xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 4742a35d)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 struct hugetlbfs_config {
49 	kuid_t   uid;
50 	kgid_t   gid;
51 	umode_t mode;
52 	long	max_hpages;
53 	long	nr_inodes;
54 	struct hstate *hstate;
55 	long    min_hpages;
56 };
57 
58 struct hugetlbfs_inode_info {
59 	struct shared_policy policy;
60 	struct inode vfs_inode;
61 };
62 
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67 
68 int sysctl_hugetlb_shm_group;
69 
70 enum {
71 	Opt_size, Opt_nr_inodes,
72 	Opt_mode, Opt_uid, Opt_gid,
73 	Opt_pagesize, Opt_min_size,
74 	Opt_err,
75 };
76 
77 static const match_table_t tokens = {
78 	{Opt_size,	"size=%s"},
79 	{Opt_nr_inodes,	"nr_inodes=%s"},
80 	{Opt_mode,	"mode=%o"},
81 	{Opt_uid,	"uid=%u"},
82 	{Opt_gid,	"gid=%u"},
83 	{Opt_pagesize,	"pagesize=%s"},
84 	{Opt_min_size,	"min_size=%s"},
85 	{Opt_err,	NULL},
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 	struct inode *inode = file_inode(file);
124 	loff_t len, vma_len;
125 	int ret;
126 	struct hstate *h = hstate_file(file);
127 
128 	/*
129 	 * vma address alignment (but not the pgoff alignment) has
130 	 * already been checked by prepare_hugepage_range.  If you add
131 	 * any error returns here, do so after setting VM_HUGETLB, so
132 	 * is_vm_hugetlb_page tests below unmap_region go the right
133 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 	 * and ia64).
135 	 */
136 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 	vma->vm_ops = &hugetlb_vm_ops;
138 
139 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
140 		return -EINVAL;
141 
142 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
143 
144 	inode_lock(inode);
145 	file_accessed(file);
146 
147 	ret = -ENOMEM;
148 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
149 
150 	if (hugetlb_reserve_pages(inode,
151 				vma->vm_pgoff >> huge_page_order(h),
152 				len >> huge_page_shift(h), vma,
153 				vma->vm_flags))
154 		goto out;
155 
156 	ret = 0;
157 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
158 		inode->i_size = len;
159 out:
160 	inode_unlock(inode);
161 
162 	return ret;
163 }
164 
165 /*
166  * Called under down_write(mmap_sem).
167  */
168 
169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
170 static unsigned long
171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
172 		unsigned long len, unsigned long pgoff, unsigned long flags)
173 {
174 	struct mm_struct *mm = current->mm;
175 	struct vm_area_struct *vma;
176 	struct hstate *h = hstate_file(file);
177 	struct vm_unmapped_area_info info;
178 
179 	if (len & ~huge_page_mask(h))
180 		return -EINVAL;
181 	if (len > TASK_SIZE)
182 		return -ENOMEM;
183 
184 	if (flags & MAP_FIXED) {
185 		if (prepare_hugepage_range(file, addr, len))
186 			return -EINVAL;
187 		return addr;
188 	}
189 
190 	if (addr) {
191 		addr = ALIGN(addr, huge_page_size(h));
192 		vma = find_vma(mm, addr);
193 		if (TASK_SIZE - len >= addr &&
194 		    (!vma || addr + len <= vma->vm_start))
195 			return addr;
196 	}
197 
198 	info.flags = 0;
199 	info.length = len;
200 	info.low_limit = TASK_UNMAPPED_BASE;
201 	info.high_limit = TASK_SIZE;
202 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
203 	info.align_offset = 0;
204 	return vm_unmapped_area(&info);
205 }
206 #endif
207 
208 static size_t
209 hugetlbfs_read_actor(struct page *page, unsigned long offset,
210 			struct iov_iter *to, unsigned long size)
211 {
212 	size_t copied = 0;
213 	int i, chunksize;
214 
215 	/* Find which 4k chunk and offset with in that chunk */
216 	i = offset >> PAGE_SHIFT;
217 	offset = offset & ~PAGE_MASK;
218 
219 	while (size) {
220 		size_t n;
221 		chunksize = PAGE_SIZE;
222 		if (offset)
223 			chunksize -= offset;
224 		if (chunksize > size)
225 			chunksize = size;
226 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
227 		copied += n;
228 		if (n != chunksize)
229 			return copied;
230 		offset = 0;
231 		size -= chunksize;
232 		i++;
233 	}
234 	return copied;
235 }
236 
237 /*
238  * Support for read() - Find the page attached to f_mapping and copy out the
239  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
240  * since it has PAGE_SIZE assumptions.
241  */
242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
243 {
244 	struct file *file = iocb->ki_filp;
245 	struct hstate *h = hstate_file(file);
246 	struct address_space *mapping = file->f_mapping;
247 	struct inode *inode = mapping->host;
248 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
249 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
250 	unsigned long end_index;
251 	loff_t isize;
252 	ssize_t retval = 0;
253 
254 	while (iov_iter_count(to)) {
255 		struct page *page;
256 		size_t nr, copied;
257 
258 		/* nr is the maximum number of bytes to copy from this page */
259 		nr = huge_page_size(h);
260 		isize = i_size_read(inode);
261 		if (!isize)
262 			break;
263 		end_index = (isize - 1) >> huge_page_shift(h);
264 		if (index > end_index)
265 			break;
266 		if (index == end_index) {
267 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
268 			if (nr <= offset)
269 				break;
270 		}
271 		nr = nr - offset;
272 
273 		/* Find the page */
274 		page = find_lock_page(mapping, index);
275 		if (unlikely(page == NULL)) {
276 			/*
277 			 * We have a HOLE, zero out the user-buffer for the
278 			 * length of the hole or request.
279 			 */
280 			copied = iov_iter_zero(nr, to);
281 		} else {
282 			unlock_page(page);
283 
284 			/*
285 			 * We have the page, copy it to user space buffer.
286 			 */
287 			copied = hugetlbfs_read_actor(page, offset, to, nr);
288 			put_page(page);
289 		}
290 		offset += copied;
291 		retval += copied;
292 		if (copied != nr && iov_iter_count(to)) {
293 			if (!retval)
294 				retval = -EFAULT;
295 			break;
296 		}
297 		index += offset >> huge_page_shift(h);
298 		offset &= ~huge_page_mask(h);
299 	}
300 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
301 	return retval;
302 }
303 
304 static int hugetlbfs_write_begin(struct file *file,
305 			struct address_space *mapping,
306 			loff_t pos, unsigned len, unsigned flags,
307 			struct page **pagep, void **fsdata)
308 {
309 	return -EINVAL;
310 }
311 
312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
313 			loff_t pos, unsigned len, unsigned copied,
314 			struct page *page, void *fsdata)
315 {
316 	BUG();
317 	return -EINVAL;
318 }
319 
320 static void remove_huge_page(struct page *page)
321 {
322 	ClearPageDirty(page);
323 	ClearPageUptodate(page);
324 	delete_from_page_cache(page);
325 }
326 
327 static void
328 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
329 {
330 	struct vm_area_struct *vma;
331 
332 	/*
333 	 * end == 0 indicates that the entire range after
334 	 * start should be unmapped.
335 	 */
336 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
337 		unsigned long v_offset;
338 		unsigned long v_end;
339 
340 		/*
341 		 * Can the expression below overflow on 32-bit arches?
342 		 * No, because the interval tree returns us only those vmas
343 		 * which overlap the truncated area starting at pgoff,
344 		 * and no vma on a 32-bit arch can span beyond the 4GB.
345 		 */
346 		if (vma->vm_pgoff < start)
347 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
348 		else
349 			v_offset = 0;
350 
351 		if (!end)
352 			v_end = vma->vm_end;
353 		else {
354 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
355 							+ vma->vm_start;
356 			if (v_end > vma->vm_end)
357 				v_end = vma->vm_end;
358 		}
359 
360 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
361 									NULL);
362 	}
363 }
364 
365 /*
366  * remove_inode_hugepages handles two distinct cases: truncation and hole
367  * punch.  There are subtle differences in operation for each case.
368  *
369  * truncation is indicated by end of range being LLONG_MAX
370  *	In this case, we first scan the range and release found pages.
371  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
372  *	maps and global counts.  Page faults can not race with truncation
373  *	in this routine.  hugetlb_no_page() prevents page faults in the
374  *	truncated range.  It checks i_size before allocation, and again after
375  *	with the page table lock for the page held.  The same lock must be
376  *	acquired to unmap a page.
377  * hole punch is indicated if end is not LLONG_MAX
378  *	In the hole punch case we scan the range and release found pages.
379  *	Only when releasing a page is the associated region/reserv map
380  *	deleted.  The region/reserv map for ranges without associated
381  *	pages are not modified.  Page faults can race with hole punch.
382  *	This is indicated if we find a mapped page.
383  * Note: If the passed end of range value is beyond the end of file, but
384  * not LLONG_MAX this routine still performs a hole punch operation.
385  */
386 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
387 				   loff_t lend)
388 {
389 	struct hstate *h = hstate_inode(inode);
390 	struct address_space *mapping = &inode->i_data;
391 	const pgoff_t start = lstart >> huge_page_shift(h);
392 	const pgoff_t end = lend >> huge_page_shift(h);
393 	struct vm_area_struct pseudo_vma;
394 	struct pagevec pvec;
395 	pgoff_t next;
396 	int i, freed = 0;
397 	long lookup_nr = PAGEVEC_SIZE;
398 	bool truncate_op = (lend == LLONG_MAX);
399 
400 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
401 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
402 	pagevec_init(&pvec, 0);
403 	next = start;
404 	while (next < end) {
405 		/*
406 		 * Don't grab more pages than the number left in the range.
407 		 */
408 		if (end - next < lookup_nr)
409 			lookup_nr = end - next;
410 
411 		/*
412 		 * When no more pages are found, we are done.
413 		 */
414 		if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
415 			break;
416 
417 		for (i = 0; i < pagevec_count(&pvec); ++i) {
418 			struct page *page = pvec.pages[i];
419 			u32 hash;
420 
421 			/*
422 			 * The page (index) could be beyond end.  This is
423 			 * only possible in the punch hole case as end is
424 			 * max page offset in the truncate case.
425 			 */
426 			next = page->index;
427 			if (next >= end)
428 				break;
429 
430 			hash = hugetlb_fault_mutex_hash(h, current->mm,
431 							&pseudo_vma,
432 							mapping, next, 0);
433 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
434 
435 			/*
436 			 * If page is mapped, it was faulted in after being
437 			 * unmapped in caller.  Unmap (again) now after taking
438 			 * the fault mutex.  The mutex will prevent faults
439 			 * until we finish removing the page.
440 			 *
441 			 * This race can only happen in the hole punch case.
442 			 * Getting here in a truncate operation is a bug.
443 			 */
444 			if (unlikely(page_mapped(page))) {
445 				BUG_ON(truncate_op);
446 
447 				i_mmap_lock_write(mapping);
448 				hugetlb_vmdelete_list(&mapping->i_mmap,
449 					next * pages_per_huge_page(h),
450 					(next + 1) * pages_per_huge_page(h));
451 				i_mmap_unlock_write(mapping);
452 			}
453 
454 			lock_page(page);
455 			/*
456 			 * We must free the huge page and remove from page
457 			 * cache (remove_huge_page) BEFORE removing the
458 			 * region/reserve map (hugetlb_unreserve_pages).  In
459 			 * rare out of memory conditions, removal of the
460 			 * region/reserve map could fail. Correspondingly,
461 			 * the subpool and global reserve usage count can need
462 			 * to be adjusted.
463 			 */
464 			VM_BUG_ON(PagePrivate(page));
465 			remove_huge_page(page);
466 			freed++;
467 			if (!truncate_op) {
468 				if (unlikely(hugetlb_unreserve_pages(inode,
469 							next, next + 1, 1)))
470 					hugetlb_fix_reserve_counts(inode);
471 			}
472 
473 			unlock_page(page);
474 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
475 		}
476 		++next;
477 		huge_pagevec_release(&pvec);
478 		cond_resched();
479 	}
480 
481 	if (truncate_op)
482 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
483 }
484 
485 static void hugetlbfs_evict_inode(struct inode *inode)
486 {
487 	struct resv_map *resv_map;
488 
489 	remove_inode_hugepages(inode, 0, LLONG_MAX);
490 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
491 	/* root inode doesn't have the resv_map, so we should check it */
492 	if (resv_map)
493 		resv_map_release(&resv_map->refs);
494 	clear_inode(inode);
495 }
496 
497 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
498 {
499 	pgoff_t pgoff;
500 	struct address_space *mapping = inode->i_mapping;
501 	struct hstate *h = hstate_inode(inode);
502 
503 	BUG_ON(offset & ~huge_page_mask(h));
504 	pgoff = offset >> PAGE_SHIFT;
505 
506 	i_size_write(inode, offset);
507 	i_mmap_lock_write(mapping);
508 	if (!RB_EMPTY_ROOT(&mapping->i_mmap))
509 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
510 	i_mmap_unlock_write(mapping);
511 	remove_inode_hugepages(inode, offset, LLONG_MAX);
512 	return 0;
513 }
514 
515 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
516 {
517 	struct hstate *h = hstate_inode(inode);
518 	loff_t hpage_size = huge_page_size(h);
519 	loff_t hole_start, hole_end;
520 
521 	/*
522 	 * For hole punch round up the beginning offset of the hole and
523 	 * round down the end.
524 	 */
525 	hole_start = round_up(offset, hpage_size);
526 	hole_end = round_down(offset + len, hpage_size);
527 
528 	if (hole_end > hole_start) {
529 		struct address_space *mapping = inode->i_mapping;
530 
531 		inode_lock(inode);
532 		i_mmap_lock_write(mapping);
533 		if (!RB_EMPTY_ROOT(&mapping->i_mmap))
534 			hugetlb_vmdelete_list(&mapping->i_mmap,
535 						hole_start >> PAGE_SHIFT,
536 						hole_end  >> PAGE_SHIFT);
537 		i_mmap_unlock_write(mapping);
538 		remove_inode_hugepages(inode, hole_start, hole_end);
539 		inode_unlock(inode);
540 	}
541 
542 	return 0;
543 }
544 
545 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
546 				loff_t len)
547 {
548 	struct inode *inode = file_inode(file);
549 	struct address_space *mapping = inode->i_mapping;
550 	struct hstate *h = hstate_inode(inode);
551 	struct vm_area_struct pseudo_vma;
552 	struct mm_struct *mm = current->mm;
553 	loff_t hpage_size = huge_page_size(h);
554 	unsigned long hpage_shift = huge_page_shift(h);
555 	pgoff_t start, index, end;
556 	int error;
557 	u32 hash;
558 
559 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
560 		return -EOPNOTSUPP;
561 
562 	if (mode & FALLOC_FL_PUNCH_HOLE)
563 		return hugetlbfs_punch_hole(inode, offset, len);
564 
565 	/*
566 	 * Default preallocate case.
567 	 * For this range, start is rounded down and end is rounded up
568 	 * as well as being converted to page offsets.
569 	 */
570 	start = offset >> hpage_shift;
571 	end = (offset + len + hpage_size - 1) >> hpage_shift;
572 
573 	inode_lock(inode);
574 
575 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
576 	error = inode_newsize_ok(inode, offset + len);
577 	if (error)
578 		goto out;
579 
580 	/*
581 	 * Initialize a pseudo vma as this is required by the huge page
582 	 * allocation routines.  If NUMA is configured, use page index
583 	 * as input to create an allocation policy.
584 	 */
585 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
586 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
587 	pseudo_vma.vm_file = file;
588 
589 	for (index = start; index < end; index++) {
590 		/*
591 		 * This is supposed to be the vaddr where the page is being
592 		 * faulted in, but we have no vaddr here.
593 		 */
594 		struct page *page;
595 		unsigned long addr;
596 		int avoid_reserve = 0;
597 
598 		cond_resched();
599 
600 		/*
601 		 * fallocate(2) manpage permits EINTR; we may have been
602 		 * interrupted because we are using up too much memory.
603 		 */
604 		if (signal_pending(current)) {
605 			error = -EINTR;
606 			break;
607 		}
608 
609 		/* Set numa allocation policy based on index */
610 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
611 
612 		/* addr is the offset within the file (zero based) */
613 		addr = index * hpage_size;
614 
615 		/* mutex taken here, fault path and hole punch */
616 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
617 						index, addr);
618 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
619 
620 		/* See if already present in mapping to avoid alloc/free */
621 		page = find_get_page(mapping, index);
622 		if (page) {
623 			put_page(page);
624 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
625 			hugetlb_drop_vma_policy(&pseudo_vma);
626 			continue;
627 		}
628 
629 		/* Allocate page and add to page cache */
630 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
631 		hugetlb_drop_vma_policy(&pseudo_vma);
632 		if (IS_ERR(page)) {
633 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
634 			error = PTR_ERR(page);
635 			goto out;
636 		}
637 		clear_huge_page(page, addr, pages_per_huge_page(h));
638 		__SetPageUptodate(page);
639 		error = huge_add_to_page_cache(page, mapping, index);
640 		if (unlikely(error)) {
641 			put_page(page);
642 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643 			goto out;
644 		}
645 
646 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
647 
648 		/*
649 		 * page_put due to reference from alloc_huge_page()
650 		 * unlock_page because locked by add_to_page_cache()
651 		 */
652 		put_page(page);
653 		unlock_page(page);
654 	}
655 
656 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
657 		i_size_write(inode, offset + len);
658 	inode->i_ctime = current_time(inode);
659 out:
660 	inode_unlock(inode);
661 	return error;
662 }
663 
664 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
665 {
666 	struct inode *inode = d_inode(dentry);
667 	struct hstate *h = hstate_inode(inode);
668 	int error;
669 	unsigned int ia_valid = attr->ia_valid;
670 
671 	BUG_ON(!inode);
672 
673 	error = setattr_prepare(dentry, attr);
674 	if (error)
675 		return error;
676 
677 	if (ia_valid & ATTR_SIZE) {
678 		error = -EINVAL;
679 		if (attr->ia_size & ~huge_page_mask(h))
680 			return -EINVAL;
681 		error = hugetlb_vmtruncate(inode, attr->ia_size);
682 		if (error)
683 			return error;
684 	}
685 
686 	setattr_copy(inode, attr);
687 	mark_inode_dirty(inode);
688 	return 0;
689 }
690 
691 static struct inode *hugetlbfs_get_root(struct super_block *sb,
692 					struct hugetlbfs_config *config)
693 {
694 	struct inode *inode;
695 
696 	inode = new_inode(sb);
697 	if (inode) {
698 		inode->i_ino = get_next_ino();
699 		inode->i_mode = S_IFDIR | config->mode;
700 		inode->i_uid = config->uid;
701 		inode->i_gid = config->gid;
702 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
703 		inode->i_op = &hugetlbfs_dir_inode_operations;
704 		inode->i_fop = &simple_dir_operations;
705 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
706 		inc_nlink(inode);
707 		lockdep_annotate_inode_mutex_key(inode);
708 	}
709 	return inode;
710 }
711 
712 /*
713  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
714  * be taken from reclaim -- unlike regular filesystems. This needs an
715  * annotation because huge_pmd_share() does an allocation under hugetlb's
716  * i_mmap_rwsem.
717  */
718 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
719 
720 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
721 					struct inode *dir,
722 					umode_t mode, dev_t dev)
723 {
724 	struct inode *inode;
725 	struct resv_map *resv_map;
726 
727 	resv_map = resv_map_alloc();
728 	if (!resv_map)
729 		return NULL;
730 
731 	inode = new_inode(sb);
732 	if (inode) {
733 		inode->i_ino = get_next_ino();
734 		inode_init_owner(inode, dir, mode);
735 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
736 				&hugetlbfs_i_mmap_rwsem_key);
737 		inode->i_mapping->a_ops = &hugetlbfs_aops;
738 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
739 		inode->i_mapping->private_data = resv_map;
740 		switch (mode & S_IFMT) {
741 		default:
742 			init_special_inode(inode, mode, dev);
743 			break;
744 		case S_IFREG:
745 			inode->i_op = &hugetlbfs_inode_operations;
746 			inode->i_fop = &hugetlbfs_file_operations;
747 			break;
748 		case S_IFDIR:
749 			inode->i_op = &hugetlbfs_dir_inode_operations;
750 			inode->i_fop = &simple_dir_operations;
751 
752 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
753 			inc_nlink(inode);
754 			break;
755 		case S_IFLNK:
756 			inode->i_op = &page_symlink_inode_operations;
757 			inode_nohighmem(inode);
758 			break;
759 		}
760 		lockdep_annotate_inode_mutex_key(inode);
761 	} else
762 		kref_put(&resv_map->refs, resv_map_release);
763 
764 	return inode;
765 }
766 
767 /*
768  * File creation. Allocate an inode, and we're done..
769  */
770 static int hugetlbfs_mknod(struct inode *dir,
771 			struct dentry *dentry, umode_t mode, dev_t dev)
772 {
773 	struct inode *inode;
774 	int error = -ENOSPC;
775 
776 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
777 	if (inode) {
778 		dir->i_ctime = dir->i_mtime = current_time(dir);
779 		d_instantiate(dentry, inode);
780 		dget(dentry);	/* Extra count - pin the dentry in core */
781 		error = 0;
782 	}
783 	return error;
784 }
785 
786 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
787 {
788 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
789 	if (!retval)
790 		inc_nlink(dir);
791 	return retval;
792 }
793 
794 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
795 {
796 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
797 }
798 
799 static int hugetlbfs_symlink(struct inode *dir,
800 			struct dentry *dentry, const char *symname)
801 {
802 	struct inode *inode;
803 	int error = -ENOSPC;
804 
805 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
806 	if (inode) {
807 		int l = strlen(symname)+1;
808 		error = page_symlink(inode, symname, l);
809 		if (!error) {
810 			d_instantiate(dentry, inode);
811 			dget(dentry);
812 		} else
813 			iput(inode);
814 	}
815 	dir->i_ctime = dir->i_mtime = current_time(dir);
816 
817 	return error;
818 }
819 
820 /*
821  * mark the head page dirty
822  */
823 static int hugetlbfs_set_page_dirty(struct page *page)
824 {
825 	struct page *head = compound_head(page);
826 
827 	SetPageDirty(head);
828 	return 0;
829 }
830 
831 static int hugetlbfs_migrate_page(struct address_space *mapping,
832 				struct page *newpage, struct page *page,
833 				enum migrate_mode mode)
834 {
835 	int rc;
836 
837 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
838 	if (rc != MIGRATEPAGE_SUCCESS)
839 		return rc;
840 	migrate_page_copy(newpage, page);
841 
842 	return MIGRATEPAGE_SUCCESS;
843 }
844 
845 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
846 {
847 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
848 	struct hstate *h = hstate_inode(d_inode(dentry));
849 
850 	buf->f_type = HUGETLBFS_MAGIC;
851 	buf->f_bsize = huge_page_size(h);
852 	if (sbinfo) {
853 		spin_lock(&sbinfo->stat_lock);
854 		/* If no limits set, just report 0 for max/free/used
855 		 * blocks, like simple_statfs() */
856 		if (sbinfo->spool) {
857 			long free_pages;
858 
859 			spin_lock(&sbinfo->spool->lock);
860 			buf->f_blocks = sbinfo->spool->max_hpages;
861 			free_pages = sbinfo->spool->max_hpages
862 				- sbinfo->spool->used_hpages;
863 			buf->f_bavail = buf->f_bfree = free_pages;
864 			spin_unlock(&sbinfo->spool->lock);
865 			buf->f_files = sbinfo->max_inodes;
866 			buf->f_ffree = sbinfo->free_inodes;
867 		}
868 		spin_unlock(&sbinfo->stat_lock);
869 	}
870 	buf->f_namelen = NAME_MAX;
871 	return 0;
872 }
873 
874 static void hugetlbfs_put_super(struct super_block *sb)
875 {
876 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
877 
878 	if (sbi) {
879 		sb->s_fs_info = NULL;
880 
881 		if (sbi->spool)
882 			hugepage_put_subpool(sbi->spool);
883 
884 		kfree(sbi);
885 	}
886 }
887 
888 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
889 {
890 	if (sbinfo->free_inodes >= 0) {
891 		spin_lock(&sbinfo->stat_lock);
892 		if (unlikely(!sbinfo->free_inodes)) {
893 			spin_unlock(&sbinfo->stat_lock);
894 			return 0;
895 		}
896 		sbinfo->free_inodes--;
897 		spin_unlock(&sbinfo->stat_lock);
898 	}
899 
900 	return 1;
901 }
902 
903 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
904 {
905 	if (sbinfo->free_inodes >= 0) {
906 		spin_lock(&sbinfo->stat_lock);
907 		sbinfo->free_inodes++;
908 		spin_unlock(&sbinfo->stat_lock);
909 	}
910 }
911 
912 
913 static struct kmem_cache *hugetlbfs_inode_cachep;
914 
915 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
916 {
917 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
918 	struct hugetlbfs_inode_info *p;
919 
920 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
921 		return NULL;
922 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
923 	if (unlikely(!p)) {
924 		hugetlbfs_inc_free_inodes(sbinfo);
925 		return NULL;
926 	}
927 
928 	/*
929 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
930 	 * for the inode.  mpol_free_shared_policy is unconditionally called
931 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
932 	 * in case of a quick call to destroy.
933 	 *
934 	 * Note that the policy is initialized even if we are creating a
935 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
936 	 */
937 	mpol_shared_policy_init(&p->policy, NULL);
938 
939 	return &p->vfs_inode;
940 }
941 
942 static void hugetlbfs_i_callback(struct rcu_head *head)
943 {
944 	struct inode *inode = container_of(head, struct inode, i_rcu);
945 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
946 }
947 
948 static void hugetlbfs_destroy_inode(struct inode *inode)
949 {
950 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
951 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
952 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
953 }
954 
955 static const struct address_space_operations hugetlbfs_aops = {
956 	.write_begin	= hugetlbfs_write_begin,
957 	.write_end	= hugetlbfs_write_end,
958 	.set_page_dirty	= hugetlbfs_set_page_dirty,
959 	.migratepage    = hugetlbfs_migrate_page,
960 };
961 
962 
963 static void init_once(void *foo)
964 {
965 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
966 
967 	inode_init_once(&ei->vfs_inode);
968 }
969 
970 const struct file_operations hugetlbfs_file_operations = {
971 	.read_iter		= hugetlbfs_read_iter,
972 	.mmap			= hugetlbfs_file_mmap,
973 	.fsync			= noop_fsync,
974 	.get_unmapped_area	= hugetlb_get_unmapped_area,
975 	.llseek			= default_llseek,
976 	.fallocate		= hugetlbfs_fallocate,
977 };
978 
979 static const struct inode_operations hugetlbfs_dir_inode_operations = {
980 	.create		= hugetlbfs_create,
981 	.lookup		= simple_lookup,
982 	.link		= simple_link,
983 	.unlink		= simple_unlink,
984 	.symlink	= hugetlbfs_symlink,
985 	.mkdir		= hugetlbfs_mkdir,
986 	.rmdir		= simple_rmdir,
987 	.mknod		= hugetlbfs_mknod,
988 	.rename		= simple_rename,
989 	.setattr	= hugetlbfs_setattr,
990 };
991 
992 static const struct inode_operations hugetlbfs_inode_operations = {
993 	.setattr	= hugetlbfs_setattr,
994 };
995 
996 static const struct super_operations hugetlbfs_ops = {
997 	.alloc_inode    = hugetlbfs_alloc_inode,
998 	.destroy_inode  = hugetlbfs_destroy_inode,
999 	.evict_inode	= hugetlbfs_evict_inode,
1000 	.statfs		= hugetlbfs_statfs,
1001 	.put_super	= hugetlbfs_put_super,
1002 	.show_options	= generic_show_options,
1003 };
1004 
1005 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1006 
1007 /*
1008  * Convert size option passed from command line to number of huge pages
1009  * in the pool specified by hstate.  Size option could be in bytes
1010  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1011  */
1012 static long long
1013 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1014 								int val_type)
1015 {
1016 	if (val_type == NO_SIZE)
1017 		return -1;
1018 
1019 	if (val_type == SIZE_PERCENT) {
1020 		size_opt <<= huge_page_shift(h);
1021 		size_opt *= h->max_huge_pages;
1022 		do_div(size_opt, 100);
1023 	}
1024 
1025 	size_opt >>= huge_page_shift(h);
1026 	return size_opt;
1027 }
1028 
1029 static int
1030 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1031 {
1032 	char *p, *rest;
1033 	substring_t args[MAX_OPT_ARGS];
1034 	int option;
1035 	unsigned long long max_size_opt = 0, min_size_opt = 0;
1036 	int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1037 
1038 	if (!options)
1039 		return 0;
1040 
1041 	while ((p = strsep(&options, ",")) != NULL) {
1042 		int token;
1043 		if (!*p)
1044 			continue;
1045 
1046 		token = match_token(p, tokens, args);
1047 		switch (token) {
1048 		case Opt_uid:
1049 			if (match_int(&args[0], &option))
1050  				goto bad_val;
1051 			pconfig->uid = make_kuid(current_user_ns(), option);
1052 			if (!uid_valid(pconfig->uid))
1053 				goto bad_val;
1054 			break;
1055 
1056 		case Opt_gid:
1057 			if (match_int(&args[0], &option))
1058  				goto bad_val;
1059 			pconfig->gid = make_kgid(current_user_ns(), option);
1060 			if (!gid_valid(pconfig->gid))
1061 				goto bad_val;
1062 			break;
1063 
1064 		case Opt_mode:
1065 			if (match_octal(&args[0], &option))
1066  				goto bad_val;
1067 			pconfig->mode = option & 01777U;
1068 			break;
1069 
1070 		case Opt_size: {
1071 			/* memparse() will accept a K/M/G without a digit */
1072 			if (!isdigit(*args[0].from))
1073 				goto bad_val;
1074 			max_size_opt = memparse(args[0].from, &rest);
1075 			max_val_type = SIZE_STD;
1076 			if (*rest == '%')
1077 				max_val_type = SIZE_PERCENT;
1078 			break;
1079 		}
1080 
1081 		case Opt_nr_inodes:
1082 			/* memparse() will accept a K/M/G without a digit */
1083 			if (!isdigit(*args[0].from))
1084 				goto bad_val;
1085 			pconfig->nr_inodes = memparse(args[0].from, &rest);
1086 			break;
1087 
1088 		case Opt_pagesize: {
1089 			unsigned long ps;
1090 			ps = memparse(args[0].from, &rest);
1091 			pconfig->hstate = size_to_hstate(ps);
1092 			if (!pconfig->hstate) {
1093 				pr_err("Unsupported page size %lu MB\n",
1094 					ps >> 20);
1095 				return -EINVAL;
1096 			}
1097 			break;
1098 		}
1099 
1100 		case Opt_min_size: {
1101 			/* memparse() will accept a K/M/G without a digit */
1102 			if (!isdigit(*args[0].from))
1103 				goto bad_val;
1104 			min_size_opt = memparse(args[0].from, &rest);
1105 			min_val_type = SIZE_STD;
1106 			if (*rest == '%')
1107 				min_val_type = SIZE_PERCENT;
1108 			break;
1109 		}
1110 
1111 		default:
1112 			pr_err("Bad mount option: \"%s\"\n", p);
1113 			return -EINVAL;
1114 			break;
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * Use huge page pool size (in hstate) to convert the size
1120 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1121 	 */
1122 	pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1123 						max_size_opt, max_val_type);
1124 	pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1125 						min_size_opt, min_val_type);
1126 
1127 	/*
1128 	 * If max_size was specified, then min_size must be smaller
1129 	 */
1130 	if (max_val_type > NO_SIZE &&
1131 	    pconfig->min_hpages > pconfig->max_hpages) {
1132 		pr_err("minimum size can not be greater than maximum size\n");
1133 		return -EINVAL;
1134 	}
1135 
1136 	return 0;
1137 
1138 bad_val:
1139 	pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1140  	return -EINVAL;
1141 }
1142 
1143 static int
1144 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1145 {
1146 	int ret;
1147 	struct hugetlbfs_config config;
1148 	struct hugetlbfs_sb_info *sbinfo;
1149 
1150 	save_mount_options(sb, data);
1151 
1152 	config.max_hpages = -1; /* No limit on size by default */
1153 	config.nr_inodes = -1; /* No limit on number of inodes by default */
1154 	config.uid = current_fsuid();
1155 	config.gid = current_fsgid();
1156 	config.mode = 0755;
1157 	config.hstate = &default_hstate;
1158 	config.min_hpages = -1; /* No default minimum size */
1159 	ret = hugetlbfs_parse_options(data, &config);
1160 	if (ret)
1161 		return ret;
1162 
1163 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1164 	if (!sbinfo)
1165 		return -ENOMEM;
1166 	sb->s_fs_info = sbinfo;
1167 	sbinfo->hstate = config.hstate;
1168 	spin_lock_init(&sbinfo->stat_lock);
1169 	sbinfo->max_inodes = config.nr_inodes;
1170 	sbinfo->free_inodes = config.nr_inodes;
1171 	sbinfo->spool = NULL;
1172 	/*
1173 	 * Allocate and initialize subpool if maximum or minimum size is
1174 	 * specified.  Any needed reservations (for minimim size) are taken
1175 	 * taken when the subpool is created.
1176 	 */
1177 	if (config.max_hpages != -1 || config.min_hpages != -1) {
1178 		sbinfo->spool = hugepage_new_subpool(config.hstate,
1179 							config.max_hpages,
1180 							config.min_hpages);
1181 		if (!sbinfo->spool)
1182 			goto out_free;
1183 	}
1184 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1185 	sb->s_blocksize = huge_page_size(config.hstate);
1186 	sb->s_blocksize_bits = huge_page_shift(config.hstate);
1187 	sb->s_magic = HUGETLBFS_MAGIC;
1188 	sb->s_op = &hugetlbfs_ops;
1189 	sb->s_time_gran = 1;
1190 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1191 	if (!sb->s_root)
1192 		goto out_free;
1193 	return 0;
1194 out_free:
1195 	kfree(sbinfo->spool);
1196 	kfree(sbinfo);
1197 	return -ENOMEM;
1198 }
1199 
1200 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1201 	int flags, const char *dev_name, void *data)
1202 {
1203 	return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1204 }
1205 
1206 static struct file_system_type hugetlbfs_fs_type = {
1207 	.name		= "hugetlbfs",
1208 	.mount		= hugetlbfs_mount,
1209 	.kill_sb	= kill_litter_super,
1210 };
1211 
1212 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1213 
1214 static int can_do_hugetlb_shm(void)
1215 {
1216 	kgid_t shm_group;
1217 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1218 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1219 }
1220 
1221 static int get_hstate_idx(int page_size_log)
1222 {
1223 	struct hstate *h = hstate_sizelog(page_size_log);
1224 
1225 	if (!h)
1226 		return -1;
1227 	return h - hstates;
1228 }
1229 
1230 static const struct dentry_operations anon_ops = {
1231 	.d_dname = simple_dname
1232 };
1233 
1234 /*
1235  * Note that size should be aligned to proper hugepage size in caller side,
1236  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1237  */
1238 struct file *hugetlb_file_setup(const char *name, size_t size,
1239 				vm_flags_t acctflag, struct user_struct **user,
1240 				int creat_flags, int page_size_log)
1241 {
1242 	struct file *file = ERR_PTR(-ENOMEM);
1243 	struct inode *inode;
1244 	struct path path;
1245 	struct super_block *sb;
1246 	struct qstr quick_string;
1247 	int hstate_idx;
1248 
1249 	hstate_idx = get_hstate_idx(page_size_log);
1250 	if (hstate_idx < 0)
1251 		return ERR_PTR(-ENODEV);
1252 
1253 	*user = NULL;
1254 	if (!hugetlbfs_vfsmount[hstate_idx])
1255 		return ERR_PTR(-ENOENT);
1256 
1257 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1258 		*user = current_user();
1259 		if (user_shm_lock(size, *user)) {
1260 			task_lock(current);
1261 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1262 				current->comm, current->pid);
1263 			task_unlock(current);
1264 		} else {
1265 			*user = NULL;
1266 			return ERR_PTR(-EPERM);
1267 		}
1268 	}
1269 
1270 	sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1271 	quick_string.name = name;
1272 	quick_string.len = strlen(quick_string.name);
1273 	quick_string.hash = 0;
1274 	path.dentry = d_alloc_pseudo(sb, &quick_string);
1275 	if (!path.dentry)
1276 		goto out_shm_unlock;
1277 
1278 	d_set_d_op(path.dentry, &anon_ops);
1279 	path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1280 	file = ERR_PTR(-ENOSPC);
1281 	inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1282 	if (!inode)
1283 		goto out_dentry;
1284 	if (creat_flags == HUGETLB_SHMFS_INODE)
1285 		inode->i_flags |= S_PRIVATE;
1286 
1287 	file = ERR_PTR(-ENOMEM);
1288 	if (hugetlb_reserve_pages(inode, 0,
1289 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1290 			acctflag))
1291 		goto out_inode;
1292 
1293 	d_instantiate(path.dentry, inode);
1294 	inode->i_size = size;
1295 	clear_nlink(inode);
1296 
1297 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1298 			&hugetlbfs_file_operations);
1299 	if (IS_ERR(file))
1300 		goto out_dentry; /* inode is already attached */
1301 
1302 	return file;
1303 
1304 out_inode:
1305 	iput(inode);
1306 out_dentry:
1307 	path_put(&path);
1308 out_shm_unlock:
1309 	if (*user) {
1310 		user_shm_unlock(size, *user);
1311 		*user = NULL;
1312 	}
1313 	return file;
1314 }
1315 
1316 static int __init init_hugetlbfs_fs(void)
1317 {
1318 	struct hstate *h;
1319 	int error;
1320 	int i;
1321 
1322 	if (!hugepages_supported()) {
1323 		pr_info("disabling because there are no supported hugepage sizes\n");
1324 		return -ENOTSUPP;
1325 	}
1326 
1327 	error = -ENOMEM;
1328 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1329 					sizeof(struct hugetlbfs_inode_info),
1330 					0, SLAB_ACCOUNT, init_once);
1331 	if (hugetlbfs_inode_cachep == NULL)
1332 		goto out2;
1333 
1334 	error = register_filesystem(&hugetlbfs_fs_type);
1335 	if (error)
1336 		goto out;
1337 
1338 	i = 0;
1339 	for_each_hstate(h) {
1340 		char buf[50];
1341 		unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1342 
1343 		snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1344 		hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1345 							buf);
1346 
1347 		if (IS_ERR(hugetlbfs_vfsmount[i])) {
1348 			pr_err("Cannot mount internal hugetlbfs for "
1349 				"page size %uK", ps_kb);
1350 			error = PTR_ERR(hugetlbfs_vfsmount[i]);
1351 			hugetlbfs_vfsmount[i] = NULL;
1352 		}
1353 		i++;
1354 	}
1355 	/* Non default hstates are optional */
1356 	if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1357 		return 0;
1358 
1359  out:
1360 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1361  out2:
1362 	return error;
1363 }
1364 fs_initcall(init_hugetlbfs_fs)
1365