1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_u32 ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_u32 ("uid", Opt_uid), 83 {} 84 }; 85 86 #ifdef CONFIG_NUMA 87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 88 struct inode *inode, pgoff_t index) 89 { 90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 91 index); 92 } 93 94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 95 { 96 mpol_cond_put(vma->vm_policy); 97 } 98 #else 99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 100 struct inode *inode, pgoff_t index) 101 { 102 } 103 104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 105 { 106 } 107 #endif 108 109 /* 110 * Mask used when checking the page offset value passed in via system 111 * calls. This value will be converted to a loff_t which is signed. 112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 113 * value. The extra bit (- 1 in the shift value) is to take the sign 114 * bit into account. 115 */ 116 #define PGOFF_LOFFT_MAX \ 117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 118 119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 120 { 121 struct inode *inode = file_inode(file); 122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 123 loff_t len, vma_len; 124 int ret; 125 struct hstate *h = hstate_file(file); 126 127 /* 128 * vma address alignment (but not the pgoff alignment) has 129 * already been checked by prepare_hugepage_range. If you add 130 * any error returns here, do so after setting VM_HUGETLB, so 131 * is_vm_hugetlb_page tests below unmap_region go the right 132 * way when do_mmap unwinds (may be important on powerpc 133 * and ia64). 134 */ 135 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND); 136 vma->vm_ops = &hugetlb_vm_ops; 137 138 ret = seal_check_future_write(info->seals, vma); 139 if (ret) 140 return ret; 141 142 /* 143 * page based offset in vm_pgoff could be sufficiently large to 144 * overflow a loff_t when converted to byte offset. This can 145 * only happen on architectures where sizeof(loff_t) == 146 * sizeof(unsigned long). So, only check in those instances. 147 */ 148 if (sizeof(unsigned long) == sizeof(loff_t)) { 149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 150 return -EINVAL; 151 } 152 153 /* must be huge page aligned */ 154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 155 return -EINVAL; 156 157 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 159 /* check for overflow */ 160 if (len < vma_len) 161 return -EINVAL; 162 163 inode_lock(inode); 164 file_accessed(file); 165 166 ret = -ENOMEM; 167 if (!hugetlb_reserve_pages(inode, 168 vma->vm_pgoff >> huge_page_order(h), 169 len >> huge_page_shift(h), vma, 170 vma->vm_flags)) 171 goto out; 172 173 ret = 0; 174 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 175 i_size_write(inode, len); 176 out: 177 inode_unlock(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called under mmap_write_lock(mm). 184 */ 185 186 static unsigned long 187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 188 unsigned long len, unsigned long pgoff, unsigned long flags) 189 { 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 info.flags = 0; 194 info.length = len; 195 info.low_limit = current->mm->mmap_base; 196 info.high_limit = arch_get_mmap_end(addr, len, flags); 197 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 198 info.align_offset = 0; 199 return vm_unmapped_area(&info); 200 } 201 202 static unsigned long 203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 204 unsigned long len, unsigned long pgoff, unsigned long flags) 205 { 206 struct hstate *h = hstate_file(file); 207 struct vm_unmapped_area_info info; 208 209 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 210 info.length = len; 211 info.low_limit = PAGE_SIZE; 212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 213 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 214 info.align_offset = 0; 215 addr = vm_unmapped_area(&info); 216 217 /* 218 * A failed mmap() very likely causes application failure, 219 * so fall back to the bottom-up function here. This scenario 220 * can happen with large stack limits and large mmap() 221 * allocations. 222 */ 223 if (unlikely(offset_in_page(addr))) { 224 VM_BUG_ON(addr != -ENOMEM); 225 info.flags = 0; 226 info.low_limit = current->mm->mmap_base; 227 info.high_limit = arch_get_mmap_end(addr, len, flags); 228 addr = vm_unmapped_area(&info); 229 } 230 231 return addr; 232 } 233 234 unsigned long 235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 236 unsigned long len, unsigned long pgoff, 237 unsigned long flags) 238 { 239 struct mm_struct *mm = current->mm; 240 struct vm_area_struct *vma; 241 struct hstate *h = hstate_file(file); 242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 243 244 if (len & ~huge_page_mask(h)) 245 return -EINVAL; 246 if (len > TASK_SIZE) 247 return -ENOMEM; 248 249 if (flags & MAP_FIXED) { 250 if (prepare_hugepage_range(file, addr, len)) 251 return -EINVAL; 252 return addr; 253 } 254 255 if (addr) { 256 addr = ALIGN(addr, huge_page_size(h)); 257 vma = find_vma(mm, addr); 258 if (mmap_end - len >= addr && 259 (!vma || addr + len <= vm_start_gap(vma))) 260 return addr; 261 } 262 263 /* 264 * Use mm->get_unmapped_area value as a hint to use topdown routine. 265 * If architectures have special needs, they should define their own 266 * version of hugetlb_get_unmapped_area. 267 */ 268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 269 return hugetlb_get_unmapped_area_topdown(file, addr, len, 270 pgoff, flags); 271 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 272 pgoff, flags); 273 } 274 275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 276 static unsigned long 277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 278 unsigned long len, unsigned long pgoff, 279 unsigned long flags) 280 { 281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 282 } 283 #endif 284 285 /* 286 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset. 287 * Returns the maximum number of bytes one can read without touching the 1st raw 288 * HWPOISON subpage. 289 * 290 * The implementation borrows the iteration logic from copy_page_to_iter*. 291 */ 292 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes) 293 { 294 size_t n = 0; 295 size_t res = 0; 296 297 /* First subpage to start the loop. */ 298 page = nth_page(page, offset / PAGE_SIZE); 299 offset %= PAGE_SIZE; 300 while (1) { 301 if (is_raw_hwpoison_page_in_hugepage(page)) 302 break; 303 304 /* Safe to read n bytes without touching HWPOISON subpage. */ 305 n = min(bytes, (size_t)PAGE_SIZE - offset); 306 res += n; 307 bytes -= n; 308 if (!bytes || !n) 309 break; 310 offset += n; 311 if (offset == PAGE_SIZE) { 312 page = nth_page(page, 1); 313 offset = 0; 314 } 315 } 316 317 return res; 318 } 319 320 /* 321 * Support for read() - Find the page attached to f_mapping and copy out the 322 * data. This provides functionality similar to filemap_read(). 323 */ 324 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 325 { 326 struct file *file = iocb->ki_filp; 327 struct hstate *h = hstate_file(file); 328 struct address_space *mapping = file->f_mapping; 329 struct inode *inode = mapping->host; 330 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 331 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 332 unsigned long end_index; 333 loff_t isize; 334 ssize_t retval = 0; 335 336 while (iov_iter_count(to)) { 337 struct page *page; 338 size_t nr, copied, want; 339 340 /* nr is the maximum number of bytes to copy from this page */ 341 nr = huge_page_size(h); 342 isize = i_size_read(inode); 343 if (!isize) 344 break; 345 end_index = (isize - 1) >> huge_page_shift(h); 346 if (index > end_index) 347 break; 348 if (index == end_index) { 349 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 350 if (nr <= offset) 351 break; 352 } 353 nr = nr - offset; 354 355 /* Find the page */ 356 page = find_lock_page(mapping, index); 357 if (unlikely(page == NULL)) { 358 /* 359 * We have a HOLE, zero out the user-buffer for the 360 * length of the hole or request. 361 */ 362 copied = iov_iter_zero(nr, to); 363 } else { 364 unlock_page(page); 365 366 if (!PageHWPoison(page)) 367 want = nr; 368 else { 369 /* 370 * Adjust how many bytes safe to read without 371 * touching the 1st raw HWPOISON subpage after 372 * offset. 373 */ 374 want = adjust_range_hwpoison(page, offset, nr); 375 if (want == 0) { 376 put_page(page); 377 retval = -EIO; 378 break; 379 } 380 } 381 382 /* 383 * We have the page, copy it to user space buffer. 384 */ 385 copied = copy_page_to_iter(page, offset, want, to); 386 put_page(page); 387 } 388 offset += copied; 389 retval += copied; 390 if (copied != nr && iov_iter_count(to)) { 391 if (!retval) 392 retval = -EFAULT; 393 break; 394 } 395 index += offset >> huge_page_shift(h); 396 offset &= ~huge_page_mask(h); 397 } 398 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 399 return retval; 400 } 401 402 static int hugetlbfs_write_begin(struct file *file, 403 struct address_space *mapping, 404 loff_t pos, unsigned len, 405 struct page **pagep, void **fsdata) 406 { 407 return -EINVAL; 408 } 409 410 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 411 loff_t pos, unsigned len, unsigned copied, 412 struct page *page, void *fsdata) 413 { 414 BUG(); 415 return -EINVAL; 416 } 417 418 static void hugetlb_delete_from_page_cache(struct folio *folio) 419 { 420 folio_clear_dirty(folio); 421 folio_clear_uptodate(folio); 422 filemap_remove_folio(folio); 423 } 424 425 /* 426 * Called with i_mmap_rwsem held for inode based vma maps. This makes 427 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 428 * mutex for the page in the mapping. So, we can not race with page being 429 * faulted into the vma. 430 */ 431 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 432 unsigned long addr, struct page *page) 433 { 434 pte_t *ptep, pte; 435 436 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma))); 437 if (!ptep) 438 return false; 439 440 pte = huge_ptep_get(ptep); 441 if (huge_pte_none(pte) || !pte_present(pte)) 442 return false; 443 444 if (pte_page(pte) == page) 445 return true; 446 447 return false; 448 } 449 450 /* 451 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 452 * No, because the interval tree returns us only those vmas 453 * which overlap the truncated area starting at pgoff, 454 * and no vma on a 32-bit arch can span beyond the 4GB. 455 */ 456 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 457 { 458 unsigned long offset = 0; 459 460 if (vma->vm_pgoff < start) 461 offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 462 463 return vma->vm_start + offset; 464 } 465 466 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 467 { 468 unsigned long t_end; 469 470 if (!end) 471 return vma->vm_end; 472 473 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 474 if (t_end > vma->vm_end) 475 t_end = vma->vm_end; 476 return t_end; 477 } 478 479 /* 480 * Called with hugetlb fault mutex held. Therefore, no more mappings to 481 * this folio can be created while executing the routine. 482 */ 483 static void hugetlb_unmap_file_folio(struct hstate *h, 484 struct address_space *mapping, 485 struct folio *folio, pgoff_t index) 486 { 487 struct rb_root_cached *root = &mapping->i_mmap; 488 struct hugetlb_vma_lock *vma_lock; 489 struct page *page = &folio->page; 490 struct vm_area_struct *vma; 491 unsigned long v_start; 492 unsigned long v_end; 493 pgoff_t start, end; 494 495 start = index * pages_per_huge_page(h); 496 end = (index + 1) * pages_per_huge_page(h); 497 498 i_mmap_lock_write(mapping); 499 retry: 500 vma_lock = NULL; 501 vma_interval_tree_foreach(vma, root, start, end - 1) { 502 v_start = vma_offset_start(vma, start); 503 v_end = vma_offset_end(vma, end); 504 505 if (!hugetlb_vma_maps_page(vma, v_start, page)) 506 continue; 507 508 if (!hugetlb_vma_trylock_write(vma)) { 509 vma_lock = vma->vm_private_data; 510 /* 511 * If we can not get vma lock, we need to drop 512 * immap_sema and take locks in order. First, 513 * take a ref on the vma_lock structure so that 514 * we can be guaranteed it will not go away when 515 * dropping immap_sema. 516 */ 517 kref_get(&vma_lock->refs); 518 break; 519 } 520 521 unmap_hugepage_range(vma, v_start, v_end, NULL, 522 ZAP_FLAG_DROP_MARKER); 523 hugetlb_vma_unlock_write(vma); 524 } 525 526 i_mmap_unlock_write(mapping); 527 528 if (vma_lock) { 529 /* 530 * Wait on vma_lock. We know it is still valid as we have 531 * a reference. We must 'open code' vma locking as we do 532 * not know if vma_lock is still attached to vma. 533 */ 534 down_write(&vma_lock->rw_sema); 535 i_mmap_lock_write(mapping); 536 537 vma = vma_lock->vma; 538 if (!vma) { 539 /* 540 * If lock is no longer attached to vma, then just 541 * unlock, drop our reference and retry looking for 542 * other vmas. 543 */ 544 up_write(&vma_lock->rw_sema); 545 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 546 goto retry; 547 } 548 549 /* 550 * vma_lock is still attached to vma. Check to see if vma 551 * still maps page and if so, unmap. 552 */ 553 v_start = vma_offset_start(vma, start); 554 v_end = vma_offset_end(vma, end); 555 if (hugetlb_vma_maps_page(vma, v_start, page)) 556 unmap_hugepage_range(vma, v_start, v_end, NULL, 557 ZAP_FLAG_DROP_MARKER); 558 559 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 560 hugetlb_vma_unlock_write(vma); 561 562 goto retry; 563 } 564 } 565 566 static void 567 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 568 zap_flags_t zap_flags) 569 { 570 struct vm_area_struct *vma; 571 572 /* 573 * end == 0 indicates that the entire range after start should be 574 * unmapped. Note, end is exclusive, whereas the interval tree takes 575 * an inclusive "last". 576 */ 577 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 578 unsigned long v_start; 579 unsigned long v_end; 580 581 if (!hugetlb_vma_trylock_write(vma)) 582 continue; 583 584 v_start = vma_offset_start(vma, start); 585 v_end = vma_offset_end(vma, end); 586 587 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags); 588 589 /* 590 * Note that vma lock only exists for shared/non-private 591 * vmas. Therefore, lock is not held when calling 592 * unmap_hugepage_range for private vmas. 593 */ 594 hugetlb_vma_unlock_write(vma); 595 } 596 } 597 598 /* 599 * Called with hugetlb fault mutex held. 600 * Returns true if page was actually removed, false otherwise. 601 */ 602 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 603 struct address_space *mapping, 604 struct folio *folio, pgoff_t index, 605 bool truncate_op) 606 { 607 bool ret = false; 608 609 /* 610 * If folio is mapped, it was faulted in after being 611 * unmapped in caller. Unmap (again) while holding 612 * the fault mutex. The mutex will prevent faults 613 * until we finish removing the folio. 614 */ 615 if (unlikely(folio_mapped(folio))) 616 hugetlb_unmap_file_folio(h, mapping, folio, index); 617 618 folio_lock(folio); 619 /* 620 * We must remove the folio from page cache before removing 621 * the region/ reserve map (hugetlb_unreserve_pages). In 622 * rare out of memory conditions, removal of the region/reserve 623 * map could fail. Correspondingly, the subpool and global 624 * reserve usage count can need to be adjusted. 625 */ 626 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 627 hugetlb_delete_from_page_cache(folio); 628 ret = true; 629 if (!truncate_op) { 630 if (unlikely(hugetlb_unreserve_pages(inode, index, 631 index + 1, 1))) 632 hugetlb_fix_reserve_counts(inode); 633 } 634 635 folio_unlock(folio); 636 return ret; 637 } 638 639 /* 640 * remove_inode_hugepages handles two distinct cases: truncation and hole 641 * punch. There are subtle differences in operation for each case. 642 * 643 * truncation is indicated by end of range being LLONG_MAX 644 * In this case, we first scan the range and release found pages. 645 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 646 * maps and global counts. Page faults can race with truncation. 647 * During faults, hugetlb_no_page() checks i_size before page allocation, 648 * and again after obtaining page table lock. It will 'back out' 649 * allocations in the truncated range. 650 * hole punch is indicated if end is not LLONG_MAX 651 * In the hole punch case we scan the range and release found pages. 652 * Only when releasing a page is the associated region/reserve map 653 * deleted. The region/reserve map for ranges without associated 654 * pages are not modified. Page faults can race with hole punch. 655 * This is indicated if we find a mapped page. 656 * Note: If the passed end of range value is beyond the end of file, but 657 * not LLONG_MAX this routine still performs a hole punch operation. 658 */ 659 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 660 loff_t lend) 661 { 662 struct hstate *h = hstate_inode(inode); 663 struct address_space *mapping = &inode->i_data; 664 const pgoff_t start = lstart >> huge_page_shift(h); 665 const pgoff_t end = lend >> huge_page_shift(h); 666 struct folio_batch fbatch; 667 pgoff_t next, index; 668 int i, freed = 0; 669 bool truncate_op = (lend == LLONG_MAX); 670 671 folio_batch_init(&fbatch); 672 next = start; 673 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 674 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 675 struct folio *folio = fbatch.folios[i]; 676 u32 hash = 0; 677 678 index = folio->index; 679 hash = hugetlb_fault_mutex_hash(mapping, index); 680 mutex_lock(&hugetlb_fault_mutex_table[hash]); 681 682 /* 683 * Remove folio that was part of folio_batch. 684 */ 685 if (remove_inode_single_folio(h, inode, mapping, folio, 686 index, truncate_op)) 687 freed++; 688 689 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 690 } 691 folio_batch_release(&fbatch); 692 cond_resched(); 693 } 694 695 if (truncate_op) 696 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 697 } 698 699 static void hugetlbfs_evict_inode(struct inode *inode) 700 { 701 struct resv_map *resv_map; 702 703 remove_inode_hugepages(inode, 0, LLONG_MAX); 704 705 /* 706 * Get the resv_map from the address space embedded in the inode. 707 * This is the address space which points to any resv_map allocated 708 * at inode creation time. If this is a device special inode, 709 * i_mapping may not point to the original address space. 710 */ 711 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 712 /* Only regular and link inodes have associated reserve maps */ 713 if (resv_map) 714 resv_map_release(&resv_map->refs); 715 clear_inode(inode); 716 } 717 718 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 719 { 720 pgoff_t pgoff; 721 struct address_space *mapping = inode->i_mapping; 722 struct hstate *h = hstate_inode(inode); 723 724 BUG_ON(offset & ~huge_page_mask(h)); 725 pgoff = offset >> PAGE_SHIFT; 726 727 i_size_write(inode, offset); 728 i_mmap_lock_write(mapping); 729 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 730 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 731 ZAP_FLAG_DROP_MARKER); 732 i_mmap_unlock_write(mapping); 733 remove_inode_hugepages(inode, offset, LLONG_MAX); 734 } 735 736 static void hugetlbfs_zero_partial_page(struct hstate *h, 737 struct address_space *mapping, 738 loff_t start, 739 loff_t end) 740 { 741 pgoff_t idx = start >> huge_page_shift(h); 742 struct folio *folio; 743 744 folio = filemap_lock_folio(mapping, idx); 745 if (IS_ERR(folio)) 746 return; 747 748 start = start & ~huge_page_mask(h); 749 end = end & ~huge_page_mask(h); 750 if (!end) 751 end = huge_page_size(h); 752 753 folio_zero_segment(folio, (size_t)start, (size_t)end); 754 755 folio_unlock(folio); 756 folio_put(folio); 757 } 758 759 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 760 { 761 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 762 struct address_space *mapping = inode->i_mapping; 763 struct hstate *h = hstate_inode(inode); 764 loff_t hpage_size = huge_page_size(h); 765 loff_t hole_start, hole_end; 766 767 /* 768 * hole_start and hole_end indicate the full pages within the hole. 769 */ 770 hole_start = round_up(offset, hpage_size); 771 hole_end = round_down(offset + len, hpage_size); 772 773 inode_lock(inode); 774 775 /* protected by i_rwsem */ 776 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 777 inode_unlock(inode); 778 return -EPERM; 779 } 780 781 i_mmap_lock_write(mapping); 782 783 /* If range starts before first full page, zero partial page. */ 784 if (offset < hole_start) 785 hugetlbfs_zero_partial_page(h, mapping, 786 offset, min(offset + len, hole_start)); 787 788 /* Unmap users of full pages in the hole. */ 789 if (hole_end > hole_start) { 790 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 791 hugetlb_vmdelete_list(&mapping->i_mmap, 792 hole_start >> PAGE_SHIFT, 793 hole_end >> PAGE_SHIFT, 0); 794 } 795 796 /* If range extends beyond last full page, zero partial page. */ 797 if ((offset + len) > hole_end && (offset + len) > hole_start) 798 hugetlbfs_zero_partial_page(h, mapping, 799 hole_end, offset + len); 800 801 i_mmap_unlock_write(mapping); 802 803 /* Remove full pages from the file. */ 804 if (hole_end > hole_start) 805 remove_inode_hugepages(inode, hole_start, hole_end); 806 807 inode_unlock(inode); 808 809 return 0; 810 } 811 812 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 813 loff_t len) 814 { 815 struct inode *inode = file_inode(file); 816 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 817 struct address_space *mapping = inode->i_mapping; 818 struct hstate *h = hstate_inode(inode); 819 struct vm_area_struct pseudo_vma; 820 struct mm_struct *mm = current->mm; 821 loff_t hpage_size = huge_page_size(h); 822 unsigned long hpage_shift = huge_page_shift(h); 823 pgoff_t start, index, end; 824 int error; 825 u32 hash; 826 827 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 828 return -EOPNOTSUPP; 829 830 if (mode & FALLOC_FL_PUNCH_HOLE) 831 return hugetlbfs_punch_hole(inode, offset, len); 832 833 /* 834 * Default preallocate case. 835 * For this range, start is rounded down and end is rounded up 836 * as well as being converted to page offsets. 837 */ 838 start = offset >> hpage_shift; 839 end = (offset + len + hpage_size - 1) >> hpage_shift; 840 841 inode_lock(inode); 842 843 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 844 error = inode_newsize_ok(inode, offset + len); 845 if (error) 846 goto out; 847 848 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 849 error = -EPERM; 850 goto out; 851 } 852 853 /* 854 * Initialize a pseudo vma as this is required by the huge page 855 * allocation routines. If NUMA is configured, use page index 856 * as input to create an allocation policy. 857 */ 858 vma_init(&pseudo_vma, mm); 859 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 860 pseudo_vma.vm_file = file; 861 862 for (index = start; index < end; index++) { 863 /* 864 * This is supposed to be the vaddr where the page is being 865 * faulted in, but we have no vaddr here. 866 */ 867 struct folio *folio; 868 unsigned long addr; 869 870 cond_resched(); 871 872 /* 873 * fallocate(2) manpage permits EINTR; we may have been 874 * interrupted because we are using up too much memory. 875 */ 876 if (signal_pending(current)) { 877 error = -EINTR; 878 break; 879 } 880 881 /* addr is the offset within the file (zero based) */ 882 addr = index * hpage_size; 883 884 /* mutex taken here, fault path and hole punch */ 885 hash = hugetlb_fault_mutex_hash(mapping, index); 886 mutex_lock(&hugetlb_fault_mutex_table[hash]); 887 888 /* See if already present in mapping to avoid alloc/free */ 889 folio = filemap_get_folio(mapping, index); 890 if (!IS_ERR(folio)) { 891 folio_put(folio); 892 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 893 continue; 894 } 895 896 /* 897 * Allocate folio without setting the avoid_reserve argument. 898 * There certainly are no reserves associated with the 899 * pseudo_vma. However, there could be shared mappings with 900 * reserves for the file at the inode level. If we fallocate 901 * folios in these areas, we need to consume the reserves 902 * to keep reservation accounting consistent. 903 */ 904 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 905 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0); 906 hugetlb_drop_vma_policy(&pseudo_vma); 907 if (IS_ERR(folio)) { 908 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 909 error = PTR_ERR(folio); 910 goto out; 911 } 912 clear_huge_page(&folio->page, addr, pages_per_huge_page(h)); 913 __folio_mark_uptodate(folio); 914 error = hugetlb_add_to_page_cache(folio, mapping, index); 915 if (unlikely(error)) { 916 restore_reserve_on_error(h, &pseudo_vma, addr, folio); 917 folio_put(folio); 918 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 919 goto out; 920 } 921 922 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 923 924 folio_set_hugetlb_migratable(folio); 925 /* 926 * folio_unlock because locked by hugetlb_add_to_page_cache() 927 * folio_put() due to reference from alloc_hugetlb_folio() 928 */ 929 folio_unlock(folio); 930 folio_put(folio); 931 } 932 933 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 934 i_size_write(inode, offset + len); 935 inode_set_ctime_current(inode); 936 out: 937 inode_unlock(inode); 938 return error; 939 } 940 941 static int hugetlbfs_setattr(struct mnt_idmap *idmap, 942 struct dentry *dentry, struct iattr *attr) 943 { 944 struct inode *inode = d_inode(dentry); 945 struct hstate *h = hstate_inode(inode); 946 int error; 947 unsigned int ia_valid = attr->ia_valid; 948 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 949 950 error = setattr_prepare(&nop_mnt_idmap, dentry, attr); 951 if (error) 952 return error; 953 954 if (ia_valid & ATTR_SIZE) { 955 loff_t oldsize = inode->i_size; 956 loff_t newsize = attr->ia_size; 957 958 if (newsize & ~huge_page_mask(h)) 959 return -EINVAL; 960 /* protected by i_rwsem */ 961 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 962 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 963 return -EPERM; 964 hugetlb_vmtruncate(inode, newsize); 965 } 966 967 setattr_copy(&nop_mnt_idmap, inode, attr); 968 mark_inode_dirty(inode); 969 return 0; 970 } 971 972 static struct inode *hugetlbfs_get_root(struct super_block *sb, 973 struct hugetlbfs_fs_context *ctx) 974 { 975 struct inode *inode; 976 977 inode = new_inode(sb); 978 if (inode) { 979 inode->i_ino = get_next_ino(); 980 inode->i_mode = S_IFDIR | ctx->mode; 981 inode->i_uid = ctx->uid; 982 inode->i_gid = ctx->gid; 983 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 984 inode->i_op = &hugetlbfs_dir_inode_operations; 985 inode->i_fop = &simple_dir_operations; 986 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 987 inc_nlink(inode); 988 lockdep_annotate_inode_mutex_key(inode); 989 } 990 return inode; 991 } 992 993 /* 994 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 995 * be taken from reclaim -- unlike regular filesystems. This needs an 996 * annotation because huge_pmd_share() does an allocation under hugetlb's 997 * i_mmap_rwsem. 998 */ 999 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 1000 1001 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 1002 struct inode *dir, 1003 umode_t mode, dev_t dev) 1004 { 1005 struct inode *inode; 1006 struct resv_map *resv_map = NULL; 1007 1008 /* 1009 * Reserve maps are only needed for inodes that can have associated 1010 * page allocations. 1011 */ 1012 if (S_ISREG(mode) || S_ISLNK(mode)) { 1013 resv_map = resv_map_alloc(); 1014 if (!resv_map) 1015 return NULL; 1016 } 1017 1018 inode = new_inode(sb); 1019 if (inode) { 1020 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 1021 1022 inode->i_ino = get_next_ino(); 1023 inode_init_owner(&nop_mnt_idmap, inode, dir, mode); 1024 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 1025 &hugetlbfs_i_mmap_rwsem_key); 1026 inode->i_mapping->a_ops = &hugetlbfs_aops; 1027 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 1028 inode->i_mapping->private_data = resv_map; 1029 info->seals = F_SEAL_SEAL; 1030 switch (mode & S_IFMT) { 1031 default: 1032 init_special_inode(inode, mode, dev); 1033 break; 1034 case S_IFREG: 1035 inode->i_op = &hugetlbfs_inode_operations; 1036 inode->i_fop = &hugetlbfs_file_operations; 1037 break; 1038 case S_IFDIR: 1039 inode->i_op = &hugetlbfs_dir_inode_operations; 1040 inode->i_fop = &simple_dir_operations; 1041 1042 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 1043 inc_nlink(inode); 1044 break; 1045 case S_IFLNK: 1046 inode->i_op = &page_symlink_inode_operations; 1047 inode_nohighmem(inode); 1048 break; 1049 } 1050 lockdep_annotate_inode_mutex_key(inode); 1051 } else { 1052 if (resv_map) 1053 kref_put(&resv_map->refs, resv_map_release); 1054 } 1055 1056 return inode; 1057 } 1058 1059 /* 1060 * File creation. Allocate an inode, and we're done.. 1061 */ 1062 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 1063 struct dentry *dentry, umode_t mode, dev_t dev) 1064 { 1065 struct inode *inode; 1066 1067 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 1068 if (!inode) 1069 return -ENOSPC; 1070 dir->i_mtime = inode_set_ctime_current(dir); 1071 d_instantiate(dentry, inode); 1072 dget(dentry);/* Extra count - pin the dentry in core */ 1073 return 0; 1074 } 1075 1076 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 1077 struct dentry *dentry, umode_t mode) 1078 { 1079 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, 1080 mode | S_IFDIR, 0); 1081 if (!retval) 1082 inc_nlink(dir); 1083 return retval; 1084 } 1085 1086 static int hugetlbfs_create(struct mnt_idmap *idmap, 1087 struct inode *dir, struct dentry *dentry, 1088 umode_t mode, bool excl) 1089 { 1090 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0); 1091 } 1092 1093 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap, 1094 struct inode *dir, struct file *file, 1095 umode_t mode) 1096 { 1097 struct inode *inode; 1098 1099 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0); 1100 if (!inode) 1101 return -ENOSPC; 1102 dir->i_mtime = inode_set_ctime_current(dir); 1103 d_tmpfile(file, inode); 1104 return finish_open_simple(file, 0); 1105 } 1106 1107 static int hugetlbfs_symlink(struct mnt_idmap *idmap, 1108 struct inode *dir, struct dentry *dentry, 1109 const char *symname) 1110 { 1111 struct inode *inode; 1112 int error = -ENOSPC; 1113 1114 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 1115 if (inode) { 1116 int l = strlen(symname)+1; 1117 error = page_symlink(inode, symname, l); 1118 if (!error) { 1119 d_instantiate(dentry, inode); 1120 dget(dentry); 1121 } else 1122 iput(inode); 1123 } 1124 dir->i_mtime = inode_set_ctime_current(dir); 1125 1126 return error; 1127 } 1128 1129 #ifdef CONFIG_MIGRATION 1130 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1131 struct folio *dst, struct folio *src, 1132 enum migrate_mode mode) 1133 { 1134 int rc; 1135 1136 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1137 if (rc != MIGRATEPAGE_SUCCESS) 1138 return rc; 1139 1140 if (hugetlb_folio_subpool(src)) { 1141 hugetlb_set_folio_subpool(dst, 1142 hugetlb_folio_subpool(src)); 1143 hugetlb_set_folio_subpool(src, NULL); 1144 } 1145 1146 if (mode != MIGRATE_SYNC_NO_COPY) 1147 folio_migrate_copy(dst, src); 1148 else 1149 folio_migrate_flags(dst, src); 1150 1151 return MIGRATEPAGE_SUCCESS; 1152 } 1153 #else 1154 #define hugetlbfs_migrate_folio NULL 1155 #endif 1156 1157 static int hugetlbfs_error_remove_page(struct address_space *mapping, 1158 struct page *page) 1159 { 1160 return 0; 1161 } 1162 1163 /* 1164 * Display the mount options in /proc/mounts. 1165 */ 1166 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1167 { 1168 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1169 struct hugepage_subpool *spool = sbinfo->spool; 1170 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1171 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1172 char mod; 1173 1174 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1175 seq_printf(m, ",uid=%u", 1176 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1177 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1178 seq_printf(m, ",gid=%u", 1179 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1180 if (sbinfo->mode != 0755) 1181 seq_printf(m, ",mode=%o", sbinfo->mode); 1182 if (sbinfo->max_inodes != -1) 1183 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1184 1185 hpage_size /= 1024; 1186 mod = 'K'; 1187 if (hpage_size >= 1024) { 1188 hpage_size /= 1024; 1189 mod = 'M'; 1190 } 1191 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1192 if (spool) { 1193 if (spool->max_hpages != -1) 1194 seq_printf(m, ",size=%llu", 1195 (unsigned long long)spool->max_hpages << hpage_shift); 1196 if (spool->min_hpages != -1) 1197 seq_printf(m, ",min_size=%llu", 1198 (unsigned long long)spool->min_hpages << hpage_shift); 1199 } 1200 return 0; 1201 } 1202 1203 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1204 { 1205 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1206 struct hstate *h = hstate_inode(d_inode(dentry)); 1207 1208 buf->f_type = HUGETLBFS_MAGIC; 1209 buf->f_bsize = huge_page_size(h); 1210 if (sbinfo) { 1211 spin_lock(&sbinfo->stat_lock); 1212 /* If no limits set, just report 0 or -1 for max/free/used 1213 * blocks, like simple_statfs() */ 1214 if (sbinfo->spool) { 1215 long free_pages; 1216 1217 spin_lock_irq(&sbinfo->spool->lock); 1218 buf->f_blocks = sbinfo->spool->max_hpages; 1219 free_pages = sbinfo->spool->max_hpages 1220 - sbinfo->spool->used_hpages; 1221 buf->f_bavail = buf->f_bfree = free_pages; 1222 spin_unlock_irq(&sbinfo->spool->lock); 1223 buf->f_files = sbinfo->max_inodes; 1224 buf->f_ffree = sbinfo->free_inodes; 1225 } 1226 spin_unlock(&sbinfo->stat_lock); 1227 } 1228 buf->f_namelen = NAME_MAX; 1229 return 0; 1230 } 1231 1232 static void hugetlbfs_put_super(struct super_block *sb) 1233 { 1234 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1235 1236 if (sbi) { 1237 sb->s_fs_info = NULL; 1238 1239 if (sbi->spool) 1240 hugepage_put_subpool(sbi->spool); 1241 1242 kfree(sbi); 1243 } 1244 } 1245 1246 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1247 { 1248 if (sbinfo->free_inodes >= 0) { 1249 spin_lock(&sbinfo->stat_lock); 1250 if (unlikely(!sbinfo->free_inodes)) { 1251 spin_unlock(&sbinfo->stat_lock); 1252 return 0; 1253 } 1254 sbinfo->free_inodes--; 1255 spin_unlock(&sbinfo->stat_lock); 1256 } 1257 1258 return 1; 1259 } 1260 1261 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1262 { 1263 if (sbinfo->free_inodes >= 0) { 1264 spin_lock(&sbinfo->stat_lock); 1265 sbinfo->free_inodes++; 1266 spin_unlock(&sbinfo->stat_lock); 1267 } 1268 } 1269 1270 1271 static struct kmem_cache *hugetlbfs_inode_cachep; 1272 1273 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1274 { 1275 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1276 struct hugetlbfs_inode_info *p; 1277 1278 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1279 return NULL; 1280 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1281 if (unlikely(!p)) { 1282 hugetlbfs_inc_free_inodes(sbinfo); 1283 return NULL; 1284 } 1285 1286 /* 1287 * Any time after allocation, hugetlbfs_destroy_inode can be called 1288 * for the inode. mpol_free_shared_policy is unconditionally called 1289 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1290 * in case of a quick call to destroy. 1291 * 1292 * Note that the policy is initialized even if we are creating a 1293 * private inode. This simplifies hugetlbfs_destroy_inode. 1294 */ 1295 mpol_shared_policy_init(&p->policy, NULL); 1296 1297 return &p->vfs_inode; 1298 } 1299 1300 static void hugetlbfs_free_inode(struct inode *inode) 1301 { 1302 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1303 } 1304 1305 static void hugetlbfs_destroy_inode(struct inode *inode) 1306 { 1307 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1308 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1309 } 1310 1311 static const struct address_space_operations hugetlbfs_aops = { 1312 .write_begin = hugetlbfs_write_begin, 1313 .write_end = hugetlbfs_write_end, 1314 .dirty_folio = noop_dirty_folio, 1315 .migrate_folio = hugetlbfs_migrate_folio, 1316 .error_remove_page = hugetlbfs_error_remove_page, 1317 }; 1318 1319 1320 static void init_once(void *foo) 1321 { 1322 struct hugetlbfs_inode_info *ei = foo; 1323 1324 inode_init_once(&ei->vfs_inode); 1325 } 1326 1327 const struct file_operations hugetlbfs_file_operations = { 1328 .read_iter = hugetlbfs_read_iter, 1329 .mmap = hugetlbfs_file_mmap, 1330 .fsync = noop_fsync, 1331 .get_unmapped_area = hugetlb_get_unmapped_area, 1332 .llseek = default_llseek, 1333 .fallocate = hugetlbfs_fallocate, 1334 }; 1335 1336 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1337 .create = hugetlbfs_create, 1338 .lookup = simple_lookup, 1339 .link = simple_link, 1340 .unlink = simple_unlink, 1341 .symlink = hugetlbfs_symlink, 1342 .mkdir = hugetlbfs_mkdir, 1343 .rmdir = simple_rmdir, 1344 .mknod = hugetlbfs_mknod, 1345 .rename = simple_rename, 1346 .setattr = hugetlbfs_setattr, 1347 .tmpfile = hugetlbfs_tmpfile, 1348 }; 1349 1350 static const struct inode_operations hugetlbfs_inode_operations = { 1351 .setattr = hugetlbfs_setattr, 1352 }; 1353 1354 static const struct super_operations hugetlbfs_ops = { 1355 .alloc_inode = hugetlbfs_alloc_inode, 1356 .free_inode = hugetlbfs_free_inode, 1357 .destroy_inode = hugetlbfs_destroy_inode, 1358 .evict_inode = hugetlbfs_evict_inode, 1359 .statfs = hugetlbfs_statfs, 1360 .put_super = hugetlbfs_put_super, 1361 .show_options = hugetlbfs_show_options, 1362 }; 1363 1364 /* 1365 * Convert size option passed from command line to number of huge pages 1366 * in the pool specified by hstate. Size option could be in bytes 1367 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1368 */ 1369 static long 1370 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1371 enum hugetlbfs_size_type val_type) 1372 { 1373 if (val_type == NO_SIZE) 1374 return -1; 1375 1376 if (val_type == SIZE_PERCENT) { 1377 size_opt <<= huge_page_shift(h); 1378 size_opt *= h->max_huge_pages; 1379 do_div(size_opt, 100); 1380 } 1381 1382 size_opt >>= huge_page_shift(h); 1383 return size_opt; 1384 } 1385 1386 /* 1387 * Parse one mount parameter. 1388 */ 1389 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1390 { 1391 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1392 struct fs_parse_result result; 1393 char *rest; 1394 unsigned long ps; 1395 int opt; 1396 1397 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1398 if (opt < 0) 1399 return opt; 1400 1401 switch (opt) { 1402 case Opt_uid: 1403 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1404 if (!uid_valid(ctx->uid)) 1405 goto bad_val; 1406 return 0; 1407 1408 case Opt_gid: 1409 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1410 if (!gid_valid(ctx->gid)) 1411 goto bad_val; 1412 return 0; 1413 1414 case Opt_mode: 1415 ctx->mode = result.uint_32 & 01777U; 1416 return 0; 1417 1418 case Opt_size: 1419 /* memparse() will accept a K/M/G without a digit */ 1420 if (!param->string || !isdigit(param->string[0])) 1421 goto bad_val; 1422 ctx->max_size_opt = memparse(param->string, &rest); 1423 ctx->max_val_type = SIZE_STD; 1424 if (*rest == '%') 1425 ctx->max_val_type = SIZE_PERCENT; 1426 return 0; 1427 1428 case Opt_nr_inodes: 1429 /* memparse() will accept a K/M/G without a digit */ 1430 if (!param->string || !isdigit(param->string[0])) 1431 goto bad_val; 1432 ctx->nr_inodes = memparse(param->string, &rest); 1433 return 0; 1434 1435 case Opt_pagesize: 1436 ps = memparse(param->string, &rest); 1437 ctx->hstate = size_to_hstate(ps); 1438 if (!ctx->hstate) { 1439 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1440 return -EINVAL; 1441 } 1442 return 0; 1443 1444 case Opt_min_size: 1445 /* memparse() will accept a K/M/G without a digit */ 1446 if (!param->string || !isdigit(param->string[0])) 1447 goto bad_val; 1448 ctx->min_size_opt = memparse(param->string, &rest); 1449 ctx->min_val_type = SIZE_STD; 1450 if (*rest == '%') 1451 ctx->min_val_type = SIZE_PERCENT; 1452 return 0; 1453 1454 default: 1455 return -EINVAL; 1456 } 1457 1458 bad_val: 1459 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1460 param->string, param->key); 1461 } 1462 1463 /* 1464 * Validate the parsed options. 1465 */ 1466 static int hugetlbfs_validate(struct fs_context *fc) 1467 { 1468 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1469 1470 /* 1471 * Use huge page pool size (in hstate) to convert the size 1472 * options to number of huge pages. If NO_SIZE, -1 is returned. 1473 */ 1474 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1475 ctx->max_size_opt, 1476 ctx->max_val_type); 1477 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1478 ctx->min_size_opt, 1479 ctx->min_val_type); 1480 1481 /* 1482 * If max_size was specified, then min_size must be smaller 1483 */ 1484 if (ctx->max_val_type > NO_SIZE && 1485 ctx->min_hpages > ctx->max_hpages) { 1486 pr_err("Minimum size can not be greater than maximum size\n"); 1487 return -EINVAL; 1488 } 1489 1490 return 0; 1491 } 1492 1493 static int 1494 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1495 { 1496 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1497 struct hugetlbfs_sb_info *sbinfo; 1498 1499 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1500 if (!sbinfo) 1501 return -ENOMEM; 1502 sb->s_fs_info = sbinfo; 1503 spin_lock_init(&sbinfo->stat_lock); 1504 sbinfo->hstate = ctx->hstate; 1505 sbinfo->max_inodes = ctx->nr_inodes; 1506 sbinfo->free_inodes = ctx->nr_inodes; 1507 sbinfo->spool = NULL; 1508 sbinfo->uid = ctx->uid; 1509 sbinfo->gid = ctx->gid; 1510 sbinfo->mode = ctx->mode; 1511 1512 /* 1513 * Allocate and initialize subpool if maximum or minimum size is 1514 * specified. Any needed reservations (for minimum size) are taken 1515 * when the subpool is created. 1516 */ 1517 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1518 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1519 ctx->max_hpages, 1520 ctx->min_hpages); 1521 if (!sbinfo->spool) 1522 goto out_free; 1523 } 1524 sb->s_maxbytes = MAX_LFS_FILESIZE; 1525 sb->s_blocksize = huge_page_size(ctx->hstate); 1526 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1527 sb->s_magic = HUGETLBFS_MAGIC; 1528 sb->s_op = &hugetlbfs_ops; 1529 sb->s_time_gran = 1; 1530 1531 /* 1532 * Due to the special and limited functionality of hugetlbfs, it does 1533 * not work well as a stacking filesystem. 1534 */ 1535 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1536 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1537 if (!sb->s_root) 1538 goto out_free; 1539 return 0; 1540 out_free: 1541 kfree(sbinfo->spool); 1542 kfree(sbinfo); 1543 return -ENOMEM; 1544 } 1545 1546 static int hugetlbfs_get_tree(struct fs_context *fc) 1547 { 1548 int err = hugetlbfs_validate(fc); 1549 if (err) 1550 return err; 1551 return get_tree_nodev(fc, hugetlbfs_fill_super); 1552 } 1553 1554 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1555 { 1556 kfree(fc->fs_private); 1557 } 1558 1559 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1560 .free = hugetlbfs_fs_context_free, 1561 .parse_param = hugetlbfs_parse_param, 1562 .get_tree = hugetlbfs_get_tree, 1563 }; 1564 1565 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1566 { 1567 struct hugetlbfs_fs_context *ctx; 1568 1569 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1570 if (!ctx) 1571 return -ENOMEM; 1572 1573 ctx->max_hpages = -1; /* No limit on size by default */ 1574 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1575 ctx->uid = current_fsuid(); 1576 ctx->gid = current_fsgid(); 1577 ctx->mode = 0755; 1578 ctx->hstate = &default_hstate; 1579 ctx->min_hpages = -1; /* No default minimum size */ 1580 ctx->max_val_type = NO_SIZE; 1581 ctx->min_val_type = NO_SIZE; 1582 fc->fs_private = ctx; 1583 fc->ops = &hugetlbfs_fs_context_ops; 1584 return 0; 1585 } 1586 1587 static struct file_system_type hugetlbfs_fs_type = { 1588 .name = "hugetlbfs", 1589 .init_fs_context = hugetlbfs_init_fs_context, 1590 .parameters = hugetlb_fs_parameters, 1591 .kill_sb = kill_litter_super, 1592 }; 1593 1594 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1595 1596 static int can_do_hugetlb_shm(void) 1597 { 1598 kgid_t shm_group; 1599 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1600 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1601 } 1602 1603 static int get_hstate_idx(int page_size_log) 1604 { 1605 struct hstate *h = hstate_sizelog(page_size_log); 1606 1607 if (!h) 1608 return -1; 1609 return hstate_index(h); 1610 } 1611 1612 /* 1613 * Note that size should be aligned to proper hugepage size in caller side, 1614 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1615 */ 1616 struct file *hugetlb_file_setup(const char *name, size_t size, 1617 vm_flags_t acctflag, int creat_flags, 1618 int page_size_log) 1619 { 1620 struct inode *inode; 1621 struct vfsmount *mnt; 1622 int hstate_idx; 1623 struct file *file; 1624 1625 hstate_idx = get_hstate_idx(page_size_log); 1626 if (hstate_idx < 0) 1627 return ERR_PTR(-ENODEV); 1628 1629 mnt = hugetlbfs_vfsmount[hstate_idx]; 1630 if (!mnt) 1631 return ERR_PTR(-ENOENT); 1632 1633 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1634 struct ucounts *ucounts = current_ucounts(); 1635 1636 if (user_shm_lock(size, ucounts)) { 1637 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1638 current->comm, current->pid); 1639 user_shm_unlock(size, ucounts); 1640 } 1641 return ERR_PTR(-EPERM); 1642 } 1643 1644 file = ERR_PTR(-ENOSPC); 1645 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1646 if (!inode) 1647 goto out; 1648 if (creat_flags == HUGETLB_SHMFS_INODE) 1649 inode->i_flags |= S_PRIVATE; 1650 1651 inode->i_size = size; 1652 clear_nlink(inode); 1653 1654 if (!hugetlb_reserve_pages(inode, 0, 1655 size >> huge_page_shift(hstate_inode(inode)), NULL, 1656 acctflag)) 1657 file = ERR_PTR(-ENOMEM); 1658 else 1659 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1660 &hugetlbfs_file_operations); 1661 if (!IS_ERR(file)) 1662 return file; 1663 1664 iput(inode); 1665 out: 1666 return file; 1667 } 1668 1669 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1670 { 1671 struct fs_context *fc; 1672 struct vfsmount *mnt; 1673 1674 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1675 if (IS_ERR(fc)) { 1676 mnt = ERR_CAST(fc); 1677 } else { 1678 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1679 ctx->hstate = h; 1680 mnt = fc_mount(fc); 1681 put_fs_context(fc); 1682 } 1683 if (IS_ERR(mnt)) 1684 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1685 huge_page_size(h) / SZ_1K); 1686 return mnt; 1687 } 1688 1689 static int __init init_hugetlbfs_fs(void) 1690 { 1691 struct vfsmount *mnt; 1692 struct hstate *h; 1693 int error; 1694 int i; 1695 1696 if (!hugepages_supported()) { 1697 pr_info("disabling because there are no supported hugepage sizes\n"); 1698 return -ENOTSUPP; 1699 } 1700 1701 error = -ENOMEM; 1702 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1703 sizeof(struct hugetlbfs_inode_info), 1704 0, SLAB_ACCOUNT, init_once); 1705 if (hugetlbfs_inode_cachep == NULL) 1706 goto out; 1707 1708 error = register_filesystem(&hugetlbfs_fs_type); 1709 if (error) 1710 goto out_free; 1711 1712 /* default hstate mount is required */ 1713 mnt = mount_one_hugetlbfs(&default_hstate); 1714 if (IS_ERR(mnt)) { 1715 error = PTR_ERR(mnt); 1716 goto out_unreg; 1717 } 1718 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1719 1720 /* other hstates are optional */ 1721 i = 0; 1722 for_each_hstate(h) { 1723 if (i == default_hstate_idx) { 1724 i++; 1725 continue; 1726 } 1727 1728 mnt = mount_one_hugetlbfs(h); 1729 if (IS_ERR(mnt)) 1730 hugetlbfs_vfsmount[i] = NULL; 1731 else 1732 hugetlbfs_vfsmount[i] = mnt; 1733 i++; 1734 } 1735 1736 return 0; 1737 1738 out_unreg: 1739 (void)unregister_filesystem(&hugetlbfs_fs_type); 1740 out_free: 1741 kmem_cache_destroy(hugetlbfs_inode_cachep); 1742 out: 1743 return error; 1744 } 1745 fs_initcall(init_hugetlbfs_fs) 1746