1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 kuid_t uid; 50 kgid_t gid; 51 umode_t mode; 52 long max_hpages; 53 long nr_inodes; 54 struct hstate *hstate; 55 long min_hpages; 56 }; 57 58 struct hugetlbfs_inode_info { 59 struct shared_policy policy; 60 struct inode vfs_inode; 61 }; 62 63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) 64 { 65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); 66 } 67 68 int sysctl_hugetlb_shm_group; 69 70 enum { 71 Opt_size, Opt_nr_inodes, 72 Opt_mode, Opt_uid, Opt_gid, 73 Opt_pagesize, Opt_min_size, 74 Opt_err, 75 }; 76 77 static const match_table_t tokens = { 78 {Opt_size, "size=%s"}, 79 {Opt_nr_inodes, "nr_inodes=%s"}, 80 {Opt_mode, "mode=%o"}, 81 {Opt_uid, "uid=%u"}, 82 {Opt_gid, "gid=%u"}, 83 {Opt_pagesize, "pagesize=%s"}, 84 {Opt_min_size, "min_size=%s"}, 85 {Opt_err, NULL}, 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 140 return -EINVAL; 141 142 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 143 144 inode_lock(inode); 145 file_accessed(file); 146 147 ret = -ENOMEM; 148 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 149 150 if (hugetlb_reserve_pages(inode, 151 vma->vm_pgoff >> huge_page_order(h), 152 len >> huge_page_shift(h), vma, 153 vma->vm_flags)) 154 goto out; 155 156 ret = 0; 157 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 158 inode->i_size = len; 159 out: 160 inode_unlock(inode); 161 162 return ret; 163 } 164 165 /* 166 * Called under down_write(mmap_sem). 167 */ 168 169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 170 static unsigned long 171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 172 unsigned long len, unsigned long pgoff, unsigned long flags) 173 { 174 struct mm_struct *mm = current->mm; 175 struct vm_area_struct *vma; 176 struct hstate *h = hstate_file(file); 177 struct vm_unmapped_area_info info; 178 179 if (len & ~huge_page_mask(h)) 180 return -EINVAL; 181 if (len > TASK_SIZE) 182 return -ENOMEM; 183 184 if (flags & MAP_FIXED) { 185 if (prepare_hugepage_range(file, addr, len)) 186 return -EINVAL; 187 return addr; 188 } 189 190 if (addr) { 191 addr = ALIGN(addr, huge_page_size(h)); 192 vma = find_vma(mm, addr); 193 if (TASK_SIZE - len >= addr && 194 (!vma || addr + len <= vma->vm_start)) 195 return addr; 196 } 197 198 info.flags = 0; 199 info.length = len; 200 info.low_limit = TASK_UNMAPPED_BASE; 201 info.high_limit = TASK_SIZE; 202 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 203 info.align_offset = 0; 204 return vm_unmapped_area(&info); 205 } 206 #endif 207 208 static size_t 209 hugetlbfs_read_actor(struct page *page, unsigned long offset, 210 struct iov_iter *to, unsigned long size) 211 { 212 size_t copied = 0; 213 int i, chunksize; 214 215 /* Find which 4k chunk and offset with in that chunk */ 216 i = offset >> PAGE_SHIFT; 217 offset = offset & ~PAGE_MASK; 218 219 while (size) { 220 size_t n; 221 chunksize = PAGE_SIZE; 222 if (offset) 223 chunksize -= offset; 224 if (chunksize > size) 225 chunksize = size; 226 n = copy_page_to_iter(&page[i], offset, chunksize, to); 227 copied += n; 228 if (n != chunksize) 229 return copied; 230 offset = 0; 231 size -= chunksize; 232 i++; 233 } 234 return copied; 235 } 236 237 /* 238 * Support for read() - Find the page attached to f_mapping and copy out the 239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 240 * since it has PAGE_SIZE assumptions. 241 */ 242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 243 { 244 struct file *file = iocb->ki_filp; 245 struct hstate *h = hstate_file(file); 246 struct address_space *mapping = file->f_mapping; 247 struct inode *inode = mapping->host; 248 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 249 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 250 unsigned long end_index; 251 loff_t isize; 252 ssize_t retval = 0; 253 254 while (iov_iter_count(to)) { 255 struct page *page; 256 size_t nr, copied; 257 258 /* nr is the maximum number of bytes to copy from this page */ 259 nr = huge_page_size(h); 260 isize = i_size_read(inode); 261 if (!isize) 262 break; 263 end_index = (isize - 1) >> huge_page_shift(h); 264 if (index > end_index) 265 break; 266 if (index == end_index) { 267 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 268 if (nr <= offset) 269 break; 270 } 271 nr = nr - offset; 272 273 /* Find the page */ 274 page = find_lock_page(mapping, index); 275 if (unlikely(page == NULL)) { 276 /* 277 * We have a HOLE, zero out the user-buffer for the 278 * length of the hole or request. 279 */ 280 copied = iov_iter_zero(nr, to); 281 } else { 282 unlock_page(page); 283 284 /* 285 * We have the page, copy it to user space buffer. 286 */ 287 copied = hugetlbfs_read_actor(page, offset, to, nr); 288 put_page(page); 289 } 290 offset += copied; 291 retval += copied; 292 if (copied != nr && iov_iter_count(to)) { 293 if (!retval) 294 retval = -EFAULT; 295 break; 296 } 297 index += offset >> huge_page_shift(h); 298 offset &= ~huge_page_mask(h); 299 } 300 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 301 return retval; 302 } 303 304 static int hugetlbfs_write_begin(struct file *file, 305 struct address_space *mapping, 306 loff_t pos, unsigned len, unsigned flags, 307 struct page **pagep, void **fsdata) 308 { 309 return -EINVAL; 310 } 311 312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 313 loff_t pos, unsigned len, unsigned copied, 314 struct page *page, void *fsdata) 315 { 316 BUG(); 317 return -EINVAL; 318 } 319 320 static void remove_huge_page(struct page *page) 321 { 322 ClearPageDirty(page); 323 ClearPageUptodate(page); 324 delete_from_page_cache(page); 325 } 326 327 static void 328 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end) 329 { 330 struct vm_area_struct *vma; 331 332 /* 333 * end == 0 indicates that the entire range after 334 * start should be unmapped. 335 */ 336 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 337 unsigned long v_offset; 338 unsigned long v_end; 339 340 /* 341 * Can the expression below overflow on 32-bit arches? 342 * No, because the interval tree returns us only those vmas 343 * which overlap the truncated area starting at pgoff, 344 * and no vma on a 32-bit arch can span beyond the 4GB. 345 */ 346 if (vma->vm_pgoff < start) 347 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 348 else 349 v_offset = 0; 350 351 if (!end) 352 v_end = vma->vm_end; 353 else { 354 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 355 + vma->vm_start; 356 if (v_end > vma->vm_end) 357 v_end = vma->vm_end; 358 } 359 360 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 361 NULL); 362 } 363 } 364 365 /* 366 * remove_inode_hugepages handles two distinct cases: truncation and hole 367 * punch. There are subtle differences in operation for each case. 368 * 369 * truncation is indicated by end of range being LLONG_MAX 370 * In this case, we first scan the range and release found pages. 371 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 372 * maps and global counts. Page faults can not race with truncation 373 * in this routine. hugetlb_no_page() prevents page faults in the 374 * truncated range. It checks i_size before allocation, and again after 375 * with the page table lock for the page held. The same lock must be 376 * acquired to unmap a page. 377 * hole punch is indicated if end is not LLONG_MAX 378 * In the hole punch case we scan the range and release found pages. 379 * Only when releasing a page is the associated region/reserv map 380 * deleted. The region/reserv map for ranges without associated 381 * pages are not modified. Page faults can race with hole punch. 382 * This is indicated if we find a mapped page. 383 * Note: If the passed end of range value is beyond the end of file, but 384 * not LLONG_MAX this routine still performs a hole punch operation. 385 */ 386 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 387 loff_t lend) 388 { 389 struct hstate *h = hstate_inode(inode); 390 struct address_space *mapping = &inode->i_data; 391 const pgoff_t start = lstart >> huge_page_shift(h); 392 const pgoff_t end = lend >> huge_page_shift(h); 393 struct vm_area_struct pseudo_vma; 394 struct pagevec pvec; 395 pgoff_t next; 396 int i, freed = 0; 397 long lookup_nr = PAGEVEC_SIZE; 398 bool truncate_op = (lend == LLONG_MAX); 399 400 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 401 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 402 pagevec_init(&pvec, 0); 403 next = start; 404 while (next < end) { 405 /* 406 * Don't grab more pages than the number left in the range. 407 */ 408 if (end - next < lookup_nr) 409 lookup_nr = end - next; 410 411 /* 412 * When no more pages are found, we are done. 413 */ 414 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr)) 415 break; 416 417 for (i = 0; i < pagevec_count(&pvec); ++i) { 418 struct page *page = pvec.pages[i]; 419 u32 hash; 420 421 /* 422 * The page (index) could be beyond end. This is 423 * only possible in the punch hole case as end is 424 * max page offset in the truncate case. 425 */ 426 next = page->index; 427 if (next >= end) 428 break; 429 430 hash = hugetlb_fault_mutex_hash(h, current->mm, 431 &pseudo_vma, 432 mapping, next, 0); 433 mutex_lock(&hugetlb_fault_mutex_table[hash]); 434 435 /* 436 * If page is mapped, it was faulted in after being 437 * unmapped in caller. Unmap (again) now after taking 438 * the fault mutex. The mutex will prevent faults 439 * until we finish removing the page. 440 * 441 * This race can only happen in the hole punch case. 442 * Getting here in a truncate operation is a bug. 443 */ 444 if (unlikely(page_mapped(page))) { 445 BUG_ON(truncate_op); 446 447 i_mmap_lock_write(mapping); 448 hugetlb_vmdelete_list(&mapping->i_mmap, 449 next * pages_per_huge_page(h), 450 (next + 1) * pages_per_huge_page(h)); 451 i_mmap_unlock_write(mapping); 452 } 453 454 lock_page(page); 455 /* 456 * We must free the huge page and remove from page 457 * cache (remove_huge_page) BEFORE removing the 458 * region/reserve map (hugetlb_unreserve_pages). In 459 * rare out of memory conditions, removal of the 460 * region/reserve map could fail. Correspondingly, 461 * the subpool and global reserve usage count can need 462 * to be adjusted. 463 */ 464 VM_BUG_ON(PagePrivate(page)); 465 remove_huge_page(page); 466 freed++; 467 if (!truncate_op) { 468 if (unlikely(hugetlb_unreserve_pages(inode, 469 next, next + 1, 1))) 470 hugetlb_fix_reserve_counts(inode); 471 } 472 473 unlock_page(page); 474 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 475 } 476 ++next; 477 huge_pagevec_release(&pvec); 478 cond_resched(); 479 } 480 481 if (truncate_op) 482 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 483 } 484 485 static void hugetlbfs_evict_inode(struct inode *inode) 486 { 487 struct resv_map *resv_map; 488 489 remove_inode_hugepages(inode, 0, LLONG_MAX); 490 resv_map = (struct resv_map *)inode->i_mapping->private_data; 491 /* root inode doesn't have the resv_map, so we should check it */ 492 if (resv_map) 493 resv_map_release(&resv_map->refs); 494 clear_inode(inode); 495 } 496 497 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 498 { 499 pgoff_t pgoff; 500 struct address_space *mapping = inode->i_mapping; 501 struct hstate *h = hstate_inode(inode); 502 503 BUG_ON(offset & ~huge_page_mask(h)); 504 pgoff = offset >> PAGE_SHIFT; 505 506 i_size_write(inode, offset); 507 i_mmap_lock_write(mapping); 508 if (!RB_EMPTY_ROOT(&mapping->i_mmap)) 509 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 510 i_mmap_unlock_write(mapping); 511 remove_inode_hugepages(inode, offset, LLONG_MAX); 512 return 0; 513 } 514 515 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 516 { 517 struct hstate *h = hstate_inode(inode); 518 loff_t hpage_size = huge_page_size(h); 519 loff_t hole_start, hole_end; 520 521 /* 522 * For hole punch round up the beginning offset of the hole and 523 * round down the end. 524 */ 525 hole_start = round_up(offset, hpage_size); 526 hole_end = round_down(offset + len, hpage_size); 527 528 if (hole_end > hole_start) { 529 struct address_space *mapping = inode->i_mapping; 530 531 inode_lock(inode); 532 i_mmap_lock_write(mapping); 533 if (!RB_EMPTY_ROOT(&mapping->i_mmap)) 534 hugetlb_vmdelete_list(&mapping->i_mmap, 535 hole_start >> PAGE_SHIFT, 536 hole_end >> PAGE_SHIFT); 537 i_mmap_unlock_write(mapping); 538 remove_inode_hugepages(inode, hole_start, hole_end); 539 inode_unlock(inode); 540 } 541 542 return 0; 543 } 544 545 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 546 loff_t len) 547 { 548 struct inode *inode = file_inode(file); 549 struct address_space *mapping = inode->i_mapping; 550 struct hstate *h = hstate_inode(inode); 551 struct vm_area_struct pseudo_vma; 552 struct mm_struct *mm = current->mm; 553 loff_t hpage_size = huge_page_size(h); 554 unsigned long hpage_shift = huge_page_shift(h); 555 pgoff_t start, index, end; 556 int error; 557 u32 hash; 558 559 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 560 return -EOPNOTSUPP; 561 562 if (mode & FALLOC_FL_PUNCH_HOLE) 563 return hugetlbfs_punch_hole(inode, offset, len); 564 565 /* 566 * Default preallocate case. 567 * For this range, start is rounded down and end is rounded up 568 * as well as being converted to page offsets. 569 */ 570 start = offset >> hpage_shift; 571 end = (offset + len + hpage_size - 1) >> hpage_shift; 572 573 inode_lock(inode); 574 575 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 576 error = inode_newsize_ok(inode, offset + len); 577 if (error) 578 goto out; 579 580 /* 581 * Initialize a pseudo vma as this is required by the huge page 582 * allocation routines. If NUMA is configured, use page index 583 * as input to create an allocation policy. 584 */ 585 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 586 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 587 pseudo_vma.vm_file = file; 588 589 for (index = start; index < end; index++) { 590 /* 591 * This is supposed to be the vaddr where the page is being 592 * faulted in, but we have no vaddr here. 593 */ 594 struct page *page; 595 unsigned long addr; 596 int avoid_reserve = 0; 597 598 cond_resched(); 599 600 /* 601 * fallocate(2) manpage permits EINTR; we may have been 602 * interrupted because we are using up too much memory. 603 */ 604 if (signal_pending(current)) { 605 error = -EINTR; 606 break; 607 } 608 609 /* Set numa allocation policy based on index */ 610 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 611 612 /* addr is the offset within the file (zero based) */ 613 addr = index * hpage_size; 614 615 /* mutex taken here, fault path and hole punch */ 616 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 617 index, addr); 618 mutex_lock(&hugetlb_fault_mutex_table[hash]); 619 620 /* See if already present in mapping to avoid alloc/free */ 621 page = find_get_page(mapping, index); 622 if (page) { 623 put_page(page); 624 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 625 hugetlb_drop_vma_policy(&pseudo_vma); 626 continue; 627 } 628 629 /* Allocate page and add to page cache */ 630 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 631 hugetlb_drop_vma_policy(&pseudo_vma); 632 if (IS_ERR(page)) { 633 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 634 error = PTR_ERR(page); 635 goto out; 636 } 637 clear_huge_page(page, addr, pages_per_huge_page(h)); 638 __SetPageUptodate(page); 639 error = huge_add_to_page_cache(page, mapping, index); 640 if (unlikely(error)) { 641 put_page(page); 642 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 643 goto out; 644 } 645 646 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 647 648 /* 649 * page_put due to reference from alloc_huge_page() 650 * unlock_page because locked by add_to_page_cache() 651 */ 652 put_page(page); 653 unlock_page(page); 654 } 655 656 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 657 i_size_write(inode, offset + len); 658 inode->i_ctime = current_time(inode); 659 out: 660 inode_unlock(inode); 661 return error; 662 } 663 664 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 665 { 666 struct inode *inode = d_inode(dentry); 667 struct hstate *h = hstate_inode(inode); 668 int error; 669 unsigned int ia_valid = attr->ia_valid; 670 671 BUG_ON(!inode); 672 673 error = setattr_prepare(dentry, attr); 674 if (error) 675 return error; 676 677 if (ia_valid & ATTR_SIZE) { 678 error = -EINVAL; 679 if (attr->ia_size & ~huge_page_mask(h)) 680 return -EINVAL; 681 error = hugetlb_vmtruncate(inode, attr->ia_size); 682 if (error) 683 return error; 684 } 685 686 setattr_copy(inode, attr); 687 mark_inode_dirty(inode); 688 return 0; 689 } 690 691 static struct inode *hugetlbfs_get_root(struct super_block *sb, 692 struct hugetlbfs_config *config) 693 { 694 struct inode *inode; 695 696 inode = new_inode(sb); 697 if (inode) { 698 inode->i_ino = get_next_ino(); 699 inode->i_mode = S_IFDIR | config->mode; 700 inode->i_uid = config->uid; 701 inode->i_gid = config->gid; 702 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 703 inode->i_op = &hugetlbfs_dir_inode_operations; 704 inode->i_fop = &simple_dir_operations; 705 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 706 inc_nlink(inode); 707 lockdep_annotate_inode_mutex_key(inode); 708 } 709 return inode; 710 } 711 712 /* 713 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 714 * be taken from reclaim -- unlike regular filesystems. This needs an 715 * annotation because huge_pmd_share() does an allocation under hugetlb's 716 * i_mmap_rwsem. 717 */ 718 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 719 720 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 721 struct inode *dir, 722 umode_t mode, dev_t dev) 723 { 724 struct inode *inode; 725 struct resv_map *resv_map; 726 727 resv_map = resv_map_alloc(); 728 if (!resv_map) 729 return NULL; 730 731 inode = new_inode(sb); 732 if (inode) { 733 inode->i_ino = get_next_ino(); 734 inode_init_owner(inode, dir, mode); 735 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 736 &hugetlbfs_i_mmap_rwsem_key); 737 inode->i_mapping->a_ops = &hugetlbfs_aops; 738 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 739 inode->i_mapping->private_data = resv_map; 740 switch (mode & S_IFMT) { 741 default: 742 init_special_inode(inode, mode, dev); 743 break; 744 case S_IFREG: 745 inode->i_op = &hugetlbfs_inode_operations; 746 inode->i_fop = &hugetlbfs_file_operations; 747 break; 748 case S_IFDIR: 749 inode->i_op = &hugetlbfs_dir_inode_operations; 750 inode->i_fop = &simple_dir_operations; 751 752 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 753 inc_nlink(inode); 754 break; 755 case S_IFLNK: 756 inode->i_op = &page_symlink_inode_operations; 757 inode_nohighmem(inode); 758 break; 759 } 760 lockdep_annotate_inode_mutex_key(inode); 761 } else 762 kref_put(&resv_map->refs, resv_map_release); 763 764 return inode; 765 } 766 767 /* 768 * File creation. Allocate an inode, and we're done.. 769 */ 770 static int hugetlbfs_mknod(struct inode *dir, 771 struct dentry *dentry, umode_t mode, dev_t dev) 772 { 773 struct inode *inode; 774 int error = -ENOSPC; 775 776 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 777 if (inode) { 778 dir->i_ctime = dir->i_mtime = current_time(dir); 779 d_instantiate(dentry, inode); 780 dget(dentry); /* Extra count - pin the dentry in core */ 781 error = 0; 782 } 783 return error; 784 } 785 786 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 787 { 788 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 789 if (!retval) 790 inc_nlink(dir); 791 return retval; 792 } 793 794 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 795 { 796 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 797 } 798 799 static int hugetlbfs_symlink(struct inode *dir, 800 struct dentry *dentry, const char *symname) 801 { 802 struct inode *inode; 803 int error = -ENOSPC; 804 805 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 806 if (inode) { 807 int l = strlen(symname)+1; 808 error = page_symlink(inode, symname, l); 809 if (!error) { 810 d_instantiate(dentry, inode); 811 dget(dentry); 812 } else 813 iput(inode); 814 } 815 dir->i_ctime = dir->i_mtime = current_time(dir); 816 817 return error; 818 } 819 820 /* 821 * mark the head page dirty 822 */ 823 static int hugetlbfs_set_page_dirty(struct page *page) 824 { 825 struct page *head = compound_head(page); 826 827 SetPageDirty(head); 828 return 0; 829 } 830 831 static int hugetlbfs_migrate_page(struct address_space *mapping, 832 struct page *newpage, struct page *page, 833 enum migrate_mode mode) 834 { 835 int rc; 836 837 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 838 if (rc != MIGRATEPAGE_SUCCESS) 839 return rc; 840 migrate_page_copy(newpage, page); 841 842 return MIGRATEPAGE_SUCCESS; 843 } 844 845 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 846 { 847 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 848 struct hstate *h = hstate_inode(d_inode(dentry)); 849 850 buf->f_type = HUGETLBFS_MAGIC; 851 buf->f_bsize = huge_page_size(h); 852 if (sbinfo) { 853 spin_lock(&sbinfo->stat_lock); 854 /* If no limits set, just report 0 for max/free/used 855 * blocks, like simple_statfs() */ 856 if (sbinfo->spool) { 857 long free_pages; 858 859 spin_lock(&sbinfo->spool->lock); 860 buf->f_blocks = sbinfo->spool->max_hpages; 861 free_pages = sbinfo->spool->max_hpages 862 - sbinfo->spool->used_hpages; 863 buf->f_bavail = buf->f_bfree = free_pages; 864 spin_unlock(&sbinfo->spool->lock); 865 buf->f_files = sbinfo->max_inodes; 866 buf->f_ffree = sbinfo->free_inodes; 867 } 868 spin_unlock(&sbinfo->stat_lock); 869 } 870 buf->f_namelen = NAME_MAX; 871 return 0; 872 } 873 874 static void hugetlbfs_put_super(struct super_block *sb) 875 { 876 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 877 878 if (sbi) { 879 sb->s_fs_info = NULL; 880 881 if (sbi->spool) 882 hugepage_put_subpool(sbi->spool); 883 884 kfree(sbi); 885 } 886 } 887 888 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 889 { 890 if (sbinfo->free_inodes >= 0) { 891 spin_lock(&sbinfo->stat_lock); 892 if (unlikely(!sbinfo->free_inodes)) { 893 spin_unlock(&sbinfo->stat_lock); 894 return 0; 895 } 896 sbinfo->free_inodes--; 897 spin_unlock(&sbinfo->stat_lock); 898 } 899 900 return 1; 901 } 902 903 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 904 { 905 if (sbinfo->free_inodes >= 0) { 906 spin_lock(&sbinfo->stat_lock); 907 sbinfo->free_inodes++; 908 spin_unlock(&sbinfo->stat_lock); 909 } 910 } 911 912 913 static struct kmem_cache *hugetlbfs_inode_cachep; 914 915 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 916 { 917 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 918 struct hugetlbfs_inode_info *p; 919 920 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 921 return NULL; 922 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 923 if (unlikely(!p)) { 924 hugetlbfs_inc_free_inodes(sbinfo); 925 return NULL; 926 } 927 928 /* 929 * Any time after allocation, hugetlbfs_destroy_inode can be called 930 * for the inode. mpol_free_shared_policy is unconditionally called 931 * as part of hugetlbfs_destroy_inode. So, initialize policy here 932 * in case of a quick call to destroy. 933 * 934 * Note that the policy is initialized even if we are creating a 935 * private inode. This simplifies hugetlbfs_destroy_inode. 936 */ 937 mpol_shared_policy_init(&p->policy, NULL); 938 939 return &p->vfs_inode; 940 } 941 942 static void hugetlbfs_i_callback(struct rcu_head *head) 943 { 944 struct inode *inode = container_of(head, struct inode, i_rcu); 945 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 946 } 947 948 static void hugetlbfs_destroy_inode(struct inode *inode) 949 { 950 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 951 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 952 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 953 } 954 955 static const struct address_space_operations hugetlbfs_aops = { 956 .write_begin = hugetlbfs_write_begin, 957 .write_end = hugetlbfs_write_end, 958 .set_page_dirty = hugetlbfs_set_page_dirty, 959 .migratepage = hugetlbfs_migrate_page, 960 }; 961 962 963 static void init_once(void *foo) 964 { 965 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 966 967 inode_init_once(&ei->vfs_inode); 968 } 969 970 const struct file_operations hugetlbfs_file_operations = { 971 .read_iter = hugetlbfs_read_iter, 972 .mmap = hugetlbfs_file_mmap, 973 .fsync = noop_fsync, 974 .get_unmapped_area = hugetlb_get_unmapped_area, 975 .llseek = default_llseek, 976 .fallocate = hugetlbfs_fallocate, 977 }; 978 979 static const struct inode_operations hugetlbfs_dir_inode_operations = { 980 .create = hugetlbfs_create, 981 .lookup = simple_lookup, 982 .link = simple_link, 983 .unlink = simple_unlink, 984 .symlink = hugetlbfs_symlink, 985 .mkdir = hugetlbfs_mkdir, 986 .rmdir = simple_rmdir, 987 .mknod = hugetlbfs_mknod, 988 .rename = simple_rename, 989 .setattr = hugetlbfs_setattr, 990 }; 991 992 static const struct inode_operations hugetlbfs_inode_operations = { 993 .setattr = hugetlbfs_setattr, 994 }; 995 996 static const struct super_operations hugetlbfs_ops = { 997 .alloc_inode = hugetlbfs_alloc_inode, 998 .destroy_inode = hugetlbfs_destroy_inode, 999 .evict_inode = hugetlbfs_evict_inode, 1000 .statfs = hugetlbfs_statfs, 1001 .put_super = hugetlbfs_put_super, 1002 .show_options = generic_show_options, 1003 }; 1004 1005 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1006 1007 /* 1008 * Convert size option passed from command line to number of huge pages 1009 * in the pool specified by hstate. Size option could be in bytes 1010 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1011 */ 1012 static long long 1013 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1014 int val_type) 1015 { 1016 if (val_type == NO_SIZE) 1017 return -1; 1018 1019 if (val_type == SIZE_PERCENT) { 1020 size_opt <<= huge_page_shift(h); 1021 size_opt *= h->max_huge_pages; 1022 do_div(size_opt, 100); 1023 } 1024 1025 size_opt >>= huge_page_shift(h); 1026 return size_opt; 1027 } 1028 1029 static int 1030 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1031 { 1032 char *p, *rest; 1033 substring_t args[MAX_OPT_ARGS]; 1034 int option; 1035 unsigned long long max_size_opt = 0, min_size_opt = 0; 1036 int max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1037 1038 if (!options) 1039 return 0; 1040 1041 while ((p = strsep(&options, ",")) != NULL) { 1042 int token; 1043 if (!*p) 1044 continue; 1045 1046 token = match_token(p, tokens, args); 1047 switch (token) { 1048 case Opt_uid: 1049 if (match_int(&args[0], &option)) 1050 goto bad_val; 1051 pconfig->uid = make_kuid(current_user_ns(), option); 1052 if (!uid_valid(pconfig->uid)) 1053 goto bad_val; 1054 break; 1055 1056 case Opt_gid: 1057 if (match_int(&args[0], &option)) 1058 goto bad_val; 1059 pconfig->gid = make_kgid(current_user_ns(), option); 1060 if (!gid_valid(pconfig->gid)) 1061 goto bad_val; 1062 break; 1063 1064 case Opt_mode: 1065 if (match_octal(&args[0], &option)) 1066 goto bad_val; 1067 pconfig->mode = option & 01777U; 1068 break; 1069 1070 case Opt_size: { 1071 /* memparse() will accept a K/M/G without a digit */ 1072 if (!isdigit(*args[0].from)) 1073 goto bad_val; 1074 max_size_opt = memparse(args[0].from, &rest); 1075 max_val_type = SIZE_STD; 1076 if (*rest == '%') 1077 max_val_type = SIZE_PERCENT; 1078 break; 1079 } 1080 1081 case Opt_nr_inodes: 1082 /* memparse() will accept a K/M/G without a digit */ 1083 if (!isdigit(*args[0].from)) 1084 goto bad_val; 1085 pconfig->nr_inodes = memparse(args[0].from, &rest); 1086 break; 1087 1088 case Opt_pagesize: { 1089 unsigned long ps; 1090 ps = memparse(args[0].from, &rest); 1091 pconfig->hstate = size_to_hstate(ps); 1092 if (!pconfig->hstate) { 1093 pr_err("Unsupported page size %lu MB\n", 1094 ps >> 20); 1095 return -EINVAL; 1096 } 1097 break; 1098 } 1099 1100 case Opt_min_size: { 1101 /* memparse() will accept a K/M/G without a digit */ 1102 if (!isdigit(*args[0].from)) 1103 goto bad_val; 1104 min_size_opt = memparse(args[0].from, &rest); 1105 min_val_type = SIZE_STD; 1106 if (*rest == '%') 1107 min_val_type = SIZE_PERCENT; 1108 break; 1109 } 1110 1111 default: 1112 pr_err("Bad mount option: \"%s\"\n", p); 1113 return -EINVAL; 1114 break; 1115 } 1116 } 1117 1118 /* 1119 * Use huge page pool size (in hstate) to convert the size 1120 * options to number of huge pages. If NO_SIZE, -1 is returned. 1121 */ 1122 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1123 max_size_opt, max_val_type); 1124 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1125 min_size_opt, min_val_type); 1126 1127 /* 1128 * If max_size was specified, then min_size must be smaller 1129 */ 1130 if (max_val_type > NO_SIZE && 1131 pconfig->min_hpages > pconfig->max_hpages) { 1132 pr_err("minimum size can not be greater than maximum size\n"); 1133 return -EINVAL; 1134 } 1135 1136 return 0; 1137 1138 bad_val: 1139 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1140 return -EINVAL; 1141 } 1142 1143 static int 1144 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1145 { 1146 int ret; 1147 struct hugetlbfs_config config; 1148 struct hugetlbfs_sb_info *sbinfo; 1149 1150 save_mount_options(sb, data); 1151 1152 config.max_hpages = -1; /* No limit on size by default */ 1153 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1154 config.uid = current_fsuid(); 1155 config.gid = current_fsgid(); 1156 config.mode = 0755; 1157 config.hstate = &default_hstate; 1158 config.min_hpages = -1; /* No default minimum size */ 1159 ret = hugetlbfs_parse_options(data, &config); 1160 if (ret) 1161 return ret; 1162 1163 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1164 if (!sbinfo) 1165 return -ENOMEM; 1166 sb->s_fs_info = sbinfo; 1167 sbinfo->hstate = config.hstate; 1168 spin_lock_init(&sbinfo->stat_lock); 1169 sbinfo->max_inodes = config.nr_inodes; 1170 sbinfo->free_inodes = config.nr_inodes; 1171 sbinfo->spool = NULL; 1172 /* 1173 * Allocate and initialize subpool if maximum or minimum size is 1174 * specified. Any needed reservations (for minimim size) are taken 1175 * taken when the subpool is created. 1176 */ 1177 if (config.max_hpages != -1 || config.min_hpages != -1) { 1178 sbinfo->spool = hugepage_new_subpool(config.hstate, 1179 config.max_hpages, 1180 config.min_hpages); 1181 if (!sbinfo->spool) 1182 goto out_free; 1183 } 1184 sb->s_maxbytes = MAX_LFS_FILESIZE; 1185 sb->s_blocksize = huge_page_size(config.hstate); 1186 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1187 sb->s_magic = HUGETLBFS_MAGIC; 1188 sb->s_op = &hugetlbfs_ops; 1189 sb->s_time_gran = 1; 1190 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1191 if (!sb->s_root) 1192 goto out_free; 1193 return 0; 1194 out_free: 1195 kfree(sbinfo->spool); 1196 kfree(sbinfo); 1197 return -ENOMEM; 1198 } 1199 1200 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1201 int flags, const char *dev_name, void *data) 1202 { 1203 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1204 } 1205 1206 static struct file_system_type hugetlbfs_fs_type = { 1207 .name = "hugetlbfs", 1208 .mount = hugetlbfs_mount, 1209 .kill_sb = kill_litter_super, 1210 }; 1211 1212 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1213 1214 static int can_do_hugetlb_shm(void) 1215 { 1216 kgid_t shm_group; 1217 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1218 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1219 } 1220 1221 static int get_hstate_idx(int page_size_log) 1222 { 1223 struct hstate *h = hstate_sizelog(page_size_log); 1224 1225 if (!h) 1226 return -1; 1227 return h - hstates; 1228 } 1229 1230 static const struct dentry_operations anon_ops = { 1231 .d_dname = simple_dname 1232 }; 1233 1234 /* 1235 * Note that size should be aligned to proper hugepage size in caller side, 1236 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1237 */ 1238 struct file *hugetlb_file_setup(const char *name, size_t size, 1239 vm_flags_t acctflag, struct user_struct **user, 1240 int creat_flags, int page_size_log) 1241 { 1242 struct file *file = ERR_PTR(-ENOMEM); 1243 struct inode *inode; 1244 struct path path; 1245 struct super_block *sb; 1246 struct qstr quick_string; 1247 int hstate_idx; 1248 1249 hstate_idx = get_hstate_idx(page_size_log); 1250 if (hstate_idx < 0) 1251 return ERR_PTR(-ENODEV); 1252 1253 *user = NULL; 1254 if (!hugetlbfs_vfsmount[hstate_idx]) 1255 return ERR_PTR(-ENOENT); 1256 1257 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1258 *user = current_user(); 1259 if (user_shm_lock(size, *user)) { 1260 task_lock(current); 1261 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1262 current->comm, current->pid); 1263 task_unlock(current); 1264 } else { 1265 *user = NULL; 1266 return ERR_PTR(-EPERM); 1267 } 1268 } 1269 1270 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb; 1271 quick_string.name = name; 1272 quick_string.len = strlen(quick_string.name); 1273 quick_string.hash = 0; 1274 path.dentry = d_alloc_pseudo(sb, &quick_string); 1275 if (!path.dentry) 1276 goto out_shm_unlock; 1277 1278 d_set_d_op(path.dentry, &anon_ops); 1279 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]); 1280 file = ERR_PTR(-ENOSPC); 1281 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0); 1282 if (!inode) 1283 goto out_dentry; 1284 if (creat_flags == HUGETLB_SHMFS_INODE) 1285 inode->i_flags |= S_PRIVATE; 1286 1287 file = ERR_PTR(-ENOMEM); 1288 if (hugetlb_reserve_pages(inode, 0, 1289 size >> huge_page_shift(hstate_inode(inode)), NULL, 1290 acctflag)) 1291 goto out_inode; 1292 1293 d_instantiate(path.dentry, inode); 1294 inode->i_size = size; 1295 clear_nlink(inode); 1296 1297 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 1298 &hugetlbfs_file_operations); 1299 if (IS_ERR(file)) 1300 goto out_dentry; /* inode is already attached */ 1301 1302 return file; 1303 1304 out_inode: 1305 iput(inode); 1306 out_dentry: 1307 path_put(&path); 1308 out_shm_unlock: 1309 if (*user) { 1310 user_shm_unlock(size, *user); 1311 *user = NULL; 1312 } 1313 return file; 1314 } 1315 1316 static int __init init_hugetlbfs_fs(void) 1317 { 1318 struct hstate *h; 1319 int error; 1320 int i; 1321 1322 if (!hugepages_supported()) { 1323 pr_info("disabling because there are no supported hugepage sizes\n"); 1324 return -ENOTSUPP; 1325 } 1326 1327 error = -ENOMEM; 1328 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1329 sizeof(struct hugetlbfs_inode_info), 1330 0, SLAB_ACCOUNT, init_once); 1331 if (hugetlbfs_inode_cachep == NULL) 1332 goto out2; 1333 1334 error = register_filesystem(&hugetlbfs_fs_type); 1335 if (error) 1336 goto out; 1337 1338 i = 0; 1339 for_each_hstate(h) { 1340 char buf[50]; 1341 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1342 1343 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1344 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1345 buf); 1346 1347 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1348 pr_err("Cannot mount internal hugetlbfs for " 1349 "page size %uK", ps_kb); 1350 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1351 hugetlbfs_vfsmount[i] = NULL; 1352 } 1353 i++; 1354 } 1355 /* Non default hstates are optional */ 1356 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1357 return 0; 1358 1359 out: 1360 kmem_cache_destroy(hugetlbfs_inode_cachep); 1361 out2: 1362 return error; 1363 } 1364 fs_initcall(init_hugetlbfs_fs) 1365