode);
516 
517 		/* protected by i_mutex */
518 		if (info->seals & F_SEAL_WRITE) {
519 			inode_unlock(inode);
520 			return -EPERM;
521 		}
522 
523 		i_mmap_lock_write(mapping);
524 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
525 			hugetlb_vmdelete_list(&mapping->i_mmap,
526 						hole_start >> PAGE_SHIFT,
527 						hole_end  >> PAGE_SHIFT);
528 		i_mmap_unlock_write(mapping);
529 		remove_inode_hugepages(inode, hole_start, hole_end);
530 		inode_unlock(inode);
531 	}
532 
533 	return 0;
534 }
535 
536 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
537 				loff_t len)
538 {
539 	struct inode *inode = file_inode(file);
540 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
541 	struct address_space *mapping = inode->i_mapping;
542 	struct hstate *h = hstate_inode(inode);
543 	struct vm_area_struct pseudo_vma;
544 	struct mm_struct *mm = current->mm;
545 	loff_t hpage_size = huge_page_size(h);
546 	unsigned long hpage_shift = huge_page_shift(h);
547 	pgoff_t start, index, end;
548 	int error;
549 	u32 hash;
550 
551 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
552 		return -EOPNOTSUPP;
553 
554 	if (mode & FALLOC_FL_PUNCH_HOLE)
555 		return hugetlbfs_punch_hole(inode, offset, len);
556 
557 	/*
558 	 * Default preallocate case.
559 	 * For this range, start is rounded down and end is rounded up
560 	 * as well as being converted to page offsets.
561 	 */
562 	start = offset >> hpage_shift;
563 	end = (offset + len + hpage_size - 1) >> hpage_shift;
564 
565 	inode_lock(inode);
566 
567 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
568 	error = inode_newsize_ok(inode, offset + len);
569 	if (error)
570 		goto out;
571 
572 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
573 		error = -EPERM;
574 		goto out;
575 	}
576 
577 	/*
578 	 * Initialize a pseudo vma as this is required by the huge page
579 	 * allocation routines.  If NUMA is configured, use page index
580 	 * as input to create an allocation policy.
581 	 */
582 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
583 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
584 	pseudo_vma.vm_file = file;
585 
586 	for (index = start; index < end; index++) {
587 		/*
588 		 * This is supposed to be the vaddr where the page is being
589 		 * faulted in, but we have no vaddr here.
590 		 */
591 		struct page *page;
592 		unsigned long addr;
593 		int avoid_reserve = 0;
594 
595 		cond_resched();
596 
597 		/*
598 		 * fallocate(2) manpage permits EINTR; we may have been
599 		 * interrupted because we are using up too much memory.
600 		 */
601 		if (signal_pending(current)) {
602 			error = -EINTR;
603 			break;
604 		}
605 
606 		/* Set numa allocation policy based on index */
607 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
608 
609 		/* addr is the offset within the file (zero based) */
610 		addr = index * hpage_size;
611 
612 		/* mutex taken here, fault path and hole punch */
613 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
614 						index, addr);
615 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
616 
617 		/* See if already present in mapping to avoid alloc/free */
618 		page = find_get_page(mapping, index);
619 		if (page) {
620 			put_page(page);
621 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
622 			hugetlb_drop_vma_policy(&pseudo_vma);
623 			continue;
624 		}
625 
626 		/* Allocate page and add to page cache */
627 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
628 		hugetlb_drop_vma_policy(&pseudo_vma);
629 		if (IS_ERR(page)) {
630 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
631 			error = PTR_ERR(page);
632 			goto out;
633 		}
634 		clear_huge_page(page, addr, pages_per_huge_page(h));
635 		__SetPageUptodate(page);
636 		error = huge_add_to_page_cache(page, mapping, index);
637 		if (unlikely(error)) {
638 			put_page(page);
639 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
640 			goto out;
641 		}
642 
643 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
644 
645 		/*
646 		 * unlock_page because locked by add_to_page_cache()
647 		 * page_put due to reference from alloc_huge_page()
648 		 */
649 		unlock_page(page);
650 		put_page(page);
651 	}
652 
653 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
654 		i_size_write(inode, offset + len);
655 	inode->i_ctime = current_time(inode);
656 out:
657 	inode_unlock(inode);
658 	return error;
659 }
660 
661 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
662 {
663 	struct inode *inode = d_inode(dentry);
664 	struct hstate *h = hstate_inode(inode);
665 	int error;
666 	unsigned int ia_valid = attr->ia_valid;
667 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
668 
669 	BUG_ON(!inode);
670 
671 	error = setattr_prepare(dentry, attr);
672 	if (error)
673 		return error;
674 
675 	if (ia_valid & ATTR_SIZE) {
676 		loff_t oldsize = inode->i_size;
677 		loff_t newsize = attr->ia_size;
678 
679 		if (newsize & ~huge_page_mask(h))
680 			return -EINVAL;
681 		/* protected by i_mutex */
682 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
683 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
684 			return -EPERM;
685 		error = hugetlb_vmtruncate(inode, newsize);
686 		if (error)
687 			return error;
688 	}
689 
690 	setattr_copy(inode, attr);
691 	mark_inode_dirty(inode);
692 	return 0;
693 }
694 
695 static struct inode *hugetlbfs_get_root(struct super_block *sb,
696 					struct hugetlbfs_config *config)
697 {
698 	struct inode *inode;
699 
700 	inode = new_inode(sb);
701 	if (inode) {
702 		inode->i_ino = get_next_ino();
703 		inode->i_mode = S_IFDIR | config->mode;
704 		inode->i_uid = config->uid;
705 		inode->i_gid = config->gid;
706 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
707 		inode->i_op = &hugetlbfs_dir_inode_operations;
708 		inode->i_fop = &simple_dir_operations;
709 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
710 		inc_nlink(inode);
711 		lockdep_annotate_inode_mutex_key(inode);
712 	}
713 	return inode;
714 }
715 
716 /*
717  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
718  * be taken from reclaim -- unlike regular filesystems. This needs an
719  * annotation because huge_pmd_share() does an allocation under hugetlb's
720  * i_mmap_rwsem.
721  */
722 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
723 
724 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
725 					struct inode *dir,
726 					umode_t mode, dev_t dev)
727 {
728 	struct inode *inode;
729 	struct resv_map *resv_map;
730 
731 	resv_map = resv_map_alloc();
732 	if (!resv_map)
733 		return NULL;
734 
735 	inode = new_inode(sb);
736 	if (inode) {
737 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
738 
739 		inode->i_ino = get_next_ino();
740 		inode_init_owner(inode, dir, mode);
741 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
742 				&hugetlbfs_i_mmap_rwsem_key);
743 		inode->i_mapping->a_ops = &hugetlbfs_aops;
744 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
745 		inode->i_mapping->private_data = resv_map;
746 		info->seals = F_SEAL_SEAL;
747 		switch (mode & S_IFMT) {
748 		default:
749 			init_special_inode(inode, mode, dev);
750 			break;
751 		case S_IFREG:
752 			inode->i_op = &hugetlbfs_inode_operations;
753 			inode->i_fop = &hugetlbfs_file_operations;
754 			break;
755 		case S_IFDIR:
756 			inode->i_op = &hugetlbfs_dir_inode_operations;
757 			inode->i_fop = &simple_dir_operations;
758 
759 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
760 			inc_nlink(inode);
761 			break;
762 		case S_IFLNK:
763 			inode->i_op = &page_symlink_inode_operations;
764 			inode_nohighmem(inode);
765 			break;
766 		}
767 		lockdep_annotate_inode_mutex_key(inode);
768 	} else
769 		kref_put(&resv_map->refs, resv_map_release);
770 
771 	return inode;
772 }
773 
774 /*
775  * File creation. Allocate an inode, and we're done..
776  */
777 static int hugetlbfs_mknod(struct inode *dir,
778 			struct dentry *dentry, umode_t mode, dev_t dev)
779 {
780 	struct inode *inode;
781 	int error = -ENOSPC;
782 
783 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
784 	if (inode) {
785 		dir->i_ctime = dir->i_mtime = current_time(dir);
786 		d_instantiate(dentry, inode);
787 		dget(dentry);	/* Extra count - pin the dentry in core */
788 		error = 0;
789 	}
790 	return error;
791 }
792 
793 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
794 {
795 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
796 	if (!retval)
797 		inc_nlink(dir);
798 	return retval;
799 }
800 
801 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
802 {
803 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
804 }
805 
806 static int hugetlbfs_symlink(struct inode *dir,
807 			struct dentry *dentry, const char *symname)
808 {
809 	struct inode *inode;
810 	int error = -ENOSPC;
811 
812 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
813 	if (inode) {
814 		int l = strlen(symname)+1;
815 		error = page_symlink(inode, symname, l);
816 		if (!error) {
817 			d_instantiate(dentry, inode);
818 			dget(dentry);
819 		} else
820 			iput(inode);
821 	}
822 	dir->i_ctime = dir->i_mtime = current_time(dir);
823 
824 	return error;
825 }
826 
827 /*
828  * mark the head page dirty
829  */
830 static int hugetlbfs_set_page_dirty(struct page *page)
831 {
832 	struct page *head = compound_head(page);
833 
834 	SetPageDirty(head);
835 	return 0;
836 }
837 
838 static int hugetlbfs_migrate_page(struct address_space *mapping,
839 				struct page *newpage, struct page *page,
840 				enum migrate_mode mode)
841 {
842 	int rc;
843 
844 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
845 	if (rc != MIGRATEPAGE_SUCCESS)
846 		return rc;
847 	if (mode != MIGRATE_SYNC_NO_COPY)
848 		migrate_page_copy(newpage, page);
849 	else
850 		migrate_page_states(newpage, page);
851 
852 	return MIGRATEPAGE_SUCCESS;
853 }
854 
855 static int hugetlbfs_error_remove_page(struct address_space *mapping,
856 				struct page *page)
857 {
858 	struct inode *inode = mapping->host;
859 	pgoff_t index = page->index;
860 
861 	remove_huge_page(page);
862 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
863 		hugetlb_fix_reserve_counts(inode);
864 
865 	return 0;
866 }
867 
868 /*
869  * Display the mount options in /proc/mounts.
870  */
871 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
872 {
873 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
874 	struct hugepage_subpool *spool = sbinfo->spool;
875 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
876 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
877 	char mod;
878 
879 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
880 		seq_printf(m, ",uid=%u",
881 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
882 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
883 		seq_printf(m, ",gid=%u",
884 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
885 	if (sbinfo->mode != 0755)
886 		seq_printf(m, ",mode=%o", sbinfo->mode);
887 	if (sbinfo->max_inodes != -1)
888 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
889 
890 	hpage_size /= 1024;
891 	mod = 'K';
892 	if (hpage_size >= 1024) {
893 		hpage_size /= 1024;
894 		mod = 'M';
895 	}
896 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
897 	if (spool) {
898 		if (spool->max_hpages != -1)
899 			seq_printf(m, ",size=%llu",
900 				   (unsigned long long)spool->max_hpages << hpage_shift);
901 		if (spool->min_hpages != -1)
902 			seq_printf(m, ",min_size=%llu",
903 				   (unsigned long long)spool->min_hpages << hpage_shift);
904 	}
905 	return 0;
906 }
907 
908 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
909 {
910 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
911 	struct hstate *h = hstate_inode(d_inode(dentry));
912 
913 	buf->f_type = HUGETLBFS_MAGIC;
914 	buf->f_bsize = huge_page_size(h);
915 	if (sbinfo) {
916 		spin_lock(&sbinfo->stat_lock);
917 		/* If no limits set, just report 0 for max/free/used
918 		 * blocks, like simple_statfs() */
919 		if (sbinfo->spool) {
920 			long free_pages;
921 
922 			spin_lock(&sbinfo->spool->lock);
923 			buf->f_blocks = sbinfo->spool->max_hpages;
924 			free_pages = sbinfo->spool->max_hpages
925 				- sbinfo->spool->used_hpages;
926 			buf->f_bavail = buf->f_bfree = free_pages;
927 			spin_unlock(&sbinfo->spool->lock);
928 			buf->f_files = sbinfo->max_inodes;
929 			buf->f_ffree = sbinfo->free_inodes;
930 		}
931 		spin_unlock(&sbinfo->stat_lock);
932 	}
933 	buf->f_namelen = NAME_MAX;
934 	return 0;
935 }
936 
937 static void hugetlbfs_put_super(struct super_block *sb)
938 {
939 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
940 
941 	if (sbi) {
942 		sb->s_fs_info = NULL;
943 
944 		if (sbi->spool)
945 			hugepage_put_subpool(sbi->spool);
946 
947 		kfree(sbi);
948 	}
949 }
950 
951 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
952 {
953 	if (sbinfo->free_inodes >= 0) {
954 		spin_lock(&sbinfo->stat_lock);
955 		if (unlikely(!sbinfo->free_inodes)) {
956 			spin_unlock(&sbinfo->stat_lock);
957 			return 0;
958 		}
959 		sbinfo->free_inodes--;
960 		spin_unlock(&sbinfo->stat_lock);
961 	}
962 
963 	return 1;
964 }
965 
966 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
967 {
968 	if (sbinfo->free_inodes >= 0) {
969 		spin_lock(&sbinfo->stat_lock);
970 		sbinfo->free_inodes++;
971 		spin_unlock(&sbinfo->stat_lock);
972 	}
973 }
974 
975 
976 static struct kmem_cache *hugetlbfs_inode_cachep;
977 
978 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
979 {
980 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
981 	struct hugetlbfs_inode_info *p;
982 
983 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
984 		return NULL;
985 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
986 	if (unlikely(!p)) {
987 		hugetlbfs_inc_free_inodes(sbinfo);
988 		return NULL;
989 	}
990 
991 	/*
992 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
993 	 * for the inode.  mpol_free_shared_policy is unconditionally called
994 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
995 	 * in case of a quick call to destroy.
996 	 *
997 	 * Note that the policy is initialized even if we are creating a
998 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
999 	 */
1000 	mpol_shared_policy_init(&p->policy, NULL);
1001 
1002 	return &p->vfs_inode;
1003 }
1004 
1005 static void hugetlbfs_i_callback(struct rcu_head *head)
1006 {
1007 	struct inode *inode = container_of(head, struct inode, i_rcu);
1008 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1009 }
1010 
1011 static void hugetlbfs_destroy_inode(struct inode *inode)
1012 {
1013 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1014 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1015 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1016 }
1017 
1018 static const struct address_space_operations hugetlbfs_aops = {
1019 	.write_begin	= hugetlbfs_write_begin,
1020 	.write_end	= hugetlbfs_write_end,
1021 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1022 	.migratepage    = hugetlbfs_migrate_page,
1023 	.error_remove_page	= hugetlbfs_error_remove_page,
1024 };
1025 
1026 
1027 static void init_once(void *foo)
1028 {
1029 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1030 
1031 	inode_init_once(&ei->vfs_inode);
1032 }
1033 
1034 const struct file_operations hugetlbfs_file_operations = {
1035 	.read_iter		= hugetlbfs_read_iter,
1036 	.mmap			= hugetlbfs_file_mmap,
1037 	.fsync			= noop_fsync,
1038 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1039 	.llseek			= default_llseek,
1040 	.fallocate		= hugetlbfs_fallocate,
1041 };
1042 
1043 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1044 	.create		= hugetlbfs_create,
1045 	.lookup		= simple_lookup,
1046 	.link		= simple_link,
1047 	.unlink		= simple_unlink,
1048 	.symlink	= hugetlbfs_symlink,
1049 	.mkdir		= hugetlbfs_mkdir,
1050 	.rmdir		= simple_rmdir,
1051 	.mknod		= hugetlbfs_mknod,
1052 	.rename		= simple_rename,
1053 	.setattr	= hugetlbfs_setattr,
1054 };
1055 
1056 static const struct inode_operations hugetlbfs_inode_operations = {
1057 	.setattr	= hugetlbfs_setattr,
1058 };
1059 
1060 static const struct super_operations hugetlbfs_ops = {
1061 	.alloc_inode    = hugetlbfs_alloc_inode,
1062 	.destroy_inode  = hugetlbfs_destroy_inode,
1063 	.evict_inode	= hugetlbfs_evict_inode,
1064 	.statfs		= hugetlbfs_statfs,
1065 	.put_super	= hugetlbfs_put_super,
1066 	.show_options	= hugetlbfs_show_options,
1067 };
1068 
1069 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1070 
1071 /*
1072  * Convert size option passed from command line to number of huge pages
1073  * in the pool specified by hstate.  Size option could be in bytes
1074  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1075  */
1076 static long
1077 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1078 			 enum hugetlbfs_size_type val_type)
1079 {
1080 	if (val_type == NO_SIZE)
1081 		return -1;
1082 
1083 	if (val_type == SIZE_PERCENT) {
1084 		size_opt <<= huge_page_shift(h);
1085 		size_opt *= h->max_huge_pages;
1086 		do_div(size_opt, 100);
1087 	}
1088 
1089 	size_opt >>= huge_page_shift(h);
1090 	return size_opt;
1091 }
1092 
1093 static int
1094 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1095 {
1096 	char *p, *rest;
1097 	substring_t args[MAX_OPT_ARGS];
1098 	int option;
1099 	unsigned long long max_size_opt = 0, min_size_opt = 0;
1100 	enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1101 
1102 	if (!options)
1103 		return 0;
1104 
1105 	while ((p = strsep(&options, ",")) != NULL) {
1106 		int token;
1107 		if (!*p)
1108 			continue;
1109 
1110 		token = match_token(p, tokens, args);
1111 		switch (token) {
1112 		case Opt_uid:
1113 			if (match_int(&args[0], &option))
1114  				goto bad_val;
1115 			pconfig->uid = make_kuid(current_user_ns(), option);
1116 			if (!uid_valid(pconfig->uid))
1117 				goto bad_val;
1118 			break;
1119 
1120 		case Opt_gid:
1121 			if (match_int(&args[0], &option))
1122  				goto bad_val;
1123 			pconfig->gid = make_kgid(current_user_ns(), option);
1124 			if (!gid_valid(pconfig->gid))
1125 				goto bad_val;
1126 			break;
1127 
1128 		case Opt_mode:
1129 			if (match_octal(&args[0], &option))
1130  				goto bad_val;
1131 			pconfig->mode = option & 01777U;
1132 			break;
1133 
1134 		case Opt_size: {
1135 			/* memparse() will accept a K/M/G without a digit */
1136 			if (!isdigit(*args[0].from))
1137 				goto bad_val;
1138 			max_size_opt = memparse(args[0].from, &rest);
1139 			max_val_type = SIZE_STD;
1140 			if (*rest == '%')
1141 				max_val_type = SIZE_PERCENT;
1142 			break;
1143 		}
1144 
1145 		case Opt_nr_inodes:
1146 			/* memparse() will accept a K/M/G without a digit */
1147 			if (!isdigit(*args[0].from))
1148 				goto bad_val;
1149 			pconfig->nr_inodes = memparse(args[0].from, &rest);
1150 			break;
1151 
1152 		case Opt_pagesize: {
1153 			unsigned long ps;
1154 			ps = memparse(args[0].from, &rest);
1155 			pconfig->hstate = size_to_hstate(ps);
1156 			if (!pconfig->hstate) {
1157 				pr_err("Unsupported page size %lu MB\n",
1158 					ps >> 20);
1159 				return -EINVAL;
1160 			}
1161 			break;
1162 		}
1163 
1164 		case Opt_min_size: {
1165 			/* memparse() will accept a K/M/G without a digit */
1166 			if (!isdigit(*args[0].from))
1167 				goto bad_val;
1168 			min_size_opt = memparse(args[0].from, &rest);
1169 			min_val_type = SIZE_STD;
1170 			if (*rest == '%')
1171 				min_val_type = SIZE_PERCENT;
1172 			break;
1173 		}
1174 
1175 		default:
1176 			pr_err("Bad mount option: \"%s\"\n", p);
1177 			return -EINVAL;
1178 			break;
1179 		}
1180 	}
1181 
1182 	/*
1183 	 * Use huge page pool size (in hstate) to convert the size
1184 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1185 	 */
1186 	pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1187 						max_size_opt, max_val_type);
1188 	pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1189 						min_size_opt, min_val_type);
1190 
1191 	/*
1192 	 * If max_size was specified, then min_size must be smaller
1193 	 */
1194 	if (max_val_type > NO_SIZE &&
1195 	    pconfig->min_hpages > pconfig->max_hpages) {
1196 		pr_err("minimum size can not be greater than maximum size\n");
1197 		return -EINVAL;
1198 	}
1199 
1200 	return 0;
1201 
1202 bad_val:
1203 	pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1204  	return -EINVAL;
1205 }
1206 
1207 static int
1208 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1209 {
1210 	int ret;
1211 	struct hugetlbfs_config config;
1212 	struct hugetlbfs_sb_info *sbinfo;
1213 
1214 	config.max_hpages = -1; /* No limit on size by default */
1215 	config.nr_inodes = -1; /* No limit on number of inodes by default */
1216 	config.uid = current_fsuid();
1217 	config.gid = current_fsgid();
1218 	config.mode = 0755;
1219 	config.hstate = &default_hstate;
1220 	config.min_hpages = -1; /* No default minimum size */
1221 	ret = hugetlbfs_parse_options(data, &config);
1222 	if (ret)
1223 		return ret;
1224 
1225 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1226 	if (!sbinfo)
1227 		return -ENOMEM;
1228 	sb->s_fs_info = sbinfo;
1229 	sbinfo->hstate = config.hstate;
1230 	spin_lock_init(&sbinfo->stat_lock);
1231 	sbinfo->max_inodes = config.nr_inodes;
1232 	sbinfo->free_inodes = config.nr_inodes;
1233 	sbinfo->spool = NULL;
1234 	sbinfo->uid = config.uid;
1235 	sbinfo->gid = config.gid;
1236 	sbinfo->mode = config.mode;
1237 
1238 	/*
1239 	 * Allocate and initialize subpool if maximum or minimum size is
1240 	 * specified.  Any needed reservations (for minimim size) are taken
1241 	 * taken when the subpool is created.
1242 	 */
1243 	if (config.max_hpages != -1 || config.min_hpages != -1) {
1244 		sbinfo->spool = hugepage_new_subpool(config.hstate,
1245 							config.max_hpages,
1246 							config.min_hpages);
1247 		if (!sbinfo->spool)
1248 			goto out_free;
1249 	}
1250 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1251 	sb->s_blocksize = huge_page_size(config.hstate);
1252 	sb->s_blocksize_bits = huge_page_shift(config.hstate);
1253 	sb->s_magic = HUGETLBFS_MAGIC;
1254 	sb->s_op = &hugetlbfs_ops;
1255 	sb->s_time_gran = 1;
1256 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1257 	if (!sb->s_root)
1258 		goto out_free;
1259 	return 0;
1260 out_free:
1261 	kfree(sbinfo->spool);
1262 	kfree(sbinfo);
1263 	return -ENOMEM;
1264 }
1265 
1266 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1267 	int flags, const char *dev_name, void *data)
1268 {
1269 	return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1270 }
1271 
1272 static struct file_system_type hugetlbfs_fs_type = {
1273 	.name		= "hugetlbfs",
1274 	.mount		= hugetlbfs_mount,
1275 	.kill_sb	= kill_litter_super,
1276 };
1277 
1278 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1279 
1280 static int can_do_hugetlb_shm(void)
1281 {
1282 	kgid_t shm_group;
1283 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1284 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1285 }
1286 
1287 static int get_hstate_idx(int page_size_log)
1288 {
1289 	struct hstate *h = hstate_sizelog(page_size_log);
1290 
1291 	if (!h)
1292 		return -1;
1293 	return h - hstates;
1294 }
1295 
1296 static const struct dentry_operations anon_ops = {
1297 	.d_dname = simple_dname
1298 };
1299 
1300 /*
1301  * Note that size should be aligned to proper hugepage size in caller side,
1302  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1303  */
1304 struct file *hugetlb_file_setup(const char *name, size_t size,
1305 				vm_flags_t acctflag, struct user_struct **user,
1306 				int creat_flags, int page_size_log)
1307 {
1308 	struct file *file = ERR_PTR(-ENOMEM);
1309 	struct inode *inode;
1310 	struct path path;
1311 	struct super_block *sb;
1312 	struct qstr quick_string;
1313 	int hstate_idx;
1314 
1315 	hstate_idx = get_hstate_idx(page_size_log);
1316 	if (hstate_idx < 0)
1317 		return ERR_PTR(-ENODEV);
1318 
1319 	*user = NULL;
1320 	if (!hugetlbfs_vfsmount[hstate_idx])
1321 		return ERR_PTR(-ENOENT);
1322 
1323 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1324 		*user = current_user();
1325 		if (user_shm_lock(size, *user)) {
1326 			task_lock(current);
1327 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1328 				current->comm, current->pid);
1329 			task_unlock(current);
1330 		} else {
1331 			*user = NULL;
1332 			return ERR_PTR(-EPERM);
1333 		}
1334 	}
1335 
1336 	sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1337 	quick_string.name = name;
1338 	quick_string.len = strlen(quick_string.name);
1339 	quick_string.hash = 0;
1340 	path.dentry = d_alloc_pseudo(sb, &quick_string);
1341 	if (!path.dentry)
1342 		goto out_shm_unlock;
1343 
1344 	d_set_d_op(path.dentry, &anon_ops);
1345 	path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1346 	file = ERR_PTR(-ENOSPC);
1347 	inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1348 	if (!inode)
1349 		goto out_dentry;
1350 	if (creat_flags == HUGETLB_SHMFS_INODE)
1351 		inode->i_flags |= S_PRIVATE;
1352 
1353 	file = ERR_PTR(-ENOMEM);
1354 	if (hugetlb_reserve_pages(inode, 0,
1355 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1356 			acctflag))
1357 		goto out_inode;
1358 
1359 	d_instantiate(path.dentry, inode);
1360 	inode->i_size = size;
1361 	clear_nlink(inode);
1362 
1363 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1364 			&hugetlbfs_file_operations);
1365 	if (IS_ERR(file))
1366 		goto out_dentry; /* inode is already attached */
1367 
1368 	return file;
1369 
1370 out_inode:
1371 	iput(inode);
1372 out_dentry:
1373 	path_put(&path);
1374 out_shm_unlock:
1375 	if (*user) {
1376 		user_shm_unlock(size, *user);
1377 		*user = NULL;
1378 	}
1379 	return file;
1380 }
1381 
1382 static int __init init_hugetlbfs_fs(void)
1383 {
1384 	struct hstate *h;
1385 	int error;
1386 	int i;
1387 
1388 	if (!hugepages_supported()) {
1389 		pr_info("disabling because there are no supported hugepage sizes\n");
1390 		return -ENOTSUPP;
1391 	}
1392 
1393 	error = -ENOMEM;
1394 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1395 					sizeof(struct hugetlbfs_inode_info),
1396 					0, SLAB_ACCOUNT, init_once);
1397 	if (hugetlbfs_inode_cachep == NULL)
1398 		goto out2;
1399 
1400 	error = register_filesystem(&hugetlbfs_fs_type);
1401 	if (error)
1402 		goto out;
1403 
1404 	i = 0;
1405 	for_each_hstate(h) {
1406 		char buf[50];
1407 		unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1408 
1409 		snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1410 		hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1411 							buf);
1412 
1413 		if (IS_ERR(hugetlbfs_vfsmount[i])) {
1414 			pr_err("Cannot mount internal hugetlbfs for "
1415 				"page size %uK", ps_kb);
1416 			error = PTR_ERR(hugetlbfs_vfsmount[i]);
1417 			hugetlbfs_vfsmount[i] = NULL;
1418 		}
1419 		i++;
1420 	}
1421 	/* Non default hstates are optional */
1422 	if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1423 		return 0;
1424 
1425  out:
1426 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1427  out2:
1428 	return error;
1429 }
1430 fs_initcall(init_hugetlbfs_fs)
1431