xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 42c06a0e)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 #ifdef CONFIG_NUMA
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 					struct inode *inode, pgoff_t index)
89 {
90 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 							index);
92 }
93 
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 	mpol_cond_put(vma->vm_policy);
97 }
98 #else
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 					struct inode *inode, pgoff_t index)
101 {
102 }
103 
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108 
109 /*
110  * Mask used when checking the page offset value passed in via system
111  * calls.  This value will be converted to a loff_t which is signed.
112  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113  * value.  The extra bit (- 1 in the shift value) is to take the sign
114  * bit into account.
115  */
116 #define PGOFF_LOFFT_MAX \
117 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118 
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 	struct inode *inode = file_inode(file);
122 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 	loff_t len, vma_len;
124 	int ret;
125 	struct hstate *h = hstate_file(file);
126 
127 	/*
128 	 * vma address alignment (but not the pgoff alignment) has
129 	 * already been checked by prepare_hugepage_range.  If you add
130 	 * any error returns here, do so after setting VM_HUGETLB, so
131 	 * is_vm_hugetlb_page tests below unmap_region go the right
132 	 * way when do_mmap unwinds (may be important on powerpc
133 	 * and ia64).
134 	 */
135 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
136 	vma->vm_ops = &hugetlb_vm_ops;
137 
138 	ret = seal_check_future_write(info->seals, vma);
139 	if (ret)
140 		return ret;
141 
142 	/*
143 	 * page based offset in vm_pgoff could be sufficiently large to
144 	 * overflow a loff_t when converted to byte offset.  This can
145 	 * only happen on architectures where sizeof(loff_t) ==
146 	 * sizeof(unsigned long).  So, only check in those instances.
147 	 */
148 	if (sizeof(unsigned long) == sizeof(loff_t)) {
149 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 			return -EINVAL;
151 	}
152 
153 	/* must be huge page aligned */
154 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
155 		return -EINVAL;
156 
157 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 	/* check for overflow */
160 	if (len < vma_len)
161 		return -EINVAL;
162 
163 	inode_lock(inode);
164 	file_accessed(file);
165 
166 	ret = -ENOMEM;
167 	if (!hugetlb_reserve_pages(inode,
168 				vma->vm_pgoff >> huge_page_order(h),
169 				len >> huge_page_shift(h), vma,
170 				vma->vm_flags))
171 		goto out;
172 
173 	ret = 0;
174 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 		i_size_write(inode, len);
176 out:
177 	inode_unlock(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called under mmap_write_lock(mm).
184  */
185 
186 static unsigned long
187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 		unsigned long len, unsigned long pgoff, unsigned long flags)
189 {
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	info.flags = 0;
194 	info.length = len;
195 	info.low_limit = current->mm->mmap_base;
196 	info.high_limit = arch_get_mmap_end(addr, len, flags);
197 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 	info.align_offset = 0;
199 	return vm_unmapped_area(&info);
200 }
201 
202 static unsigned long
203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 		unsigned long len, unsigned long pgoff, unsigned long flags)
205 {
206 	struct hstate *h = hstate_file(file);
207 	struct vm_unmapped_area_info info;
208 
209 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 	info.length = len;
211 	info.low_limit = PAGE_SIZE;
212 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 	info.align_offset = 0;
215 	addr = vm_unmapped_area(&info);
216 
217 	/*
218 	 * A failed mmap() very likely causes application failure,
219 	 * so fall back to the bottom-up function here. This scenario
220 	 * can happen with large stack limits and large mmap()
221 	 * allocations.
222 	 */
223 	if (unlikely(offset_in_page(addr))) {
224 		VM_BUG_ON(addr != -ENOMEM);
225 		info.flags = 0;
226 		info.low_limit = current->mm->mmap_base;
227 		info.high_limit = arch_get_mmap_end(addr, len, flags);
228 		addr = vm_unmapped_area(&info);
229 	}
230 
231 	return addr;
232 }
233 
234 unsigned long
235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 				  unsigned long len, unsigned long pgoff,
237 				  unsigned long flags)
238 {
239 	struct mm_struct *mm = current->mm;
240 	struct vm_area_struct *vma;
241 	struct hstate *h = hstate_file(file);
242 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
243 
244 	if (len & ~huge_page_mask(h))
245 		return -EINVAL;
246 	if (len > TASK_SIZE)
247 		return -ENOMEM;
248 
249 	if (flags & MAP_FIXED) {
250 		if (prepare_hugepage_range(file, addr, len))
251 			return -EINVAL;
252 		return addr;
253 	}
254 
255 	if (addr) {
256 		addr = ALIGN(addr, huge_page_size(h));
257 		vma = find_vma(mm, addr);
258 		if (mmap_end - len >= addr &&
259 		    (!vma || addr + len <= vm_start_gap(vma)))
260 			return addr;
261 	}
262 
263 	/*
264 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 	 * If architectures have special needs, they should define their own
266 	 * version of hugetlb_get_unmapped_area.
267 	 */
268 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 				pgoff, flags);
271 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 			pgoff, flags);
273 }
274 
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276 static unsigned long
277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 			  unsigned long len, unsigned long pgoff,
279 			  unsigned long flags)
280 {
281 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282 }
283 #endif
284 
285 /*
286  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
287  * Returns the maximum number of bytes one can read without touching the 1st raw
288  * HWPOISON subpage.
289  *
290  * The implementation borrows the iteration logic from copy_page_to_iter*.
291  */
292 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
293 {
294 	size_t n = 0;
295 	size_t res = 0;
296 
297 	/* First subpage to start the loop. */
298 	page += offset / PAGE_SIZE;
299 	offset %= PAGE_SIZE;
300 	while (1) {
301 		if (is_raw_hwpoison_page_in_hugepage(page))
302 			break;
303 
304 		/* Safe to read n bytes without touching HWPOISON subpage. */
305 		n = min(bytes, (size_t)PAGE_SIZE - offset);
306 		res += n;
307 		bytes -= n;
308 		if (!bytes || !n)
309 			break;
310 		offset += n;
311 		if (offset == PAGE_SIZE) {
312 			page++;
313 			offset = 0;
314 		}
315 	}
316 
317 	return res;
318 }
319 
320 /*
321  * Support for read() - Find the page attached to f_mapping and copy out the
322  * data. This provides functionality similar to filemap_read().
323  */
324 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
325 {
326 	struct file *file = iocb->ki_filp;
327 	struct hstate *h = hstate_file(file);
328 	struct address_space *mapping = file->f_mapping;
329 	struct inode *inode = mapping->host;
330 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
331 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
332 	unsigned long end_index;
333 	loff_t isize;
334 	ssize_t retval = 0;
335 
336 	while (iov_iter_count(to)) {
337 		struct page *page;
338 		size_t nr, copied, want;
339 
340 		/* nr is the maximum number of bytes to copy from this page */
341 		nr = huge_page_size(h);
342 		isize = i_size_read(inode);
343 		if (!isize)
344 			break;
345 		end_index = (isize - 1) >> huge_page_shift(h);
346 		if (index > end_index)
347 			break;
348 		if (index == end_index) {
349 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
350 			if (nr <= offset)
351 				break;
352 		}
353 		nr = nr - offset;
354 
355 		/* Find the page */
356 		page = find_lock_page(mapping, index);
357 		if (unlikely(page == NULL)) {
358 			/*
359 			 * We have a HOLE, zero out the user-buffer for the
360 			 * length of the hole or request.
361 			 */
362 			copied = iov_iter_zero(nr, to);
363 		} else {
364 			unlock_page(page);
365 
366 			if (!PageHWPoison(page))
367 				want = nr;
368 			else {
369 				/*
370 				 * Adjust how many bytes safe to read without
371 				 * touching the 1st raw HWPOISON subpage after
372 				 * offset.
373 				 */
374 				want = adjust_range_hwpoison(page, offset, nr);
375 				if (want == 0) {
376 					put_page(page);
377 					retval = -EIO;
378 					break;
379 				}
380 			}
381 
382 			/*
383 			 * We have the page, copy it to user space buffer.
384 			 */
385 			copied = copy_page_to_iter(page, offset, want, to);
386 			put_page(page);
387 		}
388 		offset += copied;
389 		retval += copied;
390 		if (copied != nr && iov_iter_count(to)) {
391 			if (!retval)
392 				retval = -EFAULT;
393 			break;
394 		}
395 		index += offset >> huge_page_shift(h);
396 		offset &= ~huge_page_mask(h);
397 	}
398 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
399 	return retval;
400 }
401 
402 static int hugetlbfs_write_begin(struct file *file,
403 			struct address_space *mapping,
404 			loff_t pos, unsigned len,
405 			struct page **pagep, void **fsdata)
406 {
407 	return -EINVAL;
408 }
409 
410 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
411 			loff_t pos, unsigned len, unsigned copied,
412 			struct page *page, void *fsdata)
413 {
414 	BUG();
415 	return -EINVAL;
416 }
417 
418 static void hugetlb_delete_from_page_cache(struct folio *folio)
419 {
420 	folio_clear_dirty(folio);
421 	folio_clear_uptodate(folio);
422 	filemap_remove_folio(folio);
423 }
424 
425 /*
426  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
427  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
428  * mutex for the page in the mapping.  So, we can not race with page being
429  * faulted into the vma.
430  */
431 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
432 				unsigned long addr, struct page *page)
433 {
434 	pte_t *ptep, pte;
435 
436 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
437 	if (!ptep)
438 		return false;
439 
440 	pte = huge_ptep_get(ptep);
441 	if (huge_pte_none(pte) || !pte_present(pte))
442 		return false;
443 
444 	if (pte_page(pte) == page)
445 		return true;
446 
447 	return false;
448 }
449 
450 /*
451  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
452  * No, because the interval tree returns us only those vmas
453  * which overlap the truncated area starting at pgoff,
454  * and no vma on a 32-bit arch can span beyond the 4GB.
455  */
456 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
457 {
458 	unsigned long offset = 0;
459 
460 	if (vma->vm_pgoff < start)
461 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
462 
463 	return vma->vm_start + offset;
464 }
465 
466 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
467 {
468 	unsigned long t_end;
469 
470 	if (!end)
471 		return vma->vm_end;
472 
473 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
474 	if (t_end > vma->vm_end)
475 		t_end = vma->vm_end;
476 	return t_end;
477 }
478 
479 /*
480  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
481  * this folio can be created while executing the routine.
482  */
483 static void hugetlb_unmap_file_folio(struct hstate *h,
484 					struct address_space *mapping,
485 					struct folio *folio, pgoff_t index)
486 {
487 	struct rb_root_cached *root = &mapping->i_mmap;
488 	struct hugetlb_vma_lock *vma_lock;
489 	struct page *page = &folio->page;
490 	struct vm_area_struct *vma;
491 	unsigned long v_start;
492 	unsigned long v_end;
493 	pgoff_t start, end;
494 
495 	start = index * pages_per_huge_page(h);
496 	end = (index + 1) * pages_per_huge_page(h);
497 
498 	i_mmap_lock_write(mapping);
499 retry:
500 	vma_lock = NULL;
501 	vma_interval_tree_foreach(vma, root, start, end - 1) {
502 		v_start = vma_offset_start(vma, start);
503 		v_end = vma_offset_end(vma, end);
504 
505 		if (!hugetlb_vma_maps_page(vma, v_start, page))
506 			continue;
507 
508 		if (!hugetlb_vma_trylock_write(vma)) {
509 			vma_lock = vma->vm_private_data;
510 			/*
511 			 * If we can not get vma lock, we need to drop
512 			 * immap_sema and take locks in order.  First,
513 			 * take a ref on the vma_lock structure so that
514 			 * we can be guaranteed it will not go away when
515 			 * dropping immap_sema.
516 			 */
517 			kref_get(&vma_lock->refs);
518 			break;
519 		}
520 
521 		unmap_hugepage_range(vma, v_start, v_end, NULL,
522 				     ZAP_FLAG_DROP_MARKER);
523 		hugetlb_vma_unlock_write(vma);
524 	}
525 
526 	i_mmap_unlock_write(mapping);
527 
528 	if (vma_lock) {
529 		/*
530 		 * Wait on vma_lock.  We know it is still valid as we have
531 		 * a reference.  We must 'open code' vma locking as we do
532 		 * not know if vma_lock is still attached to vma.
533 		 */
534 		down_write(&vma_lock->rw_sema);
535 		i_mmap_lock_write(mapping);
536 
537 		vma = vma_lock->vma;
538 		if (!vma) {
539 			/*
540 			 * If lock is no longer attached to vma, then just
541 			 * unlock, drop our reference and retry looking for
542 			 * other vmas.
543 			 */
544 			up_write(&vma_lock->rw_sema);
545 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
546 			goto retry;
547 		}
548 
549 		/*
550 		 * vma_lock is still attached to vma.  Check to see if vma
551 		 * still maps page and if so, unmap.
552 		 */
553 		v_start = vma_offset_start(vma, start);
554 		v_end = vma_offset_end(vma, end);
555 		if (hugetlb_vma_maps_page(vma, v_start, page))
556 			unmap_hugepage_range(vma, v_start, v_end, NULL,
557 					     ZAP_FLAG_DROP_MARKER);
558 
559 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
560 		hugetlb_vma_unlock_write(vma);
561 
562 		goto retry;
563 	}
564 }
565 
566 static void
567 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
568 		      zap_flags_t zap_flags)
569 {
570 	struct vm_area_struct *vma;
571 
572 	/*
573 	 * end == 0 indicates that the entire range after start should be
574 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
575 	 * an inclusive "last".
576 	 */
577 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
578 		unsigned long v_start;
579 		unsigned long v_end;
580 
581 		if (!hugetlb_vma_trylock_write(vma))
582 			continue;
583 
584 		v_start = vma_offset_start(vma, start);
585 		v_end = vma_offset_end(vma, end);
586 
587 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
588 
589 		/*
590 		 * Note that vma lock only exists for shared/non-private
591 		 * vmas.  Therefore, lock is not held when calling
592 		 * unmap_hugepage_range for private vmas.
593 		 */
594 		hugetlb_vma_unlock_write(vma);
595 	}
596 }
597 
598 /*
599  * Called with hugetlb fault mutex held.
600  * Returns true if page was actually removed, false otherwise.
601  */
602 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
603 					struct address_space *mapping,
604 					struct folio *folio, pgoff_t index,
605 					bool truncate_op)
606 {
607 	bool ret = false;
608 
609 	/*
610 	 * If folio is mapped, it was faulted in after being
611 	 * unmapped in caller.  Unmap (again) while holding
612 	 * the fault mutex.  The mutex will prevent faults
613 	 * until we finish removing the folio.
614 	 */
615 	if (unlikely(folio_mapped(folio)))
616 		hugetlb_unmap_file_folio(h, mapping, folio, index);
617 
618 	folio_lock(folio);
619 	/*
620 	 * We must remove the folio from page cache before removing
621 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
622 	 * rare out of memory conditions, removal of the region/reserve
623 	 * map could fail.  Correspondingly, the subpool and global
624 	 * reserve usage count can need to be adjusted.
625 	 */
626 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
627 	hugetlb_delete_from_page_cache(folio);
628 	ret = true;
629 	if (!truncate_op) {
630 		if (unlikely(hugetlb_unreserve_pages(inode, index,
631 							index + 1, 1)))
632 			hugetlb_fix_reserve_counts(inode);
633 	}
634 
635 	folio_unlock(folio);
636 	return ret;
637 }
638 
639 /*
640  * remove_inode_hugepages handles two distinct cases: truncation and hole
641  * punch.  There are subtle differences in operation for each case.
642  *
643  * truncation is indicated by end of range being LLONG_MAX
644  *	In this case, we first scan the range and release found pages.
645  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
646  *	maps and global counts.  Page faults can race with truncation.
647  *	During faults, hugetlb_no_page() checks i_size before page allocation,
648  *	and again after obtaining page table lock.  It will 'back out'
649  *	allocations in the truncated range.
650  * hole punch is indicated if end is not LLONG_MAX
651  *	In the hole punch case we scan the range and release found pages.
652  *	Only when releasing a page is the associated region/reserve map
653  *	deleted.  The region/reserve map for ranges without associated
654  *	pages are not modified.  Page faults can race with hole punch.
655  *	This is indicated if we find a mapped page.
656  * Note: If the passed end of range value is beyond the end of file, but
657  * not LLONG_MAX this routine still performs a hole punch operation.
658  */
659 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
660 				   loff_t lend)
661 {
662 	struct hstate *h = hstate_inode(inode);
663 	struct address_space *mapping = &inode->i_data;
664 	const pgoff_t start = lstart >> huge_page_shift(h);
665 	const pgoff_t end = lend >> huge_page_shift(h);
666 	struct folio_batch fbatch;
667 	pgoff_t next, index;
668 	int i, freed = 0;
669 	bool truncate_op = (lend == LLONG_MAX);
670 
671 	folio_batch_init(&fbatch);
672 	next = start;
673 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
674 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
675 			struct folio *folio = fbatch.folios[i];
676 			u32 hash = 0;
677 
678 			index = folio->index;
679 			hash = hugetlb_fault_mutex_hash(mapping, index);
680 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
681 
682 			/*
683 			 * Remove folio that was part of folio_batch.
684 			 */
685 			if (remove_inode_single_folio(h, inode, mapping, folio,
686 							index, truncate_op))
687 				freed++;
688 
689 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
690 		}
691 		folio_batch_release(&fbatch);
692 		cond_resched();
693 	}
694 
695 	if (truncate_op)
696 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
697 }
698 
699 static void hugetlbfs_evict_inode(struct inode *inode)
700 {
701 	struct resv_map *resv_map;
702 
703 	remove_inode_hugepages(inode, 0, LLONG_MAX);
704 
705 	/*
706 	 * Get the resv_map from the address space embedded in the inode.
707 	 * This is the address space which points to any resv_map allocated
708 	 * at inode creation time.  If this is a device special inode,
709 	 * i_mapping may not point to the original address space.
710 	 */
711 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
712 	/* Only regular and link inodes have associated reserve maps */
713 	if (resv_map)
714 		resv_map_release(&resv_map->refs);
715 	clear_inode(inode);
716 }
717 
718 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
719 {
720 	pgoff_t pgoff;
721 	struct address_space *mapping = inode->i_mapping;
722 	struct hstate *h = hstate_inode(inode);
723 
724 	BUG_ON(offset & ~huge_page_mask(h));
725 	pgoff = offset >> PAGE_SHIFT;
726 
727 	i_size_write(inode, offset);
728 	i_mmap_lock_write(mapping);
729 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
730 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
731 				      ZAP_FLAG_DROP_MARKER);
732 	i_mmap_unlock_write(mapping);
733 	remove_inode_hugepages(inode, offset, LLONG_MAX);
734 }
735 
736 static void hugetlbfs_zero_partial_page(struct hstate *h,
737 					struct address_space *mapping,
738 					loff_t start,
739 					loff_t end)
740 {
741 	pgoff_t idx = start >> huge_page_shift(h);
742 	struct folio *folio;
743 
744 	folio = filemap_lock_folio(mapping, idx);
745 	if (IS_ERR(folio))
746 		return;
747 
748 	start = start & ~huge_page_mask(h);
749 	end = end & ~huge_page_mask(h);
750 	if (!end)
751 		end = huge_page_size(h);
752 
753 	folio_zero_segment(folio, (size_t)start, (size_t)end);
754 
755 	folio_unlock(folio);
756 	folio_put(folio);
757 }
758 
759 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
760 {
761 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
762 	struct address_space *mapping = inode->i_mapping;
763 	struct hstate *h = hstate_inode(inode);
764 	loff_t hpage_size = huge_page_size(h);
765 	loff_t hole_start, hole_end;
766 
767 	/*
768 	 * hole_start and hole_end indicate the full pages within the hole.
769 	 */
770 	hole_start = round_up(offset, hpage_size);
771 	hole_end = round_down(offset + len, hpage_size);
772 
773 	inode_lock(inode);
774 
775 	/* protected by i_rwsem */
776 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
777 		inode_unlock(inode);
778 		return -EPERM;
779 	}
780 
781 	i_mmap_lock_write(mapping);
782 
783 	/* If range starts before first full page, zero partial page. */
784 	if (offset < hole_start)
785 		hugetlbfs_zero_partial_page(h, mapping,
786 				offset, min(offset + len, hole_start));
787 
788 	/* Unmap users of full pages in the hole. */
789 	if (hole_end > hole_start) {
790 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
791 			hugetlb_vmdelete_list(&mapping->i_mmap,
792 					      hole_start >> PAGE_SHIFT,
793 					      hole_end >> PAGE_SHIFT, 0);
794 	}
795 
796 	/* If range extends beyond last full page, zero partial page. */
797 	if ((offset + len) > hole_end && (offset + len) > hole_start)
798 		hugetlbfs_zero_partial_page(h, mapping,
799 				hole_end, offset + len);
800 
801 	i_mmap_unlock_write(mapping);
802 
803 	/* Remove full pages from the file. */
804 	if (hole_end > hole_start)
805 		remove_inode_hugepages(inode, hole_start, hole_end);
806 
807 	inode_unlock(inode);
808 
809 	return 0;
810 }
811 
812 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
813 				loff_t len)
814 {
815 	struct inode *inode = file_inode(file);
816 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
817 	struct address_space *mapping = inode->i_mapping;
818 	struct hstate *h = hstate_inode(inode);
819 	struct vm_area_struct pseudo_vma;
820 	struct mm_struct *mm = current->mm;
821 	loff_t hpage_size = huge_page_size(h);
822 	unsigned long hpage_shift = huge_page_shift(h);
823 	pgoff_t start, index, end;
824 	int error;
825 	u32 hash;
826 
827 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
828 		return -EOPNOTSUPP;
829 
830 	if (mode & FALLOC_FL_PUNCH_HOLE)
831 		return hugetlbfs_punch_hole(inode, offset, len);
832 
833 	/*
834 	 * Default preallocate case.
835 	 * For this range, start is rounded down and end is rounded up
836 	 * as well as being converted to page offsets.
837 	 */
838 	start = offset >> hpage_shift;
839 	end = (offset + len + hpage_size - 1) >> hpage_shift;
840 
841 	inode_lock(inode);
842 
843 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
844 	error = inode_newsize_ok(inode, offset + len);
845 	if (error)
846 		goto out;
847 
848 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
849 		error = -EPERM;
850 		goto out;
851 	}
852 
853 	/*
854 	 * Initialize a pseudo vma as this is required by the huge page
855 	 * allocation routines.  If NUMA is configured, use page index
856 	 * as input to create an allocation policy.
857 	 */
858 	vma_init(&pseudo_vma, mm);
859 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
860 	pseudo_vma.vm_file = file;
861 
862 	for (index = start; index < end; index++) {
863 		/*
864 		 * This is supposed to be the vaddr where the page is being
865 		 * faulted in, but we have no vaddr here.
866 		 */
867 		struct folio *folio;
868 		unsigned long addr;
869 
870 		cond_resched();
871 
872 		/*
873 		 * fallocate(2) manpage permits EINTR; we may have been
874 		 * interrupted because we are using up too much memory.
875 		 */
876 		if (signal_pending(current)) {
877 			error = -EINTR;
878 			break;
879 		}
880 
881 		/* addr is the offset within the file (zero based) */
882 		addr = index * hpage_size;
883 
884 		/* mutex taken here, fault path and hole punch */
885 		hash = hugetlb_fault_mutex_hash(mapping, index);
886 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
887 
888 		/* See if already present in mapping to avoid alloc/free */
889 		folio = filemap_get_folio(mapping, index);
890 		if (!IS_ERR(folio)) {
891 			folio_put(folio);
892 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
893 			continue;
894 		}
895 
896 		/*
897 		 * Allocate folio without setting the avoid_reserve argument.
898 		 * There certainly are no reserves associated with the
899 		 * pseudo_vma.  However, there could be shared mappings with
900 		 * reserves for the file at the inode level.  If we fallocate
901 		 * folios in these areas, we need to consume the reserves
902 		 * to keep reservation accounting consistent.
903 		 */
904 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
905 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
906 		hugetlb_drop_vma_policy(&pseudo_vma);
907 		if (IS_ERR(folio)) {
908 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
909 			error = PTR_ERR(folio);
910 			goto out;
911 		}
912 		clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
913 		__folio_mark_uptodate(folio);
914 		error = hugetlb_add_to_page_cache(folio, mapping, index);
915 		if (unlikely(error)) {
916 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
917 			folio_put(folio);
918 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
919 			goto out;
920 		}
921 
922 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
923 
924 		folio_set_hugetlb_migratable(folio);
925 		/*
926 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
927 		 * folio_put() due to reference from alloc_hugetlb_folio()
928 		 */
929 		folio_unlock(folio);
930 		folio_put(folio);
931 	}
932 
933 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
934 		i_size_write(inode, offset + len);
935 	inode->i_ctime = current_time(inode);
936 out:
937 	inode_unlock(inode);
938 	return error;
939 }
940 
941 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
942 			     struct dentry *dentry, struct iattr *attr)
943 {
944 	struct inode *inode = d_inode(dentry);
945 	struct hstate *h = hstate_inode(inode);
946 	int error;
947 	unsigned int ia_valid = attr->ia_valid;
948 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
949 
950 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
951 	if (error)
952 		return error;
953 
954 	if (ia_valid & ATTR_SIZE) {
955 		loff_t oldsize = inode->i_size;
956 		loff_t newsize = attr->ia_size;
957 
958 		if (newsize & ~huge_page_mask(h))
959 			return -EINVAL;
960 		/* protected by i_rwsem */
961 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
962 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
963 			return -EPERM;
964 		hugetlb_vmtruncate(inode, newsize);
965 	}
966 
967 	setattr_copy(&nop_mnt_idmap, inode, attr);
968 	mark_inode_dirty(inode);
969 	return 0;
970 }
971 
972 static struct inode *hugetlbfs_get_root(struct super_block *sb,
973 					struct hugetlbfs_fs_context *ctx)
974 {
975 	struct inode *inode;
976 
977 	inode = new_inode(sb);
978 	if (inode) {
979 		inode->i_ino = get_next_ino();
980 		inode->i_mode = S_IFDIR | ctx->mode;
981 		inode->i_uid = ctx->uid;
982 		inode->i_gid = ctx->gid;
983 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
984 		inode->i_op = &hugetlbfs_dir_inode_operations;
985 		inode->i_fop = &simple_dir_operations;
986 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
987 		inc_nlink(inode);
988 		lockdep_annotate_inode_mutex_key(inode);
989 	}
990 	return inode;
991 }
992 
993 /*
994  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
995  * be taken from reclaim -- unlike regular filesystems. This needs an
996  * annotation because huge_pmd_share() does an allocation under hugetlb's
997  * i_mmap_rwsem.
998  */
999 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
1000 
1001 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
1002 					struct inode *dir,
1003 					umode_t mode, dev_t dev)
1004 {
1005 	struct inode *inode;
1006 	struct resv_map *resv_map = NULL;
1007 
1008 	/*
1009 	 * Reserve maps are only needed for inodes that can have associated
1010 	 * page allocations.
1011 	 */
1012 	if (S_ISREG(mode) || S_ISLNK(mode)) {
1013 		resv_map = resv_map_alloc();
1014 		if (!resv_map)
1015 			return NULL;
1016 	}
1017 
1018 	inode = new_inode(sb);
1019 	if (inode) {
1020 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1021 
1022 		inode->i_ino = get_next_ino();
1023 		inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
1024 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1025 				&hugetlbfs_i_mmap_rwsem_key);
1026 		inode->i_mapping->a_ops = &hugetlbfs_aops;
1027 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1028 		inode->i_mapping->private_data = resv_map;
1029 		info->seals = F_SEAL_SEAL;
1030 		switch (mode & S_IFMT) {
1031 		default:
1032 			init_special_inode(inode, mode, dev);
1033 			break;
1034 		case S_IFREG:
1035 			inode->i_op = &hugetlbfs_inode_operations;
1036 			inode->i_fop = &hugetlbfs_file_operations;
1037 			break;
1038 		case S_IFDIR:
1039 			inode->i_op = &hugetlbfs_dir_inode_operations;
1040 			inode->i_fop = &simple_dir_operations;
1041 
1042 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1043 			inc_nlink(inode);
1044 			break;
1045 		case S_IFLNK:
1046 			inode->i_op = &page_symlink_inode_operations;
1047 			inode_nohighmem(inode);
1048 			break;
1049 		}
1050 		lockdep_annotate_inode_mutex_key(inode);
1051 	} else {
1052 		if (resv_map)
1053 			kref_put(&resv_map->refs, resv_map_release);
1054 	}
1055 
1056 	return inode;
1057 }
1058 
1059 /*
1060  * File creation. Allocate an inode, and we're done..
1061  */
1062 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1063 			   struct dentry *dentry, umode_t mode, dev_t dev)
1064 {
1065 	struct inode *inode;
1066 
1067 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1068 	if (!inode)
1069 		return -ENOSPC;
1070 	dir->i_ctime = dir->i_mtime = current_time(dir);
1071 	d_instantiate(dentry, inode);
1072 	dget(dentry);/* Extra count - pin the dentry in core */
1073 	return 0;
1074 }
1075 
1076 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1077 			   struct dentry *dentry, umode_t mode)
1078 {
1079 	int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
1080 				     mode | S_IFDIR, 0);
1081 	if (!retval)
1082 		inc_nlink(dir);
1083 	return retval;
1084 }
1085 
1086 static int hugetlbfs_create(struct mnt_idmap *idmap,
1087 			    struct inode *dir, struct dentry *dentry,
1088 			    umode_t mode, bool excl)
1089 {
1090 	return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1091 }
1092 
1093 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1094 			     struct inode *dir, struct file *file,
1095 			     umode_t mode)
1096 {
1097 	struct inode *inode;
1098 
1099 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1100 	if (!inode)
1101 		return -ENOSPC;
1102 	dir->i_ctime = dir->i_mtime = current_time(dir);
1103 	d_tmpfile(file, inode);
1104 	return finish_open_simple(file, 0);
1105 }
1106 
1107 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1108 			     struct inode *dir, struct dentry *dentry,
1109 			     const char *symname)
1110 {
1111 	struct inode *inode;
1112 	int error = -ENOSPC;
1113 
1114 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1115 	if (inode) {
1116 		int l = strlen(symname)+1;
1117 		error = page_symlink(inode, symname, l);
1118 		if (!error) {
1119 			d_instantiate(dentry, inode);
1120 			dget(dentry);
1121 		} else
1122 			iput(inode);
1123 	}
1124 	dir->i_ctime = dir->i_mtime = current_time(dir);
1125 
1126 	return error;
1127 }
1128 
1129 #ifdef CONFIG_MIGRATION
1130 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1131 				struct folio *dst, struct folio *src,
1132 				enum migrate_mode mode)
1133 {
1134 	int rc;
1135 
1136 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1137 	if (rc != MIGRATEPAGE_SUCCESS)
1138 		return rc;
1139 
1140 	if (hugetlb_folio_subpool(src)) {
1141 		hugetlb_set_folio_subpool(dst,
1142 					hugetlb_folio_subpool(src));
1143 		hugetlb_set_folio_subpool(src, NULL);
1144 	}
1145 
1146 	if (mode != MIGRATE_SYNC_NO_COPY)
1147 		folio_migrate_copy(dst, src);
1148 	else
1149 		folio_migrate_flags(dst, src);
1150 
1151 	return MIGRATEPAGE_SUCCESS;
1152 }
1153 #else
1154 #define hugetlbfs_migrate_folio NULL
1155 #endif
1156 
1157 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1158 				struct page *page)
1159 {
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Display the mount options in /proc/mounts.
1165  */
1166 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1167 {
1168 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1169 	struct hugepage_subpool *spool = sbinfo->spool;
1170 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1171 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1172 	char mod;
1173 
1174 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1175 		seq_printf(m, ",uid=%u",
1176 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1177 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1178 		seq_printf(m, ",gid=%u",
1179 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1180 	if (sbinfo->mode != 0755)
1181 		seq_printf(m, ",mode=%o", sbinfo->mode);
1182 	if (sbinfo->max_inodes != -1)
1183 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1184 
1185 	hpage_size /= 1024;
1186 	mod = 'K';
1187 	if (hpage_size >= 1024) {
1188 		hpage_size /= 1024;
1189 		mod = 'M';
1190 	}
1191 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1192 	if (spool) {
1193 		if (spool->max_hpages != -1)
1194 			seq_printf(m, ",size=%llu",
1195 				   (unsigned long long)spool->max_hpages << hpage_shift);
1196 		if (spool->min_hpages != -1)
1197 			seq_printf(m, ",min_size=%llu",
1198 				   (unsigned long long)spool->min_hpages << hpage_shift);
1199 	}
1200 	return 0;
1201 }
1202 
1203 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1204 {
1205 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1206 	struct hstate *h = hstate_inode(d_inode(dentry));
1207 
1208 	buf->f_type = HUGETLBFS_MAGIC;
1209 	buf->f_bsize = huge_page_size(h);
1210 	if (sbinfo) {
1211 		spin_lock(&sbinfo->stat_lock);
1212 		/* If no limits set, just report 0 or -1 for max/free/used
1213 		 * blocks, like simple_statfs() */
1214 		if (sbinfo->spool) {
1215 			long free_pages;
1216 
1217 			spin_lock_irq(&sbinfo->spool->lock);
1218 			buf->f_blocks = sbinfo->spool->max_hpages;
1219 			free_pages = sbinfo->spool->max_hpages
1220 				- sbinfo->spool->used_hpages;
1221 			buf->f_bavail = buf->f_bfree = free_pages;
1222 			spin_unlock_irq(&sbinfo->spool->lock);
1223 			buf->f_files = sbinfo->max_inodes;
1224 			buf->f_ffree = sbinfo->free_inodes;
1225 		}
1226 		spin_unlock(&sbinfo->stat_lock);
1227 	}
1228 	buf->f_namelen = NAME_MAX;
1229 	return 0;
1230 }
1231 
1232 static void hugetlbfs_put_super(struct super_block *sb)
1233 {
1234 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1235 
1236 	if (sbi) {
1237 		sb->s_fs_info = NULL;
1238 
1239 		if (sbi->spool)
1240 			hugepage_put_subpool(sbi->spool);
1241 
1242 		kfree(sbi);
1243 	}
1244 }
1245 
1246 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1247 {
1248 	if (sbinfo->free_inodes >= 0) {
1249 		spin_lock(&sbinfo->stat_lock);
1250 		if (unlikely(!sbinfo->free_inodes)) {
1251 			spin_unlock(&sbinfo->stat_lock);
1252 			return 0;
1253 		}
1254 		sbinfo->free_inodes--;
1255 		spin_unlock(&sbinfo->stat_lock);
1256 	}
1257 
1258 	return 1;
1259 }
1260 
1261 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1262 {
1263 	if (sbinfo->free_inodes >= 0) {
1264 		spin_lock(&sbinfo->stat_lock);
1265 		sbinfo->free_inodes++;
1266 		spin_unlock(&sbinfo->stat_lock);
1267 	}
1268 }
1269 
1270 
1271 static struct kmem_cache *hugetlbfs_inode_cachep;
1272 
1273 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1274 {
1275 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1276 	struct hugetlbfs_inode_info *p;
1277 
1278 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1279 		return NULL;
1280 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1281 	if (unlikely(!p)) {
1282 		hugetlbfs_inc_free_inodes(sbinfo);
1283 		return NULL;
1284 	}
1285 
1286 	/*
1287 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1288 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1289 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1290 	 * in case of a quick call to destroy.
1291 	 *
1292 	 * Note that the policy is initialized even if we are creating a
1293 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1294 	 */
1295 	mpol_shared_policy_init(&p->policy, NULL);
1296 
1297 	return &p->vfs_inode;
1298 }
1299 
1300 static void hugetlbfs_free_inode(struct inode *inode)
1301 {
1302 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1303 }
1304 
1305 static void hugetlbfs_destroy_inode(struct inode *inode)
1306 {
1307 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1308 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1309 }
1310 
1311 static const struct address_space_operations hugetlbfs_aops = {
1312 	.write_begin	= hugetlbfs_write_begin,
1313 	.write_end	= hugetlbfs_write_end,
1314 	.dirty_folio	= noop_dirty_folio,
1315 	.migrate_folio  = hugetlbfs_migrate_folio,
1316 	.error_remove_page	= hugetlbfs_error_remove_page,
1317 };
1318 
1319 
1320 static void init_once(void *foo)
1321 {
1322 	struct hugetlbfs_inode_info *ei = foo;
1323 
1324 	inode_init_once(&ei->vfs_inode);
1325 }
1326 
1327 const struct file_operations hugetlbfs_file_operations = {
1328 	.read_iter		= hugetlbfs_read_iter,
1329 	.mmap			= hugetlbfs_file_mmap,
1330 	.fsync			= noop_fsync,
1331 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1332 	.llseek			= default_llseek,
1333 	.fallocate		= hugetlbfs_fallocate,
1334 };
1335 
1336 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1337 	.create		= hugetlbfs_create,
1338 	.lookup		= simple_lookup,
1339 	.link		= simple_link,
1340 	.unlink		= simple_unlink,
1341 	.symlink	= hugetlbfs_symlink,
1342 	.mkdir		= hugetlbfs_mkdir,
1343 	.rmdir		= simple_rmdir,
1344 	.mknod		= hugetlbfs_mknod,
1345 	.rename		= simple_rename,
1346 	.setattr	= hugetlbfs_setattr,
1347 	.tmpfile	= hugetlbfs_tmpfile,
1348 };
1349 
1350 static const struct inode_operations hugetlbfs_inode_operations = {
1351 	.setattr	= hugetlbfs_setattr,
1352 };
1353 
1354 static const struct super_operations hugetlbfs_ops = {
1355 	.alloc_inode    = hugetlbfs_alloc_inode,
1356 	.free_inode     = hugetlbfs_free_inode,
1357 	.destroy_inode  = hugetlbfs_destroy_inode,
1358 	.evict_inode	= hugetlbfs_evict_inode,
1359 	.statfs		= hugetlbfs_statfs,
1360 	.put_super	= hugetlbfs_put_super,
1361 	.show_options	= hugetlbfs_show_options,
1362 };
1363 
1364 /*
1365  * Convert size option passed from command line to number of huge pages
1366  * in the pool specified by hstate.  Size option could be in bytes
1367  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1368  */
1369 static long
1370 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1371 			 enum hugetlbfs_size_type val_type)
1372 {
1373 	if (val_type == NO_SIZE)
1374 		return -1;
1375 
1376 	if (val_type == SIZE_PERCENT) {
1377 		size_opt <<= huge_page_shift(h);
1378 		size_opt *= h->max_huge_pages;
1379 		do_div(size_opt, 100);
1380 	}
1381 
1382 	size_opt >>= huge_page_shift(h);
1383 	return size_opt;
1384 }
1385 
1386 /*
1387  * Parse one mount parameter.
1388  */
1389 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1390 {
1391 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1392 	struct fs_parse_result result;
1393 	char *rest;
1394 	unsigned long ps;
1395 	int opt;
1396 
1397 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1398 	if (opt < 0)
1399 		return opt;
1400 
1401 	switch (opt) {
1402 	case Opt_uid:
1403 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1404 		if (!uid_valid(ctx->uid))
1405 			goto bad_val;
1406 		return 0;
1407 
1408 	case Opt_gid:
1409 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1410 		if (!gid_valid(ctx->gid))
1411 			goto bad_val;
1412 		return 0;
1413 
1414 	case Opt_mode:
1415 		ctx->mode = result.uint_32 & 01777U;
1416 		return 0;
1417 
1418 	case Opt_size:
1419 		/* memparse() will accept a K/M/G without a digit */
1420 		if (!param->string || !isdigit(param->string[0]))
1421 			goto bad_val;
1422 		ctx->max_size_opt = memparse(param->string, &rest);
1423 		ctx->max_val_type = SIZE_STD;
1424 		if (*rest == '%')
1425 			ctx->max_val_type = SIZE_PERCENT;
1426 		return 0;
1427 
1428 	case Opt_nr_inodes:
1429 		/* memparse() will accept a K/M/G without a digit */
1430 		if (!param->string || !isdigit(param->string[0]))
1431 			goto bad_val;
1432 		ctx->nr_inodes = memparse(param->string, &rest);
1433 		return 0;
1434 
1435 	case Opt_pagesize:
1436 		ps = memparse(param->string, &rest);
1437 		ctx->hstate = size_to_hstate(ps);
1438 		if (!ctx->hstate) {
1439 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1440 			return -EINVAL;
1441 		}
1442 		return 0;
1443 
1444 	case Opt_min_size:
1445 		/* memparse() will accept a K/M/G without a digit */
1446 		if (!param->string || !isdigit(param->string[0]))
1447 			goto bad_val;
1448 		ctx->min_size_opt = memparse(param->string, &rest);
1449 		ctx->min_val_type = SIZE_STD;
1450 		if (*rest == '%')
1451 			ctx->min_val_type = SIZE_PERCENT;
1452 		return 0;
1453 
1454 	default:
1455 		return -EINVAL;
1456 	}
1457 
1458 bad_val:
1459 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1460 		      param->string, param->key);
1461 }
1462 
1463 /*
1464  * Validate the parsed options.
1465  */
1466 static int hugetlbfs_validate(struct fs_context *fc)
1467 {
1468 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1469 
1470 	/*
1471 	 * Use huge page pool size (in hstate) to convert the size
1472 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1473 	 */
1474 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1475 						   ctx->max_size_opt,
1476 						   ctx->max_val_type);
1477 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1478 						   ctx->min_size_opt,
1479 						   ctx->min_val_type);
1480 
1481 	/*
1482 	 * If max_size was specified, then min_size must be smaller
1483 	 */
1484 	if (ctx->max_val_type > NO_SIZE &&
1485 	    ctx->min_hpages > ctx->max_hpages) {
1486 		pr_err("Minimum size can not be greater than maximum size\n");
1487 		return -EINVAL;
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 static int
1494 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1495 {
1496 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1497 	struct hugetlbfs_sb_info *sbinfo;
1498 
1499 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1500 	if (!sbinfo)
1501 		return -ENOMEM;
1502 	sb->s_fs_info = sbinfo;
1503 	spin_lock_init(&sbinfo->stat_lock);
1504 	sbinfo->hstate		= ctx->hstate;
1505 	sbinfo->max_inodes	= ctx->nr_inodes;
1506 	sbinfo->free_inodes	= ctx->nr_inodes;
1507 	sbinfo->spool		= NULL;
1508 	sbinfo->uid		= ctx->uid;
1509 	sbinfo->gid		= ctx->gid;
1510 	sbinfo->mode		= ctx->mode;
1511 
1512 	/*
1513 	 * Allocate and initialize subpool if maximum or minimum size is
1514 	 * specified.  Any needed reservations (for minimum size) are taken
1515 	 * when the subpool is created.
1516 	 */
1517 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1518 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1519 						     ctx->max_hpages,
1520 						     ctx->min_hpages);
1521 		if (!sbinfo->spool)
1522 			goto out_free;
1523 	}
1524 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1525 	sb->s_blocksize = huge_page_size(ctx->hstate);
1526 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1527 	sb->s_magic = HUGETLBFS_MAGIC;
1528 	sb->s_op = &hugetlbfs_ops;
1529 	sb->s_time_gran = 1;
1530 
1531 	/*
1532 	 * Due to the special and limited functionality of hugetlbfs, it does
1533 	 * not work well as a stacking filesystem.
1534 	 */
1535 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1536 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1537 	if (!sb->s_root)
1538 		goto out_free;
1539 	return 0;
1540 out_free:
1541 	kfree(sbinfo->spool);
1542 	kfree(sbinfo);
1543 	return -ENOMEM;
1544 }
1545 
1546 static int hugetlbfs_get_tree(struct fs_context *fc)
1547 {
1548 	int err = hugetlbfs_validate(fc);
1549 	if (err)
1550 		return err;
1551 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1552 }
1553 
1554 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1555 {
1556 	kfree(fc->fs_private);
1557 }
1558 
1559 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1560 	.free		= hugetlbfs_fs_context_free,
1561 	.parse_param	= hugetlbfs_parse_param,
1562 	.get_tree	= hugetlbfs_get_tree,
1563 };
1564 
1565 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1566 {
1567 	struct hugetlbfs_fs_context *ctx;
1568 
1569 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1570 	if (!ctx)
1571 		return -ENOMEM;
1572 
1573 	ctx->max_hpages	= -1; /* No limit on size by default */
1574 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1575 	ctx->uid	= current_fsuid();
1576 	ctx->gid	= current_fsgid();
1577 	ctx->mode	= 0755;
1578 	ctx->hstate	= &default_hstate;
1579 	ctx->min_hpages	= -1; /* No default minimum size */
1580 	ctx->max_val_type = NO_SIZE;
1581 	ctx->min_val_type = NO_SIZE;
1582 	fc->fs_private = ctx;
1583 	fc->ops	= &hugetlbfs_fs_context_ops;
1584 	return 0;
1585 }
1586 
1587 static struct file_system_type hugetlbfs_fs_type = {
1588 	.name			= "hugetlbfs",
1589 	.init_fs_context	= hugetlbfs_init_fs_context,
1590 	.parameters		= hugetlb_fs_parameters,
1591 	.kill_sb		= kill_litter_super,
1592 };
1593 
1594 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1595 
1596 static int can_do_hugetlb_shm(void)
1597 {
1598 	kgid_t shm_group;
1599 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1600 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1601 }
1602 
1603 static int get_hstate_idx(int page_size_log)
1604 {
1605 	struct hstate *h = hstate_sizelog(page_size_log);
1606 
1607 	if (!h)
1608 		return -1;
1609 	return hstate_index(h);
1610 }
1611 
1612 /*
1613  * Note that size should be aligned to proper hugepage size in caller side,
1614  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1615  */
1616 struct file *hugetlb_file_setup(const char *name, size_t size,
1617 				vm_flags_t acctflag, int creat_flags,
1618 				int page_size_log)
1619 {
1620 	struct inode *inode;
1621 	struct vfsmount *mnt;
1622 	int hstate_idx;
1623 	struct file *file;
1624 
1625 	hstate_idx = get_hstate_idx(page_size_log);
1626 	if (hstate_idx < 0)
1627 		return ERR_PTR(-ENODEV);
1628 
1629 	mnt = hugetlbfs_vfsmount[hstate_idx];
1630 	if (!mnt)
1631 		return ERR_PTR(-ENOENT);
1632 
1633 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1634 		struct ucounts *ucounts = current_ucounts();
1635 
1636 		if (user_shm_lock(size, ucounts)) {
1637 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1638 				current->comm, current->pid);
1639 			user_shm_unlock(size, ucounts);
1640 		}
1641 		return ERR_PTR(-EPERM);
1642 	}
1643 
1644 	file = ERR_PTR(-ENOSPC);
1645 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1646 	if (!inode)
1647 		goto out;
1648 	if (creat_flags == HUGETLB_SHMFS_INODE)
1649 		inode->i_flags |= S_PRIVATE;
1650 
1651 	inode->i_size = size;
1652 	clear_nlink(inode);
1653 
1654 	if (!hugetlb_reserve_pages(inode, 0,
1655 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1656 			acctflag))
1657 		file = ERR_PTR(-ENOMEM);
1658 	else
1659 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1660 					&hugetlbfs_file_operations);
1661 	if (!IS_ERR(file))
1662 		return file;
1663 
1664 	iput(inode);
1665 out:
1666 	return file;
1667 }
1668 
1669 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1670 {
1671 	struct fs_context *fc;
1672 	struct vfsmount *mnt;
1673 
1674 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1675 	if (IS_ERR(fc)) {
1676 		mnt = ERR_CAST(fc);
1677 	} else {
1678 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1679 		ctx->hstate = h;
1680 		mnt = fc_mount(fc);
1681 		put_fs_context(fc);
1682 	}
1683 	if (IS_ERR(mnt))
1684 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1685 		       huge_page_size(h) / SZ_1K);
1686 	return mnt;
1687 }
1688 
1689 static int __init init_hugetlbfs_fs(void)
1690 {
1691 	struct vfsmount *mnt;
1692 	struct hstate *h;
1693 	int error;
1694 	int i;
1695 
1696 	if (!hugepages_supported()) {
1697 		pr_info("disabling because there are no supported hugepage sizes\n");
1698 		return -ENOTSUPP;
1699 	}
1700 
1701 	error = -ENOMEM;
1702 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1703 					sizeof(struct hugetlbfs_inode_info),
1704 					0, SLAB_ACCOUNT, init_once);
1705 	if (hugetlbfs_inode_cachep == NULL)
1706 		goto out;
1707 
1708 	error = register_filesystem(&hugetlbfs_fs_type);
1709 	if (error)
1710 		goto out_free;
1711 
1712 	/* default hstate mount is required */
1713 	mnt = mount_one_hugetlbfs(&default_hstate);
1714 	if (IS_ERR(mnt)) {
1715 		error = PTR_ERR(mnt);
1716 		goto out_unreg;
1717 	}
1718 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1719 
1720 	/* other hstates are optional */
1721 	i = 0;
1722 	for_each_hstate(h) {
1723 		if (i == default_hstate_idx) {
1724 			i++;
1725 			continue;
1726 		}
1727 
1728 		mnt = mount_one_hugetlbfs(h);
1729 		if (IS_ERR(mnt))
1730 			hugetlbfs_vfsmount[i] = NULL;
1731 		else
1732 			hugetlbfs_vfsmount[i] = mnt;
1733 		i++;
1734 	}
1735 
1736 	return 0;
1737 
1738  out_unreg:
1739 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1740  out_free:
1741 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1742  out:
1743 	return error;
1744 }
1745 fs_initcall(init_hugetlbfs_fs)
1746