xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 2eb3ed33e55d003d721d4d1a5e72fe323c12b4c0)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 struct hugetlbfs_config {
49 	struct hstate		*hstate;
50 	long			max_hpages;
51 	long			nr_inodes;
52 	long			min_hpages;
53 	kuid_t			uid;
54 	kgid_t			gid;
55 	umode_t			mode;
56 };
57 
58 struct hugetlbfs_inode_info {
59 	struct shared_policy policy;
60 	struct inode vfs_inode;
61 };
62 
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67 
68 int sysctl_hugetlb_shm_group;
69 
70 enum {
71 	Opt_size, Opt_nr_inodes,
72 	Opt_mode, Opt_uid, Opt_gid,
73 	Opt_pagesize, Opt_min_size,
74 	Opt_err,
75 };
76 
77 static const match_table_t tokens = {
78 	{Opt_size,	"size=%s"},
79 	{Opt_nr_inodes,	"nr_inodes=%s"},
80 	{Opt_mode,	"mode=%o"},
81 	{Opt_uid,	"uid=%u"},
82 	{Opt_gid,	"gid=%u"},
83 	{Opt_pagesize,	"pagesize=%s"},
84 	{Opt_min_size,	"min_size=%s"},
85 	{Opt_err,	NULL},
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 	struct inode *inode = file_inode(file);
124 	loff_t len, vma_len;
125 	int ret;
126 	struct hstate *h = hstate_file(file);
127 
128 	/*
129 	 * vma address alignment (but not the pgoff alignment) has
130 	 * already been checked by prepare_hugepage_range.  If you add
131 	 * any error returns here, do so after setting VM_HUGETLB, so
132 	 * is_vm_hugetlb_page tests below unmap_region go the right
133 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 	 * and ia64).
135 	 */
136 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 	vma->vm_ops = &hugetlb_vm_ops;
138 
139 	/*
140 	 * Offset passed to mmap (before page shift) could have been
141 	 * negative when represented as a (l)off_t.
142 	 */
143 	if (((loff_t)vma->vm_pgoff << PAGE_SHIFT) < 0)
144 		return -EINVAL;
145 
146 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
147 		return -EINVAL;
148 
149 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
150 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
151 	/* check for overflow */
152 	if (len < vma_len)
153 		return -EINVAL;
154 
155 	inode_lock(inode);
156 	file_accessed(file);
157 
158 	ret = -ENOMEM;
159 	if (hugetlb_reserve_pages(inode,
160 				vma->vm_pgoff >> huge_page_order(h),
161 				len >> huge_page_shift(h), vma,
162 				vma->vm_flags))
163 		goto out;
164 
165 	ret = 0;
166 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
167 		i_size_write(inode, len);
168 out:
169 	inode_unlock(inode);
170 
171 	return ret;
172 }
173 
174 /*
175  * Called under down_write(mmap_sem).
176  */
177 
178 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
179 static unsigned long
180 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
181 		unsigned long len, unsigned long pgoff, unsigned long flags)
182 {
183 	struct mm_struct *mm = current->mm;
184 	struct vm_area_struct *vma;
185 	struct hstate *h = hstate_file(file);
186 	struct vm_unmapped_area_info info;
187 
188 	if (len & ~huge_page_mask(h))
189 		return -EINVAL;
190 	if (len > TASK_SIZE)
191 		return -ENOMEM;
192 
193 	if (flags & MAP_FIXED) {
194 		if (prepare_hugepage_range(file, addr, len))
195 			return -EINVAL;
196 		return addr;
197 	}
198 
199 	if (addr) {
200 		addr = ALIGN(addr, huge_page_size(h));
201 		vma = find_vma(mm, addr);
202 		if (TASK_SIZE - len >= addr &&
203 		    (!vma || addr + len <= vm_start_gap(vma)))
204 			return addr;
205 	}
206 
207 	info.flags = 0;
208 	info.length = len;
209 	info.low_limit = TASK_UNMAPPED_BASE;
210 	info.high_limit = TASK_SIZE;
211 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
212 	info.align_offset = 0;
213 	return vm_unmapped_area(&info);
214 }
215 #endif
216 
217 static size_t
218 hugetlbfs_read_actor(struct page *page, unsigned long offset,
219 			struct iov_iter *to, unsigned long size)
220 {
221 	size_t copied = 0;
222 	int i, chunksize;
223 
224 	/* Find which 4k chunk and offset with in that chunk */
225 	i = offset >> PAGE_SHIFT;
226 	offset = offset & ~PAGE_MASK;
227 
228 	while (size) {
229 		size_t n;
230 		chunksize = PAGE_SIZE;
231 		if (offset)
232 			chunksize -= offset;
233 		if (chunksize > size)
234 			chunksize = size;
235 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
236 		copied += n;
237 		if (n != chunksize)
238 			return copied;
239 		offset = 0;
240 		size -= chunksize;
241 		i++;
242 	}
243 	return copied;
244 }
245 
246 /*
247  * Support for read() - Find the page attached to f_mapping and copy out the
248  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
249  * since it has PAGE_SIZE assumptions.
250  */
251 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
252 {
253 	struct file *file = iocb->ki_filp;
254 	struct hstate *h = hstate_file(file);
255 	struct address_space *mapping = file->f_mapping;
256 	struct inode *inode = mapping->host;
257 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
258 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
259 	unsigned long end_index;
260 	loff_t isize;
261 	ssize_t retval = 0;
262 
263 	while (iov_iter_count(to)) {
264 		struct page *page;
265 		size_t nr, copied;
266 
267 		/* nr is the maximum number of bytes to copy from this page */
268 		nr = huge_page_size(h);
269 		isize = i_size_read(inode);
270 		if (!isize)
271 			break;
272 		end_index = (isize - 1) >> huge_page_shift(h);
273 		if (index > end_index)
274 			break;
275 		if (index == end_index) {
276 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
277 			if (nr <= offset)
278 				break;
279 		}
280 		nr = nr - offset;
281 
282 		/* Find the page */
283 		page = find_lock_page(mapping, index);
284 		if (unlikely(page == NULL)) {
285 			/*
286 			 * We have a HOLE, zero out the user-buffer for the
287 			 * length of the hole or request.
288 			 */
289 			copied = iov_iter_zero(nr, to);
290 		} else {
291 			unlock_page(page);
292 
293 			/*
294 			 * We have the page, copy it to user space buffer.
295 			 */
296 			copied = hugetlbfs_read_actor(page, offset, to, nr);
297 			put_page(page);
298 		}
299 		offset += copied;
300 		retval += copied;
301 		if (copied != nr && iov_iter_count(to)) {
302 			if (!retval)
303 				retval = -EFAULT;
304 			break;
305 		}
306 		index += offset >> huge_page_shift(h);
307 		offset &= ~huge_page_mask(h);
308 	}
309 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
310 	return retval;
311 }
312 
313 static int hugetlbfs_write_begin(struct file *file,
314 			struct address_space *mapping,
315 			loff_t pos, unsigned len, unsigned flags,
316 			struct page **pagep, void **fsdata)
317 {
318 	return -EINVAL;
319 }
320 
321 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
322 			loff_t pos, unsigned len, unsigned copied,
323 			struct page *page, void *fsdata)
324 {
325 	BUG();
326 	return -EINVAL;
327 }
328 
329 static void remove_huge_page(struct page *page)
330 {
331 	ClearPageDirty(page);
332 	ClearPageUptodate(page);
333 	delete_from_page_cache(page);
334 }
335 
336 static void
337 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
338 {
339 	struct vm_area_struct *vma;
340 
341 	/*
342 	 * end == 0 indicates that the entire range after
343 	 * start should be unmapped.
344 	 */
345 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
346 		unsigned long v_offset;
347 		unsigned long v_end;
348 
349 		/*
350 		 * Can the expression below overflow on 32-bit arches?
351 		 * No, because the interval tree returns us only those vmas
352 		 * which overlap the truncated area starting at pgoff,
353 		 * and no vma on a 32-bit arch can span beyond the 4GB.
354 		 */
355 		if (vma->vm_pgoff < start)
356 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
357 		else
358 			v_offset = 0;
359 
360 		if (!end)
361 			v_end = vma->vm_end;
362 		else {
363 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
364 							+ vma->vm_start;
365 			if (v_end > vma->vm_end)
366 				v_end = vma->vm_end;
367 		}
368 
369 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
370 									NULL);
371 	}
372 }
373 
374 /*
375  * remove_inode_hugepages handles two distinct cases: truncation and hole
376  * punch.  There are subtle differences in operation for each case.
377  *
378  * truncation is indicated by end of range being LLONG_MAX
379  *	In this case, we first scan the range and release found pages.
380  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
381  *	maps and global counts.  Page faults can not race with truncation
382  *	in this routine.  hugetlb_no_page() prevents page faults in the
383  *	truncated range.  It checks i_size before allocation, and again after
384  *	with the page table lock for the page held.  The same lock must be
385  *	acquired to unmap a page.
386  * hole punch is indicated if end is not LLONG_MAX
387  *	In the hole punch case we scan the range and release found pages.
388  *	Only when releasing a page is the associated region/reserv map
389  *	deleted.  The region/reserv map for ranges without associated
390  *	pages are not modified.  Page faults can race with hole punch.
391  *	This is indicated if we find a mapped page.
392  * Note: If the passed end of range value is beyond the end of file, but
393  * not LLONG_MAX this routine still performs a hole punch operation.
394  */
395 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
396 				   loff_t lend)
397 {
398 	struct hstate *h = hstate_inode(inode);
399 	struct address_space *mapping = &inode->i_data;
400 	const pgoff_t start = lstart >> huge_page_shift(h);
401 	const pgoff_t end = lend >> huge_page_shift(h);
402 	struct vm_area_struct pseudo_vma;
403 	struct pagevec pvec;
404 	pgoff_t next, index;
405 	int i, freed = 0;
406 	bool truncate_op = (lend == LLONG_MAX);
407 
408 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
409 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
410 	pagevec_init(&pvec, 0);
411 	next = start;
412 	while (next < end) {
413 		/*
414 		 * When no more pages are found, we are done.
415 		 */
416 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
417 			break;
418 
419 		for (i = 0; i < pagevec_count(&pvec); ++i) {
420 			struct page *page = pvec.pages[i];
421 			u32 hash;
422 
423 			index = page->index;
424 			hash = hugetlb_fault_mutex_hash(h, current->mm,
425 							&pseudo_vma,
426 							mapping, index, 0);
427 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
428 
429 			/*
430 			 * If page is mapped, it was faulted in after being
431 			 * unmapped in caller.  Unmap (again) now after taking
432 			 * the fault mutex.  The mutex will prevent faults
433 			 * until we finish removing the page.
434 			 *
435 			 * This race can only happen in the hole punch case.
436 			 * Getting here in a truncate operation is a bug.
437 			 */
438 			if (unlikely(page_mapped(page))) {
439 				BUG_ON(truncate_op);
440 
441 				i_mmap_lock_write(mapping);
442 				hugetlb_vmdelete_list(&mapping->i_mmap,
443 					index * pages_per_huge_page(h),
444 					(index + 1) * pages_per_huge_page(h));
445 				i_mmap_unlock_write(mapping);
446 			}
447 
448 			lock_page(page);
449 			/*
450 			 * We must free the huge page and remove from page
451 			 * cache (remove_huge_page) BEFORE removing the
452 			 * region/reserve map (hugetlb_unreserve_pages).  In
453 			 * rare out of memory conditions, removal of the
454 			 * region/reserve map could fail. Correspondingly,
455 			 * the subpool and global reserve usage count can need
456 			 * to be adjusted.
457 			 */
458 			VM_BUG_ON(PagePrivate(page));
459 			remove_huge_page(page);
460 			freed++;
461 			if (!truncate_op) {
462 				if (unlikely(hugetlb_unreserve_pages(inode,
463 							index, index + 1, 1)))
464 					hugetlb_fix_reserve_counts(inode);
465 			}
466 
467 			unlock_page(page);
468 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
469 		}
470 		huge_pagevec_release(&pvec);
471 		cond_resched();
472 	}
473 
474 	if (truncate_op)
475 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
476 }
477 
478 static void hugetlbfs_evict_inode(struct inode *inode)
479 {
480 	struct resv_map *resv_map;
481 
482 	remove_inode_hugepages(inode, 0, LLONG_MAX);
483 	resv_map = (struct resv_map *)inode->i_mapping->private_data;
484 	/* root inode doesn't have the resv_map, so we should check it */
485 	if (resv_map)
486 		resv_map_release(&resv_map->refs);
487 	clear_inode(inode);
488 }
489 
490 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
491 {
492 	pgoff_t pgoff;
493 	struct address_space *mapping = inode->i_mapping;
494 	struct hstate *h = hstate_inode(inode);
495 
496 	BUG_ON(offset & ~huge_page_mask(h));
497 	pgoff = offset >> PAGE_SHIFT;
498 
499 	i_size_write(inode, offset);
500 	i_mmap_lock_write(mapping);
501 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
502 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
503 	i_mmap_unlock_write(mapping);
504 	remove_inode_hugepages(inode, offset, LLONG_MAX);
505 	return 0;
506 }
507 
508 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
509 {
510 	struct hstate *h = hstate_inode(inode);
511 	loff_t hpage_size = huge_page_size(h);
512 	loff_t hole_start, hole_end;
513 
514 	/*
515 	 * For hole punch round up the beginning offset of the hole and
516 	 * round down the end.
517 	 */
518 	hole_start = round_up(offset, hpage_size);
519 	hole_end = round_down(offset + len, hpage_size);
520 
521 	if (hole_end > hole_start) {
522 		struct address_space *mapping = inode->i_mapping;
523 
524 		inode_lock(inode);
525 		i_mmap_lock_write(mapping);
526 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
527 			hugetlb_vmdelete_list(&mapping->i_mmap,
528 						hole_start >> PAGE_SHIFT,
529 						hole_end  >> PAGE_SHIFT);
530 		i_mmap_unlock_write(mapping);
531 		remove_inode_hugepages(inode, hole_start, hole_end);
532 		inode_unlock(inode);
533 	}
534 
535 	return 0;
536 }
537 
538 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
539 				loff_t len)
540 {
541 	struct inode *inode = file_inode(file);
542 	struct address_space *mapping = inode->i_mapping;
543 	struct hstate *h = hstate_inode(inode);
544 	struct vm_area_struct pseudo_vma;
545 	struct mm_struct *mm = current->mm;
546 	loff_t hpage_size = huge_page_size(h);
547 	unsigned long hpage_shift = huge_page_shift(h);
548 	pgoff_t start, index, end;
549 	int error;
550 	u32 hash;
551 
552 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
553 		return -EOPNOTSUPP;
554 
555 	if (mode & FALLOC_FL_PUNCH_HOLE)
556 		return hugetlbfs_punch_hole(inode, offset, len);
557 
558 	/*
559 	 * Default preallocate case.
560 	 * For this range, start is rounded down and end is rounded up
561 	 * as well as being converted to page offsets.
562 	 */
563 	start = offset >> hpage_shift;
564 	end = (offset + len + hpage_size - 1) >> hpage_shift;
565 
566 	inode_lock(inode);
567 
568 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
569 	error = inode_newsize_ok(inode, offset + len);
570 	if (error)
571 		goto out;
572 
573 	/*
574 	 * Initialize a pseudo vma as this is required by the huge page
575 	 * allocation routines.  If NUMA is configured, use page index
576 	 * as input to create an allocation policy.
577 	 */
578 	memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
579 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
580 	pseudo_vma.vm_file = file;
581 
582 	for (index = start; index < end; index++) {
583 		/*
584 		 * This is supposed to be the vaddr where the page is being
585 		 * faulted in, but we have no vaddr here.
586 		 */
587 		struct page *page;
588 		unsigned long addr;
589 		int avoid_reserve = 0;
590 
591 		cond_resched();
592 
593 		/*
594 		 * fallocate(2) manpage permits EINTR; we may have been
595 		 * interrupted because we are using up too much memory.
596 		 */
597 		if (signal_pending(current)) {
598 			error = -EINTR;
599 			break;
600 		}
601 
602 		/* Set numa allocation policy based on index */
603 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
604 
605 		/* addr is the offset within the file (zero based) */
606 		addr = index * hpage_size;
607 
608 		/* mutex taken here, fault path and hole punch */
609 		hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
610 						index, addr);
611 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
612 
613 		/* See if already present in mapping to avoid alloc/free */
614 		page = find_get_page(mapping, index);
615 		if (page) {
616 			put_page(page);
617 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
618 			hugetlb_drop_vma_policy(&pseudo_vma);
619 			continue;
620 		}
621 
622 		/* Allocate page and add to page cache */
623 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
624 		hugetlb_drop_vma_policy(&pseudo_vma);
625 		if (IS_ERR(page)) {
626 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
627 			error = PTR_ERR(page);
628 			goto out;
629 		}
630 		clear_huge_page(page, addr, pages_per_huge_page(h));
631 		__SetPageUptodate(page);
632 		error = huge_add_to_page_cache(page, mapping, index);
633 		if (unlikely(error)) {
634 			put_page(page);
635 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
636 			goto out;
637 		}
638 
639 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
640 
641 		/*
642 		 * page_put due to reference from alloc_huge_page()
643 		 * unlock_page because locked by add_to_page_cache()
644 		 */
645 		put_page(page);
646 		unlock_page(page);
647 	}
648 
649 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
650 		i_size_write(inode, offset + len);
651 	inode->i_ctime = current_time(inode);
652 out:
653 	inode_unlock(inode);
654 	return error;
655 }
656 
657 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
658 {
659 	struct inode *inode = d_inode(dentry);
660 	struct hstate *h = hstate_inode(inode);
661 	int error;
662 	unsigned int ia_valid = attr->ia_valid;
663 
664 	BUG_ON(!inode);
665 
666 	error = setattr_prepare(dentry, attr);
667 	if (error)
668 		return error;
669 
670 	if (ia_valid & ATTR_SIZE) {
671 		error = -EINVAL;
672 		if (attr->ia_size & ~huge_page_mask(h))
673 			return -EINVAL;
674 		error = hugetlb_vmtruncate(inode, attr->ia_size);
675 		if (error)
676 			return error;
677 	}
678 
679 	setattr_copy(inode, attr);
680 	mark_inode_dirty(inode);
681 	return 0;
682 }
683 
684 static struct inode *hugetlbfs_get_root(struct super_block *sb,
685 					struct hugetlbfs_config *config)
686 {
687 	struct inode *inode;
688 
689 	inode = new_inode(sb);
690 	if (inode) {
691 		inode->i_ino = get_next_ino();
692 		inode->i_mode = S_IFDIR | config->mode;
693 		inode->i_uid = config->uid;
694 		inode->i_gid = config->gid;
695 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
696 		inode->i_op = &hugetlbfs_dir_inode_operations;
697 		inode->i_fop = &simple_dir_operations;
698 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
699 		inc_nlink(inode);
700 		lockdep_annotate_inode_mutex_key(inode);
701 	}
702 	return inode;
703 }
704 
705 /*
706  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
707  * be taken from reclaim -- unlike regular filesystems. This needs an
708  * annotation because huge_pmd_share() does an allocation under hugetlb's
709  * i_mmap_rwsem.
710  */
711 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
712 
713 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
714 					struct inode *dir,
715 					umode_t mode, dev_t dev)
716 {
717 	struct inode *inode;
718 	struct resv_map *resv_map;
719 
720 	resv_map = resv_map_alloc();
721 	if (!resv_map)
722 		return NULL;
723 
724 	inode = new_inode(sb);
725 	if (inode) {
726 		inode->i_ino = get_next_ino();
727 		inode_init_owner(inode, dir, mode);
728 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
729 				&hugetlbfs_i_mmap_rwsem_key);
730 		inode->i_mapping->a_ops = &hugetlbfs_aops;
731 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
732 		inode->i_mapping->private_data = resv_map;
733 		switch (mode & S_IFMT) {
734 		default:
735 			init_special_inode(inode, mode, dev);
736 			break;
737 		case S_IFREG:
738 			inode->i_op = &hugetlbfs_inode_operations;
739 			inode->i_fop = &hugetlbfs_file_operations;
740 			break;
741 		case S_IFDIR:
742 			inode->i_op = &hugetlbfs_dir_inode_operations;
743 			inode->i_fop = &simple_dir_operations;
744 
745 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
746 			inc_nlink(inode);
747 			break;
748 		case S_IFLNK:
749 			inode->i_op = &page_symlink_inode_operations;
750 			inode_nohighmem(inode);
751 			break;
752 		}
753 		lockdep_annotate_inode_mutex_key(inode);
754 	} else
755 		kref_put(&resv_map->refs, resv_map_release);
756 
757 	return inode;
758 }
759 
760 /*
761  * File creation. Allocate an inode, and we're done..
762  */
763 static int hugetlbfs_mknod(struct inode *dir,
764 			struct dentry *dentry, umode_t mode, dev_t dev)
765 {
766 	struct inode *inode;
767 	int error = -ENOSPC;
768 
769 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
770 	if (inode) {
771 		dir->i_ctime = dir->i_mtime = current_time(dir);
772 		d_instantiate(dentry, inode);
773 		dget(dentry);	/* Extra count - pin the dentry in core */
774 		error = 0;
775 	}
776 	return error;
777 }
778 
779 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
780 {
781 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
782 	if (!retval)
783 		inc_nlink(dir);
784 	return retval;
785 }
786 
787 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
788 {
789 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
790 }
791 
792 static int hugetlbfs_symlink(struct inode *dir,
793 			struct dentry *dentry, const char *symname)
794 {
795 	struct inode *inode;
796 	int error = -ENOSPC;
797 
798 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
799 	if (inode) {
800 		int l = strlen(symname)+1;
801 		error = page_symlink(inode, symname, l);
802 		if (!error) {
803 			d_instantiate(dentry, inode);
804 			dget(dentry);
805 		} else
806 			iput(inode);
807 	}
808 	dir->i_ctime = dir->i_mtime = current_time(dir);
809 
810 	return error;
811 }
812 
813 /*
814  * mark the head page dirty
815  */
816 static int hugetlbfs_set_page_dirty(struct page *page)
817 {
818 	struct page *head = compound_head(page);
819 
820 	SetPageDirty(head);
821 	return 0;
822 }
823 
824 static int hugetlbfs_migrate_page(struct address_space *mapping,
825 				struct page *newpage, struct page *page,
826 				enum migrate_mode mode)
827 {
828 	int rc;
829 
830 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
831 	if (rc != MIGRATEPAGE_SUCCESS)
832 		return rc;
833 	if (mode != MIGRATE_SYNC_NO_COPY)
834 		migrate_page_copy(newpage, page);
835 	else
836 		migrate_page_states(newpage, page);
837 
838 	return MIGRATEPAGE_SUCCESS;
839 }
840 
841 static int hugetlbfs_error_remove_page(struct address_space *mapping,
842 				struct page *page)
843 {
844 	struct inode *inode = mapping->host;
845 	pgoff_t index = page->index;
846 
847 	remove_huge_page(page);
848 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
849 		hugetlb_fix_reserve_counts(inode);
850 
851 	return 0;
852 }
853 
854 /*
855  * Display the mount options in /proc/mounts.
856  */
857 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
858 {
859 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
860 	struct hugepage_subpool *spool = sbinfo->spool;
861 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
862 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
863 	char mod;
864 
865 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
866 		seq_printf(m, ",uid=%u",
867 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
868 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
869 		seq_printf(m, ",gid=%u",
870 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
871 	if (sbinfo->mode != 0755)
872 		seq_printf(m, ",mode=%o", sbinfo->mode);
873 	if (sbinfo->max_inodes != -1)
874 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
875 
876 	hpage_size /= 1024;
877 	mod = 'K';
878 	if (hpage_size >= 1024) {
879 		hpage_size /= 1024;
880 		mod = 'M';
881 	}
882 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
883 	if (spool) {
884 		if (spool->max_hpages != -1)
885 			seq_printf(m, ",size=%llu",
886 				   (unsigned long long)spool->max_hpages << hpage_shift);
887 		if (spool->min_hpages != -1)
888 			seq_printf(m, ",min_size=%llu",
889 				   (unsigned long long)spool->min_hpages << hpage_shift);
890 	}
891 	return 0;
892 }
893 
894 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
895 {
896 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
897 	struct hstate *h = hstate_inode(d_inode(dentry));
898 
899 	buf->f_type = HUGETLBFS_MAGIC;
900 	buf->f_bsize = huge_page_size(h);
901 	if (sbinfo) {
902 		spin_lock(&sbinfo->stat_lock);
903 		/* If no limits set, just report 0 for max/free/used
904 		 * blocks, like simple_statfs() */
905 		if (sbinfo->spool) {
906 			long free_pages;
907 
908 			spin_lock(&sbinfo->spool->lock);
909 			buf->f_blocks = sbinfo->spool->max_hpages;
910 			free_pages = sbinfo->spool->max_hpages
911 				- sbinfo->spool->used_hpages;
912 			buf->f_bavail = buf->f_bfree = free_pages;
913 			spin_unlock(&sbinfo->spool->lock);
914 			buf->f_files = sbinfo->max_inodes;
915 			buf->f_ffree = sbinfo->free_inodes;
916 		}
917 		spin_unlock(&sbinfo->stat_lock);
918 	}
919 	buf->f_namelen = NAME_MAX;
920 	return 0;
921 }
922 
923 static void hugetlbfs_put_super(struct super_block *sb)
924 {
925 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
926 
927 	if (sbi) {
928 		sb->s_fs_info = NULL;
929 
930 		if (sbi->spool)
931 			hugepage_put_subpool(sbi->spool);
932 
933 		kfree(sbi);
934 	}
935 }
936 
937 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
938 {
939 	if (sbinfo->free_inodes >= 0) {
940 		spin_lock(&sbinfo->stat_lock);
941 		if (unlikely(!sbinfo->free_inodes)) {
942 			spin_unlock(&sbinfo->stat_lock);
943 			return 0;
944 		}
945 		sbinfo->free_inodes--;
946 		spin_unlock(&sbinfo->stat_lock);
947 	}
948 
949 	return 1;
950 }
951 
952 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
953 {
954 	if (sbinfo->free_inodes >= 0) {
955 		spin_lock(&sbinfo->stat_lock);
956 		sbinfo->free_inodes++;
957 		spin_unlock(&sbinfo->stat_lock);
958 	}
959 }
960 
961 
962 static struct kmem_cache *hugetlbfs_inode_cachep;
963 
964 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
965 {
966 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
967 	struct hugetlbfs_inode_info *p;
968 
969 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
970 		return NULL;
971 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
972 	if (unlikely(!p)) {
973 		hugetlbfs_inc_free_inodes(sbinfo);
974 		return NULL;
975 	}
976 
977 	/*
978 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
979 	 * for the inode.  mpol_free_shared_policy is unconditionally called
980 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
981 	 * in case of a quick call to destroy.
982 	 *
983 	 * Note that the policy is initialized even if we are creating a
984 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
985 	 */
986 	mpol_shared_policy_init(&p->policy, NULL);
987 
988 	return &p->vfs_inode;
989 }
990 
991 static void hugetlbfs_i_callback(struct rcu_head *head)
992 {
993 	struct inode *inode = container_of(head, struct inode, i_rcu);
994 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
995 }
996 
997 static void hugetlbfs_destroy_inode(struct inode *inode)
998 {
999 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1000 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1001 	call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1002 }
1003 
1004 static const struct address_space_operations hugetlbfs_aops = {
1005 	.write_begin	= hugetlbfs_write_begin,
1006 	.write_end	= hugetlbfs_write_end,
1007 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1008 	.migratepage    = hugetlbfs_migrate_page,
1009 	.error_remove_page	= hugetlbfs_error_remove_page,
1010 };
1011 
1012 
1013 static void init_once(void *foo)
1014 {
1015 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1016 
1017 	inode_init_once(&ei->vfs_inode);
1018 }
1019 
1020 const struct file_operations hugetlbfs_file_operations = {
1021 	.read_iter		= hugetlbfs_read_iter,
1022 	.mmap			= hugetlbfs_file_mmap,
1023 	.fsync			= noop_fsync,
1024 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1025 	.llseek			= default_llseek,
1026 	.fallocate		= hugetlbfs_fallocate,
1027 };
1028 
1029 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1030 	.create		= hugetlbfs_create,
1031 	.lookup		= simple_lookup,
1032 	.link		= simple_link,
1033 	.unlink		= simple_unlink,
1034 	.symlink	= hugetlbfs_symlink,
1035 	.mkdir		= hugetlbfs_mkdir,
1036 	.rmdir		= simple_rmdir,
1037 	.mknod		= hugetlbfs_mknod,
1038 	.rename		= simple_rename,
1039 	.setattr	= hugetlbfs_setattr,
1040 };
1041 
1042 static const struct inode_operations hugetlbfs_inode_operations = {
1043 	.setattr	= hugetlbfs_setattr,
1044 };
1045 
1046 static const struct super_operations hugetlbfs_ops = {
1047 	.alloc_inode    = hugetlbfs_alloc_inode,
1048 	.destroy_inode  = hugetlbfs_destroy_inode,
1049 	.evict_inode	= hugetlbfs_evict_inode,
1050 	.statfs		= hugetlbfs_statfs,
1051 	.put_super	= hugetlbfs_put_super,
1052 	.show_options	= hugetlbfs_show_options,
1053 };
1054 
1055 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1056 
1057 /*
1058  * Convert size option passed from command line to number of huge pages
1059  * in the pool specified by hstate.  Size option could be in bytes
1060  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1061  */
1062 static long
1063 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1064 			 enum hugetlbfs_size_type val_type)
1065 {
1066 	if (val_type == NO_SIZE)
1067 		return -1;
1068 
1069 	if (val_type == SIZE_PERCENT) {
1070 		size_opt <<= huge_page_shift(h);
1071 		size_opt *= h->max_huge_pages;
1072 		do_div(size_opt, 100);
1073 	}
1074 
1075 	size_opt >>= huge_page_shift(h);
1076 	return size_opt;
1077 }
1078 
1079 static int
1080 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1081 {
1082 	char *p, *rest;
1083 	substring_t args[MAX_OPT_ARGS];
1084 	int option;
1085 	unsigned long long max_size_opt = 0, min_size_opt = 0;
1086 	enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1087 
1088 	if (!options)
1089 		return 0;
1090 
1091 	while ((p = strsep(&options, ",")) != NULL) {
1092 		int token;
1093 		if (!*p)
1094 			continue;
1095 
1096 		token = match_token(p, tokens, args);
1097 		switch (token) {
1098 		case Opt_uid:
1099 			if (match_int(&args[0], &option))
1100  				goto bad_val;
1101 			pconfig->uid = make_kuid(current_user_ns(), option);
1102 			if (!uid_valid(pconfig->uid))
1103 				goto bad_val;
1104 			break;
1105 
1106 		case Opt_gid:
1107 			if (match_int(&args[0], &option))
1108  				goto bad_val;
1109 			pconfig->gid = make_kgid(current_user_ns(), option);
1110 			if (!gid_valid(pconfig->gid))
1111 				goto bad_val;
1112 			break;
1113 
1114 		case Opt_mode:
1115 			if (match_octal(&args[0], &option))
1116  				goto bad_val;
1117 			pconfig->mode = option & 01777U;
1118 			break;
1119 
1120 		case Opt_size: {
1121 			/* memparse() will accept a K/M/G without a digit */
1122 			if (!isdigit(*args[0].from))
1123 				goto bad_val;
1124 			max_size_opt = memparse(args[0].from, &rest);
1125 			max_val_type = SIZE_STD;
1126 			if (*rest == '%')
1127 				max_val_type = SIZE_PERCENT;
1128 			break;
1129 		}
1130 
1131 		case Opt_nr_inodes:
1132 			/* memparse() will accept a K/M/G without a digit */
1133 			if (!isdigit(*args[0].from))
1134 				goto bad_val;
1135 			pconfig->nr_inodes = memparse(args[0].from, &rest);
1136 			break;
1137 
1138 		case Opt_pagesize: {
1139 			unsigned long ps;
1140 			ps = memparse(args[0].from, &rest);
1141 			pconfig->hstate = size_to_hstate(ps);
1142 			if (!pconfig->hstate) {
1143 				pr_err("Unsupported page size %lu MB\n",
1144 					ps >> 20);
1145 				return -EINVAL;
1146 			}
1147 			break;
1148 		}
1149 
1150 		case Opt_min_size: {
1151 			/* memparse() will accept a K/M/G without a digit */
1152 			if (!isdigit(*args[0].from))
1153 				goto bad_val;
1154 			min_size_opt = memparse(args[0].from, &rest);
1155 			min_val_type = SIZE_STD;
1156 			if (*rest == '%')
1157 				min_val_type = SIZE_PERCENT;
1158 			break;
1159 		}
1160 
1161 		default:
1162 			pr_err("Bad mount option: \"%s\"\n", p);
1163 			return -EINVAL;
1164 			break;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Use huge page pool size (in hstate) to convert the size
1170 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1171 	 */
1172 	pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1173 						max_size_opt, max_val_type);
1174 	pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1175 						min_size_opt, min_val_type);
1176 
1177 	/*
1178 	 * If max_size was specified, then min_size must be smaller
1179 	 */
1180 	if (max_val_type > NO_SIZE &&
1181 	    pconfig->min_hpages > pconfig->max_hpages) {
1182 		pr_err("minimum size can not be greater than maximum size\n");
1183 		return -EINVAL;
1184 	}
1185 
1186 	return 0;
1187 
1188 bad_val:
1189 	pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1190  	return -EINVAL;
1191 }
1192 
1193 static int
1194 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1195 {
1196 	int ret;
1197 	struct hugetlbfs_config config;
1198 	struct hugetlbfs_sb_info *sbinfo;
1199 
1200 	config.max_hpages = -1; /* No limit on size by default */
1201 	config.nr_inodes = -1; /* No limit on number of inodes by default */
1202 	config.uid = current_fsuid();
1203 	config.gid = current_fsgid();
1204 	config.mode = 0755;
1205 	config.hstate = &default_hstate;
1206 	config.min_hpages = -1; /* No default minimum size */
1207 	ret = hugetlbfs_parse_options(data, &config);
1208 	if (ret)
1209 		return ret;
1210 
1211 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1212 	if (!sbinfo)
1213 		return -ENOMEM;
1214 	sb->s_fs_info = sbinfo;
1215 	sbinfo->hstate = config.hstate;
1216 	spin_lock_init(&sbinfo->stat_lock);
1217 	sbinfo->max_inodes = config.nr_inodes;
1218 	sbinfo->free_inodes = config.nr_inodes;
1219 	sbinfo->spool = NULL;
1220 	sbinfo->uid = config.uid;
1221 	sbinfo->gid = config.gid;
1222 	sbinfo->mode = config.mode;
1223 
1224 	/*
1225 	 * Allocate and initialize subpool if maximum or minimum size is
1226 	 * specified.  Any needed reservations (for minimim size) are taken
1227 	 * taken when the subpool is created.
1228 	 */
1229 	if (config.max_hpages != -1 || config.min_hpages != -1) {
1230 		sbinfo->spool = hugepage_new_subpool(config.hstate,
1231 							config.max_hpages,
1232 							config.min_hpages);
1233 		if (!sbinfo->spool)
1234 			goto out_free;
1235 	}
1236 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1237 	sb->s_blocksize = huge_page_size(config.hstate);
1238 	sb->s_blocksize_bits = huge_page_shift(config.hstate);
1239 	sb->s_magic = HUGETLBFS_MAGIC;
1240 	sb->s_op = &hugetlbfs_ops;
1241 	sb->s_time_gran = 1;
1242 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1243 	if (!sb->s_root)
1244 		goto out_free;
1245 	return 0;
1246 out_free:
1247 	kfree(sbinfo->spool);
1248 	kfree(sbinfo);
1249 	return -ENOMEM;
1250 }
1251 
1252 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1253 	int flags, const char *dev_name, void *data)
1254 {
1255 	return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1256 }
1257 
1258 static struct file_system_type hugetlbfs_fs_type = {
1259 	.name		= "hugetlbfs",
1260 	.mount		= hugetlbfs_mount,
1261 	.kill_sb	= kill_litter_super,
1262 };
1263 
1264 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1265 
1266 static int can_do_hugetlb_shm(void)
1267 {
1268 	kgid_t shm_group;
1269 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1270 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1271 }
1272 
1273 static int get_hstate_idx(int page_size_log)
1274 {
1275 	struct hstate *h = hstate_sizelog(page_size_log);
1276 
1277 	if (!h)
1278 		return -1;
1279 	return h - hstates;
1280 }
1281 
1282 static const struct dentry_operations anon_ops = {
1283 	.d_dname = simple_dname
1284 };
1285 
1286 /*
1287  * Note that size should be aligned to proper hugepage size in caller side,
1288  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1289  */
1290 struct file *hugetlb_file_setup(const char *name, size_t size,
1291 				vm_flags_t acctflag, struct user_struct **user,
1292 				int creat_flags, int page_size_log)
1293 {
1294 	struct file *file = ERR_PTR(-ENOMEM);
1295 	struct inode *inode;
1296 	struct path path;
1297 	struct super_block *sb;
1298 	struct qstr quick_string;
1299 	int hstate_idx;
1300 
1301 	hstate_idx = get_hstate_idx(page_size_log);
1302 	if (hstate_idx < 0)
1303 		return ERR_PTR(-ENODEV);
1304 
1305 	*user = NULL;
1306 	if (!hugetlbfs_vfsmount[hstate_idx])
1307 		return ERR_PTR(-ENOENT);
1308 
1309 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1310 		*user = current_user();
1311 		if (user_shm_lock(size, *user)) {
1312 			task_lock(current);
1313 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1314 				current->comm, current->pid);
1315 			task_unlock(current);
1316 		} else {
1317 			*user = NULL;
1318 			return ERR_PTR(-EPERM);
1319 		}
1320 	}
1321 
1322 	sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1323 	quick_string.name = name;
1324 	quick_string.len = strlen(quick_string.name);
1325 	quick_string.hash = 0;
1326 	path.dentry = d_alloc_pseudo(sb, &quick_string);
1327 	if (!path.dentry)
1328 		goto out_shm_unlock;
1329 
1330 	d_set_d_op(path.dentry, &anon_ops);
1331 	path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1332 	file = ERR_PTR(-ENOSPC);
1333 	inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1334 	if (!inode)
1335 		goto out_dentry;
1336 	if (creat_flags == HUGETLB_SHMFS_INODE)
1337 		inode->i_flags |= S_PRIVATE;
1338 
1339 	file = ERR_PTR(-ENOMEM);
1340 	if (hugetlb_reserve_pages(inode, 0,
1341 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1342 			acctflag))
1343 		goto out_inode;
1344 
1345 	d_instantiate(path.dentry, inode);
1346 	inode->i_size = size;
1347 	clear_nlink(inode);
1348 
1349 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1350 			&hugetlbfs_file_operations);
1351 	if (IS_ERR(file))
1352 		goto out_dentry; /* inode is already attached */
1353 
1354 	return file;
1355 
1356 out_inode:
1357 	iput(inode);
1358 out_dentry:
1359 	path_put(&path);
1360 out_shm_unlock:
1361 	if (*user) {
1362 		user_shm_unlock(size, *user);
1363 		*user = NULL;
1364 	}
1365 	return file;
1366 }
1367 
1368 static int __init init_hugetlbfs_fs(void)
1369 {
1370 	struct hstate *h;
1371 	int error;
1372 	int i;
1373 
1374 	if (!hugepages_supported()) {
1375 		pr_info("disabling because there are no supported hugepage sizes\n");
1376 		return -ENOTSUPP;
1377 	}
1378 
1379 	error = -ENOMEM;
1380 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1381 					sizeof(struct hugetlbfs_inode_info),
1382 					0, SLAB_ACCOUNT, init_once);
1383 	if (hugetlbfs_inode_cachep == NULL)
1384 		goto out2;
1385 
1386 	error = register_filesystem(&hugetlbfs_fs_type);
1387 	if (error)
1388 		goto out;
1389 
1390 	i = 0;
1391 	for_each_hstate(h) {
1392 		char buf[50];
1393 		unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1394 
1395 		snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1396 		hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1397 							buf);
1398 
1399 		if (IS_ERR(hugetlbfs_vfsmount[i])) {
1400 			pr_err("Cannot mount internal hugetlbfs for "
1401 				"page size %uK", ps_kb);
1402 			error = PTR_ERR(hugetlbfs_vfsmount[i]);
1403 			hugetlbfs_vfsmount[i] = NULL;
1404 		}
1405 		i++;
1406 	}
1407 	/* Non default hstates are optional */
1408 	if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1409 		return 0;
1410 
1411  out:
1412 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1413  out2:
1414 	return error;
1415 }
1416 fs_initcall(init_hugetlbfs_fs)
1417