1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 49 50 struct hugetlbfs_fs_context { 51 struct hstate *hstate; 52 unsigned long long max_size_opt; 53 unsigned long long min_size_opt; 54 long max_hpages; 55 long nr_inodes; 56 long min_hpages; 57 enum hugetlbfs_size_type max_val_type; 58 enum hugetlbfs_size_type min_val_type; 59 kuid_t uid; 60 kgid_t gid; 61 umode_t mode; 62 }; 63 64 int sysctl_hugetlb_shm_group; 65 66 enum hugetlb_param { 67 Opt_gid, 68 Opt_min_size, 69 Opt_mode, 70 Opt_nr_inodes, 71 Opt_pagesize, 72 Opt_size, 73 Opt_uid, 74 }; 75 76 static const struct fs_parameter_spec hugetlb_param_specs[] = { 77 fsparam_u32 ("gid", Opt_gid), 78 fsparam_string("min_size", Opt_min_size), 79 fsparam_u32 ("mode", Opt_mode), 80 fsparam_string("nr_inodes", Opt_nr_inodes), 81 fsparam_string("pagesize", Opt_pagesize), 82 fsparam_string("size", Opt_size), 83 fsparam_u32 ("uid", Opt_uid), 84 {} 85 }; 86 87 static const struct fs_parameter_description hugetlb_fs_parameters = { 88 .name = "hugetlbfs", 89 .specs = hugetlb_param_specs, 90 }; 91 92 #ifdef CONFIG_NUMA 93 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 94 struct inode *inode, pgoff_t index) 95 { 96 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 97 index); 98 } 99 100 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 101 { 102 mpol_cond_put(vma->vm_policy); 103 } 104 #else 105 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 106 struct inode *inode, pgoff_t index) 107 { 108 } 109 110 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 111 { 112 } 113 #endif 114 115 static void huge_pagevec_release(struct pagevec *pvec) 116 { 117 int i; 118 119 for (i = 0; i < pagevec_count(pvec); ++i) 120 put_page(pvec->pages[i]); 121 122 pagevec_reinit(pvec); 123 } 124 125 /* 126 * Mask used when checking the page offset value passed in via system 127 * calls. This value will be converted to a loff_t which is signed. 128 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 129 * value. The extra bit (- 1 in the shift value) is to take the sign 130 * bit into account. 131 */ 132 #define PGOFF_LOFFT_MAX \ 133 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 134 135 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 136 { 137 struct inode *inode = file_inode(file); 138 loff_t len, vma_len; 139 int ret; 140 struct hstate *h = hstate_file(file); 141 142 /* 143 * vma address alignment (but not the pgoff alignment) has 144 * already been checked by prepare_hugepage_range. If you add 145 * any error returns here, do so after setting VM_HUGETLB, so 146 * is_vm_hugetlb_page tests below unmap_region go the right 147 * way when do_mmap_pgoff unwinds (may be important on powerpc 148 * and ia64). 149 */ 150 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 151 vma->vm_ops = &hugetlb_vm_ops; 152 153 /* 154 * page based offset in vm_pgoff could be sufficiently large to 155 * overflow a loff_t when converted to byte offset. This can 156 * only happen on architectures where sizeof(loff_t) == 157 * sizeof(unsigned long). So, only check in those instances. 158 */ 159 if (sizeof(unsigned long) == sizeof(loff_t)) { 160 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 161 return -EINVAL; 162 } 163 164 /* must be huge page aligned */ 165 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 166 return -EINVAL; 167 168 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 169 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 170 /* check for overflow */ 171 if (len < vma_len) 172 return -EINVAL; 173 174 inode_lock(inode); 175 file_accessed(file); 176 177 ret = -ENOMEM; 178 if (hugetlb_reserve_pages(inode, 179 vma->vm_pgoff >> huge_page_order(h), 180 len >> huge_page_shift(h), vma, 181 vma->vm_flags)) 182 goto out; 183 184 ret = 0; 185 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 186 i_size_write(inode, len); 187 out: 188 inode_unlock(inode); 189 190 return ret; 191 } 192 193 /* 194 * Called under down_write(mmap_sem). 195 */ 196 197 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 198 static unsigned long 199 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 200 unsigned long len, unsigned long pgoff, unsigned long flags) 201 { 202 struct mm_struct *mm = current->mm; 203 struct vm_area_struct *vma; 204 struct hstate *h = hstate_file(file); 205 struct vm_unmapped_area_info info; 206 207 if (len & ~huge_page_mask(h)) 208 return -EINVAL; 209 if (len > TASK_SIZE) 210 return -ENOMEM; 211 212 if (flags & MAP_FIXED) { 213 if (prepare_hugepage_range(file, addr, len)) 214 return -EINVAL; 215 return addr; 216 } 217 218 if (addr) { 219 addr = ALIGN(addr, huge_page_size(h)); 220 vma = find_vma(mm, addr); 221 if (TASK_SIZE - len >= addr && 222 (!vma || addr + len <= vm_start_gap(vma))) 223 return addr; 224 } 225 226 info.flags = 0; 227 info.length = len; 228 info.low_limit = TASK_UNMAPPED_BASE; 229 info.high_limit = TASK_SIZE; 230 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 231 info.align_offset = 0; 232 return vm_unmapped_area(&info); 233 } 234 #endif 235 236 static size_t 237 hugetlbfs_read_actor(struct page *page, unsigned long offset, 238 struct iov_iter *to, unsigned long size) 239 { 240 size_t copied = 0; 241 int i, chunksize; 242 243 /* Find which 4k chunk and offset with in that chunk */ 244 i = offset >> PAGE_SHIFT; 245 offset = offset & ~PAGE_MASK; 246 247 while (size) { 248 size_t n; 249 chunksize = PAGE_SIZE; 250 if (offset) 251 chunksize -= offset; 252 if (chunksize > size) 253 chunksize = size; 254 n = copy_page_to_iter(&page[i], offset, chunksize, to); 255 copied += n; 256 if (n != chunksize) 257 return copied; 258 offset = 0; 259 size -= chunksize; 260 i++; 261 } 262 return copied; 263 } 264 265 /* 266 * Support for read() - Find the page attached to f_mapping and copy out the 267 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 268 * since it has PAGE_SIZE assumptions. 269 */ 270 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 271 { 272 struct file *file = iocb->ki_filp; 273 struct hstate *h = hstate_file(file); 274 struct address_space *mapping = file->f_mapping; 275 struct inode *inode = mapping->host; 276 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 277 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 278 unsigned long end_index; 279 loff_t isize; 280 ssize_t retval = 0; 281 282 while (iov_iter_count(to)) { 283 struct page *page; 284 size_t nr, copied; 285 286 /* nr is the maximum number of bytes to copy from this page */ 287 nr = huge_page_size(h); 288 isize = i_size_read(inode); 289 if (!isize) 290 break; 291 end_index = (isize - 1) >> huge_page_shift(h); 292 if (index > end_index) 293 break; 294 if (index == end_index) { 295 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 296 if (nr <= offset) 297 break; 298 } 299 nr = nr - offset; 300 301 /* Find the page */ 302 page = find_lock_page(mapping, index); 303 if (unlikely(page == NULL)) { 304 /* 305 * We have a HOLE, zero out the user-buffer for the 306 * length of the hole or request. 307 */ 308 copied = iov_iter_zero(nr, to); 309 } else { 310 unlock_page(page); 311 312 /* 313 * We have the page, copy it to user space buffer. 314 */ 315 copied = hugetlbfs_read_actor(page, offset, to, nr); 316 put_page(page); 317 } 318 offset += copied; 319 retval += copied; 320 if (copied != nr && iov_iter_count(to)) { 321 if (!retval) 322 retval = -EFAULT; 323 break; 324 } 325 index += offset >> huge_page_shift(h); 326 offset &= ~huge_page_mask(h); 327 } 328 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 329 return retval; 330 } 331 332 static int hugetlbfs_write_begin(struct file *file, 333 struct address_space *mapping, 334 loff_t pos, unsigned len, unsigned flags, 335 struct page **pagep, void **fsdata) 336 { 337 return -EINVAL; 338 } 339 340 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 341 loff_t pos, unsigned len, unsigned copied, 342 struct page *page, void *fsdata) 343 { 344 BUG(); 345 return -EINVAL; 346 } 347 348 static void remove_huge_page(struct page *page) 349 { 350 ClearPageDirty(page); 351 ClearPageUptodate(page); 352 delete_from_page_cache(page); 353 } 354 355 static void 356 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 357 { 358 struct vm_area_struct *vma; 359 360 /* 361 * end == 0 indicates that the entire range after 362 * start should be unmapped. 363 */ 364 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 365 unsigned long v_offset; 366 unsigned long v_end; 367 368 /* 369 * Can the expression below overflow on 32-bit arches? 370 * No, because the interval tree returns us only those vmas 371 * which overlap the truncated area starting at pgoff, 372 * and no vma on a 32-bit arch can span beyond the 4GB. 373 */ 374 if (vma->vm_pgoff < start) 375 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 376 else 377 v_offset = 0; 378 379 if (!end) 380 v_end = vma->vm_end; 381 else { 382 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 383 + vma->vm_start; 384 if (v_end > vma->vm_end) 385 v_end = vma->vm_end; 386 } 387 388 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 389 NULL); 390 } 391 } 392 393 /* 394 * remove_inode_hugepages handles two distinct cases: truncation and hole 395 * punch. There are subtle differences in operation for each case. 396 * 397 * truncation is indicated by end of range being LLONG_MAX 398 * In this case, we first scan the range and release found pages. 399 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 400 * maps and global counts. Page faults can not race with truncation 401 * in this routine. hugetlb_no_page() prevents page faults in the 402 * truncated range. It checks i_size before allocation, and again after 403 * with the page table lock for the page held. The same lock must be 404 * acquired to unmap a page. 405 * hole punch is indicated if end is not LLONG_MAX 406 * In the hole punch case we scan the range and release found pages. 407 * Only when releasing a page is the associated region/reserv map 408 * deleted. The region/reserv map for ranges without associated 409 * pages are not modified. Page faults can race with hole punch. 410 * This is indicated if we find a mapped page. 411 * Note: If the passed end of range value is beyond the end of file, but 412 * not LLONG_MAX this routine still performs a hole punch operation. 413 */ 414 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 415 loff_t lend) 416 { 417 struct hstate *h = hstate_inode(inode); 418 struct address_space *mapping = &inode->i_data; 419 const pgoff_t start = lstart >> huge_page_shift(h); 420 const pgoff_t end = lend >> huge_page_shift(h); 421 struct vm_area_struct pseudo_vma; 422 struct pagevec pvec; 423 pgoff_t next, index; 424 int i, freed = 0; 425 bool truncate_op = (lend == LLONG_MAX); 426 427 vma_init(&pseudo_vma, current->mm); 428 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 429 pagevec_init(&pvec); 430 next = start; 431 while (next < end) { 432 /* 433 * When no more pages are found, we are done. 434 */ 435 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 436 break; 437 438 for (i = 0; i < pagevec_count(&pvec); ++i) { 439 struct page *page = pvec.pages[i]; 440 u32 hash; 441 442 index = page->index; 443 hash = hugetlb_fault_mutex_hash(mapping, index); 444 mutex_lock(&hugetlb_fault_mutex_table[hash]); 445 446 /* 447 * If page is mapped, it was faulted in after being 448 * unmapped in caller. Unmap (again) now after taking 449 * the fault mutex. The mutex will prevent faults 450 * until we finish removing the page. 451 * 452 * This race can only happen in the hole punch case. 453 * Getting here in a truncate operation is a bug. 454 */ 455 if (unlikely(page_mapped(page))) { 456 BUG_ON(truncate_op); 457 458 i_mmap_lock_write(mapping); 459 hugetlb_vmdelete_list(&mapping->i_mmap, 460 index * pages_per_huge_page(h), 461 (index + 1) * pages_per_huge_page(h)); 462 i_mmap_unlock_write(mapping); 463 } 464 465 lock_page(page); 466 /* 467 * We must free the huge page and remove from page 468 * cache (remove_huge_page) BEFORE removing the 469 * region/reserve map (hugetlb_unreserve_pages). In 470 * rare out of memory conditions, removal of the 471 * region/reserve map could fail. Correspondingly, 472 * the subpool and global reserve usage count can need 473 * to be adjusted. 474 */ 475 VM_BUG_ON(PagePrivate(page)); 476 remove_huge_page(page); 477 freed++; 478 if (!truncate_op) { 479 if (unlikely(hugetlb_unreserve_pages(inode, 480 index, index + 1, 1))) 481 hugetlb_fix_reserve_counts(inode); 482 } 483 484 unlock_page(page); 485 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 486 } 487 huge_pagevec_release(&pvec); 488 cond_resched(); 489 } 490 491 if (truncate_op) 492 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 493 } 494 495 static void hugetlbfs_evict_inode(struct inode *inode) 496 { 497 struct resv_map *resv_map; 498 499 remove_inode_hugepages(inode, 0, LLONG_MAX); 500 501 /* 502 * Get the resv_map from the address space embedded in the inode. 503 * This is the address space which points to any resv_map allocated 504 * at inode creation time. If this is a device special inode, 505 * i_mapping may not point to the original address space. 506 */ 507 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 508 /* Only regular and link inodes have associated reserve maps */ 509 if (resv_map) 510 resv_map_release(&resv_map->refs); 511 clear_inode(inode); 512 } 513 514 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 515 { 516 pgoff_t pgoff; 517 struct address_space *mapping = inode->i_mapping; 518 struct hstate *h = hstate_inode(inode); 519 520 BUG_ON(offset & ~huge_page_mask(h)); 521 pgoff = offset >> PAGE_SHIFT; 522 523 i_size_write(inode, offset); 524 i_mmap_lock_write(mapping); 525 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 526 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 527 i_mmap_unlock_write(mapping); 528 remove_inode_hugepages(inode, offset, LLONG_MAX); 529 return 0; 530 } 531 532 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 533 { 534 struct hstate *h = hstate_inode(inode); 535 loff_t hpage_size = huge_page_size(h); 536 loff_t hole_start, hole_end; 537 538 /* 539 * For hole punch round up the beginning offset of the hole and 540 * round down the end. 541 */ 542 hole_start = round_up(offset, hpage_size); 543 hole_end = round_down(offset + len, hpage_size); 544 545 if (hole_end > hole_start) { 546 struct address_space *mapping = inode->i_mapping; 547 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 548 549 inode_lock(inode); 550 551 /* protected by i_mutex */ 552 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 553 inode_unlock(inode); 554 return -EPERM; 555 } 556 557 i_mmap_lock_write(mapping); 558 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 559 hugetlb_vmdelete_list(&mapping->i_mmap, 560 hole_start >> PAGE_SHIFT, 561 hole_end >> PAGE_SHIFT); 562 i_mmap_unlock_write(mapping); 563 remove_inode_hugepages(inode, hole_start, hole_end); 564 inode_unlock(inode); 565 } 566 567 return 0; 568 } 569 570 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 571 loff_t len) 572 { 573 struct inode *inode = file_inode(file); 574 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 575 struct address_space *mapping = inode->i_mapping; 576 struct hstate *h = hstate_inode(inode); 577 struct vm_area_struct pseudo_vma; 578 struct mm_struct *mm = current->mm; 579 loff_t hpage_size = huge_page_size(h); 580 unsigned long hpage_shift = huge_page_shift(h); 581 pgoff_t start, index, end; 582 int error; 583 u32 hash; 584 585 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 586 return -EOPNOTSUPP; 587 588 if (mode & FALLOC_FL_PUNCH_HOLE) 589 return hugetlbfs_punch_hole(inode, offset, len); 590 591 /* 592 * Default preallocate case. 593 * For this range, start is rounded down and end is rounded up 594 * as well as being converted to page offsets. 595 */ 596 start = offset >> hpage_shift; 597 end = (offset + len + hpage_size - 1) >> hpage_shift; 598 599 inode_lock(inode); 600 601 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 602 error = inode_newsize_ok(inode, offset + len); 603 if (error) 604 goto out; 605 606 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 607 error = -EPERM; 608 goto out; 609 } 610 611 /* 612 * Initialize a pseudo vma as this is required by the huge page 613 * allocation routines. If NUMA is configured, use page index 614 * as input to create an allocation policy. 615 */ 616 vma_init(&pseudo_vma, mm); 617 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 618 pseudo_vma.vm_file = file; 619 620 for (index = start; index < end; index++) { 621 /* 622 * This is supposed to be the vaddr where the page is being 623 * faulted in, but we have no vaddr here. 624 */ 625 struct page *page; 626 unsigned long addr; 627 int avoid_reserve = 0; 628 629 cond_resched(); 630 631 /* 632 * fallocate(2) manpage permits EINTR; we may have been 633 * interrupted because we are using up too much memory. 634 */ 635 if (signal_pending(current)) { 636 error = -EINTR; 637 break; 638 } 639 640 /* Set numa allocation policy based on index */ 641 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 642 643 /* addr is the offset within the file (zero based) */ 644 addr = index * hpage_size; 645 646 /* mutex taken here, fault path and hole punch */ 647 hash = hugetlb_fault_mutex_hash(mapping, index); 648 mutex_lock(&hugetlb_fault_mutex_table[hash]); 649 650 /* See if already present in mapping to avoid alloc/free */ 651 page = find_get_page(mapping, index); 652 if (page) { 653 put_page(page); 654 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 655 hugetlb_drop_vma_policy(&pseudo_vma); 656 continue; 657 } 658 659 /* Allocate page and add to page cache */ 660 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 661 hugetlb_drop_vma_policy(&pseudo_vma); 662 if (IS_ERR(page)) { 663 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 664 error = PTR_ERR(page); 665 goto out; 666 } 667 clear_huge_page(page, addr, pages_per_huge_page(h)); 668 __SetPageUptodate(page); 669 error = huge_add_to_page_cache(page, mapping, index); 670 if (unlikely(error)) { 671 put_page(page); 672 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 673 goto out; 674 } 675 676 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 677 678 /* 679 * unlock_page because locked by add_to_page_cache() 680 * page_put due to reference from alloc_huge_page() 681 */ 682 unlock_page(page); 683 put_page(page); 684 } 685 686 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 687 i_size_write(inode, offset + len); 688 inode->i_ctime = current_time(inode); 689 out: 690 inode_unlock(inode); 691 return error; 692 } 693 694 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 695 { 696 struct inode *inode = d_inode(dentry); 697 struct hstate *h = hstate_inode(inode); 698 int error; 699 unsigned int ia_valid = attr->ia_valid; 700 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 701 702 BUG_ON(!inode); 703 704 error = setattr_prepare(dentry, attr); 705 if (error) 706 return error; 707 708 if (ia_valid & ATTR_SIZE) { 709 loff_t oldsize = inode->i_size; 710 loff_t newsize = attr->ia_size; 711 712 if (newsize & ~huge_page_mask(h)) 713 return -EINVAL; 714 /* protected by i_mutex */ 715 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 716 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 717 return -EPERM; 718 error = hugetlb_vmtruncate(inode, newsize); 719 if (error) 720 return error; 721 } 722 723 setattr_copy(inode, attr); 724 mark_inode_dirty(inode); 725 return 0; 726 } 727 728 static struct inode *hugetlbfs_get_root(struct super_block *sb, 729 struct hugetlbfs_fs_context *ctx) 730 { 731 struct inode *inode; 732 733 inode = new_inode(sb); 734 if (inode) { 735 inode->i_ino = get_next_ino(); 736 inode->i_mode = S_IFDIR | ctx->mode; 737 inode->i_uid = ctx->uid; 738 inode->i_gid = ctx->gid; 739 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 740 inode->i_op = &hugetlbfs_dir_inode_operations; 741 inode->i_fop = &simple_dir_operations; 742 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 743 inc_nlink(inode); 744 lockdep_annotate_inode_mutex_key(inode); 745 } 746 return inode; 747 } 748 749 /* 750 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 751 * be taken from reclaim -- unlike regular filesystems. This needs an 752 * annotation because huge_pmd_share() does an allocation under hugetlb's 753 * i_mmap_rwsem. 754 */ 755 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 756 757 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 758 struct inode *dir, 759 umode_t mode, dev_t dev) 760 { 761 struct inode *inode; 762 struct resv_map *resv_map = NULL; 763 764 /* 765 * Reserve maps are only needed for inodes that can have associated 766 * page allocations. 767 */ 768 if (S_ISREG(mode) || S_ISLNK(mode)) { 769 resv_map = resv_map_alloc(); 770 if (!resv_map) 771 return NULL; 772 } 773 774 inode = new_inode(sb); 775 if (inode) { 776 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 777 778 inode->i_ino = get_next_ino(); 779 inode_init_owner(inode, dir, mode); 780 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 781 &hugetlbfs_i_mmap_rwsem_key); 782 inode->i_mapping->a_ops = &hugetlbfs_aops; 783 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 784 inode->i_mapping->private_data = resv_map; 785 info->seals = F_SEAL_SEAL; 786 switch (mode & S_IFMT) { 787 default: 788 init_special_inode(inode, mode, dev); 789 break; 790 case S_IFREG: 791 inode->i_op = &hugetlbfs_inode_operations; 792 inode->i_fop = &hugetlbfs_file_operations; 793 break; 794 case S_IFDIR: 795 inode->i_op = &hugetlbfs_dir_inode_operations; 796 inode->i_fop = &simple_dir_operations; 797 798 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 799 inc_nlink(inode); 800 break; 801 case S_IFLNK: 802 inode->i_op = &page_symlink_inode_operations; 803 inode_nohighmem(inode); 804 break; 805 } 806 lockdep_annotate_inode_mutex_key(inode); 807 } else { 808 if (resv_map) 809 kref_put(&resv_map->refs, resv_map_release); 810 } 811 812 return inode; 813 } 814 815 /* 816 * File creation. Allocate an inode, and we're done.. 817 */ 818 static int do_hugetlbfs_mknod(struct inode *dir, 819 struct dentry *dentry, 820 umode_t mode, 821 dev_t dev, 822 bool tmpfile) 823 { 824 struct inode *inode; 825 int error = -ENOSPC; 826 827 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 828 if (inode) { 829 dir->i_ctime = dir->i_mtime = current_time(dir); 830 if (tmpfile) { 831 d_tmpfile(dentry, inode); 832 } else { 833 d_instantiate(dentry, inode); 834 dget(dentry);/* Extra count - pin the dentry in core */ 835 } 836 error = 0; 837 } 838 return error; 839 } 840 841 static int hugetlbfs_mknod(struct inode *dir, 842 struct dentry *dentry, umode_t mode, dev_t dev) 843 { 844 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 845 } 846 847 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 848 { 849 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 850 if (!retval) 851 inc_nlink(dir); 852 return retval; 853 } 854 855 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 856 { 857 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 858 } 859 860 static int hugetlbfs_tmpfile(struct inode *dir, 861 struct dentry *dentry, umode_t mode) 862 { 863 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 864 } 865 866 static int hugetlbfs_symlink(struct inode *dir, 867 struct dentry *dentry, const char *symname) 868 { 869 struct inode *inode; 870 int error = -ENOSPC; 871 872 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 873 if (inode) { 874 int l = strlen(symname)+1; 875 error = page_symlink(inode, symname, l); 876 if (!error) { 877 d_instantiate(dentry, inode); 878 dget(dentry); 879 } else 880 iput(inode); 881 } 882 dir->i_ctime = dir->i_mtime = current_time(dir); 883 884 return error; 885 } 886 887 /* 888 * mark the head page dirty 889 */ 890 static int hugetlbfs_set_page_dirty(struct page *page) 891 { 892 struct page *head = compound_head(page); 893 894 SetPageDirty(head); 895 return 0; 896 } 897 898 static int hugetlbfs_migrate_page(struct address_space *mapping, 899 struct page *newpage, struct page *page, 900 enum migrate_mode mode) 901 { 902 int rc; 903 904 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 905 if (rc != MIGRATEPAGE_SUCCESS) 906 return rc; 907 908 /* 909 * page_private is subpool pointer in hugetlb pages. Transfer to 910 * new page. PagePrivate is not associated with page_private for 911 * hugetlb pages and can not be set here as only page_huge_active 912 * pages can be migrated. 913 */ 914 if (page_private(page)) { 915 set_page_private(newpage, page_private(page)); 916 set_page_private(page, 0); 917 } 918 919 if (mode != MIGRATE_SYNC_NO_COPY) 920 migrate_page_copy(newpage, page); 921 else 922 migrate_page_states(newpage, page); 923 924 return MIGRATEPAGE_SUCCESS; 925 } 926 927 static int hugetlbfs_error_remove_page(struct address_space *mapping, 928 struct page *page) 929 { 930 struct inode *inode = mapping->host; 931 pgoff_t index = page->index; 932 933 remove_huge_page(page); 934 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 935 hugetlb_fix_reserve_counts(inode); 936 937 return 0; 938 } 939 940 /* 941 * Display the mount options in /proc/mounts. 942 */ 943 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 944 { 945 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 946 struct hugepage_subpool *spool = sbinfo->spool; 947 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 948 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 949 char mod; 950 951 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 952 seq_printf(m, ",uid=%u", 953 from_kuid_munged(&init_user_ns, sbinfo->uid)); 954 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 955 seq_printf(m, ",gid=%u", 956 from_kgid_munged(&init_user_ns, sbinfo->gid)); 957 if (sbinfo->mode != 0755) 958 seq_printf(m, ",mode=%o", sbinfo->mode); 959 if (sbinfo->max_inodes != -1) 960 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 961 962 hpage_size /= 1024; 963 mod = 'K'; 964 if (hpage_size >= 1024) { 965 hpage_size /= 1024; 966 mod = 'M'; 967 } 968 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 969 if (spool) { 970 if (spool->max_hpages != -1) 971 seq_printf(m, ",size=%llu", 972 (unsigned long long)spool->max_hpages << hpage_shift); 973 if (spool->min_hpages != -1) 974 seq_printf(m, ",min_size=%llu", 975 (unsigned long long)spool->min_hpages << hpage_shift); 976 } 977 return 0; 978 } 979 980 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 981 { 982 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 983 struct hstate *h = hstate_inode(d_inode(dentry)); 984 985 buf->f_type = HUGETLBFS_MAGIC; 986 buf->f_bsize = huge_page_size(h); 987 if (sbinfo) { 988 spin_lock(&sbinfo->stat_lock); 989 /* If no limits set, just report 0 for max/free/used 990 * blocks, like simple_statfs() */ 991 if (sbinfo->spool) { 992 long free_pages; 993 994 spin_lock(&sbinfo->spool->lock); 995 buf->f_blocks = sbinfo->spool->max_hpages; 996 free_pages = sbinfo->spool->max_hpages 997 - sbinfo->spool->used_hpages; 998 buf->f_bavail = buf->f_bfree = free_pages; 999 spin_unlock(&sbinfo->spool->lock); 1000 buf->f_files = sbinfo->max_inodes; 1001 buf->f_ffree = sbinfo->free_inodes; 1002 } 1003 spin_unlock(&sbinfo->stat_lock); 1004 } 1005 buf->f_namelen = NAME_MAX; 1006 return 0; 1007 } 1008 1009 static void hugetlbfs_put_super(struct super_block *sb) 1010 { 1011 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1012 1013 if (sbi) { 1014 sb->s_fs_info = NULL; 1015 1016 if (sbi->spool) 1017 hugepage_put_subpool(sbi->spool); 1018 1019 kfree(sbi); 1020 } 1021 } 1022 1023 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1024 { 1025 if (sbinfo->free_inodes >= 0) { 1026 spin_lock(&sbinfo->stat_lock); 1027 if (unlikely(!sbinfo->free_inodes)) { 1028 spin_unlock(&sbinfo->stat_lock); 1029 return 0; 1030 } 1031 sbinfo->free_inodes--; 1032 spin_unlock(&sbinfo->stat_lock); 1033 } 1034 1035 return 1; 1036 } 1037 1038 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1039 { 1040 if (sbinfo->free_inodes >= 0) { 1041 spin_lock(&sbinfo->stat_lock); 1042 sbinfo->free_inodes++; 1043 spin_unlock(&sbinfo->stat_lock); 1044 } 1045 } 1046 1047 1048 static struct kmem_cache *hugetlbfs_inode_cachep; 1049 1050 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1051 { 1052 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1053 struct hugetlbfs_inode_info *p; 1054 1055 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1056 return NULL; 1057 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1058 if (unlikely(!p)) { 1059 hugetlbfs_inc_free_inodes(sbinfo); 1060 return NULL; 1061 } 1062 1063 /* 1064 * Any time after allocation, hugetlbfs_destroy_inode can be called 1065 * for the inode. mpol_free_shared_policy is unconditionally called 1066 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1067 * in case of a quick call to destroy. 1068 * 1069 * Note that the policy is initialized even if we are creating a 1070 * private inode. This simplifies hugetlbfs_destroy_inode. 1071 */ 1072 mpol_shared_policy_init(&p->policy, NULL); 1073 1074 return &p->vfs_inode; 1075 } 1076 1077 static void hugetlbfs_free_inode(struct inode *inode) 1078 { 1079 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1080 } 1081 1082 static void hugetlbfs_destroy_inode(struct inode *inode) 1083 { 1084 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1085 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1086 } 1087 1088 static const struct address_space_operations hugetlbfs_aops = { 1089 .write_begin = hugetlbfs_write_begin, 1090 .write_end = hugetlbfs_write_end, 1091 .set_page_dirty = hugetlbfs_set_page_dirty, 1092 .migratepage = hugetlbfs_migrate_page, 1093 .error_remove_page = hugetlbfs_error_remove_page, 1094 }; 1095 1096 1097 static void init_once(void *foo) 1098 { 1099 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1100 1101 inode_init_once(&ei->vfs_inode); 1102 } 1103 1104 const struct file_operations hugetlbfs_file_operations = { 1105 .read_iter = hugetlbfs_read_iter, 1106 .mmap = hugetlbfs_file_mmap, 1107 .fsync = noop_fsync, 1108 .get_unmapped_area = hugetlb_get_unmapped_area, 1109 .llseek = default_llseek, 1110 .fallocate = hugetlbfs_fallocate, 1111 }; 1112 1113 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1114 .create = hugetlbfs_create, 1115 .lookup = simple_lookup, 1116 .link = simple_link, 1117 .unlink = simple_unlink, 1118 .symlink = hugetlbfs_symlink, 1119 .mkdir = hugetlbfs_mkdir, 1120 .rmdir = simple_rmdir, 1121 .mknod = hugetlbfs_mknod, 1122 .rename = simple_rename, 1123 .setattr = hugetlbfs_setattr, 1124 .tmpfile = hugetlbfs_tmpfile, 1125 }; 1126 1127 static const struct inode_operations hugetlbfs_inode_operations = { 1128 .setattr = hugetlbfs_setattr, 1129 }; 1130 1131 static const struct super_operations hugetlbfs_ops = { 1132 .alloc_inode = hugetlbfs_alloc_inode, 1133 .free_inode = hugetlbfs_free_inode, 1134 .destroy_inode = hugetlbfs_destroy_inode, 1135 .evict_inode = hugetlbfs_evict_inode, 1136 .statfs = hugetlbfs_statfs, 1137 .put_super = hugetlbfs_put_super, 1138 .show_options = hugetlbfs_show_options, 1139 }; 1140 1141 /* 1142 * Convert size option passed from command line to number of huge pages 1143 * in the pool specified by hstate. Size option could be in bytes 1144 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1145 */ 1146 static long 1147 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1148 enum hugetlbfs_size_type val_type) 1149 { 1150 if (val_type == NO_SIZE) 1151 return -1; 1152 1153 if (val_type == SIZE_PERCENT) { 1154 size_opt <<= huge_page_shift(h); 1155 size_opt *= h->max_huge_pages; 1156 do_div(size_opt, 100); 1157 } 1158 1159 size_opt >>= huge_page_shift(h); 1160 return size_opt; 1161 } 1162 1163 /* 1164 * Parse one mount parameter. 1165 */ 1166 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1167 { 1168 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1169 struct fs_parse_result result; 1170 char *rest; 1171 unsigned long ps; 1172 int opt; 1173 1174 opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result); 1175 if (opt < 0) 1176 return opt; 1177 1178 switch (opt) { 1179 case Opt_uid: 1180 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1181 if (!uid_valid(ctx->uid)) 1182 goto bad_val; 1183 return 0; 1184 1185 case Opt_gid: 1186 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1187 if (!gid_valid(ctx->gid)) 1188 goto bad_val; 1189 return 0; 1190 1191 case Opt_mode: 1192 ctx->mode = result.uint_32 & 01777U; 1193 return 0; 1194 1195 case Opt_size: 1196 /* memparse() will accept a K/M/G without a digit */ 1197 if (!isdigit(param->string[0])) 1198 goto bad_val; 1199 ctx->max_size_opt = memparse(param->string, &rest); 1200 ctx->max_val_type = SIZE_STD; 1201 if (*rest == '%') 1202 ctx->max_val_type = SIZE_PERCENT; 1203 return 0; 1204 1205 case Opt_nr_inodes: 1206 /* memparse() will accept a K/M/G without a digit */ 1207 if (!isdigit(param->string[0])) 1208 goto bad_val; 1209 ctx->nr_inodes = memparse(param->string, &rest); 1210 return 0; 1211 1212 case Opt_pagesize: 1213 ps = memparse(param->string, &rest); 1214 ctx->hstate = size_to_hstate(ps); 1215 if (!ctx->hstate) { 1216 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1217 return -EINVAL; 1218 } 1219 return 0; 1220 1221 case Opt_min_size: 1222 /* memparse() will accept a K/M/G without a digit */ 1223 if (!isdigit(param->string[0])) 1224 goto bad_val; 1225 ctx->min_size_opt = memparse(param->string, &rest); 1226 ctx->min_val_type = SIZE_STD; 1227 if (*rest == '%') 1228 ctx->min_val_type = SIZE_PERCENT; 1229 return 0; 1230 1231 default: 1232 return -EINVAL; 1233 } 1234 1235 bad_val: 1236 return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n", 1237 param->string, param->key); 1238 } 1239 1240 /* 1241 * Validate the parsed options. 1242 */ 1243 static int hugetlbfs_validate(struct fs_context *fc) 1244 { 1245 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1246 1247 /* 1248 * Use huge page pool size (in hstate) to convert the size 1249 * options to number of huge pages. If NO_SIZE, -1 is returned. 1250 */ 1251 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1252 ctx->max_size_opt, 1253 ctx->max_val_type); 1254 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1255 ctx->min_size_opt, 1256 ctx->min_val_type); 1257 1258 /* 1259 * If max_size was specified, then min_size must be smaller 1260 */ 1261 if (ctx->max_val_type > NO_SIZE && 1262 ctx->min_hpages > ctx->max_hpages) { 1263 pr_err("Minimum size can not be greater than maximum size\n"); 1264 return -EINVAL; 1265 } 1266 1267 return 0; 1268 } 1269 1270 static int 1271 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1272 { 1273 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1274 struct hugetlbfs_sb_info *sbinfo; 1275 1276 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1277 if (!sbinfo) 1278 return -ENOMEM; 1279 sb->s_fs_info = sbinfo; 1280 spin_lock_init(&sbinfo->stat_lock); 1281 sbinfo->hstate = ctx->hstate; 1282 sbinfo->max_inodes = ctx->nr_inodes; 1283 sbinfo->free_inodes = ctx->nr_inodes; 1284 sbinfo->spool = NULL; 1285 sbinfo->uid = ctx->uid; 1286 sbinfo->gid = ctx->gid; 1287 sbinfo->mode = ctx->mode; 1288 1289 /* 1290 * Allocate and initialize subpool if maximum or minimum size is 1291 * specified. Any needed reservations (for minimim size) are taken 1292 * taken when the subpool is created. 1293 */ 1294 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1295 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1296 ctx->max_hpages, 1297 ctx->min_hpages); 1298 if (!sbinfo->spool) 1299 goto out_free; 1300 } 1301 sb->s_maxbytes = MAX_LFS_FILESIZE; 1302 sb->s_blocksize = huge_page_size(ctx->hstate); 1303 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1304 sb->s_magic = HUGETLBFS_MAGIC; 1305 sb->s_op = &hugetlbfs_ops; 1306 sb->s_time_gran = 1; 1307 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1308 if (!sb->s_root) 1309 goto out_free; 1310 return 0; 1311 out_free: 1312 kfree(sbinfo->spool); 1313 kfree(sbinfo); 1314 return -ENOMEM; 1315 } 1316 1317 static int hugetlbfs_get_tree(struct fs_context *fc) 1318 { 1319 int err = hugetlbfs_validate(fc); 1320 if (err) 1321 return err; 1322 return get_tree_nodev(fc, hugetlbfs_fill_super); 1323 } 1324 1325 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1326 { 1327 kfree(fc->fs_private); 1328 } 1329 1330 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1331 .free = hugetlbfs_fs_context_free, 1332 .parse_param = hugetlbfs_parse_param, 1333 .get_tree = hugetlbfs_get_tree, 1334 }; 1335 1336 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1337 { 1338 struct hugetlbfs_fs_context *ctx; 1339 1340 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1341 if (!ctx) 1342 return -ENOMEM; 1343 1344 ctx->max_hpages = -1; /* No limit on size by default */ 1345 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1346 ctx->uid = current_fsuid(); 1347 ctx->gid = current_fsgid(); 1348 ctx->mode = 0755; 1349 ctx->hstate = &default_hstate; 1350 ctx->min_hpages = -1; /* No default minimum size */ 1351 ctx->max_val_type = NO_SIZE; 1352 ctx->min_val_type = NO_SIZE; 1353 fc->fs_private = ctx; 1354 fc->ops = &hugetlbfs_fs_context_ops; 1355 return 0; 1356 } 1357 1358 static struct file_system_type hugetlbfs_fs_type = { 1359 .name = "hugetlbfs", 1360 .init_fs_context = hugetlbfs_init_fs_context, 1361 .parameters = &hugetlb_fs_parameters, 1362 .kill_sb = kill_litter_super, 1363 }; 1364 1365 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1366 1367 static int can_do_hugetlb_shm(void) 1368 { 1369 kgid_t shm_group; 1370 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1371 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1372 } 1373 1374 static int get_hstate_idx(int page_size_log) 1375 { 1376 struct hstate *h = hstate_sizelog(page_size_log); 1377 1378 if (!h) 1379 return -1; 1380 return h - hstates; 1381 } 1382 1383 /* 1384 * Note that size should be aligned to proper hugepage size in caller side, 1385 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1386 */ 1387 struct file *hugetlb_file_setup(const char *name, size_t size, 1388 vm_flags_t acctflag, struct user_struct **user, 1389 int creat_flags, int page_size_log) 1390 { 1391 struct inode *inode; 1392 struct vfsmount *mnt; 1393 int hstate_idx; 1394 struct file *file; 1395 1396 hstate_idx = get_hstate_idx(page_size_log); 1397 if (hstate_idx < 0) 1398 return ERR_PTR(-ENODEV); 1399 1400 *user = NULL; 1401 mnt = hugetlbfs_vfsmount[hstate_idx]; 1402 if (!mnt) 1403 return ERR_PTR(-ENOENT); 1404 1405 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1406 *user = current_user(); 1407 if (user_shm_lock(size, *user)) { 1408 task_lock(current); 1409 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1410 current->comm, current->pid); 1411 task_unlock(current); 1412 } else { 1413 *user = NULL; 1414 return ERR_PTR(-EPERM); 1415 } 1416 } 1417 1418 file = ERR_PTR(-ENOSPC); 1419 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1420 if (!inode) 1421 goto out; 1422 if (creat_flags == HUGETLB_SHMFS_INODE) 1423 inode->i_flags |= S_PRIVATE; 1424 1425 inode->i_size = size; 1426 clear_nlink(inode); 1427 1428 if (hugetlb_reserve_pages(inode, 0, 1429 size >> huge_page_shift(hstate_inode(inode)), NULL, 1430 acctflag)) 1431 file = ERR_PTR(-ENOMEM); 1432 else 1433 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1434 &hugetlbfs_file_operations); 1435 if (!IS_ERR(file)) 1436 return file; 1437 1438 iput(inode); 1439 out: 1440 if (*user) { 1441 user_shm_unlock(size, *user); 1442 *user = NULL; 1443 } 1444 return file; 1445 } 1446 1447 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1448 { 1449 struct fs_context *fc; 1450 struct vfsmount *mnt; 1451 1452 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1453 if (IS_ERR(fc)) { 1454 mnt = ERR_CAST(fc); 1455 } else { 1456 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1457 ctx->hstate = h; 1458 mnt = fc_mount(fc); 1459 put_fs_context(fc); 1460 } 1461 if (IS_ERR(mnt)) 1462 pr_err("Cannot mount internal hugetlbfs for page size %uK", 1463 1U << (h->order + PAGE_SHIFT - 10)); 1464 return mnt; 1465 } 1466 1467 static int __init init_hugetlbfs_fs(void) 1468 { 1469 struct vfsmount *mnt; 1470 struct hstate *h; 1471 int error; 1472 int i; 1473 1474 if (!hugepages_supported()) { 1475 pr_info("disabling because there are no supported hugepage sizes\n"); 1476 return -ENOTSUPP; 1477 } 1478 1479 error = -ENOMEM; 1480 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1481 sizeof(struct hugetlbfs_inode_info), 1482 0, SLAB_ACCOUNT, init_once); 1483 if (hugetlbfs_inode_cachep == NULL) 1484 goto out; 1485 1486 error = register_filesystem(&hugetlbfs_fs_type); 1487 if (error) 1488 goto out_free; 1489 1490 /* default hstate mount is required */ 1491 mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); 1492 if (IS_ERR(mnt)) { 1493 error = PTR_ERR(mnt); 1494 goto out_unreg; 1495 } 1496 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1497 1498 /* other hstates are optional */ 1499 i = 0; 1500 for_each_hstate(h) { 1501 if (i == default_hstate_idx) { 1502 i++; 1503 continue; 1504 } 1505 1506 mnt = mount_one_hugetlbfs(h); 1507 if (IS_ERR(mnt)) 1508 hugetlbfs_vfsmount[i] = NULL; 1509 else 1510 hugetlbfs_vfsmount[i] = mnt; 1511 i++; 1512 } 1513 1514 return 0; 1515 1516 out_unreg: 1517 (void)unregister_filesystem(&hugetlbfs_fs_type); 1518 out_free: 1519 kmem_cache_destroy(hugetlbfs_inode_cachep); 1520 out: 1521 return error; 1522 } 1523 fs_initcall(init_hugetlbfs_fs) 1524