xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 #ifdef CONFIG_NUMA
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 					struct inode *inode, pgoff_t index)
89 {
90 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 							index);
92 }
93 
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 	mpol_cond_put(vma->vm_policy);
97 }
98 #else
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 					struct inode *inode, pgoff_t index)
101 {
102 }
103 
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108 
109 /*
110  * Mask used when checking the page offset value passed in via system
111  * calls.  This value will be converted to a loff_t which is signed.
112  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113  * value.  The extra bit (- 1 in the shift value) is to take the sign
114  * bit into account.
115  */
116 #define PGOFF_LOFFT_MAX \
117 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118 
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 	struct inode *inode = file_inode(file);
122 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 	loff_t len, vma_len;
124 	int ret;
125 	struct hstate *h = hstate_file(file);
126 
127 	/*
128 	 * vma address alignment (but not the pgoff alignment) has
129 	 * already been checked by prepare_hugepage_range.  If you add
130 	 * any error returns here, do so after setting VM_HUGETLB, so
131 	 * is_vm_hugetlb_page tests below unmap_region go the right
132 	 * way when do_mmap unwinds (may be important on powerpc
133 	 * and ia64).
134 	 */
135 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
136 	vma->vm_ops = &hugetlb_vm_ops;
137 
138 	ret = seal_check_future_write(info->seals, vma);
139 	if (ret)
140 		return ret;
141 
142 	/*
143 	 * page based offset in vm_pgoff could be sufficiently large to
144 	 * overflow a loff_t when converted to byte offset.  This can
145 	 * only happen on architectures where sizeof(loff_t) ==
146 	 * sizeof(unsigned long).  So, only check in those instances.
147 	 */
148 	if (sizeof(unsigned long) == sizeof(loff_t)) {
149 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 			return -EINVAL;
151 	}
152 
153 	/* must be huge page aligned */
154 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
155 		return -EINVAL;
156 
157 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 	/* check for overflow */
160 	if (len < vma_len)
161 		return -EINVAL;
162 
163 	inode_lock(inode);
164 	file_accessed(file);
165 
166 	ret = -ENOMEM;
167 	if (!hugetlb_reserve_pages(inode,
168 				vma->vm_pgoff >> huge_page_order(h),
169 				len >> huge_page_shift(h), vma,
170 				vma->vm_flags))
171 		goto out;
172 
173 	ret = 0;
174 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 		i_size_write(inode, len);
176 out:
177 	inode_unlock(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called under mmap_write_lock(mm).
184  */
185 
186 static unsigned long
187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 		unsigned long len, unsigned long pgoff, unsigned long flags)
189 {
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	info.flags = 0;
194 	info.length = len;
195 	info.low_limit = current->mm->mmap_base;
196 	info.high_limit = arch_get_mmap_end(addr, len, flags);
197 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 	info.align_offset = 0;
199 	return vm_unmapped_area(&info);
200 }
201 
202 static unsigned long
203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 		unsigned long len, unsigned long pgoff, unsigned long flags)
205 {
206 	struct hstate *h = hstate_file(file);
207 	struct vm_unmapped_area_info info;
208 
209 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 	info.length = len;
211 	info.low_limit = PAGE_SIZE;
212 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 	info.align_offset = 0;
215 	addr = vm_unmapped_area(&info);
216 
217 	/*
218 	 * A failed mmap() very likely causes application failure,
219 	 * so fall back to the bottom-up function here. This scenario
220 	 * can happen with large stack limits and large mmap()
221 	 * allocations.
222 	 */
223 	if (unlikely(offset_in_page(addr))) {
224 		VM_BUG_ON(addr != -ENOMEM);
225 		info.flags = 0;
226 		info.low_limit = current->mm->mmap_base;
227 		info.high_limit = arch_get_mmap_end(addr, len, flags);
228 		addr = vm_unmapped_area(&info);
229 	}
230 
231 	return addr;
232 }
233 
234 unsigned long
235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 				  unsigned long len, unsigned long pgoff,
237 				  unsigned long flags)
238 {
239 	struct mm_struct *mm = current->mm;
240 	struct vm_area_struct *vma;
241 	struct hstate *h = hstate_file(file);
242 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
243 
244 	if (len & ~huge_page_mask(h))
245 		return -EINVAL;
246 	if (len > TASK_SIZE)
247 		return -ENOMEM;
248 
249 	if (flags & MAP_FIXED) {
250 		if (prepare_hugepage_range(file, addr, len))
251 			return -EINVAL;
252 		return addr;
253 	}
254 
255 	if (addr) {
256 		addr = ALIGN(addr, huge_page_size(h));
257 		vma = find_vma(mm, addr);
258 		if (mmap_end - len >= addr &&
259 		    (!vma || addr + len <= vm_start_gap(vma)))
260 			return addr;
261 	}
262 
263 	/*
264 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 	 * If architectures have special needs, they should define their own
266 	 * version of hugetlb_get_unmapped_area.
267 	 */
268 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 				pgoff, flags);
271 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 			pgoff, flags);
273 }
274 
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276 static unsigned long
277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 			  unsigned long len, unsigned long pgoff,
279 			  unsigned long flags)
280 {
281 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282 }
283 #endif
284 
285 /*
286  * Support for read() - Find the page attached to f_mapping and copy out the
287  * data. This provides functionality similar to filemap_read().
288  */
289 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
290 {
291 	struct file *file = iocb->ki_filp;
292 	struct hstate *h = hstate_file(file);
293 	struct address_space *mapping = file->f_mapping;
294 	struct inode *inode = mapping->host;
295 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
296 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
297 	unsigned long end_index;
298 	loff_t isize;
299 	ssize_t retval = 0;
300 
301 	while (iov_iter_count(to)) {
302 		struct page *page;
303 		size_t nr, copied;
304 
305 		/* nr is the maximum number of bytes to copy from this page */
306 		nr = huge_page_size(h);
307 		isize = i_size_read(inode);
308 		if (!isize)
309 			break;
310 		end_index = (isize - 1) >> huge_page_shift(h);
311 		if (index > end_index)
312 			break;
313 		if (index == end_index) {
314 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
315 			if (nr <= offset)
316 				break;
317 		}
318 		nr = nr - offset;
319 
320 		/* Find the page */
321 		page = find_lock_page(mapping, index);
322 		if (unlikely(page == NULL)) {
323 			/*
324 			 * We have a HOLE, zero out the user-buffer for the
325 			 * length of the hole or request.
326 			 */
327 			copied = iov_iter_zero(nr, to);
328 		} else {
329 			unlock_page(page);
330 
331 			if (PageHWPoison(page)) {
332 				put_page(page);
333 				retval = -EIO;
334 				break;
335 			}
336 
337 			/*
338 			 * We have the page, copy it to user space buffer.
339 			 */
340 			copied = copy_page_to_iter(page, offset, nr, to);
341 			put_page(page);
342 		}
343 		offset += copied;
344 		retval += copied;
345 		if (copied != nr && iov_iter_count(to)) {
346 			if (!retval)
347 				retval = -EFAULT;
348 			break;
349 		}
350 		index += offset >> huge_page_shift(h);
351 		offset &= ~huge_page_mask(h);
352 	}
353 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
354 	return retval;
355 }
356 
357 static int hugetlbfs_write_begin(struct file *file,
358 			struct address_space *mapping,
359 			loff_t pos, unsigned len,
360 			struct page **pagep, void **fsdata)
361 {
362 	return -EINVAL;
363 }
364 
365 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
366 			loff_t pos, unsigned len, unsigned copied,
367 			struct page *page, void *fsdata)
368 {
369 	BUG();
370 	return -EINVAL;
371 }
372 
373 static void hugetlb_delete_from_page_cache(struct folio *folio)
374 {
375 	folio_clear_dirty(folio);
376 	folio_clear_uptodate(folio);
377 	filemap_remove_folio(folio);
378 }
379 
380 /*
381  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
382  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
383  * mutex for the page in the mapping.  So, we can not race with page being
384  * faulted into the vma.
385  */
386 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
387 				unsigned long addr, struct page *page)
388 {
389 	pte_t *ptep, pte;
390 
391 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
392 	if (!ptep)
393 		return false;
394 
395 	pte = huge_ptep_get(ptep);
396 	if (huge_pte_none(pte) || !pte_present(pte))
397 		return false;
398 
399 	if (pte_page(pte) == page)
400 		return true;
401 
402 	return false;
403 }
404 
405 /*
406  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
407  * No, because the interval tree returns us only those vmas
408  * which overlap the truncated area starting at pgoff,
409  * and no vma on a 32-bit arch can span beyond the 4GB.
410  */
411 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
412 {
413 	unsigned long offset = 0;
414 
415 	if (vma->vm_pgoff < start)
416 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
417 
418 	return vma->vm_start + offset;
419 }
420 
421 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
422 {
423 	unsigned long t_end;
424 
425 	if (!end)
426 		return vma->vm_end;
427 
428 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
429 	if (t_end > vma->vm_end)
430 		t_end = vma->vm_end;
431 	return t_end;
432 }
433 
434 /*
435  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
436  * this folio can be created while executing the routine.
437  */
438 static void hugetlb_unmap_file_folio(struct hstate *h,
439 					struct address_space *mapping,
440 					struct folio *folio, pgoff_t index)
441 {
442 	struct rb_root_cached *root = &mapping->i_mmap;
443 	struct hugetlb_vma_lock *vma_lock;
444 	struct page *page = &folio->page;
445 	struct vm_area_struct *vma;
446 	unsigned long v_start;
447 	unsigned long v_end;
448 	pgoff_t start, end;
449 
450 	start = index * pages_per_huge_page(h);
451 	end = (index + 1) * pages_per_huge_page(h);
452 
453 	i_mmap_lock_write(mapping);
454 retry:
455 	vma_lock = NULL;
456 	vma_interval_tree_foreach(vma, root, start, end - 1) {
457 		v_start = vma_offset_start(vma, start);
458 		v_end = vma_offset_end(vma, end);
459 
460 		if (!hugetlb_vma_maps_page(vma, v_start, page))
461 			continue;
462 
463 		if (!hugetlb_vma_trylock_write(vma)) {
464 			vma_lock = vma->vm_private_data;
465 			/*
466 			 * If we can not get vma lock, we need to drop
467 			 * immap_sema and take locks in order.  First,
468 			 * take a ref on the vma_lock structure so that
469 			 * we can be guaranteed it will not go away when
470 			 * dropping immap_sema.
471 			 */
472 			kref_get(&vma_lock->refs);
473 			break;
474 		}
475 
476 		unmap_hugepage_range(vma, v_start, v_end, NULL,
477 				     ZAP_FLAG_DROP_MARKER);
478 		hugetlb_vma_unlock_write(vma);
479 	}
480 
481 	i_mmap_unlock_write(mapping);
482 
483 	if (vma_lock) {
484 		/*
485 		 * Wait on vma_lock.  We know it is still valid as we have
486 		 * a reference.  We must 'open code' vma locking as we do
487 		 * not know if vma_lock is still attached to vma.
488 		 */
489 		down_write(&vma_lock->rw_sema);
490 		i_mmap_lock_write(mapping);
491 
492 		vma = vma_lock->vma;
493 		if (!vma) {
494 			/*
495 			 * If lock is no longer attached to vma, then just
496 			 * unlock, drop our reference and retry looking for
497 			 * other vmas.
498 			 */
499 			up_write(&vma_lock->rw_sema);
500 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
501 			goto retry;
502 		}
503 
504 		/*
505 		 * vma_lock is still attached to vma.  Check to see if vma
506 		 * still maps page and if so, unmap.
507 		 */
508 		v_start = vma_offset_start(vma, start);
509 		v_end = vma_offset_end(vma, end);
510 		if (hugetlb_vma_maps_page(vma, v_start, page))
511 			unmap_hugepage_range(vma, v_start, v_end, NULL,
512 					     ZAP_FLAG_DROP_MARKER);
513 
514 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
515 		hugetlb_vma_unlock_write(vma);
516 
517 		goto retry;
518 	}
519 }
520 
521 static void
522 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
523 		      zap_flags_t zap_flags)
524 {
525 	struct vm_area_struct *vma;
526 
527 	/*
528 	 * end == 0 indicates that the entire range after start should be
529 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
530 	 * an inclusive "last".
531 	 */
532 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
533 		unsigned long v_start;
534 		unsigned long v_end;
535 
536 		if (!hugetlb_vma_trylock_write(vma))
537 			continue;
538 
539 		v_start = vma_offset_start(vma, start);
540 		v_end = vma_offset_end(vma, end);
541 
542 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
543 
544 		/*
545 		 * Note that vma lock only exists for shared/non-private
546 		 * vmas.  Therefore, lock is not held when calling
547 		 * unmap_hugepage_range for private vmas.
548 		 */
549 		hugetlb_vma_unlock_write(vma);
550 	}
551 }
552 
553 /*
554  * Called with hugetlb fault mutex held.
555  * Returns true if page was actually removed, false otherwise.
556  */
557 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
558 					struct address_space *mapping,
559 					struct folio *folio, pgoff_t index,
560 					bool truncate_op)
561 {
562 	bool ret = false;
563 
564 	/*
565 	 * If folio is mapped, it was faulted in after being
566 	 * unmapped in caller.  Unmap (again) while holding
567 	 * the fault mutex.  The mutex will prevent faults
568 	 * until we finish removing the folio.
569 	 */
570 	if (unlikely(folio_mapped(folio)))
571 		hugetlb_unmap_file_folio(h, mapping, folio, index);
572 
573 	folio_lock(folio);
574 	/*
575 	 * We must remove the folio from page cache before removing
576 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
577 	 * rare out of memory conditions, removal of the region/reserve
578 	 * map could fail.  Correspondingly, the subpool and global
579 	 * reserve usage count can need to be adjusted.
580 	 */
581 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
582 	hugetlb_delete_from_page_cache(folio);
583 	ret = true;
584 	if (!truncate_op) {
585 		if (unlikely(hugetlb_unreserve_pages(inode, index,
586 							index + 1, 1)))
587 			hugetlb_fix_reserve_counts(inode);
588 	}
589 
590 	folio_unlock(folio);
591 	return ret;
592 }
593 
594 /*
595  * remove_inode_hugepages handles two distinct cases: truncation and hole
596  * punch.  There are subtle differences in operation for each case.
597  *
598  * truncation is indicated by end of range being LLONG_MAX
599  *	In this case, we first scan the range and release found pages.
600  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
601  *	maps and global counts.  Page faults can race with truncation.
602  *	During faults, hugetlb_no_page() checks i_size before page allocation,
603  *	and again after obtaining page table lock.  It will 'back out'
604  *	allocations in the truncated range.
605  * hole punch is indicated if end is not LLONG_MAX
606  *	In the hole punch case we scan the range and release found pages.
607  *	Only when releasing a page is the associated region/reserve map
608  *	deleted.  The region/reserve map for ranges without associated
609  *	pages are not modified.  Page faults can race with hole punch.
610  *	This is indicated if we find a mapped page.
611  * Note: If the passed end of range value is beyond the end of file, but
612  * not LLONG_MAX this routine still performs a hole punch operation.
613  */
614 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
615 				   loff_t lend)
616 {
617 	struct hstate *h = hstate_inode(inode);
618 	struct address_space *mapping = &inode->i_data;
619 	const pgoff_t start = lstart >> huge_page_shift(h);
620 	const pgoff_t end = lend >> huge_page_shift(h);
621 	struct folio_batch fbatch;
622 	pgoff_t next, index;
623 	int i, freed = 0;
624 	bool truncate_op = (lend == LLONG_MAX);
625 
626 	folio_batch_init(&fbatch);
627 	next = start;
628 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
629 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
630 			struct folio *folio = fbatch.folios[i];
631 			u32 hash = 0;
632 
633 			index = folio->index;
634 			hash = hugetlb_fault_mutex_hash(mapping, index);
635 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
636 
637 			/*
638 			 * Remove folio that was part of folio_batch.
639 			 */
640 			if (remove_inode_single_folio(h, inode, mapping, folio,
641 							index, truncate_op))
642 				freed++;
643 
644 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
645 		}
646 		folio_batch_release(&fbatch);
647 		cond_resched();
648 	}
649 
650 	if (truncate_op)
651 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
652 }
653 
654 static void hugetlbfs_evict_inode(struct inode *inode)
655 {
656 	struct resv_map *resv_map;
657 
658 	remove_inode_hugepages(inode, 0, LLONG_MAX);
659 
660 	/*
661 	 * Get the resv_map from the address space embedded in the inode.
662 	 * This is the address space which points to any resv_map allocated
663 	 * at inode creation time.  If this is a device special inode,
664 	 * i_mapping may not point to the original address space.
665 	 */
666 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
667 	/* Only regular and link inodes have associated reserve maps */
668 	if (resv_map)
669 		resv_map_release(&resv_map->refs);
670 	clear_inode(inode);
671 }
672 
673 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
674 {
675 	pgoff_t pgoff;
676 	struct address_space *mapping = inode->i_mapping;
677 	struct hstate *h = hstate_inode(inode);
678 
679 	BUG_ON(offset & ~huge_page_mask(h));
680 	pgoff = offset >> PAGE_SHIFT;
681 
682 	i_size_write(inode, offset);
683 	i_mmap_lock_write(mapping);
684 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
685 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
686 				      ZAP_FLAG_DROP_MARKER);
687 	i_mmap_unlock_write(mapping);
688 	remove_inode_hugepages(inode, offset, LLONG_MAX);
689 }
690 
691 static void hugetlbfs_zero_partial_page(struct hstate *h,
692 					struct address_space *mapping,
693 					loff_t start,
694 					loff_t end)
695 {
696 	pgoff_t idx = start >> huge_page_shift(h);
697 	struct folio *folio;
698 
699 	folio = filemap_lock_folio(mapping, idx);
700 	if (IS_ERR(folio))
701 		return;
702 
703 	start = start & ~huge_page_mask(h);
704 	end = end & ~huge_page_mask(h);
705 	if (!end)
706 		end = huge_page_size(h);
707 
708 	folio_zero_segment(folio, (size_t)start, (size_t)end);
709 
710 	folio_unlock(folio);
711 	folio_put(folio);
712 }
713 
714 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
715 {
716 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
717 	struct address_space *mapping = inode->i_mapping;
718 	struct hstate *h = hstate_inode(inode);
719 	loff_t hpage_size = huge_page_size(h);
720 	loff_t hole_start, hole_end;
721 
722 	/*
723 	 * hole_start and hole_end indicate the full pages within the hole.
724 	 */
725 	hole_start = round_up(offset, hpage_size);
726 	hole_end = round_down(offset + len, hpage_size);
727 
728 	inode_lock(inode);
729 
730 	/* protected by i_rwsem */
731 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
732 		inode_unlock(inode);
733 		return -EPERM;
734 	}
735 
736 	i_mmap_lock_write(mapping);
737 
738 	/* If range starts before first full page, zero partial page. */
739 	if (offset < hole_start)
740 		hugetlbfs_zero_partial_page(h, mapping,
741 				offset, min(offset + len, hole_start));
742 
743 	/* Unmap users of full pages in the hole. */
744 	if (hole_end > hole_start) {
745 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
746 			hugetlb_vmdelete_list(&mapping->i_mmap,
747 					      hole_start >> PAGE_SHIFT,
748 					      hole_end >> PAGE_SHIFT, 0);
749 	}
750 
751 	/* If range extends beyond last full page, zero partial page. */
752 	if ((offset + len) > hole_end && (offset + len) > hole_start)
753 		hugetlbfs_zero_partial_page(h, mapping,
754 				hole_end, offset + len);
755 
756 	i_mmap_unlock_write(mapping);
757 
758 	/* Remove full pages from the file. */
759 	if (hole_end > hole_start)
760 		remove_inode_hugepages(inode, hole_start, hole_end);
761 
762 	inode_unlock(inode);
763 
764 	return 0;
765 }
766 
767 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
768 				loff_t len)
769 {
770 	struct inode *inode = file_inode(file);
771 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
772 	struct address_space *mapping = inode->i_mapping;
773 	struct hstate *h = hstate_inode(inode);
774 	struct vm_area_struct pseudo_vma;
775 	struct mm_struct *mm = current->mm;
776 	loff_t hpage_size = huge_page_size(h);
777 	unsigned long hpage_shift = huge_page_shift(h);
778 	pgoff_t start, index, end;
779 	int error;
780 	u32 hash;
781 
782 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
783 		return -EOPNOTSUPP;
784 
785 	if (mode & FALLOC_FL_PUNCH_HOLE)
786 		return hugetlbfs_punch_hole(inode, offset, len);
787 
788 	/*
789 	 * Default preallocate case.
790 	 * For this range, start is rounded down and end is rounded up
791 	 * as well as being converted to page offsets.
792 	 */
793 	start = offset >> hpage_shift;
794 	end = (offset + len + hpage_size - 1) >> hpage_shift;
795 
796 	inode_lock(inode);
797 
798 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
799 	error = inode_newsize_ok(inode, offset + len);
800 	if (error)
801 		goto out;
802 
803 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
804 		error = -EPERM;
805 		goto out;
806 	}
807 
808 	/*
809 	 * Initialize a pseudo vma as this is required by the huge page
810 	 * allocation routines.  If NUMA is configured, use page index
811 	 * as input to create an allocation policy.
812 	 */
813 	vma_init(&pseudo_vma, mm);
814 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
815 	pseudo_vma.vm_file = file;
816 
817 	for (index = start; index < end; index++) {
818 		/*
819 		 * This is supposed to be the vaddr where the page is being
820 		 * faulted in, but we have no vaddr here.
821 		 */
822 		struct folio *folio;
823 		unsigned long addr;
824 
825 		cond_resched();
826 
827 		/*
828 		 * fallocate(2) manpage permits EINTR; we may have been
829 		 * interrupted because we are using up too much memory.
830 		 */
831 		if (signal_pending(current)) {
832 			error = -EINTR;
833 			break;
834 		}
835 
836 		/* addr is the offset within the file (zero based) */
837 		addr = index * hpage_size;
838 
839 		/* mutex taken here, fault path and hole punch */
840 		hash = hugetlb_fault_mutex_hash(mapping, index);
841 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
842 
843 		/* See if already present in mapping to avoid alloc/free */
844 		folio = filemap_get_folio(mapping, index);
845 		if (!IS_ERR(folio)) {
846 			folio_put(folio);
847 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
848 			continue;
849 		}
850 
851 		/*
852 		 * Allocate folio without setting the avoid_reserve argument.
853 		 * There certainly are no reserves associated with the
854 		 * pseudo_vma.  However, there could be shared mappings with
855 		 * reserves for the file at the inode level.  If we fallocate
856 		 * folios in these areas, we need to consume the reserves
857 		 * to keep reservation accounting consistent.
858 		 */
859 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
860 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
861 		hugetlb_drop_vma_policy(&pseudo_vma);
862 		if (IS_ERR(folio)) {
863 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
864 			error = PTR_ERR(folio);
865 			goto out;
866 		}
867 		clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
868 		__folio_mark_uptodate(folio);
869 		error = hugetlb_add_to_page_cache(folio, mapping, index);
870 		if (unlikely(error)) {
871 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
872 			folio_put(folio);
873 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
874 			goto out;
875 		}
876 
877 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
878 
879 		folio_set_hugetlb_migratable(folio);
880 		/*
881 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
882 		 * folio_put() due to reference from alloc_hugetlb_folio()
883 		 */
884 		folio_unlock(folio);
885 		folio_put(folio);
886 	}
887 
888 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
889 		i_size_write(inode, offset + len);
890 	inode->i_ctime = current_time(inode);
891 out:
892 	inode_unlock(inode);
893 	return error;
894 }
895 
896 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
897 			     struct dentry *dentry, struct iattr *attr)
898 {
899 	struct inode *inode = d_inode(dentry);
900 	struct hstate *h = hstate_inode(inode);
901 	int error;
902 	unsigned int ia_valid = attr->ia_valid;
903 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
904 
905 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
906 	if (error)
907 		return error;
908 
909 	if (ia_valid & ATTR_SIZE) {
910 		loff_t oldsize = inode->i_size;
911 		loff_t newsize = attr->ia_size;
912 
913 		if (newsize & ~huge_page_mask(h))
914 			return -EINVAL;
915 		/* protected by i_rwsem */
916 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
917 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
918 			return -EPERM;
919 		hugetlb_vmtruncate(inode, newsize);
920 	}
921 
922 	setattr_copy(&nop_mnt_idmap, inode, attr);
923 	mark_inode_dirty(inode);
924 	return 0;
925 }
926 
927 static struct inode *hugetlbfs_get_root(struct super_block *sb,
928 					struct hugetlbfs_fs_context *ctx)
929 {
930 	struct inode *inode;
931 
932 	inode = new_inode(sb);
933 	if (inode) {
934 		inode->i_ino = get_next_ino();
935 		inode->i_mode = S_IFDIR | ctx->mode;
936 		inode->i_uid = ctx->uid;
937 		inode->i_gid = ctx->gid;
938 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
939 		inode->i_op = &hugetlbfs_dir_inode_operations;
940 		inode->i_fop = &simple_dir_operations;
941 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
942 		inc_nlink(inode);
943 		lockdep_annotate_inode_mutex_key(inode);
944 	}
945 	return inode;
946 }
947 
948 /*
949  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
950  * be taken from reclaim -- unlike regular filesystems. This needs an
951  * annotation because huge_pmd_share() does an allocation under hugetlb's
952  * i_mmap_rwsem.
953  */
954 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
955 
956 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
957 					struct inode *dir,
958 					umode_t mode, dev_t dev)
959 {
960 	struct inode *inode;
961 	struct resv_map *resv_map = NULL;
962 
963 	/*
964 	 * Reserve maps are only needed for inodes that can have associated
965 	 * page allocations.
966 	 */
967 	if (S_ISREG(mode) || S_ISLNK(mode)) {
968 		resv_map = resv_map_alloc();
969 		if (!resv_map)
970 			return NULL;
971 	}
972 
973 	inode = new_inode(sb);
974 	if (inode) {
975 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
976 
977 		inode->i_ino = get_next_ino();
978 		inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
979 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
980 				&hugetlbfs_i_mmap_rwsem_key);
981 		inode->i_mapping->a_ops = &hugetlbfs_aops;
982 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
983 		inode->i_mapping->private_data = resv_map;
984 		info->seals = F_SEAL_SEAL;
985 		switch (mode & S_IFMT) {
986 		default:
987 			init_special_inode(inode, mode, dev);
988 			break;
989 		case S_IFREG:
990 			inode->i_op = &hugetlbfs_inode_operations;
991 			inode->i_fop = &hugetlbfs_file_operations;
992 			break;
993 		case S_IFDIR:
994 			inode->i_op = &hugetlbfs_dir_inode_operations;
995 			inode->i_fop = &simple_dir_operations;
996 
997 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
998 			inc_nlink(inode);
999 			break;
1000 		case S_IFLNK:
1001 			inode->i_op = &page_symlink_inode_operations;
1002 			inode_nohighmem(inode);
1003 			break;
1004 		}
1005 		lockdep_annotate_inode_mutex_key(inode);
1006 	} else {
1007 		if (resv_map)
1008 			kref_put(&resv_map->refs, resv_map_release);
1009 	}
1010 
1011 	return inode;
1012 }
1013 
1014 /*
1015  * File creation. Allocate an inode, and we're done..
1016  */
1017 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1018 			   struct dentry *dentry, umode_t mode, dev_t dev)
1019 {
1020 	struct inode *inode;
1021 
1022 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1023 	if (!inode)
1024 		return -ENOSPC;
1025 	dir->i_ctime = dir->i_mtime = current_time(dir);
1026 	d_instantiate(dentry, inode);
1027 	dget(dentry);/* Extra count - pin the dentry in core */
1028 	return 0;
1029 }
1030 
1031 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1032 			   struct dentry *dentry, umode_t mode)
1033 {
1034 	int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
1035 				     mode | S_IFDIR, 0);
1036 	if (!retval)
1037 		inc_nlink(dir);
1038 	return retval;
1039 }
1040 
1041 static int hugetlbfs_create(struct mnt_idmap *idmap,
1042 			    struct inode *dir, struct dentry *dentry,
1043 			    umode_t mode, bool excl)
1044 {
1045 	return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1046 }
1047 
1048 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1049 			     struct inode *dir, struct file *file,
1050 			     umode_t mode)
1051 {
1052 	struct inode *inode;
1053 
1054 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1055 	if (!inode)
1056 		return -ENOSPC;
1057 	dir->i_ctime = dir->i_mtime = current_time(dir);
1058 	d_tmpfile(file, inode);
1059 	return finish_open_simple(file, 0);
1060 }
1061 
1062 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1063 			     struct inode *dir, struct dentry *dentry,
1064 			     const char *symname)
1065 {
1066 	struct inode *inode;
1067 	int error = -ENOSPC;
1068 
1069 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1070 	if (inode) {
1071 		int l = strlen(symname)+1;
1072 		error = page_symlink(inode, symname, l);
1073 		if (!error) {
1074 			d_instantiate(dentry, inode);
1075 			dget(dentry);
1076 		} else
1077 			iput(inode);
1078 	}
1079 	dir->i_ctime = dir->i_mtime = current_time(dir);
1080 
1081 	return error;
1082 }
1083 
1084 #ifdef CONFIG_MIGRATION
1085 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1086 				struct folio *dst, struct folio *src,
1087 				enum migrate_mode mode)
1088 {
1089 	int rc;
1090 
1091 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1092 	if (rc != MIGRATEPAGE_SUCCESS)
1093 		return rc;
1094 
1095 	if (hugetlb_folio_subpool(src)) {
1096 		hugetlb_set_folio_subpool(dst,
1097 					hugetlb_folio_subpool(src));
1098 		hugetlb_set_folio_subpool(src, NULL);
1099 	}
1100 
1101 	if (mode != MIGRATE_SYNC_NO_COPY)
1102 		folio_migrate_copy(dst, src);
1103 	else
1104 		folio_migrate_flags(dst, src);
1105 
1106 	return MIGRATEPAGE_SUCCESS;
1107 }
1108 #else
1109 #define hugetlbfs_migrate_folio NULL
1110 #endif
1111 
1112 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1113 				struct page *page)
1114 {
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Display the mount options in /proc/mounts.
1120  */
1121 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1122 {
1123 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1124 	struct hugepage_subpool *spool = sbinfo->spool;
1125 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1126 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1127 	char mod;
1128 
1129 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1130 		seq_printf(m, ",uid=%u",
1131 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1132 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1133 		seq_printf(m, ",gid=%u",
1134 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1135 	if (sbinfo->mode != 0755)
1136 		seq_printf(m, ",mode=%o", sbinfo->mode);
1137 	if (sbinfo->max_inodes != -1)
1138 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1139 
1140 	hpage_size /= 1024;
1141 	mod = 'K';
1142 	if (hpage_size >= 1024) {
1143 		hpage_size /= 1024;
1144 		mod = 'M';
1145 	}
1146 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1147 	if (spool) {
1148 		if (spool->max_hpages != -1)
1149 			seq_printf(m, ",size=%llu",
1150 				   (unsigned long long)spool->max_hpages << hpage_shift);
1151 		if (spool->min_hpages != -1)
1152 			seq_printf(m, ",min_size=%llu",
1153 				   (unsigned long long)spool->min_hpages << hpage_shift);
1154 	}
1155 	return 0;
1156 }
1157 
1158 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1159 {
1160 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1161 	struct hstate *h = hstate_inode(d_inode(dentry));
1162 
1163 	buf->f_type = HUGETLBFS_MAGIC;
1164 	buf->f_bsize = huge_page_size(h);
1165 	if (sbinfo) {
1166 		spin_lock(&sbinfo->stat_lock);
1167 		/* If no limits set, just report 0 or -1 for max/free/used
1168 		 * blocks, like simple_statfs() */
1169 		if (sbinfo->spool) {
1170 			long free_pages;
1171 
1172 			spin_lock_irq(&sbinfo->spool->lock);
1173 			buf->f_blocks = sbinfo->spool->max_hpages;
1174 			free_pages = sbinfo->spool->max_hpages
1175 				- sbinfo->spool->used_hpages;
1176 			buf->f_bavail = buf->f_bfree = free_pages;
1177 			spin_unlock_irq(&sbinfo->spool->lock);
1178 			buf->f_files = sbinfo->max_inodes;
1179 			buf->f_ffree = sbinfo->free_inodes;
1180 		}
1181 		spin_unlock(&sbinfo->stat_lock);
1182 	}
1183 	buf->f_namelen = NAME_MAX;
1184 	return 0;
1185 }
1186 
1187 static void hugetlbfs_put_super(struct super_block *sb)
1188 {
1189 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1190 
1191 	if (sbi) {
1192 		sb->s_fs_info = NULL;
1193 
1194 		if (sbi->spool)
1195 			hugepage_put_subpool(sbi->spool);
1196 
1197 		kfree(sbi);
1198 	}
1199 }
1200 
1201 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1202 {
1203 	if (sbinfo->free_inodes >= 0) {
1204 		spin_lock(&sbinfo->stat_lock);
1205 		if (unlikely(!sbinfo->free_inodes)) {
1206 			spin_unlock(&sbinfo->stat_lock);
1207 			return 0;
1208 		}
1209 		sbinfo->free_inodes--;
1210 		spin_unlock(&sbinfo->stat_lock);
1211 	}
1212 
1213 	return 1;
1214 }
1215 
1216 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1217 {
1218 	if (sbinfo->free_inodes >= 0) {
1219 		spin_lock(&sbinfo->stat_lock);
1220 		sbinfo->free_inodes++;
1221 		spin_unlock(&sbinfo->stat_lock);
1222 	}
1223 }
1224 
1225 
1226 static struct kmem_cache *hugetlbfs_inode_cachep;
1227 
1228 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1229 {
1230 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1231 	struct hugetlbfs_inode_info *p;
1232 
1233 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1234 		return NULL;
1235 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1236 	if (unlikely(!p)) {
1237 		hugetlbfs_inc_free_inodes(sbinfo);
1238 		return NULL;
1239 	}
1240 
1241 	/*
1242 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1243 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1244 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1245 	 * in case of a quick call to destroy.
1246 	 *
1247 	 * Note that the policy is initialized even if we are creating a
1248 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1249 	 */
1250 	mpol_shared_policy_init(&p->policy, NULL);
1251 
1252 	return &p->vfs_inode;
1253 }
1254 
1255 static void hugetlbfs_free_inode(struct inode *inode)
1256 {
1257 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1258 }
1259 
1260 static void hugetlbfs_destroy_inode(struct inode *inode)
1261 {
1262 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1263 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1264 }
1265 
1266 static const struct address_space_operations hugetlbfs_aops = {
1267 	.write_begin	= hugetlbfs_write_begin,
1268 	.write_end	= hugetlbfs_write_end,
1269 	.dirty_folio	= noop_dirty_folio,
1270 	.migrate_folio  = hugetlbfs_migrate_folio,
1271 	.error_remove_page	= hugetlbfs_error_remove_page,
1272 };
1273 
1274 
1275 static void init_once(void *foo)
1276 {
1277 	struct hugetlbfs_inode_info *ei = foo;
1278 
1279 	inode_init_once(&ei->vfs_inode);
1280 }
1281 
1282 const struct file_operations hugetlbfs_file_operations = {
1283 	.read_iter		= hugetlbfs_read_iter,
1284 	.mmap			= hugetlbfs_file_mmap,
1285 	.fsync			= noop_fsync,
1286 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1287 	.llseek			= default_llseek,
1288 	.fallocate		= hugetlbfs_fallocate,
1289 };
1290 
1291 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1292 	.create		= hugetlbfs_create,
1293 	.lookup		= simple_lookup,
1294 	.link		= simple_link,
1295 	.unlink		= simple_unlink,
1296 	.symlink	= hugetlbfs_symlink,
1297 	.mkdir		= hugetlbfs_mkdir,
1298 	.rmdir		= simple_rmdir,
1299 	.mknod		= hugetlbfs_mknod,
1300 	.rename		= simple_rename,
1301 	.setattr	= hugetlbfs_setattr,
1302 	.tmpfile	= hugetlbfs_tmpfile,
1303 };
1304 
1305 static const struct inode_operations hugetlbfs_inode_operations = {
1306 	.setattr	= hugetlbfs_setattr,
1307 };
1308 
1309 static const struct super_operations hugetlbfs_ops = {
1310 	.alloc_inode    = hugetlbfs_alloc_inode,
1311 	.free_inode     = hugetlbfs_free_inode,
1312 	.destroy_inode  = hugetlbfs_destroy_inode,
1313 	.evict_inode	= hugetlbfs_evict_inode,
1314 	.statfs		= hugetlbfs_statfs,
1315 	.put_super	= hugetlbfs_put_super,
1316 	.show_options	= hugetlbfs_show_options,
1317 };
1318 
1319 /*
1320  * Convert size option passed from command line to number of huge pages
1321  * in the pool specified by hstate.  Size option could be in bytes
1322  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1323  */
1324 static long
1325 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1326 			 enum hugetlbfs_size_type val_type)
1327 {
1328 	if (val_type == NO_SIZE)
1329 		return -1;
1330 
1331 	if (val_type == SIZE_PERCENT) {
1332 		size_opt <<= huge_page_shift(h);
1333 		size_opt *= h->max_huge_pages;
1334 		do_div(size_opt, 100);
1335 	}
1336 
1337 	size_opt >>= huge_page_shift(h);
1338 	return size_opt;
1339 }
1340 
1341 /*
1342  * Parse one mount parameter.
1343  */
1344 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1345 {
1346 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1347 	struct fs_parse_result result;
1348 	char *rest;
1349 	unsigned long ps;
1350 	int opt;
1351 
1352 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1353 	if (opt < 0)
1354 		return opt;
1355 
1356 	switch (opt) {
1357 	case Opt_uid:
1358 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1359 		if (!uid_valid(ctx->uid))
1360 			goto bad_val;
1361 		return 0;
1362 
1363 	case Opt_gid:
1364 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1365 		if (!gid_valid(ctx->gid))
1366 			goto bad_val;
1367 		return 0;
1368 
1369 	case Opt_mode:
1370 		ctx->mode = result.uint_32 & 01777U;
1371 		return 0;
1372 
1373 	case Opt_size:
1374 		/* memparse() will accept a K/M/G without a digit */
1375 		if (!param->string || !isdigit(param->string[0]))
1376 			goto bad_val;
1377 		ctx->max_size_opt = memparse(param->string, &rest);
1378 		ctx->max_val_type = SIZE_STD;
1379 		if (*rest == '%')
1380 			ctx->max_val_type = SIZE_PERCENT;
1381 		return 0;
1382 
1383 	case Opt_nr_inodes:
1384 		/* memparse() will accept a K/M/G without a digit */
1385 		if (!param->string || !isdigit(param->string[0]))
1386 			goto bad_val;
1387 		ctx->nr_inodes = memparse(param->string, &rest);
1388 		return 0;
1389 
1390 	case Opt_pagesize:
1391 		ps = memparse(param->string, &rest);
1392 		ctx->hstate = size_to_hstate(ps);
1393 		if (!ctx->hstate) {
1394 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1395 			return -EINVAL;
1396 		}
1397 		return 0;
1398 
1399 	case Opt_min_size:
1400 		/* memparse() will accept a K/M/G without a digit */
1401 		if (!param->string || !isdigit(param->string[0]))
1402 			goto bad_val;
1403 		ctx->min_size_opt = memparse(param->string, &rest);
1404 		ctx->min_val_type = SIZE_STD;
1405 		if (*rest == '%')
1406 			ctx->min_val_type = SIZE_PERCENT;
1407 		return 0;
1408 
1409 	default:
1410 		return -EINVAL;
1411 	}
1412 
1413 bad_val:
1414 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1415 		      param->string, param->key);
1416 }
1417 
1418 /*
1419  * Validate the parsed options.
1420  */
1421 static int hugetlbfs_validate(struct fs_context *fc)
1422 {
1423 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1424 
1425 	/*
1426 	 * Use huge page pool size (in hstate) to convert the size
1427 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1428 	 */
1429 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1430 						   ctx->max_size_opt,
1431 						   ctx->max_val_type);
1432 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1433 						   ctx->min_size_opt,
1434 						   ctx->min_val_type);
1435 
1436 	/*
1437 	 * If max_size was specified, then min_size must be smaller
1438 	 */
1439 	if (ctx->max_val_type > NO_SIZE &&
1440 	    ctx->min_hpages > ctx->max_hpages) {
1441 		pr_err("Minimum size can not be greater than maximum size\n");
1442 		return -EINVAL;
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 static int
1449 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1450 {
1451 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1452 	struct hugetlbfs_sb_info *sbinfo;
1453 
1454 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1455 	if (!sbinfo)
1456 		return -ENOMEM;
1457 	sb->s_fs_info = sbinfo;
1458 	spin_lock_init(&sbinfo->stat_lock);
1459 	sbinfo->hstate		= ctx->hstate;
1460 	sbinfo->max_inodes	= ctx->nr_inodes;
1461 	sbinfo->free_inodes	= ctx->nr_inodes;
1462 	sbinfo->spool		= NULL;
1463 	sbinfo->uid		= ctx->uid;
1464 	sbinfo->gid		= ctx->gid;
1465 	sbinfo->mode		= ctx->mode;
1466 
1467 	/*
1468 	 * Allocate and initialize subpool if maximum or minimum size is
1469 	 * specified.  Any needed reservations (for minimum size) are taken
1470 	 * when the subpool is created.
1471 	 */
1472 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1473 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1474 						     ctx->max_hpages,
1475 						     ctx->min_hpages);
1476 		if (!sbinfo->spool)
1477 			goto out_free;
1478 	}
1479 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1480 	sb->s_blocksize = huge_page_size(ctx->hstate);
1481 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1482 	sb->s_magic = HUGETLBFS_MAGIC;
1483 	sb->s_op = &hugetlbfs_ops;
1484 	sb->s_time_gran = 1;
1485 
1486 	/*
1487 	 * Due to the special and limited functionality of hugetlbfs, it does
1488 	 * not work well as a stacking filesystem.
1489 	 */
1490 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1491 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1492 	if (!sb->s_root)
1493 		goto out_free;
1494 	return 0;
1495 out_free:
1496 	kfree(sbinfo->spool);
1497 	kfree(sbinfo);
1498 	return -ENOMEM;
1499 }
1500 
1501 static int hugetlbfs_get_tree(struct fs_context *fc)
1502 {
1503 	int err = hugetlbfs_validate(fc);
1504 	if (err)
1505 		return err;
1506 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1507 }
1508 
1509 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1510 {
1511 	kfree(fc->fs_private);
1512 }
1513 
1514 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1515 	.free		= hugetlbfs_fs_context_free,
1516 	.parse_param	= hugetlbfs_parse_param,
1517 	.get_tree	= hugetlbfs_get_tree,
1518 };
1519 
1520 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1521 {
1522 	struct hugetlbfs_fs_context *ctx;
1523 
1524 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1525 	if (!ctx)
1526 		return -ENOMEM;
1527 
1528 	ctx->max_hpages	= -1; /* No limit on size by default */
1529 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1530 	ctx->uid	= current_fsuid();
1531 	ctx->gid	= current_fsgid();
1532 	ctx->mode	= 0755;
1533 	ctx->hstate	= &default_hstate;
1534 	ctx->min_hpages	= -1; /* No default minimum size */
1535 	ctx->max_val_type = NO_SIZE;
1536 	ctx->min_val_type = NO_SIZE;
1537 	fc->fs_private = ctx;
1538 	fc->ops	= &hugetlbfs_fs_context_ops;
1539 	return 0;
1540 }
1541 
1542 static struct file_system_type hugetlbfs_fs_type = {
1543 	.name			= "hugetlbfs",
1544 	.init_fs_context	= hugetlbfs_init_fs_context,
1545 	.parameters		= hugetlb_fs_parameters,
1546 	.kill_sb		= kill_litter_super,
1547 };
1548 
1549 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1550 
1551 static int can_do_hugetlb_shm(void)
1552 {
1553 	kgid_t shm_group;
1554 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1555 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1556 }
1557 
1558 static int get_hstate_idx(int page_size_log)
1559 {
1560 	struct hstate *h = hstate_sizelog(page_size_log);
1561 
1562 	if (!h)
1563 		return -1;
1564 	return hstate_index(h);
1565 }
1566 
1567 /*
1568  * Note that size should be aligned to proper hugepage size in caller side,
1569  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1570  */
1571 struct file *hugetlb_file_setup(const char *name, size_t size,
1572 				vm_flags_t acctflag, int creat_flags,
1573 				int page_size_log)
1574 {
1575 	struct inode *inode;
1576 	struct vfsmount *mnt;
1577 	int hstate_idx;
1578 	struct file *file;
1579 
1580 	hstate_idx = get_hstate_idx(page_size_log);
1581 	if (hstate_idx < 0)
1582 		return ERR_PTR(-ENODEV);
1583 
1584 	mnt = hugetlbfs_vfsmount[hstate_idx];
1585 	if (!mnt)
1586 		return ERR_PTR(-ENOENT);
1587 
1588 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1589 		struct ucounts *ucounts = current_ucounts();
1590 
1591 		if (user_shm_lock(size, ucounts)) {
1592 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1593 				current->comm, current->pid);
1594 			user_shm_unlock(size, ucounts);
1595 		}
1596 		return ERR_PTR(-EPERM);
1597 	}
1598 
1599 	file = ERR_PTR(-ENOSPC);
1600 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1601 	if (!inode)
1602 		goto out;
1603 	if (creat_flags == HUGETLB_SHMFS_INODE)
1604 		inode->i_flags |= S_PRIVATE;
1605 
1606 	inode->i_size = size;
1607 	clear_nlink(inode);
1608 
1609 	if (!hugetlb_reserve_pages(inode, 0,
1610 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1611 			acctflag))
1612 		file = ERR_PTR(-ENOMEM);
1613 	else
1614 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1615 					&hugetlbfs_file_operations);
1616 	if (!IS_ERR(file))
1617 		return file;
1618 
1619 	iput(inode);
1620 out:
1621 	return file;
1622 }
1623 
1624 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1625 {
1626 	struct fs_context *fc;
1627 	struct vfsmount *mnt;
1628 
1629 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1630 	if (IS_ERR(fc)) {
1631 		mnt = ERR_CAST(fc);
1632 	} else {
1633 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1634 		ctx->hstate = h;
1635 		mnt = fc_mount(fc);
1636 		put_fs_context(fc);
1637 	}
1638 	if (IS_ERR(mnt))
1639 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1640 		       huge_page_size(h) / SZ_1K);
1641 	return mnt;
1642 }
1643 
1644 static int __init init_hugetlbfs_fs(void)
1645 {
1646 	struct vfsmount *mnt;
1647 	struct hstate *h;
1648 	int error;
1649 	int i;
1650 
1651 	if (!hugepages_supported()) {
1652 		pr_info("disabling because there are no supported hugepage sizes\n");
1653 		return -ENOTSUPP;
1654 	}
1655 
1656 	error = -ENOMEM;
1657 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1658 					sizeof(struct hugetlbfs_inode_info),
1659 					0, SLAB_ACCOUNT, init_once);
1660 	if (hugetlbfs_inode_cachep == NULL)
1661 		goto out;
1662 
1663 	error = register_filesystem(&hugetlbfs_fs_type);
1664 	if (error)
1665 		goto out_free;
1666 
1667 	/* default hstate mount is required */
1668 	mnt = mount_one_hugetlbfs(&default_hstate);
1669 	if (IS_ERR(mnt)) {
1670 		error = PTR_ERR(mnt);
1671 		goto out_unreg;
1672 	}
1673 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1674 
1675 	/* other hstates are optional */
1676 	i = 0;
1677 	for_each_hstate(h) {
1678 		if (i == default_hstate_idx) {
1679 			i++;
1680 			continue;
1681 		}
1682 
1683 		mnt = mount_one_hugetlbfs(h);
1684 		if (IS_ERR(mnt))
1685 			hugetlbfs_vfsmount[i] = NULL;
1686 		else
1687 			hugetlbfs_vfsmount[i] = mnt;
1688 		i++;
1689 	}
1690 
1691 	return 0;
1692 
1693  out_unreg:
1694 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1695  out_free:
1696 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1697  out:
1698 	return error;
1699 }
1700 fs_initcall(init_hugetlbfs_fs)
1701