xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 3381df09)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49 
50 struct hugetlbfs_fs_context {
51 	struct hstate		*hstate;
52 	unsigned long long	max_size_opt;
53 	unsigned long long	min_size_opt;
54 	long			max_hpages;
55 	long			nr_inodes;
56 	long			min_hpages;
57 	enum hugetlbfs_size_type max_val_type;
58 	enum hugetlbfs_size_type min_val_type;
59 	kuid_t			uid;
60 	kgid_t			gid;
61 	umode_t			mode;
62 };
63 
64 int sysctl_hugetlb_shm_group;
65 
66 enum hugetlb_param {
67 	Opt_gid,
68 	Opt_min_size,
69 	Opt_mode,
70 	Opt_nr_inodes,
71 	Opt_pagesize,
72 	Opt_size,
73 	Opt_uid,
74 };
75 
76 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
77 	fsparam_u32   ("gid",		Opt_gid),
78 	fsparam_string("min_size",	Opt_min_size),
79 	fsparam_u32   ("mode",		Opt_mode),
80 	fsparam_string("nr_inodes",	Opt_nr_inodes),
81 	fsparam_string("pagesize",	Opt_pagesize),
82 	fsparam_string("size",		Opt_size),
83 	fsparam_u32   ("uid",		Opt_uid),
84 	{}
85 };
86 
87 #ifdef CONFIG_NUMA
88 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
89 					struct inode *inode, pgoff_t index)
90 {
91 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
92 							index);
93 }
94 
95 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
96 {
97 	mpol_cond_put(vma->vm_policy);
98 }
99 #else
100 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
101 					struct inode *inode, pgoff_t index)
102 {
103 }
104 
105 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
106 {
107 }
108 #endif
109 
110 static void huge_pagevec_release(struct pagevec *pvec)
111 {
112 	int i;
113 
114 	for (i = 0; i < pagevec_count(pvec); ++i)
115 		put_page(pvec->pages[i]);
116 
117 	pagevec_reinit(pvec);
118 }
119 
120 /*
121  * Mask used when checking the page offset value passed in via system
122  * calls.  This value will be converted to a loff_t which is signed.
123  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
124  * value.  The extra bit (- 1 in the shift value) is to take the sign
125  * bit into account.
126  */
127 #define PGOFF_LOFFT_MAX \
128 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
129 
130 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
131 {
132 	struct inode *inode = file_inode(file);
133 	loff_t len, vma_len;
134 	int ret;
135 	struct hstate *h = hstate_file(file);
136 
137 	/*
138 	 * vma address alignment (but not the pgoff alignment) has
139 	 * already been checked by prepare_hugepage_range.  If you add
140 	 * any error returns here, do so after setting VM_HUGETLB, so
141 	 * is_vm_hugetlb_page tests below unmap_region go the right
142 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
143 	 * and ia64).
144 	 */
145 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
146 	vma->vm_ops = &hugetlb_vm_ops;
147 
148 	/*
149 	 * page based offset in vm_pgoff could be sufficiently large to
150 	 * overflow a loff_t when converted to byte offset.  This can
151 	 * only happen on architectures where sizeof(loff_t) ==
152 	 * sizeof(unsigned long).  So, only check in those instances.
153 	 */
154 	if (sizeof(unsigned long) == sizeof(loff_t)) {
155 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
156 			return -EINVAL;
157 	}
158 
159 	/* must be huge page aligned */
160 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
161 		return -EINVAL;
162 
163 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
164 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
165 	/* check for overflow */
166 	if (len < vma_len)
167 		return -EINVAL;
168 
169 	inode_lock(inode);
170 	file_accessed(file);
171 
172 	ret = -ENOMEM;
173 	if (hugetlb_reserve_pages(inode,
174 				vma->vm_pgoff >> huge_page_order(h),
175 				len >> huge_page_shift(h), vma,
176 				vma->vm_flags))
177 		goto out;
178 
179 	ret = 0;
180 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
181 		i_size_write(inode, len);
182 out:
183 	inode_unlock(inode);
184 
185 	return ret;
186 }
187 
188 /*
189  * Called under down_write(mmap_sem).
190  */
191 
192 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
193 static unsigned long
194 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
195 		unsigned long len, unsigned long pgoff, unsigned long flags)
196 {
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *vma;
199 	struct hstate *h = hstate_file(file);
200 	struct vm_unmapped_area_info info;
201 
202 	if (len & ~huge_page_mask(h))
203 		return -EINVAL;
204 	if (len > TASK_SIZE)
205 		return -ENOMEM;
206 
207 	if (flags & MAP_FIXED) {
208 		if (prepare_hugepage_range(file, addr, len))
209 			return -EINVAL;
210 		return addr;
211 	}
212 
213 	if (addr) {
214 		addr = ALIGN(addr, huge_page_size(h));
215 		vma = find_vma(mm, addr);
216 		if (TASK_SIZE - len >= addr &&
217 		    (!vma || addr + len <= vm_start_gap(vma)))
218 			return addr;
219 	}
220 
221 	info.flags = 0;
222 	info.length = len;
223 	info.low_limit = TASK_UNMAPPED_BASE;
224 	info.high_limit = TASK_SIZE;
225 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226 	info.align_offset = 0;
227 	return vm_unmapped_area(&info);
228 }
229 #endif
230 
231 static size_t
232 hugetlbfs_read_actor(struct page *page, unsigned long offset,
233 			struct iov_iter *to, unsigned long size)
234 {
235 	size_t copied = 0;
236 	int i, chunksize;
237 
238 	/* Find which 4k chunk and offset with in that chunk */
239 	i = offset >> PAGE_SHIFT;
240 	offset = offset & ~PAGE_MASK;
241 
242 	while (size) {
243 		size_t n;
244 		chunksize = PAGE_SIZE;
245 		if (offset)
246 			chunksize -= offset;
247 		if (chunksize > size)
248 			chunksize = size;
249 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
250 		copied += n;
251 		if (n != chunksize)
252 			return copied;
253 		offset = 0;
254 		size -= chunksize;
255 		i++;
256 	}
257 	return copied;
258 }
259 
260 /*
261  * Support for read() - Find the page attached to f_mapping and copy out the
262  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
263  * since it has PAGE_SIZE assumptions.
264  */
265 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
266 {
267 	struct file *file = iocb->ki_filp;
268 	struct hstate *h = hstate_file(file);
269 	struct address_space *mapping = file->f_mapping;
270 	struct inode *inode = mapping->host;
271 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
272 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
273 	unsigned long end_index;
274 	loff_t isize;
275 	ssize_t retval = 0;
276 
277 	while (iov_iter_count(to)) {
278 		struct page *page;
279 		size_t nr, copied;
280 
281 		/* nr is the maximum number of bytes to copy from this page */
282 		nr = huge_page_size(h);
283 		isize = i_size_read(inode);
284 		if (!isize)
285 			break;
286 		end_index = (isize - 1) >> huge_page_shift(h);
287 		if (index > end_index)
288 			break;
289 		if (index == end_index) {
290 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
291 			if (nr <= offset)
292 				break;
293 		}
294 		nr = nr - offset;
295 
296 		/* Find the page */
297 		page = find_lock_page(mapping, index);
298 		if (unlikely(page == NULL)) {
299 			/*
300 			 * We have a HOLE, zero out the user-buffer for the
301 			 * length of the hole or request.
302 			 */
303 			copied = iov_iter_zero(nr, to);
304 		} else {
305 			unlock_page(page);
306 
307 			/*
308 			 * We have the page, copy it to user space buffer.
309 			 */
310 			copied = hugetlbfs_read_actor(page, offset, to, nr);
311 			put_page(page);
312 		}
313 		offset += copied;
314 		retval += copied;
315 		if (copied != nr && iov_iter_count(to)) {
316 			if (!retval)
317 				retval = -EFAULT;
318 			break;
319 		}
320 		index += offset >> huge_page_shift(h);
321 		offset &= ~huge_page_mask(h);
322 	}
323 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
324 	return retval;
325 }
326 
327 static int hugetlbfs_write_begin(struct file *file,
328 			struct address_space *mapping,
329 			loff_t pos, unsigned len, unsigned flags,
330 			struct page **pagep, void **fsdata)
331 {
332 	return -EINVAL;
333 }
334 
335 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
336 			loff_t pos, unsigned len, unsigned copied,
337 			struct page *page, void *fsdata)
338 {
339 	BUG();
340 	return -EINVAL;
341 }
342 
343 static void remove_huge_page(struct page *page)
344 {
345 	ClearPageDirty(page);
346 	ClearPageUptodate(page);
347 	delete_from_page_cache(page);
348 }
349 
350 static void
351 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
352 {
353 	struct vm_area_struct *vma;
354 
355 	/*
356 	 * end == 0 indicates that the entire range after
357 	 * start should be unmapped.
358 	 */
359 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
360 		unsigned long v_offset;
361 		unsigned long v_end;
362 
363 		/*
364 		 * Can the expression below overflow on 32-bit arches?
365 		 * No, because the interval tree returns us only those vmas
366 		 * which overlap the truncated area starting at pgoff,
367 		 * and no vma on a 32-bit arch can span beyond the 4GB.
368 		 */
369 		if (vma->vm_pgoff < start)
370 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
371 		else
372 			v_offset = 0;
373 
374 		if (!end)
375 			v_end = vma->vm_end;
376 		else {
377 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
378 							+ vma->vm_start;
379 			if (v_end > vma->vm_end)
380 				v_end = vma->vm_end;
381 		}
382 
383 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
384 									NULL);
385 	}
386 }
387 
388 /*
389  * remove_inode_hugepages handles two distinct cases: truncation and hole
390  * punch.  There are subtle differences in operation for each case.
391  *
392  * truncation is indicated by end of range being LLONG_MAX
393  *	In this case, we first scan the range and release found pages.
394  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
395  *	maps and global counts.  Page faults can not race with truncation
396  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
397  *	page faults in the truncated range by checking i_size.  i_size is
398  *	modified while holding i_mmap_rwsem.
399  * hole punch is indicated if end is not LLONG_MAX
400  *	In the hole punch case we scan the range and release found pages.
401  *	Only when releasing a page is the associated region/reserv map
402  *	deleted.  The region/reserv map for ranges without associated
403  *	pages are not modified.  Page faults can race with hole punch.
404  *	This is indicated if we find a mapped page.
405  * Note: If the passed end of range value is beyond the end of file, but
406  * not LLONG_MAX this routine still performs a hole punch operation.
407  */
408 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
409 				   loff_t lend)
410 {
411 	struct hstate *h = hstate_inode(inode);
412 	struct address_space *mapping = &inode->i_data;
413 	const pgoff_t start = lstart >> huge_page_shift(h);
414 	const pgoff_t end = lend >> huge_page_shift(h);
415 	struct vm_area_struct pseudo_vma;
416 	struct pagevec pvec;
417 	pgoff_t next, index;
418 	int i, freed = 0;
419 	bool truncate_op = (lend == LLONG_MAX);
420 
421 	vma_init(&pseudo_vma, current->mm);
422 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
423 	pagevec_init(&pvec);
424 	next = start;
425 	while (next < end) {
426 		/*
427 		 * When no more pages are found, we are done.
428 		 */
429 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
430 			break;
431 
432 		for (i = 0; i < pagevec_count(&pvec); ++i) {
433 			struct page *page = pvec.pages[i];
434 			u32 hash;
435 
436 			index = page->index;
437 			hash = hugetlb_fault_mutex_hash(mapping, index);
438 			if (!truncate_op) {
439 				/*
440 				 * Only need to hold the fault mutex in the
441 				 * hole punch case.  This prevents races with
442 				 * page faults.  Races are not possible in the
443 				 * case of truncation.
444 				 */
445 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
446 			}
447 
448 			/*
449 			 * If page is mapped, it was faulted in after being
450 			 * unmapped in caller.  Unmap (again) now after taking
451 			 * the fault mutex.  The mutex will prevent faults
452 			 * until we finish removing the page.
453 			 *
454 			 * This race can only happen in the hole punch case.
455 			 * Getting here in a truncate operation is a bug.
456 			 */
457 			if (unlikely(page_mapped(page))) {
458 				BUG_ON(truncate_op);
459 
460 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
461 				i_mmap_lock_write(mapping);
462 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
463 				hugetlb_vmdelete_list(&mapping->i_mmap,
464 					index * pages_per_huge_page(h),
465 					(index + 1) * pages_per_huge_page(h));
466 				i_mmap_unlock_write(mapping);
467 			}
468 
469 			lock_page(page);
470 			/*
471 			 * We must free the huge page and remove from page
472 			 * cache (remove_huge_page) BEFORE removing the
473 			 * region/reserve map (hugetlb_unreserve_pages).  In
474 			 * rare out of memory conditions, removal of the
475 			 * region/reserve map could fail. Correspondingly,
476 			 * the subpool and global reserve usage count can need
477 			 * to be adjusted.
478 			 */
479 			VM_BUG_ON(PagePrivate(page));
480 			remove_huge_page(page);
481 			freed++;
482 			if (!truncate_op) {
483 				if (unlikely(hugetlb_unreserve_pages(inode,
484 							index, index + 1, 1)))
485 					hugetlb_fix_reserve_counts(inode);
486 			}
487 
488 			unlock_page(page);
489 			if (!truncate_op)
490 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
491 		}
492 		huge_pagevec_release(&pvec);
493 		cond_resched();
494 	}
495 
496 	if (truncate_op)
497 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
498 }
499 
500 static void hugetlbfs_evict_inode(struct inode *inode)
501 {
502 	struct resv_map *resv_map;
503 
504 	remove_inode_hugepages(inode, 0, LLONG_MAX);
505 
506 	/*
507 	 * Get the resv_map from the address space embedded in the inode.
508 	 * This is the address space which points to any resv_map allocated
509 	 * at inode creation time.  If this is a device special inode,
510 	 * i_mapping may not point to the original address space.
511 	 */
512 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
513 	/* Only regular and link inodes have associated reserve maps */
514 	if (resv_map)
515 		resv_map_release(&resv_map->refs);
516 	clear_inode(inode);
517 }
518 
519 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
520 {
521 	pgoff_t pgoff;
522 	struct address_space *mapping = inode->i_mapping;
523 	struct hstate *h = hstate_inode(inode);
524 
525 	BUG_ON(offset & ~huge_page_mask(h));
526 	pgoff = offset >> PAGE_SHIFT;
527 
528 	i_mmap_lock_write(mapping);
529 	i_size_write(inode, offset);
530 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
531 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
532 	i_mmap_unlock_write(mapping);
533 	remove_inode_hugepages(inode, offset, LLONG_MAX);
534 	return 0;
535 }
536 
537 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
538 {
539 	struct hstate *h = hstate_inode(inode);
540 	loff_t hpage_size = huge_page_size(h);
541 	loff_t hole_start, hole_end;
542 
543 	/*
544 	 * For hole punch round up the beginning offset of the hole and
545 	 * round down the end.
546 	 */
547 	hole_start = round_up(offset, hpage_size);
548 	hole_end = round_down(offset + len, hpage_size);
549 
550 	if (hole_end > hole_start) {
551 		struct address_space *mapping = inode->i_mapping;
552 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
553 
554 		inode_lock(inode);
555 
556 		/* protected by i_mutex */
557 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
558 			inode_unlock(inode);
559 			return -EPERM;
560 		}
561 
562 		i_mmap_lock_write(mapping);
563 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
564 			hugetlb_vmdelete_list(&mapping->i_mmap,
565 						hole_start >> PAGE_SHIFT,
566 						hole_end  >> PAGE_SHIFT);
567 		i_mmap_unlock_write(mapping);
568 		remove_inode_hugepages(inode, hole_start, hole_end);
569 		inode_unlock(inode);
570 	}
571 
572 	return 0;
573 }
574 
575 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
576 				loff_t len)
577 {
578 	struct inode *inode = file_inode(file);
579 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
580 	struct address_space *mapping = inode->i_mapping;
581 	struct hstate *h = hstate_inode(inode);
582 	struct vm_area_struct pseudo_vma;
583 	struct mm_struct *mm = current->mm;
584 	loff_t hpage_size = huge_page_size(h);
585 	unsigned long hpage_shift = huge_page_shift(h);
586 	pgoff_t start, index, end;
587 	int error;
588 	u32 hash;
589 
590 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
591 		return -EOPNOTSUPP;
592 
593 	if (mode & FALLOC_FL_PUNCH_HOLE)
594 		return hugetlbfs_punch_hole(inode, offset, len);
595 
596 	/*
597 	 * Default preallocate case.
598 	 * For this range, start is rounded down and end is rounded up
599 	 * as well as being converted to page offsets.
600 	 */
601 	start = offset >> hpage_shift;
602 	end = (offset + len + hpage_size - 1) >> hpage_shift;
603 
604 	inode_lock(inode);
605 
606 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
607 	error = inode_newsize_ok(inode, offset + len);
608 	if (error)
609 		goto out;
610 
611 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
612 		error = -EPERM;
613 		goto out;
614 	}
615 
616 	/*
617 	 * Initialize a pseudo vma as this is required by the huge page
618 	 * allocation routines.  If NUMA is configured, use page index
619 	 * as input to create an allocation policy.
620 	 */
621 	vma_init(&pseudo_vma, mm);
622 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
623 	pseudo_vma.vm_file = file;
624 
625 	for (index = start; index < end; index++) {
626 		/*
627 		 * This is supposed to be the vaddr where the page is being
628 		 * faulted in, but we have no vaddr here.
629 		 */
630 		struct page *page;
631 		unsigned long addr;
632 		int avoid_reserve = 0;
633 
634 		cond_resched();
635 
636 		/*
637 		 * fallocate(2) manpage permits EINTR; we may have been
638 		 * interrupted because we are using up too much memory.
639 		 */
640 		if (signal_pending(current)) {
641 			error = -EINTR;
642 			break;
643 		}
644 
645 		/* Set numa allocation policy based on index */
646 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
647 
648 		/* addr is the offset within the file (zero based) */
649 		addr = index * hpage_size;
650 
651 		/*
652 		 * fault mutex taken here, protects against fault path
653 		 * and hole punch.  inode_lock previously taken protects
654 		 * against truncation.
655 		 */
656 		hash = hugetlb_fault_mutex_hash(mapping, index);
657 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
658 
659 		/* See if already present in mapping to avoid alloc/free */
660 		page = find_get_page(mapping, index);
661 		if (page) {
662 			put_page(page);
663 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
664 			hugetlb_drop_vma_policy(&pseudo_vma);
665 			continue;
666 		}
667 
668 		/* Allocate page and add to page cache */
669 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
670 		hugetlb_drop_vma_policy(&pseudo_vma);
671 		if (IS_ERR(page)) {
672 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
673 			error = PTR_ERR(page);
674 			goto out;
675 		}
676 		clear_huge_page(page, addr, pages_per_huge_page(h));
677 		__SetPageUptodate(page);
678 		error = huge_add_to_page_cache(page, mapping, index);
679 		if (unlikely(error)) {
680 			put_page(page);
681 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
682 			goto out;
683 		}
684 
685 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
686 
687 		/*
688 		 * unlock_page because locked by add_to_page_cache()
689 		 * page_put due to reference from alloc_huge_page()
690 		 */
691 		unlock_page(page);
692 		put_page(page);
693 	}
694 
695 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
696 		i_size_write(inode, offset + len);
697 	inode->i_ctime = current_time(inode);
698 out:
699 	inode_unlock(inode);
700 	return error;
701 }
702 
703 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
704 {
705 	struct inode *inode = d_inode(dentry);
706 	struct hstate *h = hstate_inode(inode);
707 	int error;
708 	unsigned int ia_valid = attr->ia_valid;
709 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
710 
711 	BUG_ON(!inode);
712 
713 	error = setattr_prepare(dentry, attr);
714 	if (error)
715 		return error;
716 
717 	if (ia_valid & ATTR_SIZE) {
718 		loff_t oldsize = inode->i_size;
719 		loff_t newsize = attr->ia_size;
720 
721 		if (newsize & ~huge_page_mask(h))
722 			return -EINVAL;
723 		/* protected by i_mutex */
724 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
725 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
726 			return -EPERM;
727 		error = hugetlb_vmtruncate(inode, newsize);
728 		if (error)
729 			return error;
730 	}
731 
732 	setattr_copy(inode, attr);
733 	mark_inode_dirty(inode);
734 	return 0;
735 }
736 
737 static struct inode *hugetlbfs_get_root(struct super_block *sb,
738 					struct hugetlbfs_fs_context *ctx)
739 {
740 	struct inode *inode;
741 
742 	inode = new_inode(sb);
743 	if (inode) {
744 		inode->i_ino = get_next_ino();
745 		inode->i_mode = S_IFDIR | ctx->mode;
746 		inode->i_uid = ctx->uid;
747 		inode->i_gid = ctx->gid;
748 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
749 		inode->i_op = &hugetlbfs_dir_inode_operations;
750 		inode->i_fop = &simple_dir_operations;
751 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
752 		inc_nlink(inode);
753 		lockdep_annotate_inode_mutex_key(inode);
754 	}
755 	return inode;
756 }
757 
758 /*
759  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
760  * be taken from reclaim -- unlike regular filesystems. This needs an
761  * annotation because huge_pmd_share() does an allocation under hugetlb's
762  * i_mmap_rwsem.
763  */
764 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
765 
766 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
767 					struct inode *dir,
768 					umode_t mode, dev_t dev)
769 {
770 	struct inode *inode;
771 	struct resv_map *resv_map = NULL;
772 
773 	/*
774 	 * Reserve maps are only needed for inodes that can have associated
775 	 * page allocations.
776 	 */
777 	if (S_ISREG(mode) || S_ISLNK(mode)) {
778 		resv_map = resv_map_alloc();
779 		if (!resv_map)
780 			return NULL;
781 	}
782 
783 	inode = new_inode(sb);
784 	if (inode) {
785 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
786 
787 		inode->i_ino = get_next_ino();
788 		inode_init_owner(inode, dir, mode);
789 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
790 				&hugetlbfs_i_mmap_rwsem_key);
791 		inode->i_mapping->a_ops = &hugetlbfs_aops;
792 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
793 		inode->i_mapping->private_data = resv_map;
794 		info->seals = F_SEAL_SEAL;
795 		switch (mode & S_IFMT) {
796 		default:
797 			init_special_inode(inode, mode, dev);
798 			break;
799 		case S_IFREG:
800 			inode->i_op = &hugetlbfs_inode_operations;
801 			inode->i_fop = &hugetlbfs_file_operations;
802 			break;
803 		case S_IFDIR:
804 			inode->i_op = &hugetlbfs_dir_inode_operations;
805 			inode->i_fop = &simple_dir_operations;
806 
807 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
808 			inc_nlink(inode);
809 			break;
810 		case S_IFLNK:
811 			inode->i_op = &page_symlink_inode_operations;
812 			inode_nohighmem(inode);
813 			break;
814 		}
815 		lockdep_annotate_inode_mutex_key(inode);
816 	} else {
817 		if (resv_map)
818 			kref_put(&resv_map->refs, resv_map_release);
819 	}
820 
821 	return inode;
822 }
823 
824 /*
825  * File creation. Allocate an inode, and we're done..
826  */
827 static int do_hugetlbfs_mknod(struct inode *dir,
828 			struct dentry *dentry,
829 			umode_t mode,
830 			dev_t dev,
831 			bool tmpfile)
832 {
833 	struct inode *inode;
834 	int error = -ENOSPC;
835 
836 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
837 	if (inode) {
838 		dir->i_ctime = dir->i_mtime = current_time(dir);
839 		if (tmpfile) {
840 			d_tmpfile(dentry, inode);
841 		} else {
842 			d_instantiate(dentry, inode);
843 			dget(dentry);/* Extra count - pin the dentry in core */
844 		}
845 		error = 0;
846 	}
847 	return error;
848 }
849 
850 static int hugetlbfs_mknod(struct inode *dir,
851 			struct dentry *dentry, umode_t mode, dev_t dev)
852 {
853 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
854 }
855 
856 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
857 {
858 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
859 	if (!retval)
860 		inc_nlink(dir);
861 	return retval;
862 }
863 
864 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
865 {
866 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
867 }
868 
869 static int hugetlbfs_tmpfile(struct inode *dir,
870 			struct dentry *dentry, umode_t mode)
871 {
872 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
873 }
874 
875 static int hugetlbfs_symlink(struct inode *dir,
876 			struct dentry *dentry, const char *symname)
877 {
878 	struct inode *inode;
879 	int error = -ENOSPC;
880 
881 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
882 	if (inode) {
883 		int l = strlen(symname)+1;
884 		error = page_symlink(inode, symname, l);
885 		if (!error) {
886 			d_instantiate(dentry, inode);
887 			dget(dentry);
888 		} else
889 			iput(inode);
890 	}
891 	dir->i_ctime = dir->i_mtime = current_time(dir);
892 
893 	return error;
894 }
895 
896 /*
897  * mark the head page dirty
898  */
899 static int hugetlbfs_set_page_dirty(struct page *page)
900 {
901 	struct page *head = compound_head(page);
902 
903 	SetPageDirty(head);
904 	return 0;
905 }
906 
907 static int hugetlbfs_migrate_page(struct address_space *mapping,
908 				struct page *newpage, struct page *page,
909 				enum migrate_mode mode)
910 {
911 	int rc;
912 
913 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
914 	if (rc != MIGRATEPAGE_SUCCESS)
915 		return rc;
916 
917 	/*
918 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
919 	 * new page.  PagePrivate is not associated with page_private for
920 	 * hugetlb pages and can not be set here as only page_huge_active
921 	 * pages can be migrated.
922 	 */
923 	if (page_private(page)) {
924 		set_page_private(newpage, page_private(page));
925 		set_page_private(page, 0);
926 	}
927 
928 	if (mode != MIGRATE_SYNC_NO_COPY)
929 		migrate_page_copy(newpage, page);
930 	else
931 		migrate_page_states(newpage, page);
932 
933 	return MIGRATEPAGE_SUCCESS;
934 }
935 
936 static int hugetlbfs_error_remove_page(struct address_space *mapping,
937 				struct page *page)
938 {
939 	struct inode *inode = mapping->host;
940 	pgoff_t index = page->index;
941 
942 	remove_huge_page(page);
943 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
944 		hugetlb_fix_reserve_counts(inode);
945 
946 	return 0;
947 }
948 
949 /*
950  * Display the mount options in /proc/mounts.
951  */
952 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
953 {
954 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
955 	struct hugepage_subpool *spool = sbinfo->spool;
956 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
957 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
958 	char mod;
959 
960 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
961 		seq_printf(m, ",uid=%u",
962 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
963 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
964 		seq_printf(m, ",gid=%u",
965 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
966 	if (sbinfo->mode != 0755)
967 		seq_printf(m, ",mode=%o", sbinfo->mode);
968 	if (sbinfo->max_inodes != -1)
969 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
970 
971 	hpage_size /= 1024;
972 	mod = 'K';
973 	if (hpage_size >= 1024) {
974 		hpage_size /= 1024;
975 		mod = 'M';
976 	}
977 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
978 	if (spool) {
979 		if (spool->max_hpages != -1)
980 			seq_printf(m, ",size=%llu",
981 				   (unsigned long long)spool->max_hpages << hpage_shift);
982 		if (spool->min_hpages != -1)
983 			seq_printf(m, ",min_size=%llu",
984 				   (unsigned long long)spool->min_hpages << hpage_shift);
985 	}
986 	return 0;
987 }
988 
989 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
990 {
991 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
992 	struct hstate *h = hstate_inode(d_inode(dentry));
993 
994 	buf->f_type = HUGETLBFS_MAGIC;
995 	buf->f_bsize = huge_page_size(h);
996 	if (sbinfo) {
997 		spin_lock(&sbinfo->stat_lock);
998 		/* If no limits set, just report 0 for max/free/used
999 		 * blocks, like simple_statfs() */
1000 		if (sbinfo->spool) {
1001 			long free_pages;
1002 
1003 			spin_lock(&sbinfo->spool->lock);
1004 			buf->f_blocks = sbinfo->spool->max_hpages;
1005 			free_pages = sbinfo->spool->max_hpages
1006 				- sbinfo->spool->used_hpages;
1007 			buf->f_bavail = buf->f_bfree = free_pages;
1008 			spin_unlock(&sbinfo->spool->lock);
1009 			buf->f_files = sbinfo->max_inodes;
1010 			buf->f_ffree = sbinfo->free_inodes;
1011 		}
1012 		spin_unlock(&sbinfo->stat_lock);
1013 	}
1014 	buf->f_namelen = NAME_MAX;
1015 	return 0;
1016 }
1017 
1018 static void hugetlbfs_put_super(struct super_block *sb)
1019 {
1020 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1021 
1022 	if (sbi) {
1023 		sb->s_fs_info = NULL;
1024 
1025 		if (sbi->spool)
1026 			hugepage_put_subpool(sbi->spool);
1027 
1028 		kfree(sbi);
1029 	}
1030 }
1031 
1032 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1033 {
1034 	if (sbinfo->free_inodes >= 0) {
1035 		spin_lock(&sbinfo->stat_lock);
1036 		if (unlikely(!sbinfo->free_inodes)) {
1037 			spin_unlock(&sbinfo->stat_lock);
1038 			return 0;
1039 		}
1040 		sbinfo->free_inodes--;
1041 		spin_unlock(&sbinfo->stat_lock);
1042 	}
1043 
1044 	return 1;
1045 }
1046 
1047 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1048 {
1049 	if (sbinfo->free_inodes >= 0) {
1050 		spin_lock(&sbinfo->stat_lock);
1051 		sbinfo->free_inodes++;
1052 		spin_unlock(&sbinfo->stat_lock);
1053 	}
1054 }
1055 
1056 
1057 static struct kmem_cache *hugetlbfs_inode_cachep;
1058 
1059 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1060 {
1061 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1062 	struct hugetlbfs_inode_info *p;
1063 
1064 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1065 		return NULL;
1066 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1067 	if (unlikely(!p)) {
1068 		hugetlbfs_inc_free_inodes(sbinfo);
1069 		return NULL;
1070 	}
1071 
1072 	/*
1073 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1074 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1075 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1076 	 * in case of a quick call to destroy.
1077 	 *
1078 	 * Note that the policy is initialized even if we are creating a
1079 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1080 	 */
1081 	mpol_shared_policy_init(&p->policy, NULL);
1082 
1083 	return &p->vfs_inode;
1084 }
1085 
1086 static void hugetlbfs_free_inode(struct inode *inode)
1087 {
1088 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1089 }
1090 
1091 static void hugetlbfs_destroy_inode(struct inode *inode)
1092 {
1093 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1094 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1095 }
1096 
1097 static const struct address_space_operations hugetlbfs_aops = {
1098 	.write_begin	= hugetlbfs_write_begin,
1099 	.write_end	= hugetlbfs_write_end,
1100 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1101 	.migratepage    = hugetlbfs_migrate_page,
1102 	.error_remove_page	= hugetlbfs_error_remove_page,
1103 };
1104 
1105 
1106 static void init_once(void *foo)
1107 {
1108 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1109 
1110 	inode_init_once(&ei->vfs_inode);
1111 }
1112 
1113 const struct file_operations hugetlbfs_file_operations = {
1114 	.read_iter		= hugetlbfs_read_iter,
1115 	.mmap			= hugetlbfs_file_mmap,
1116 	.fsync			= noop_fsync,
1117 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1118 	.llseek			= default_llseek,
1119 	.fallocate		= hugetlbfs_fallocate,
1120 };
1121 
1122 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1123 	.create		= hugetlbfs_create,
1124 	.lookup		= simple_lookup,
1125 	.link		= simple_link,
1126 	.unlink		= simple_unlink,
1127 	.symlink	= hugetlbfs_symlink,
1128 	.mkdir		= hugetlbfs_mkdir,
1129 	.rmdir		= simple_rmdir,
1130 	.mknod		= hugetlbfs_mknod,
1131 	.rename		= simple_rename,
1132 	.setattr	= hugetlbfs_setattr,
1133 	.tmpfile	= hugetlbfs_tmpfile,
1134 };
1135 
1136 static const struct inode_operations hugetlbfs_inode_operations = {
1137 	.setattr	= hugetlbfs_setattr,
1138 };
1139 
1140 static const struct super_operations hugetlbfs_ops = {
1141 	.alloc_inode    = hugetlbfs_alloc_inode,
1142 	.free_inode     = hugetlbfs_free_inode,
1143 	.destroy_inode  = hugetlbfs_destroy_inode,
1144 	.evict_inode	= hugetlbfs_evict_inode,
1145 	.statfs		= hugetlbfs_statfs,
1146 	.put_super	= hugetlbfs_put_super,
1147 	.show_options	= hugetlbfs_show_options,
1148 };
1149 
1150 /*
1151  * Convert size option passed from command line to number of huge pages
1152  * in the pool specified by hstate.  Size option could be in bytes
1153  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1154  */
1155 static long
1156 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1157 			 enum hugetlbfs_size_type val_type)
1158 {
1159 	if (val_type == NO_SIZE)
1160 		return -1;
1161 
1162 	if (val_type == SIZE_PERCENT) {
1163 		size_opt <<= huge_page_shift(h);
1164 		size_opt *= h->max_huge_pages;
1165 		do_div(size_opt, 100);
1166 	}
1167 
1168 	size_opt >>= huge_page_shift(h);
1169 	return size_opt;
1170 }
1171 
1172 /*
1173  * Parse one mount parameter.
1174  */
1175 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1176 {
1177 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1178 	struct fs_parse_result result;
1179 	char *rest;
1180 	unsigned long ps;
1181 	int opt;
1182 
1183 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1184 	if (opt < 0)
1185 		return opt;
1186 
1187 	switch (opt) {
1188 	case Opt_uid:
1189 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1190 		if (!uid_valid(ctx->uid))
1191 			goto bad_val;
1192 		return 0;
1193 
1194 	case Opt_gid:
1195 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1196 		if (!gid_valid(ctx->gid))
1197 			goto bad_val;
1198 		return 0;
1199 
1200 	case Opt_mode:
1201 		ctx->mode = result.uint_32 & 01777U;
1202 		return 0;
1203 
1204 	case Opt_size:
1205 		/* memparse() will accept a K/M/G without a digit */
1206 		if (!isdigit(param->string[0]))
1207 			goto bad_val;
1208 		ctx->max_size_opt = memparse(param->string, &rest);
1209 		ctx->max_val_type = SIZE_STD;
1210 		if (*rest == '%')
1211 			ctx->max_val_type = SIZE_PERCENT;
1212 		return 0;
1213 
1214 	case Opt_nr_inodes:
1215 		/* memparse() will accept a K/M/G without a digit */
1216 		if (!isdigit(param->string[0]))
1217 			goto bad_val;
1218 		ctx->nr_inodes = memparse(param->string, &rest);
1219 		return 0;
1220 
1221 	case Opt_pagesize:
1222 		ps = memparse(param->string, &rest);
1223 		ctx->hstate = size_to_hstate(ps);
1224 		if (!ctx->hstate) {
1225 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1226 			return -EINVAL;
1227 		}
1228 		return 0;
1229 
1230 	case Opt_min_size:
1231 		/* memparse() will accept a K/M/G without a digit */
1232 		if (!isdigit(param->string[0]))
1233 			goto bad_val;
1234 		ctx->min_size_opt = memparse(param->string, &rest);
1235 		ctx->min_val_type = SIZE_STD;
1236 		if (*rest == '%')
1237 			ctx->min_val_type = SIZE_PERCENT;
1238 		return 0;
1239 
1240 	default:
1241 		return -EINVAL;
1242 	}
1243 
1244 bad_val:
1245 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1246 		      param->string, param->key);
1247 }
1248 
1249 /*
1250  * Validate the parsed options.
1251  */
1252 static int hugetlbfs_validate(struct fs_context *fc)
1253 {
1254 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1255 
1256 	/*
1257 	 * Use huge page pool size (in hstate) to convert the size
1258 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1259 	 */
1260 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1261 						   ctx->max_size_opt,
1262 						   ctx->max_val_type);
1263 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1264 						   ctx->min_size_opt,
1265 						   ctx->min_val_type);
1266 
1267 	/*
1268 	 * If max_size was specified, then min_size must be smaller
1269 	 */
1270 	if (ctx->max_val_type > NO_SIZE &&
1271 	    ctx->min_hpages > ctx->max_hpages) {
1272 		pr_err("Minimum size can not be greater than maximum size\n");
1273 		return -EINVAL;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 static int
1280 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1281 {
1282 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1283 	struct hugetlbfs_sb_info *sbinfo;
1284 
1285 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1286 	if (!sbinfo)
1287 		return -ENOMEM;
1288 	sb->s_fs_info = sbinfo;
1289 	spin_lock_init(&sbinfo->stat_lock);
1290 	sbinfo->hstate		= ctx->hstate;
1291 	sbinfo->max_inodes	= ctx->nr_inodes;
1292 	sbinfo->free_inodes	= ctx->nr_inodes;
1293 	sbinfo->spool		= NULL;
1294 	sbinfo->uid		= ctx->uid;
1295 	sbinfo->gid		= ctx->gid;
1296 	sbinfo->mode		= ctx->mode;
1297 
1298 	/*
1299 	 * Allocate and initialize subpool if maximum or minimum size is
1300 	 * specified.  Any needed reservations (for minimim size) are taken
1301 	 * taken when the subpool is created.
1302 	 */
1303 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1304 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1305 						     ctx->max_hpages,
1306 						     ctx->min_hpages);
1307 		if (!sbinfo->spool)
1308 			goto out_free;
1309 	}
1310 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1311 	sb->s_blocksize = huge_page_size(ctx->hstate);
1312 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1313 	sb->s_magic = HUGETLBFS_MAGIC;
1314 	sb->s_op = &hugetlbfs_ops;
1315 	sb->s_time_gran = 1;
1316 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1317 	if (!sb->s_root)
1318 		goto out_free;
1319 	return 0;
1320 out_free:
1321 	kfree(sbinfo->spool);
1322 	kfree(sbinfo);
1323 	return -ENOMEM;
1324 }
1325 
1326 static int hugetlbfs_get_tree(struct fs_context *fc)
1327 {
1328 	int err = hugetlbfs_validate(fc);
1329 	if (err)
1330 		return err;
1331 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1332 }
1333 
1334 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1335 {
1336 	kfree(fc->fs_private);
1337 }
1338 
1339 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1340 	.free		= hugetlbfs_fs_context_free,
1341 	.parse_param	= hugetlbfs_parse_param,
1342 	.get_tree	= hugetlbfs_get_tree,
1343 };
1344 
1345 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1346 {
1347 	struct hugetlbfs_fs_context *ctx;
1348 
1349 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1350 	if (!ctx)
1351 		return -ENOMEM;
1352 
1353 	ctx->max_hpages	= -1; /* No limit on size by default */
1354 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1355 	ctx->uid	= current_fsuid();
1356 	ctx->gid	= current_fsgid();
1357 	ctx->mode	= 0755;
1358 	ctx->hstate	= &default_hstate;
1359 	ctx->min_hpages	= -1; /* No default minimum size */
1360 	ctx->max_val_type = NO_SIZE;
1361 	ctx->min_val_type = NO_SIZE;
1362 	fc->fs_private = ctx;
1363 	fc->ops	= &hugetlbfs_fs_context_ops;
1364 	return 0;
1365 }
1366 
1367 static struct file_system_type hugetlbfs_fs_type = {
1368 	.name			= "hugetlbfs",
1369 	.init_fs_context	= hugetlbfs_init_fs_context,
1370 	.parameters		= hugetlb_fs_parameters,
1371 	.kill_sb		= kill_litter_super,
1372 };
1373 
1374 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1375 
1376 static int can_do_hugetlb_shm(void)
1377 {
1378 	kgid_t shm_group;
1379 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1380 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1381 }
1382 
1383 static int get_hstate_idx(int page_size_log)
1384 {
1385 	struct hstate *h = hstate_sizelog(page_size_log);
1386 
1387 	if (!h)
1388 		return -1;
1389 	return h - hstates;
1390 }
1391 
1392 /*
1393  * Note that size should be aligned to proper hugepage size in caller side,
1394  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1395  */
1396 struct file *hugetlb_file_setup(const char *name, size_t size,
1397 				vm_flags_t acctflag, struct user_struct **user,
1398 				int creat_flags, int page_size_log)
1399 {
1400 	struct inode *inode;
1401 	struct vfsmount *mnt;
1402 	int hstate_idx;
1403 	struct file *file;
1404 
1405 	hstate_idx = get_hstate_idx(page_size_log);
1406 	if (hstate_idx < 0)
1407 		return ERR_PTR(-ENODEV);
1408 
1409 	*user = NULL;
1410 	mnt = hugetlbfs_vfsmount[hstate_idx];
1411 	if (!mnt)
1412 		return ERR_PTR(-ENOENT);
1413 
1414 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1415 		*user = current_user();
1416 		if (user_shm_lock(size, *user)) {
1417 			task_lock(current);
1418 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1419 				current->comm, current->pid);
1420 			task_unlock(current);
1421 		} else {
1422 			*user = NULL;
1423 			return ERR_PTR(-EPERM);
1424 		}
1425 	}
1426 
1427 	file = ERR_PTR(-ENOSPC);
1428 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1429 	if (!inode)
1430 		goto out;
1431 	if (creat_flags == HUGETLB_SHMFS_INODE)
1432 		inode->i_flags |= S_PRIVATE;
1433 
1434 	inode->i_size = size;
1435 	clear_nlink(inode);
1436 
1437 	if (hugetlb_reserve_pages(inode, 0,
1438 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1439 			acctflag))
1440 		file = ERR_PTR(-ENOMEM);
1441 	else
1442 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1443 					&hugetlbfs_file_operations);
1444 	if (!IS_ERR(file))
1445 		return file;
1446 
1447 	iput(inode);
1448 out:
1449 	if (*user) {
1450 		user_shm_unlock(size, *user);
1451 		*user = NULL;
1452 	}
1453 	return file;
1454 }
1455 
1456 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1457 {
1458 	struct fs_context *fc;
1459 	struct vfsmount *mnt;
1460 
1461 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1462 	if (IS_ERR(fc)) {
1463 		mnt = ERR_CAST(fc);
1464 	} else {
1465 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1466 		ctx->hstate = h;
1467 		mnt = fc_mount(fc);
1468 		put_fs_context(fc);
1469 	}
1470 	if (IS_ERR(mnt))
1471 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1472 		       1U << (h->order + PAGE_SHIFT - 10));
1473 	return mnt;
1474 }
1475 
1476 static int __init init_hugetlbfs_fs(void)
1477 {
1478 	struct vfsmount *mnt;
1479 	struct hstate *h;
1480 	int error;
1481 	int i;
1482 
1483 	if (!hugepages_supported()) {
1484 		pr_info("disabling because there are no supported hugepage sizes\n");
1485 		return -ENOTSUPP;
1486 	}
1487 
1488 	error = -ENOMEM;
1489 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1490 					sizeof(struct hugetlbfs_inode_info),
1491 					0, SLAB_ACCOUNT, init_once);
1492 	if (hugetlbfs_inode_cachep == NULL)
1493 		goto out;
1494 
1495 	error = register_filesystem(&hugetlbfs_fs_type);
1496 	if (error)
1497 		goto out_free;
1498 
1499 	/* default hstate mount is required */
1500 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1501 	if (IS_ERR(mnt)) {
1502 		error = PTR_ERR(mnt);
1503 		goto out_unreg;
1504 	}
1505 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1506 
1507 	/* other hstates are optional */
1508 	i = 0;
1509 	for_each_hstate(h) {
1510 		if (i == default_hstate_idx) {
1511 			i++;
1512 			continue;
1513 		}
1514 
1515 		mnt = mount_one_hugetlbfs(h);
1516 		if (IS_ERR(mnt))
1517 			hugetlbfs_vfsmount[i] = NULL;
1518 		else
1519 			hugetlbfs_vfsmount[i] = mnt;
1520 		i++;
1521 	}
1522 
1523 	return 0;
1524 
1525  out_unreg:
1526 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1527  out_free:
1528 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1529  out:
1530 	return error;
1531 }
1532 fs_initcall(init_hugetlbfs_fs)
1533