xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 6bfb56e9)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (!hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 static unsigned long
199 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
200 		unsigned long len, unsigned long pgoff, unsigned long flags)
201 {
202 	struct hstate *h = hstate_file(file);
203 	struct vm_unmapped_area_info info;
204 
205 	info.flags = 0;
206 	info.length = len;
207 	info.low_limit = current->mm->mmap_base;
208 	info.high_limit = arch_get_mmap_end(addr, len, flags);
209 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
210 	info.align_offset = 0;
211 	return vm_unmapped_area(&info);
212 }
213 
214 static unsigned long
215 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
216 		unsigned long len, unsigned long pgoff, unsigned long flags)
217 {
218 	struct hstate *h = hstate_file(file);
219 	struct vm_unmapped_area_info info;
220 
221 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
222 	info.length = len;
223 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
224 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
225 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226 	info.align_offset = 0;
227 	addr = vm_unmapped_area(&info);
228 
229 	/*
230 	 * A failed mmap() very likely causes application failure,
231 	 * so fall back to the bottom-up function here. This scenario
232 	 * can happen with large stack limits and large mmap()
233 	 * allocations.
234 	 */
235 	if (unlikely(offset_in_page(addr))) {
236 		VM_BUG_ON(addr != -ENOMEM);
237 		info.flags = 0;
238 		info.low_limit = current->mm->mmap_base;
239 		info.high_limit = arch_get_mmap_end(addr, len, flags);
240 		addr = vm_unmapped_area(&info);
241 	}
242 
243 	return addr;
244 }
245 
246 unsigned long
247 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
248 				  unsigned long len, unsigned long pgoff,
249 				  unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
255 
256 	if (len & ~huge_page_mask(h))
257 		return -EINVAL;
258 	if (len > TASK_SIZE)
259 		return -ENOMEM;
260 
261 	if (flags & MAP_FIXED) {
262 		if (prepare_hugepage_range(file, addr, len))
263 			return -EINVAL;
264 		return addr;
265 	}
266 
267 	if (addr) {
268 		addr = ALIGN(addr, huge_page_size(h));
269 		vma = find_vma(mm, addr);
270 		if (mmap_end - len >= addr &&
271 		    (!vma || addr + len <= vm_start_gap(vma)))
272 			return addr;
273 	}
274 
275 	/*
276 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
277 	 * If architectures have special needs, they should define their own
278 	 * version of hugetlb_get_unmapped_area.
279 	 */
280 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
282 				pgoff, flags);
283 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284 			pgoff, flags);
285 }
286 
287 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
288 static unsigned long
289 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
290 			  unsigned long len, unsigned long pgoff,
291 			  unsigned long flags)
292 {
293 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
294 }
295 #endif
296 
297 static size_t
298 hugetlbfs_read_actor(struct page *page, unsigned long offset,
299 			struct iov_iter *to, unsigned long size)
300 {
301 	size_t copied = 0;
302 	int i, chunksize;
303 
304 	/* Find which 4k chunk and offset with in that chunk */
305 	i = offset >> PAGE_SHIFT;
306 	offset = offset & ~PAGE_MASK;
307 
308 	while (size) {
309 		size_t n;
310 		chunksize = PAGE_SIZE;
311 		if (offset)
312 			chunksize -= offset;
313 		if (chunksize > size)
314 			chunksize = size;
315 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
316 		copied += n;
317 		if (n != chunksize)
318 			return copied;
319 		offset = 0;
320 		size -= chunksize;
321 		i++;
322 	}
323 	return copied;
324 }
325 
326 /*
327  * Support for read() - Find the page attached to f_mapping and copy out the
328  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
329  * since it has PAGE_SIZE assumptions.
330  */
331 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
332 {
333 	struct file *file = iocb->ki_filp;
334 	struct hstate *h = hstate_file(file);
335 	struct address_space *mapping = file->f_mapping;
336 	struct inode *inode = mapping->host;
337 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
338 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
339 	unsigned long end_index;
340 	loff_t isize;
341 	ssize_t retval = 0;
342 
343 	while (iov_iter_count(to)) {
344 		struct page *page;
345 		size_t nr, copied;
346 
347 		/* nr is the maximum number of bytes to copy from this page */
348 		nr = huge_page_size(h);
349 		isize = i_size_read(inode);
350 		if (!isize)
351 			break;
352 		end_index = (isize - 1) >> huge_page_shift(h);
353 		if (index > end_index)
354 			break;
355 		if (index == end_index) {
356 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
357 			if (nr <= offset)
358 				break;
359 		}
360 		nr = nr - offset;
361 
362 		/* Find the page */
363 		page = find_lock_page(mapping, index);
364 		if (unlikely(page == NULL)) {
365 			/*
366 			 * We have a HOLE, zero out the user-buffer for the
367 			 * length of the hole or request.
368 			 */
369 			copied = iov_iter_zero(nr, to);
370 		} else {
371 			unlock_page(page);
372 
373 			/*
374 			 * We have the page, copy it to user space buffer.
375 			 */
376 			copied = hugetlbfs_read_actor(page, offset, to, nr);
377 			put_page(page);
378 		}
379 		offset += copied;
380 		retval += copied;
381 		if (copied != nr && iov_iter_count(to)) {
382 			if (!retval)
383 				retval = -EFAULT;
384 			break;
385 		}
386 		index += offset >> huge_page_shift(h);
387 		offset &= ~huge_page_mask(h);
388 	}
389 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
390 	return retval;
391 }
392 
393 static int hugetlbfs_write_begin(struct file *file,
394 			struct address_space *mapping,
395 			loff_t pos, unsigned len,
396 			struct page **pagep, void **fsdata)
397 {
398 	return -EINVAL;
399 }
400 
401 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
402 			loff_t pos, unsigned len, unsigned copied,
403 			struct page *page, void *fsdata)
404 {
405 	BUG();
406 	return -EINVAL;
407 }
408 
409 static void remove_huge_page(struct page *page)
410 {
411 	ClearPageDirty(page);
412 	ClearPageUptodate(page);
413 	delete_from_page_cache(page);
414 }
415 
416 static void
417 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
418 		      zap_flags_t zap_flags)
419 {
420 	struct vm_area_struct *vma;
421 
422 	/*
423 	 * end == 0 indicates that the entire range after start should be
424 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
425 	 * an inclusive "last".
426 	 */
427 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
428 		unsigned long v_offset;
429 		unsigned long v_end;
430 
431 		/*
432 		 * Can the expression below overflow on 32-bit arches?
433 		 * No, because the interval tree returns us only those vmas
434 		 * which overlap the truncated area starting at pgoff,
435 		 * and no vma on a 32-bit arch can span beyond the 4GB.
436 		 */
437 		if (vma->vm_pgoff < start)
438 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
439 		else
440 			v_offset = 0;
441 
442 		if (!end)
443 			v_end = vma->vm_end;
444 		else {
445 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
446 							+ vma->vm_start;
447 			if (v_end > vma->vm_end)
448 				v_end = vma->vm_end;
449 		}
450 
451 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
452 				     NULL, zap_flags);
453 	}
454 }
455 
456 /*
457  * remove_inode_hugepages handles two distinct cases: truncation and hole
458  * punch.  There are subtle differences in operation for each case.
459  *
460  * truncation is indicated by end of range being LLONG_MAX
461  *	In this case, we first scan the range and release found pages.
462  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
463  *	maps and global counts.  Page faults can not race with truncation
464  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
465  *	page faults in the truncated range by checking i_size.  i_size is
466  *	modified while holding i_mmap_rwsem.
467  * hole punch is indicated if end is not LLONG_MAX
468  *	In the hole punch case we scan the range and release found pages.
469  *	Only when releasing a page is the associated region/reserve map
470  *	deleted.  The region/reserve map for ranges without associated
471  *	pages are not modified.  Page faults can race with hole punch.
472  *	This is indicated if we find a mapped page.
473  * Note: If the passed end of range value is beyond the end of file, but
474  * not LLONG_MAX this routine still performs a hole punch operation.
475  */
476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
477 				   loff_t lend)
478 {
479 	struct hstate *h = hstate_inode(inode);
480 	struct address_space *mapping = &inode->i_data;
481 	const pgoff_t start = lstart >> huge_page_shift(h);
482 	const pgoff_t end = lend >> huge_page_shift(h);
483 	struct pagevec pvec;
484 	pgoff_t next, index;
485 	int i, freed = 0;
486 	bool truncate_op = (lend == LLONG_MAX);
487 
488 	pagevec_init(&pvec);
489 	next = start;
490 	while (next < end) {
491 		/*
492 		 * When no more pages are found, we are done.
493 		 */
494 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
495 			break;
496 
497 		for (i = 0; i < pagevec_count(&pvec); ++i) {
498 			struct page *page = pvec.pages[i];
499 			u32 hash = 0;
500 
501 			index = page->index;
502 			if (!truncate_op) {
503 				/*
504 				 * Only need to hold the fault mutex in the
505 				 * hole punch case.  This prevents races with
506 				 * page faults.  Races are not possible in the
507 				 * case of truncation.
508 				 */
509 				hash = hugetlb_fault_mutex_hash(mapping, index);
510 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
511 			}
512 
513 			/*
514 			 * If page is mapped, it was faulted in after being
515 			 * unmapped in caller.  Unmap (again) now after taking
516 			 * the fault mutex.  The mutex will prevent faults
517 			 * until we finish removing the page.
518 			 *
519 			 * This race can only happen in the hole punch case.
520 			 * Getting here in a truncate operation is a bug.
521 			 */
522 			if (unlikely(page_mapped(page))) {
523 				BUG_ON(truncate_op);
524 
525 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
526 				i_mmap_lock_write(mapping);
527 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
528 				hugetlb_vmdelete_list(&mapping->i_mmap,
529 					index * pages_per_huge_page(h),
530 					(index + 1) * pages_per_huge_page(h),
531 					ZAP_FLAG_DROP_MARKER);
532 				i_mmap_unlock_write(mapping);
533 			}
534 
535 			lock_page(page);
536 			/*
537 			 * We must free the huge page and remove from page
538 			 * cache (remove_huge_page) BEFORE removing the
539 			 * region/reserve map (hugetlb_unreserve_pages).  In
540 			 * rare out of memory conditions, removal of the
541 			 * region/reserve map could fail. Correspondingly,
542 			 * the subpool and global reserve usage count can need
543 			 * to be adjusted.
544 			 */
545 			VM_BUG_ON(HPageRestoreReserve(page));
546 			remove_huge_page(page);
547 			freed++;
548 			if (!truncate_op) {
549 				if (unlikely(hugetlb_unreserve_pages(inode,
550 							index, index + 1, 1)))
551 					hugetlb_fix_reserve_counts(inode);
552 			}
553 
554 			unlock_page(page);
555 			if (!truncate_op)
556 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
557 		}
558 		huge_pagevec_release(&pvec);
559 		cond_resched();
560 	}
561 
562 	if (truncate_op)
563 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
564 }
565 
566 static void hugetlbfs_evict_inode(struct inode *inode)
567 {
568 	struct resv_map *resv_map;
569 
570 	remove_inode_hugepages(inode, 0, LLONG_MAX);
571 
572 	/*
573 	 * Get the resv_map from the address space embedded in the inode.
574 	 * This is the address space which points to any resv_map allocated
575 	 * at inode creation time.  If this is a device special inode,
576 	 * i_mapping may not point to the original address space.
577 	 */
578 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
579 	/* Only regular and link inodes have associated reserve maps */
580 	if (resv_map)
581 		resv_map_release(&resv_map->refs);
582 	clear_inode(inode);
583 }
584 
585 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
586 {
587 	pgoff_t pgoff;
588 	struct address_space *mapping = inode->i_mapping;
589 	struct hstate *h = hstate_inode(inode);
590 
591 	BUG_ON(offset & ~huge_page_mask(h));
592 	pgoff = offset >> PAGE_SHIFT;
593 
594 	i_mmap_lock_write(mapping);
595 	i_size_write(inode, offset);
596 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
597 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
598 				      ZAP_FLAG_DROP_MARKER);
599 	i_mmap_unlock_write(mapping);
600 	remove_inode_hugepages(inode, offset, LLONG_MAX);
601 }
602 
603 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
604 {
605 	struct hstate *h = hstate_inode(inode);
606 	loff_t hpage_size = huge_page_size(h);
607 	loff_t hole_start, hole_end;
608 
609 	/*
610 	 * For hole punch round up the beginning offset of the hole and
611 	 * round down the end.
612 	 */
613 	hole_start = round_up(offset, hpage_size);
614 	hole_end = round_down(offset + len, hpage_size);
615 
616 	if (hole_end > hole_start) {
617 		struct address_space *mapping = inode->i_mapping;
618 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
619 
620 		inode_lock(inode);
621 
622 		/* protected by i_rwsem */
623 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
624 			inode_unlock(inode);
625 			return -EPERM;
626 		}
627 
628 		i_mmap_lock_write(mapping);
629 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
630 			hugetlb_vmdelete_list(&mapping->i_mmap,
631 					      hole_start >> PAGE_SHIFT,
632 					      hole_end >> PAGE_SHIFT, 0);
633 		i_mmap_unlock_write(mapping);
634 		remove_inode_hugepages(inode, hole_start, hole_end);
635 		inode_unlock(inode);
636 	}
637 
638 	return 0;
639 }
640 
641 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
642 				loff_t len)
643 {
644 	struct inode *inode = file_inode(file);
645 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
646 	struct address_space *mapping = inode->i_mapping;
647 	struct hstate *h = hstate_inode(inode);
648 	struct vm_area_struct pseudo_vma;
649 	struct mm_struct *mm = current->mm;
650 	loff_t hpage_size = huge_page_size(h);
651 	unsigned long hpage_shift = huge_page_shift(h);
652 	pgoff_t start, index, end;
653 	int error;
654 	u32 hash;
655 
656 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
657 		return -EOPNOTSUPP;
658 
659 	if (mode & FALLOC_FL_PUNCH_HOLE)
660 		return hugetlbfs_punch_hole(inode, offset, len);
661 
662 	/*
663 	 * Default preallocate case.
664 	 * For this range, start is rounded down and end is rounded up
665 	 * as well as being converted to page offsets.
666 	 */
667 	start = offset >> hpage_shift;
668 	end = (offset + len + hpage_size - 1) >> hpage_shift;
669 
670 	inode_lock(inode);
671 
672 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
673 	error = inode_newsize_ok(inode, offset + len);
674 	if (error)
675 		goto out;
676 
677 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
678 		error = -EPERM;
679 		goto out;
680 	}
681 
682 	/*
683 	 * Initialize a pseudo vma as this is required by the huge page
684 	 * allocation routines.  If NUMA is configured, use page index
685 	 * as input to create an allocation policy.
686 	 */
687 	vma_init(&pseudo_vma, mm);
688 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
689 	pseudo_vma.vm_file = file;
690 
691 	for (index = start; index < end; index++) {
692 		/*
693 		 * This is supposed to be the vaddr where the page is being
694 		 * faulted in, but we have no vaddr here.
695 		 */
696 		struct page *page;
697 		unsigned long addr;
698 
699 		cond_resched();
700 
701 		/*
702 		 * fallocate(2) manpage permits EINTR; we may have been
703 		 * interrupted because we are using up too much memory.
704 		 */
705 		if (signal_pending(current)) {
706 			error = -EINTR;
707 			break;
708 		}
709 
710 		/* Set numa allocation policy based on index */
711 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
712 
713 		/* addr is the offset within the file (zero based) */
714 		addr = index * hpage_size;
715 
716 		/*
717 		 * fault mutex taken here, protects against fault path
718 		 * and hole punch.  inode_lock previously taken protects
719 		 * against truncation.
720 		 */
721 		hash = hugetlb_fault_mutex_hash(mapping, index);
722 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
723 
724 		/* See if already present in mapping to avoid alloc/free */
725 		page = find_get_page(mapping, index);
726 		if (page) {
727 			put_page(page);
728 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
729 			hugetlb_drop_vma_policy(&pseudo_vma);
730 			continue;
731 		}
732 
733 		/*
734 		 * Allocate page without setting the avoid_reserve argument.
735 		 * There certainly are no reserves associated with the
736 		 * pseudo_vma.  However, there could be shared mappings with
737 		 * reserves for the file at the inode level.  If we fallocate
738 		 * pages in these areas, we need to consume the reserves
739 		 * to keep reservation accounting consistent.
740 		 */
741 		page = alloc_huge_page(&pseudo_vma, addr, 0);
742 		hugetlb_drop_vma_policy(&pseudo_vma);
743 		if (IS_ERR(page)) {
744 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
745 			error = PTR_ERR(page);
746 			goto out;
747 		}
748 		clear_huge_page(page, addr, pages_per_huge_page(h));
749 		__SetPageUptodate(page);
750 		error = huge_add_to_page_cache(page, mapping, index);
751 		if (unlikely(error)) {
752 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
753 			put_page(page);
754 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
755 			goto out;
756 		}
757 
758 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
759 
760 		SetHPageMigratable(page);
761 		/*
762 		 * unlock_page because locked by add_to_page_cache()
763 		 * put_page() due to reference from alloc_huge_page()
764 		 */
765 		unlock_page(page);
766 		put_page(page);
767 	}
768 
769 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
770 		i_size_write(inode, offset + len);
771 	inode->i_ctime = current_time(inode);
772 out:
773 	inode_unlock(inode);
774 	return error;
775 }
776 
777 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
778 			     struct dentry *dentry, struct iattr *attr)
779 {
780 	struct inode *inode = d_inode(dentry);
781 	struct hstate *h = hstate_inode(inode);
782 	int error;
783 	unsigned int ia_valid = attr->ia_valid;
784 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
785 
786 	error = setattr_prepare(&init_user_ns, dentry, attr);
787 	if (error)
788 		return error;
789 
790 	if (ia_valid & ATTR_SIZE) {
791 		loff_t oldsize = inode->i_size;
792 		loff_t newsize = attr->ia_size;
793 
794 		if (newsize & ~huge_page_mask(h))
795 			return -EINVAL;
796 		/* protected by i_rwsem */
797 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
798 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
799 			return -EPERM;
800 		hugetlb_vmtruncate(inode, newsize);
801 	}
802 
803 	setattr_copy(&init_user_ns, inode, attr);
804 	mark_inode_dirty(inode);
805 	return 0;
806 }
807 
808 static struct inode *hugetlbfs_get_root(struct super_block *sb,
809 					struct hugetlbfs_fs_context *ctx)
810 {
811 	struct inode *inode;
812 
813 	inode = new_inode(sb);
814 	if (inode) {
815 		inode->i_ino = get_next_ino();
816 		inode->i_mode = S_IFDIR | ctx->mode;
817 		inode->i_uid = ctx->uid;
818 		inode->i_gid = ctx->gid;
819 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
820 		inode->i_op = &hugetlbfs_dir_inode_operations;
821 		inode->i_fop = &simple_dir_operations;
822 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
823 		inc_nlink(inode);
824 		lockdep_annotate_inode_mutex_key(inode);
825 	}
826 	return inode;
827 }
828 
829 /*
830  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
831  * be taken from reclaim -- unlike regular filesystems. This needs an
832  * annotation because huge_pmd_share() does an allocation under hugetlb's
833  * i_mmap_rwsem.
834  */
835 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
836 
837 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
838 					struct inode *dir,
839 					umode_t mode, dev_t dev)
840 {
841 	struct inode *inode;
842 	struct resv_map *resv_map = NULL;
843 
844 	/*
845 	 * Reserve maps are only needed for inodes that can have associated
846 	 * page allocations.
847 	 */
848 	if (S_ISREG(mode) || S_ISLNK(mode)) {
849 		resv_map = resv_map_alloc();
850 		if (!resv_map)
851 			return NULL;
852 	}
853 
854 	inode = new_inode(sb);
855 	if (inode) {
856 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
857 
858 		inode->i_ino = get_next_ino();
859 		inode_init_owner(&init_user_ns, inode, dir, mode);
860 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
861 				&hugetlbfs_i_mmap_rwsem_key);
862 		inode->i_mapping->a_ops = &hugetlbfs_aops;
863 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
864 		inode->i_mapping->private_data = resv_map;
865 		info->seals = F_SEAL_SEAL;
866 		switch (mode & S_IFMT) {
867 		default:
868 			init_special_inode(inode, mode, dev);
869 			break;
870 		case S_IFREG:
871 			inode->i_op = &hugetlbfs_inode_operations;
872 			inode->i_fop = &hugetlbfs_file_operations;
873 			break;
874 		case S_IFDIR:
875 			inode->i_op = &hugetlbfs_dir_inode_operations;
876 			inode->i_fop = &simple_dir_operations;
877 
878 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
879 			inc_nlink(inode);
880 			break;
881 		case S_IFLNK:
882 			inode->i_op = &page_symlink_inode_operations;
883 			inode_nohighmem(inode);
884 			break;
885 		}
886 		lockdep_annotate_inode_mutex_key(inode);
887 	} else {
888 		if (resv_map)
889 			kref_put(&resv_map->refs, resv_map_release);
890 	}
891 
892 	return inode;
893 }
894 
895 /*
896  * File creation. Allocate an inode, and we're done..
897  */
898 static int do_hugetlbfs_mknod(struct inode *dir,
899 			struct dentry *dentry,
900 			umode_t mode,
901 			dev_t dev,
902 			bool tmpfile)
903 {
904 	struct inode *inode;
905 	int error = -ENOSPC;
906 
907 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
908 	if (inode) {
909 		dir->i_ctime = dir->i_mtime = current_time(dir);
910 		if (tmpfile) {
911 			d_tmpfile(dentry, inode);
912 		} else {
913 			d_instantiate(dentry, inode);
914 			dget(dentry);/* Extra count - pin the dentry in core */
915 		}
916 		error = 0;
917 	}
918 	return error;
919 }
920 
921 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
922 			   struct dentry *dentry, umode_t mode, dev_t dev)
923 {
924 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
925 }
926 
927 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
928 			   struct dentry *dentry, umode_t mode)
929 {
930 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
931 				     mode | S_IFDIR, 0);
932 	if (!retval)
933 		inc_nlink(dir);
934 	return retval;
935 }
936 
937 static int hugetlbfs_create(struct user_namespace *mnt_userns,
938 			    struct inode *dir, struct dentry *dentry,
939 			    umode_t mode, bool excl)
940 {
941 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
942 }
943 
944 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
945 			     struct inode *dir, struct dentry *dentry,
946 			     umode_t mode)
947 {
948 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
949 }
950 
951 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
952 			     struct inode *dir, struct dentry *dentry,
953 			     const char *symname)
954 {
955 	struct inode *inode;
956 	int error = -ENOSPC;
957 
958 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
959 	if (inode) {
960 		int l = strlen(symname)+1;
961 		error = page_symlink(inode, symname, l);
962 		if (!error) {
963 			d_instantiate(dentry, inode);
964 			dget(dentry);
965 		} else
966 			iput(inode);
967 	}
968 	dir->i_ctime = dir->i_mtime = current_time(dir);
969 
970 	return error;
971 }
972 
973 static int hugetlbfs_migrate_page(struct address_space *mapping,
974 				struct page *newpage, struct page *page,
975 				enum migrate_mode mode)
976 {
977 	int rc;
978 
979 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
980 	if (rc != MIGRATEPAGE_SUCCESS)
981 		return rc;
982 
983 	if (hugetlb_page_subpool(page)) {
984 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
985 		hugetlb_set_page_subpool(page, NULL);
986 	}
987 
988 	if (mode != MIGRATE_SYNC_NO_COPY)
989 		migrate_page_copy(newpage, page);
990 	else
991 		migrate_page_states(newpage, page);
992 
993 	return MIGRATEPAGE_SUCCESS;
994 }
995 
996 static int hugetlbfs_error_remove_page(struct address_space *mapping,
997 				struct page *page)
998 {
999 	struct inode *inode = mapping->host;
1000 	pgoff_t index = page->index;
1001 
1002 	remove_huge_page(page);
1003 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1004 		hugetlb_fix_reserve_counts(inode);
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Display the mount options in /proc/mounts.
1011  */
1012 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1013 {
1014 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1015 	struct hugepage_subpool *spool = sbinfo->spool;
1016 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1017 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1018 	char mod;
1019 
1020 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1021 		seq_printf(m, ",uid=%u",
1022 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1023 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1024 		seq_printf(m, ",gid=%u",
1025 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1026 	if (sbinfo->mode != 0755)
1027 		seq_printf(m, ",mode=%o", sbinfo->mode);
1028 	if (sbinfo->max_inodes != -1)
1029 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1030 
1031 	hpage_size /= 1024;
1032 	mod = 'K';
1033 	if (hpage_size >= 1024) {
1034 		hpage_size /= 1024;
1035 		mod = 'M';
1036 	}
1037 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1038 	if (spool) {
1039 		if (spool->max_hpages != -1)
1040 			seq_printf(m, ",size=%llu",
1041 				   (unsigned long long)spool->max_hpages << hpage_shift);
1042 		if (spool->min_hpages != -1)
1043 			seq_printf(m, ",min_size=%llu",
1044 				   (unsigned long long)spool->min_hpages << hpage_shift);
1045 	}
1046 	return 0;
1047 }
1048 
1049 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1050 {
1051 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1052 	struct hstate *h = hstate_inode(d_inode(dentry));
1053 
1054 	buf->f_type = HUGETLBFS_MAGIC;
1055 	buf->f_bsize = huge_page_size(h);
1056 	if (sbinfo) {
1057 		spin_lock(&sbinfo->stat_lock);
1058 		/* If no limits set, just report 0 for max/free/used
1059 		 * blocks, like simple_statfs() */
1060 		if (sbinfo->spool) {
1061 			long free_pages;
1062 
1063 			spin_lock_irq(&sbinfo->spool->lock);
1064 			buf->f_blocks = sbinfo->spool->max_hpages;
1065 			free_pages = sbinfo->spool->max_hpages
1066 				- sbinfo->spool->used_hpages;
1067 			buf->f_bavail = buf->f_bfree = free_pages;
1068 			spin_unlock_irq(&sbinfo->spool->lock);
1069 			buf->f_files = sbinfo->max_inodes;
1070 			buf->f_ffree = sbinfo->free_inodes;
1071 		}
1072 		spin_unlock(&sbinfo->stat_lock);
1073 	}
1074 	buf->f_namelen = NAME_MAX;
1075 	return 0;
1076 }
1077 
1078 static void hugetlbfs_put_super(struct super_block *sb)
1079 {
1080 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1081 
1082 	if (sbi) {
1083 		sb->s_fs_info = NULL;
1084 
1085 		if (sbi->spool)
1086 			hugepage_put_subpool(sbi->spool);
1087 
1088 		kfree(sbi);
1089 	}
1090 }
1091 
1092 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1093 {
1094 	if (sbinfo->free_inodes >= 0) {
1095 		spin_lock(&sbinfo->stat_lock);
1096 		if (unlikely(!sbinfo->free_inodes)) {
1097 			spin_unlock(&sbinfo->stat_lock);
1098 			return 0;
1099 		}
1100 		sbinfo->free_inodes--;
1101 		spin_unlock(&sbinfo->stat_lock);
1102 	}
1103 
1104 	return 1;
1105 }
1106 
1107 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1108 {
1109 	if (sbinfo->free_inodes >= 0) {
1110 		spin_lock(&sbinfo->stat_lock);
1111 		sbinfo->free_inodes++;
1112 		spin_unlock(&sbinfo->stat_lock);
1113 	}
1114 }
1115 
1116 
1117 static struct kmem_cache *hugetlbfs_inode_cachep;
1118 
1119 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1120 {
1121 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1122 	struct hugetlbfs_inode_info *p;
1123 
1124 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1125 		return NULL;
1126 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1127 	if (unlikely(!p)) {
1128 		hugetlbfs_inc_free_inodes(sbinfo);
1129 		return NULL;
1130 	}
1131 
1132 	/*
1133 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1134 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1135 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1136 	 * in case of a quick call to destroy.
1137 	 *
1138 	 * Note that the policy is initialized even if we are creating a
1139 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1140 	 */
1141 	mpol_shared_policy_init(&p->policy, NULL);
1142 
1143 	return &p->vfs_inode;
1144 }
1145 
1146 static void hugetlbfs_free_inode(struct inode *inode)
1147 {
1148 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1149 }
1150 
1151 static void hugetlbfs_destroy_inode(struct inode *inode)
1152 {
1153 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1154 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1155 }
1156 
1157 static const struct address_space_operations hugetlbfs_aops = {
1158 	.write_begin	= hugetlbfs_write_begin,
1159 	.write_end	= hugetlbfs_write_end,
1160 	.dirty_folio	= noop_dirty_folio,
1161 	.migratepage    = hugetlbfs_migrate_page,
1162 	.error_remove_page	= hugetlbfs_error_remove_page,
1163 };
1164 
1165 
1166 static void init_once(void *foo)
1167 {
1168 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1169 
1170 	inode_init_once(&ei->vfs_inode);
1171 }
1172 
1173 const struct file_operations hugetlbfs_file_operations = {
1174 	.read_iter		= hugetlbfs_read_iter,
1175 	.mmap			= hugetlbfs_file_mmap,
1176 	.fsync			= noop_fsync,
1177 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1178 	.llseek			= default_llseek,
1179 	.fallocate		= hugetlbfs_fallocate,
1180 };
1181 
1182 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1183 	.create		= hugetlbfs_create,
1184 	.lookup		= simple_lookup,
1185 	.link		= simple_link,
1186 	.unlink		= simple_unlink,
1187 	.symlink	= hugetlbfs_symlink,
1188 	.mkdir		= hugetlbfs_mkdir,
1189 	.rmdir		= simple_rmdir,
1190 	.mknod		= hugetlbfs_mknod,
1191 	.rename		= simple_rename,
1192 	.setattr	= hugetlbfs_setattr,
1193 	.tmpfile	= hugetlbfs_tmpfile,
1194 };
1195 
1196 static const struct inode_operations hugetlbfs_inode_operations = {
1197 	.setattr	= hugetlbfs_setattr,
1198 };
1199 
1200 static const struct super_operations hugetlbfs_ops = {
1201 	.alloc_inode    = hugetlbfs_alloc_inode,
1202 	.free_inode     = hugetlbfs_free_inode,
1203 	.destroy_inode  = hugetlbfs_destroy_inode,
1204 	.evict_inode	= hugetlbfs_evict_inode,
1205 	.statfs		= hugetlbfs_statfs,
1206 	.put_super	= hugetlbfs_put_super,
1207 	.show_options	= hugetlbfs_show_options,
1208 };
1209 
1210 /*
1211  * Convert size option passed from command line to number of huge pages
1212  * in the pool specified by hstate.  Size option could be in bytes
1213  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1214  */
1215 static long
1216 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1217 			 enum hugetlbfs_size_type val_type)
1218 {
1219 	if (val_type == NO_SIZE)
1220 		return -1;
1221 
1222 	if (val_type == SIZE_PERCENT) {
1223 		size_opt <<= huge_page_shift(h);
1224 		size_opt *= h->max_huge_pages;
1225 		do_div(size_opt, 100);
1226 	}
1227 
1228 	size_opt >>= huge_page_shift(h);
1229 	return size_opt;
1230 }
1231 
1232 /*
1233  * Parse one mount parameter.
1234  */
1235 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1236 {
1237 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1238 	struct fs_parse_result result;
1239 	char *rest;
1240 	unsigned long ps;
1241 	int opt;
1242 
1243 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1244 	if (opt < 0)
1245 		return opt;
1246 
1247 	switch (opt) {
1248 	case Opt_uid:
1249 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1250 		if (!uid_valid(ctx->uid))
1251 			goto bad_val;
1252 		return 0;
1253 
1254 	case Opt_gid:
1255 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1256 		if (!gid_valid(ctx->gid))
1257 			goto bad_val;
1258 		return 0;
1259 
1260 	case Opt_mode:
1261 		ctx->mode = result.uint_32 & 01777U;
1262 		return 0;
1263 
1264 	case Opt_size:
1265 		/* memparse() will accept a K/M/G without a digit */
1266 		if (!isdigit(param->string[0]))
1267 			goto bad_val;
1268 		ctx->max_size_opt = memparse(param->string, &rest);
1269 		ctx->max_val_type = SIZE_STD;
1270 		if (*rest == '%')
1271 			ctx->max_val_type = SIZE_PERCENT;
1272 		return 0;
1273 
1274 	case Opt_nr_inodes:
1275 		/* memparse() will accept a K/M/G without a digit */
1276 		if (!isdigit(param->string[0]))
1277 			goto bad_val;
1278 		ctx->nr_inodes = memparse(param->string, &rest);
1279 		return 0;
1280 
1281 	case Opt_pagesize:
1282 		ps = memparse(param->string, &rest);
1283 		ctx->hstate = size_to_hstate(ps);
1284 		if (!ctx->hstate) {
1285 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1286 			return -EINVAL;
1287 		}
1288 		return 0;
1289 
1290 	case Opt_min_size:
1291 		/* memparse() will accept a K/M/G without a digit */
1292 		if (!isdigit(param->string[0]))
1293 			goto bad_val;
1294 		ctx->min_size_opt = memparse(param->string, &rest);
1295 		ctx->min_val_type = SIZE_STD;
1296 		if (*rest == '%')
1297 			ctx->min_val_type = SIZE_PERCENT;
1298 		return 0;
1299 
1300 	default:
1301 		return -EINVAL;
1302 	}
1303 
1304 bad_val:
1305 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1306 		      param->string, param->key);
1307 }
1308 
1309 /*
1310  * Validate the parsed options.
1311  */
1312 static int hugetlbfs_validate(struct fs_context *fc)
1313 {
1314 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1315 
1316 	/*
1317 	 * Use huge page pool size (in hstate) to convert the size
1318 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1319 	 */
1320 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1321 						   ctx->max_size_opt,
1322 						   ctx->max_val_type);
1323 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1324 						   ctx->min_size_opt,
1325 						   ctx->min_val_type);
1326 
1327 	/*
1328 	 * If max_size was specified, then min_size must be smaller
1329 	 */
1330 	if (ctx->max_val_type > NO_SIZE &&
1331 	    ctx->min_hpages > ctx->max_hpages) {
1332 		pr_err("Minimum size can not be greater than maximum size\n");
1333 		return -EINVAL;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 static int
1340 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1341 {
1342 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1343 	struct hugetlbfs_sb_info *sbinfo;
1344 
1345 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1346 	if (!sbinfo)
1347 		return -ENOMEM;
1348 	sb->s_fs_info = sbinfo;
1349 	spin_lock_init(&sbinfo->stat_lock);
1350 	sbinfo->hstate		= ctx->hstate;
1351 	sbinfo->max_inodes	= ctx->nr_inodes;
1352 	sbinfo->free_inodes	= ctx->nr_inodes;
1353 	sbinfo->spool		= NULL;
1354 	sbinfo->uid		= ctx->uid;
1355 	sbinfo->gid		= ctx->gid;
1356 	sbinfo->mode		= ctx->mode;
1357 
1358 	/*
1359 	 * Allocate and initialize subpool if maximum or minimum size is
1360 	 * specified.  Any needed reservations (for minimum size) are taken
1361 	 * taken when the subpool is created.
1362 	 */
1363 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1364 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1365 						     ctx->max_hpages,
1366 						     ctx->min_hpages);
1367 		if (!sbinfo->spool)
1368 			goto out_free;
1369 	}
1370 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1371 	sb->s_blocksize = huge_page_size(ctx->hstate);
1372 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1373 	sb->s_magic = HUGETLBFS_MAGIC;
1374 	sb->s_op = &hugetlbfs_ops;
1375 	sb->s_time_gran = 1;
1376 
1377 	/*
1378 	 * Due to the special and limited functionality of hugetlbfs, it does
1379 	 * not work well as a stacking filesystem.
1380 	 */
1381 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1382 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1383 	if (!sb->s_root)
1384 		goto out_free;
1385 	return 0;
1386 out_free:
1387 	kfree(sbinfo->spool);
1388 	kfree(sbinfo);
1389 	return -ENOMEM;
1390 }
1391 
1392 static int hugetlbfs_get_tree(struct fs_context *fc)
1393 {
1394 	int err = hugetlbfs_validate(fc);
1395 	if (err)
1396 		return err;
1397 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1398 }
1399 
1400 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1401 {
1402 	kfree(fc->fs_private);
1403 }
1404 
1405 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1406 	.free		= hugetlbfs_fs_context_free,
1407 	.parse_param	= hugetlbfs_parse_param,
1408 	.get_tree	= hugetlbfs_get_tree,
1409 };
1410 
1411 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1412 {
1413 	struct hugetlbfs_fs_context *ctx;
1414 
1415 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1416 	if (!ctx)
1417 		return -ENOMEM;
1418 
1419 	ctx->max_hpages	= -1; /* No limit on size by default */
1420 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1421 	ctx->uid	= current_fsuid();
1422 	ctx->gid	= current_fsgid();
1423 	ctx->mode	= 0755;
1424 	ctx->hstate	= &default_hstate;
1425 	ctx->min_hpages	= -1; /* No default minimum size */
1426 	ctx->max_val_type = NO_SIZE;
1427 	ctx->min_val_type = NO_SIZE;
1428 	fc->fs_private = ctx;
1429 	fc->ops	= &hugetlbfs_fs_context_ops;
1430 	return 0;
1431 }
1432 
1433 static struct file_system_type hugetlbfs_fs_type = {
1434 	.name			= "hugetlbfs",
1435 	.init_fs_context	= hugetlbfs_init_fs_context,
1436 	.parameters		= hugetlb_fs_parameters,
1437 	.kill_sb		= kill_litter_super,
1438 };
1439 
1440 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1441 
1442 static int can_do_hugetlb_shm(void)
1443 {
1444 	kgid_t shm_group;
1445 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1446 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1447 }
1448 
1449 static int get_hstate_idx(int page_size_log)
1450 {
1451 	struct hstate *h = hstate_sizelog(page_size_log);
1452 
1453 	if (!h)
1454 		return -1;
1455 	return hstate_index(h);
1456 }
1457 
1458 /*
1459  * Note that size should be aligned to proper hugepage size in caller side,
1460  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1461  */
1462 struct file *hugetlb_file_setup(const char *name, size_t size,
1463 				vm_flags_t acctflag, int creat_flags,
1464 				int page_size_log)
1465 {
1466 	struct inode *inode;
1467 	struct vfsmount *mnt;
1468 	int hstate_idx;
1469 	struct file *file;
1470 
1471 	hstate_idx = get_hstate_idx(page_size_log);
1472 	if (hstate_idx < 0)
1473 		return ERR_PTR(-ENODEV);
1474 
1475 	mnt = hugetlbfs_vfsmount[hstate_idx];
1476 	if (!mnt)
1477 		return ERR_PTR(-ENOENT);
1478 
1479 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1480 		struct ucounts *ucounts = current_ucounts();
1481 
1482 		if (user_shm_lock(size, ucounts)) {
1483 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1484 				current->comm, current->pid);
1485 			user_shm_unlock(size, ucounts);
1486 		}
1487 		return ERR_PTR(-EPERM);
1488 	}
1489 
1490 	file = ERR_PTR(-ENOSPC);
1491 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1492 	if (!inode)
1493 		goto out;
1494 	if (creat_flags == HUGETLB_SHMFS_INODE)
1495 		inode->i_flags |= S_PRIVATE;
1496 
1497 	inode->i_size = size;
1498 	clear_nlink(inode);
1499 
1500 	if (!hugetlb_reserve_pages(inode, 0,
1501 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1502 			acctflag))
1503 		file = ERR_PTR(-ENOMEM);
1504 	else
1505 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1506 					&hugetlbfs_file_operations);
1507 	if (!IS_ERR(file))
1508 		return file;
1509 
1510 	iput(inode);
1511 out:
1512 	return file;
1513 }
1514 
1515 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1516 {
1517 	struct fs_context *fc;
1518 	struct vfsmount *mnt;
1519 
1520 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1521 	if (IS_ERR(fc)) {
1522 		mnt = ERR_CAST(fc);
1523 	} else {
1524 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1525 		ctx->hstate = h;
1526 		mnt = fc_mount(fc);
1527 		put_fs_context(fc);
1528 	}
1529 	if (IS_ERR(mnt))
1530 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1531 		       huge_page_size(h) >> 10);
1532 	return mnt;
1533 }
1534 
1535 static int __init init_hugetlbfs_fs(void)
1536 {
1537 	struct vfsmount *mnt;
1538 	struct hstate *h;
1539 	int error;
1540 	int i;
1541 
1542 	if (!hugepages_supported()) {
1543 		pr_info("disabling because there are no supported hugepage sizes\n");
1544 		return -ENOTSUPP;
1545 	}
1546 
1547 	error = -ENOMEM;
1548 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1549 					sizeof(struct hugetlbfs_inode_info),
1550 					0, SLAB_ACCOUNT, init_once);
1551 	if (hugetlbfs_inode_cachep == NULL)
1552 		goto out;
1553 
1554 	error = register_filesystem(&hugetlbfs_fs_type);
1555 	if (error)
1556 		goto out_free;
1557 
1558 	/* default hstate mount is required */
1559 	mnt = mount_one_hugetlbfs(&default_hstate);
1560 	if (IS_ERR(mnt)) {
1561 		error = PTR_ERR(mnt);
1562 		goto out_unreg;
1563 	}
1564 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1565 
1566 	/* other hstates are optional */
1567 	i = 0;
1568 	for_each_hstate(h) {
1569 		if (i == default_hstate_idx) {
1570 			i++;
1571 			continue;
1572 		}
1573 
1574 		mnt = mount_one_hugetlbfs(h);
1575 		if (IS_ERR(mnt))
1576 			hugetlbfs_vfsmount[i] = NULL;
1577 		else
1578 			hugetlbfs_vfsmount[i] = mnt;
1579 		i++;
1580 	}
1581 
1582 	return 0;
1583 
1584  out_unreg:
1585 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1586  out_free:
1587 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1588  out:
1589 	return error;
1590 }
1591 fs_initcall(init_hugetlbfs_fs)
1592