1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 struct hstate *hstate; 50 long max_hpages; 51 long nr_inodes; 52 long min_hpages; 53 kuid_t uid; 54 kgid_t gid; 55 umode_t mode; 56 }; 57 58 struct hugetlbfs_inode_info { 59 struct shared_policy policy; 60 struct inode vfs_inode; 61 }; 62 63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) 64 { 65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); 66 } 67 68 int sysctl_hugetlb_shm_group; 69 70 enum { 71 Opt_size, Opt_nr_inodes, 72 Opt_mode, Opt_uid, Opt_gid, 73 Opt_pagesize, Opt_min_size, 74 Opt_err, 75 }; 76 77 static const match_table_t tokens = { 78 {Opt_size, "size=%s"}, 79 {Opt_nr_inodes, "nr_inodes=%s"}, 80 {Opt_mode, "mode=%o"}, 81 {Opt_uid, "uid=%u"}, 82 {Opt_gid, "gid=%u"}, 83 {Opt_pagesize, "pagesize=%s"}, 84 {Opt_min_size, "min_size=%s"}, 85 {Opt_err, NULL}, 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 /* 140 * Offset passed to mmap (before page shift) could have been 141 * negative when represented as a (l)off_t. 142 */ 143 if (((loff_t)vma->vm_pgoff << PAGE_SHIFT) < 0) 144 return -EINVAL; 145 146 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 147 return -EINVAL; 148 149 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 150 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 151 /* check for overflow */ 152 if (len < vma_len) 153 return -EINVAL; 154 155 inode_lock(inode); 156 file_accessed(file); 157 158 ret = -ENOMEM; 159 if (hugetlb_reserve_pages(inode, 160 vma->vm_pgoff >> huge_page_order(h), 161 len >> huge_page_shift(h), vma, 162 vma->vm_flags)) 163 goto out; 164 165 ret = 0; 166 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 167 i_size_write(inode, len); 168 out: 169 inode_unlock(inode); 170 171 return ret; 172 } 173 174 /* 175 * Called under down_write(mmap_sem). 176 */ 177 178 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 179 static unsigned long 180 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 181 unsigned long len, unsigned long pgoff, unsigned long flags) 182 { 183 struct mm_struct *mm = current->mm; 184 struct vm_area_struct *vma; 185 struct hstate *h = hstate_file(file); 186 struct vm_unmapped_area_info info; 187 188 if (len & ~huge_page_mask(h)) 189 return -EINVAL; 190 if (len > TASK_SIZE) 191 return -ENOMEM; 192 193 if (flags & MAP_FIXED) { 194 if (prepare_hugepage_range(file, addr, len)) 195 return -EINVAL; 196 return addr; 197 } 198 199 if (addr) { 200 addr = ALIGN(addr, huge_page_size(h)); 201 vma = find_vma(mm, addr); 202 if (TASK_SIZE - len >= addr && 203 (!vma || addr + len <= vm_start_gap(vma))) 204 return addr; 205 } 206 207 info.flags = 0; 208 info.length = len; 209 info.low_limit = TASK_UNMAPPED_BASE; 210 info.high_limit = TASK_SIZE; 211 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 212 info.align_offset = 0; 213 return vm_unmapped_area(&info); 214 } 215 #endif 216 217 static size_t 218 hugetlbfs_read_actor(struct page *page, unsigned long offset, 219 struct iov_iter *to, unsigned long size) 220 { 221 size_t copied = 0; 222 int i, chunksize; 223 224 /* Find which 4k chunk and offset with in that chunk */ 225 i = offset >> PAGE_SHIFT; 226 offset = offset & ~PAGE_MASK; 227 228 while (size) { 229 size_t n; 230 chunksize = PAGE_SIZE; 231 if (offset) 232 chunksize -= offset; 233 if (chunksize > size) 234 chunksize = size; 235 n = copy_page_to_iter(&page[i], offset, chunksize, to); 236 copied += n; 237 if (n != chunksize) 238 return copied; 239 offset = 0; 240 size -= chunksize; 241 i++; 242 } 243 return copied; 244 } 245 246 /* 247 * Support for read() - Find the page attached to f_mapping and copy out the 248 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 249 * since it has PAGE_SIZE assumptions. 250 */ 251 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 252 { 253 struct file *file = iocb->ki_filp; 254 struct hstate *h = hstate_file(file); 255 struct address_space *mapping = file->f_mapping; 256 struct inode *inode = mapping->host; 257 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 258 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 259 unsigned long end_index; 260 loff_t isize; 261 ssize_t retval = 0; 262 263 while (iov_iter_count(to)) { 264 struct page *page; 265 size_t nr, copied; 266 267 /* nr is the maximum number of bytes to copy from this page */ 268 nr = huge_page_size(h); 269 isize = i_size_read(inode); 270 if (!isize) 271 break; 272 end_index = (isize - 1) >> huge_page_shift(h); 273 if (index > end_index) 274 break; 275 if (index == end_index) { 276 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 277 if (nr <= offset) 278 break; 279 } 280 nr = nr - offset; 281 282 /* Find the page */ 283 page = find_lock_page(mapping, index); 284 if (unlikely(page == NULL)) { 285 /* 286 * We have a HOLE, zero out the user-buffer for the 287 * length of the hole or request. 288 */ 289 copied = iov_iter_zero(nr, to); 290 } else { 291 unlock_page(page); 292 293 /* 294 * We have the page, copy it to user space buffer. 295 */ 296 copied = hugetlbfs_read_actor(page, offset, to, nr); 297 put_page(page); 298 } 299 offset += copied; 300 retval += copied; 301 if (copied != nr && iov_iter_count(to)) { 302 if (!retval) 303 retval = -EFAULT; 304 break; 305 } 306 index += offset >> huge_page_shift(h); 307 offset &= ~huge_page_mask(h); 308 } 309 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 310 return retval; 311 } 312 313 static int hugetlbfs_write_begin(struct file *file, 314 struct address_space *mapping, 315 loff_t pos, unsigned len, unsigned flags, 316 struct page **pagep, void **fsdata) 317 { 318 return -EINVAL; 319 } 320 321 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 322 loff_t pos, unsigned len, unsigned copied, 323 struct page *page, void *fsdata) 324 { 325 BUG(); 326 return -EINVAL; 327 } 328 329 static void remove_huge_page(struct page *page) 330 { 331 ClearPageDirty(page); 332 ClearPageUptodate(page); 333 delete_from_page_cache(page); 334 } 335 336 static void 337 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 338 { 339 struct vm_area_struct *vma; 340 341 /* 342 * end == 0 indicates that the entire range after 343 * start should be unmapped. 344 */ 345 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 346 unsigned long v_offset; 347 unsigned long v_end; 348 349 /* 350 * Can the expression below overflow on 32-bit arches? 351 * No, because the interval tree returns us only those vmas 352 * which overlap the truncated area starting at pgoff, 353 * and no vma on a 32-bit arch can span beyond the 4GB. 354 */ 355 if (vma->vm_pgoff < start) 356 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 357 else 358 v_offset = 0; 359 360 if (!end) 361 v_end = vma->vm_end; 362 else { 363 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 364 + vma->vm_start; 365 if (v_end > vma->vm_end) 366 v_end = vma->vm_end; 367 } 368 369 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 370 NULL); 371 } 372 } 373 374 /* 375 * remove_inode_hugepages handles two distinct cases: truncation and hole 376 * punch. There are subtle differences in operation for each case. 377 * 378 * truncation is indicated by end of range being LLONG_MAX 379 * In this case, we first scan the range and release found pages. 380 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 381 * maps and global counts. Page faults can not race with truncation 382 * in this routine. hugetlb_no_page() prevents page faults in the 383 * truncated range. It checks i_size before allocation, and again after 384 * with the page table lock for the page held. The same lock must be 385 * acquired to unmap a page. 386 * hole punch is indicated if end is not LLONG_MAX 387 * In the hole punch case we scan the range and release found pages. 388 * Only when releasing a page is the associated region/reserv map 389 * deleted. The region/reserv map for ranges without associated 390 * pages are not modified. Page faults can race with hole punch. 391 * This is indicated if we find a mapped page. 392 * Note: If the passed end of range value is beyond the end of file, but 393 * not LLONG_MAX this routine still performs a hole punch operation. 394 */ 395 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 396 loff_t lend) 397 { 398 struct hstate *h = hstate_inode(inode); 399 struct address_space *mapping = &inode->i_data; 400 const pgoff_t start = lstart >> huge_page_shift(h); 401 const pgoff_t end = lend >> huge_page_shift(h); 402 struct vm_area_struct pseudo_vma; 403 struct pagevec pvec; 404 pgoff_t next, index; 405 int i, freed = 0; 406 bool truncate_op = (lend == LLONG_MAX); 407 408 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 409 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 410 pagevec_init(&pvec, 0); 411 next = start; 412 while (next < end) { 413 /* 414 * When no more pages are found, we are done. 415 */ 416 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 417 break; 418 419 for (i = 0; i < pagevec_count(&pvec); ++i) { 420 struct page *page = pvec.pages[i]; 421 u32 hash; 422 423 index = page->index; 424 hash = hugetlb_fault_mutex_hash(h, current->mm, 425 &pseudo_vma, 426 mapping, index, 0); 427 mutex_lock(&hugetlb_fault_mutex_table[hash]); 428 429 /* 430 * If page is mapped, it was faulted in after being 431 * unmapped in caller. Unmap (again) now after taking 432 * the fault mutex. The mutex will prevent faults 433 * until we finish removing the page. 434 * 435 * This race can only happen in the hole punch case. 436 * Getting here in a truncate operation is a bug. 437 */ 438 if (unlikely(page_mapped(page))) { 439 BUG_ON(truncate_op); 440 441 i_mmap_lock_write(mapping); 442 hugetlb_vmdelete_list(&mapping->i_mmap, 443 index * pages_per_huge_page(h), 444 (index + 1) * pages_per_huge_page(h)); 445 i_mmap_unlock_write(mapping); 446 } 447 448 lock_page(page); 449 /* 450 * We must free the huge page and remove from page 451 * cache (remove_huge_page) BEFORE removing the 452 * region/reserve map (hugetlb_unreserve_pages). In 453 * rare out of memory conditions, removal of the 454 * region/reserve map could fail. Correspondingly, 455 * the subpool and global reserve usage count can need 456 * to be adjusted. 457 */ 458 VM_BUG_ON(PagePrivate(page)); 459 remove_huge_page(page); 460 freed++; 461 if (!truncate_op) { 462 if (unlikely(hugetlb_unreserve_pages(inode, 463 index, index + 1, 1))) 464 hugetlb_fix_reserve_counts(inode); 465 } 466 467 unlock_page(page); 468 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 469 } 470 huge_pagevec_release(&pvec); 471 cond_resched(); 472 } 473 474 if (truncate_op) 475 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 476 } 477 478 static void hugetlbfs_evict_inode(struct inode *inode) 479 { 480 struct resv_map *resv_map; 481 482 remove_inode_hugepages(inode, 0, LLONG_MAX); 483 resv_map = (struct resv_map *)inode->i_mapping->private_data; 484 /* root inode doesn't have the resv_map, so we should check it */ 485 if (resv_map) 486 resv_map_release(&resv_map->refs); 487 clear_inode(inode); 488 } 489 490 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 491 { 492 pgoff_t pgoff; 493 struct address_space *mapping = inode->i_mapping; 494 struct hstate *h = hstate_inode(inode); 495 496 BUG_ON(offset & ~huge_page_mask(h)); 497 pgoff = offset >> PAGE_SHIFT; 498 499 i_size_write(inode, offset); 500 i_mmap_lock_write(mapping); 501 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 502 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 503 i_mmap_unlock_write(mapping); 504 remove_inode_hugepages(inode, offset, LLONG_MAX); 505 return 0; 506 } 507 508 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 509 { 510 struct hstate *h = hstate_inode(inode); 511 loff_t hpage_size = huge_page_size(h); 512 loff_t hole_start, hole_end; 513 514 /* 515 * For hole punch round up the beginning offset of the hole and 516 * round down the end. 517 */ 518 hole_start = round_up(offset, hpage_size); 519 hole_end = round_down(offset + len, hpage_size); 520 521 if (hole_end > hole_start) { 522 struct address_space *mapping = inode->i_mapping; 523 524 inode_lock(inode); 525 i_mmap_lock_write(mapping); 526 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 527 hugetlb_vmdelete_list(&mapping->i_mmap, 528 hole_start >> PAGE_SHIFT, 529 hole_end >> PAGE_SHIFT); 530 i_mmap_unlock_write(mapping); 531 remove_inode_hugepages(inode, hole_start, hole_end); 532 inode_unlock(inode); 533 } 534 535 return 0; 536 } 537 538 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 539 loff_t len) 540 { 541 struct inode *inode = file_inode(file); 542 struct address_space *mapping = inode->i_mapping; 543 struct hstate *h = hstate_inode(inode); 544 struct vm_area_struct pseudo_vma; 545 struct mm_struct *mm = current->mm; 546 loff_t hpage_size = huge_page_size(h); 547 unsigned long hpage_shift = huge_page_shift(h); 548 pgoff_t start, index, end; 549 int error; 550 u32 hash; 551 552 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 553 return -EOPNOTSUPP; 554 555 if (mode & FALLOC_FL_PUNCH_HOLE) 556 return hugetlbfs_punch_hole(inode, offset, len); 557 558 /* 559 * Default preallocate case. 560 * For this range, start is rounded down and end is rounded up 561 * as well as being converted to page offsets. 562 */ 563 start = offset >> hpage_shift; 564 end = (offset + len + hpage_size - 1) >> hpage_shift; 565 566 inode_lock(inode); 567 568 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 569 error = inode_newsize_ok(inode, offset + len); 570 if (error) 571 goto out; 572 573 /* 574 * Initialize a pseudo vma as this is required by the huge page 575 * allocation routines. If NUMA is configured, use page index 576 * as input to create an allocation policy. 577 */ 578 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 579 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 580 pseudo_vma.vm_file = file; 581 582 for (index = start; index < end; index++) { 583 /* 584 * This is supposed to be the vaddr where the page is being 585 * faulted in, but we have no vaddr here. 586 */ 587 struct page *page; 588 unsigned long addr; 589 int avoid_reserve = 0; 590 591 cond_resched(); 592 593 /* 594 * fallocate(2) manpage permits EINTR; we may have been 595 * interrupted because we are using up too much memory. 596 */ 597 if (signal_pending(current)) { 598 error = -EINTR; 599 break; 600 } 601 602 /* Set numa allocation policy based on index */ 603 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 604 605 /* addr is the offset within the file (zero based) */ 606 addr = index * hpage_size; 607 608 /* mutex taken here, fault path and hole punch */ 609 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 610 index, addr); 611 mutex_lock(&hugetlb_fault_mutex_table[hash]); 612 613 /* See if already present in mapping to avoid alloc/free */ 614 page = find_get_page(mapping, index); 615 if (page) { 616 put_page(page); 617 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 618 hugetlb_drop_vma_policy(&pseudo_vma); 619 continue; 620 } 621 622 /* Allocate page and add to page cache */ 623 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 624 hugetlb_drop_vma_policy(&pseudo_vma); 625 if (IS_ERR(page)) { 626 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 627 error = PTR_ERR(page); 628 goto out; 629 } 630 clear_huge_page(page, addr, pages_per_huge_page(h)); 631 __SetPageUptodate(page); 632 error = huge_add_to_page_cache(page, mapping, index); 633 if (unlikely(error)) { 634 put_page(page); 635 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 636 goto out; 637 } 638 639 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 640 641 /* 642 * page_put due to reference from alloc_huge_page() 643 * unlock_page because locked by add_to_page_cache() 644 */ 645 put_page(page); 646 unlock_page(page); 647 } 648 649 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 650 i_size_write(inode, offset + len); 651 inode->i_ctime = current_time(inode); 652 out: 653 inode_unlock(inode); 654 return error; 655 } 656 657 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 658 { 659 struct inode *inode = d_inode(dentry); 660 struct hstate *h = hstate_inode(inode); 661 int error; 662 unsigned int ia_valid = attr->ia_valid; 663 664 BUG_ON(!inode); 665 666 error = setattr_prepare(dentry, attr); 667 if (error) 668 return error; 669 670 if (ia_valid & ATTR_SIZE) { 671 error = -EINVAL; 672 if (attr->ia_size & ~huge_page_mask(h)) 673 return -EINVAL; 674 error = hugetlb_vmtruncate(inode, attr->ia_size); 675 if (error) 676 return error; 677 } 678 679 setattr_copy(inode, attr); 680 mark_inode_dirty(inode); 681 return 0; 682 } 683 684 static struct inode *hugetlbfs_get_root(struct super_block *sb, 685 struct hugetlbfs_config *config) 686 { 687 struct inode *inode; 688 689 inode = new_inode(sb); 690 if (inode) { 691 inode->i_ino = get_next_ino(); 692 inode->i_mode = S_IFDIR | config->mode; 693 inode->i_uid = config->uid; 694 inode->i_gid = config->gid; 695 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 696 inode->i_op = &hugetlbfs_dir_inode_operations; 697 inode->i_fop = &simple_dir_operations; 698 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 699 inc_nlink(inode); 700 lockdep_annotate_inode_mutex_key(inode); 701 } 702 return inode; 703 } 704 705 /* 706 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 707 * be taken from reclaim -- unlike regular filesystems. This needs an 708 * annotation because huge_pmd_share() does an allocation under hugetlb's 709 * i_mmap_rwsem. 710 */ 711 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 712 713 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 714 struct inode *dir, 715 umode_t mode, dev_t dev) 716 { 717 struct inode *inode; 718 struct resv_map *resv_map; 719 720 resv_map = resv_map_alloc(); 721 if (!resv_map) 722 return NULL; 723 724 inode = new_inode(sb); 725 if (inode) { 726 inode->i_ino = get_next_ino(); 727 inode_init_owner(inode, dir, mode); 728 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 729 &hugetlbfs_i_mmap_rwsem_key); 730 inode->i_mapping->a_ops = &hugetlbfs_aops; 731 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 732 inode->i_mapping->private_data = resv_map; 733 switch (mode & S_IFMT) { 734 default: 735 init_special_inode(inode, mode, dev); 736 break; 737 case S_IFREG: 738 inode->i_op = &hugetlbfs_inode_operations; 739 inode->i_fop = &hugetlbfs_file_operations; 740 break; 741 case S_IFDIR: 742 inode->i_op = &hugetlbfs_dir_inode_operations; 743 inode->i_fop = &simple_dir_operations; 744 745 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 746 inc_nlink(inode); 747 break; 748 case S_IFLNK: 749 inode->i_op = &page_symlink_inode_operations; 750 inode_nohighmem(inode); 751 break; 752 } 753 lockdep_annotate_inode_mutex_key(inode); 754 } else 755 kref_put(&resv_map->refs, resv_map_release); 756 757 return inode; 758 } 759 760 /* 761 * File creation. Allocate an inode, and we're done.. 762 */ 763 static int hugetlbfs_mknod(struct inode *dir, 764 struct dentry *dentry, umode_t mode, dev_t dev) 765 { 766 struct inode *inode; 767 int error = -ENOSPC; 768 769 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 770 if (inode) { 771 dir->i_ctime = dir->i_mtime = current_time(dir); 772 d_instantiate(dentry, inode); 773 dget(dentry); /* Extra count - pin the dentry in core */ 774 error = 0; 775 } 776 return error; 777 } 778 779 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 780 { 781 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 782 if (!retval) 783 inc_nlink(dir); 784 return retval; 785 } 786 787 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 788 { 789 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 790 } 791 792 static int hugetlbfs_symlink(struct inode *dir, 793 struct dentry *dentry, const char *symname) 794 { 795 struct inode *inode; 796 int error = -ENOSPC; 797 798 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 799 if (inode) { 800 int l = strlen(symname)+1; 801 error = page_symlink(inode, symname, l); 802 if (!error) { 803 d_instantiate(dentry, inode); 804 dget(dentry); 805 } else 806 iput(inode); 807 } 808 dir->i_ctime = dir->i_mtime = current_time(dir); 809 810 return error; 811 } 812 813 /* 814 * mark the head page dirty 815 */ 816 static int hugetlbfs_set_page_dirty(struct page *page) 817 { 818 struct page *head = compound_head(page); 819 820 SetPageDirty(head); 821 return 0; 822 } 823 824 static int hugetlbfs_migrate_page(struct address_space *mapping, 825 struct page *newpage, struct page *page, 826 enum migrate_mode mode) 827 { 828 int rc; 829 830 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 831 if (rc != MIGRATEPAGE_SUCCESS) 832 return rc; 833 if (mode != MIGRATE_SYNC_NO_COPY) 834 migrate_page_copy(newpage, page); 835 else 836 migrate_page_states(newpage, page); 837 838 return MIGRATEPAGE_SUCCESS; 839 } 840 841 static int hugetlbfs_error_remove_page(struct address_space *mapping, 842 struct page *page) 843 { 844 struct inode *inode = mapping->host; 845 pgoff_t index = page->index; 846 847 remove_huge_page(page); 848 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 849 hugetlb_fix_reserve_counts(inode); 850 851 return 0; 852 } 853 854 /* 855 * Display the mount options in /proc/mounts. 856 */ 857 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 858 { 859 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 860 struct hugepage_subpool *spool = sbinfo->spool; 861 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 862 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 863 char mod; 864 865 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 866 seq_printf(m, ",uid=%u", 867 from_kuid_munged(&init_user_ns, sbinfo->uid)); 868 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 869 seq_printf(m, ",gid=%u", 870 from_kgid_munged(&init_user_ns, sbinfo->gid)); 871 if (sbinfo->mode != 0755) 872 seq_printf(m, ",mode=%o", sbinfo->mode); 873 if (sbinfo->max_inodes != -1) 874 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 875 876 hpage_size /= 1024; 877 mod = 'K'; 878 if (hpage_size >= 1024) { 879 hpage_size /= 1024; 880 mod = 'M'; 881 } 882 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 883 if (spool) { 884 if (spool->max_hpages != -1) 885 seq_printf(m, ",size=%llu", 886 (unsigned long long)spool->max_hpages << hpage_shift); 887 if (spool->min_hpages != -1) 888 seq_printf(m, ",min_size=%llu", 889 (unsigned long long)spool->min_hpages << hpage_shift); 890 } 891 return 0; 892 } 893 894 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 895 { 896 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 897 struct hstate *h = hstate_inode(d_inode(dentry)); 898 899 buf->f_type = HUGETLBFS_MAGIC; 900 buf->f_bsize = huge_page_size(h); 901 if (sbinfo) { 902 spin_lock(&sbinfo->stat_lock); 903 /* If no limits set, just report 0 for max/free/used 904 * blocks, like simple_statfs() */ 905 if (sbinfo->spool) { 906 long free_pages; 907 908 spin_lock(&sbinfo->spool->lock); 909 buf->f_blocks = sbinfo->spool->max_hpages; 910 free_pages = sbinfo->spool->max_hpages 911 - sbinfo->spool->used_hpages; 912 buf->f_bavail = buf->f_bfree = free_pages; 913 spin_unlock(&sbinfo->spool->lock); 914 buf->f_files = sbinfo->max_inodes; 915 buf->f_ffree = sbinfo->free_inodes; 916 } 917 spin_unlock(&sbinfo->stat_lock); 918 } 919 buf->f_namelen = NAME_MAX; 920 return 0; 921 } 922 923 static void hugetlbfs_put_super(struct super_block *sb) 924 { 925 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 926 927 if (sbi) { 928 sb->s_fs_info = NULL; 929 930 if (sbi->spool) 931 hugepage_put_subpool(sbi->spool); 932 933 kfree(sbi); 934 } 935 } 936 937 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 938 { 939 if (sbinfo->free_inodes >= 0) { 940 spin_lock(&sbinfo->stat_lock); 941 if (unlikely(!sbinfo->free_inodes)) { 942 spin_unlock(&sbinfo->stat_lock); 943 return 0; 944 } 945 sbinfo->free_inodes--; 946 spin_unlock(&sbinfo->stat_lock); 947 } 948 949 return 1; 950 } 951 952 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 953 { 954 if (sbinfo->free_inodes >= 0) { 955 spin_lock(&sbinfo->stat_lock); 956 sbinfo->free_inodes++; 957 spin_unlock(&sbinfo->stat_lock); 958 } 959 } 960 961 962 static struct kmem_cache *hugetlbfs_inode_cachep; 963 964 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 965 { 966 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 967 struct hugetlbfs_inode_info *p; 968 969 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 970 return NULL; 971 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 972 if (unlikely(!p)) { 973 hugetlbfs_inc_free_inodes(sbinfo); 974 return NULL; 975 } 976 977 /* 978 * Any time after allocation, hugetlbfs_destroy_inode can be called 979 * for the inode. mpol_free_shared_policy is unconditionally called 980 * as part of hugetlbfs_destroy_inode. So, initialize policy here 981 * in case of a quick call to destroy. 982 * 983 * Note that the policy is initialized even if we are creating a 984 * private inode. This simplifies hugetlbfs_destroy_inode. 985 */ 986 mpol_shared_policy_init(&p->policy, NULL); 987 988 return &p->vfs_inode; 989 } 990 991 static void hugetlbfs_i_callback(struct rcu_head *head) 992 { 993 struct inode *inode = container_of(head, struct inode, i_rcu); 994 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 995 } 996 997 static void hugetlbfs_destroy_inode(struct inode *inode) 998 { 999 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1000 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1001 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1002 } 1003 1004 static const struct address_space_operations hugetlbfs_aops = { 1005 .write_begin = hugetlbfs_write_begin, 1006 .write_end = hugetlbfs_write_end, 1007 .set_page_dirty = hugetlbfs_set_page_dirty, 1008 .migratepage = hugetlbfs_migrate_page, 1009 .error_remove_page = hugetlbfs_error_remove_page, 1010 }; 1011 1012 1013 static void init_once(void *foo) 1014 { 1015 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1016 1017 inode_init_once(&ei->vfs_inode); 1018 } 1019 1020 const struct file_operations hugetlbfs_file_operations = { 1021 .read_iter = hugetlbfs_read_iter, 1022 .mmap = hugetlbfs_file_mmap, 1023 .fsync = noop_fsync, 1024 .get_unmapped_area = hugetlb_get_unmapped_area, 1025 .llseek = default_llseek, 1026 .fallocate = hugetlbfs_fallocate, 1027 }; 1028 1029 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1030 .create = hugetlbfs_create, 1031 .lookup = simple_lookup, 1032 .link = simple_link, 1033 .unlink = simple_unlink, 1034 .symlink = hugetlbfs_symlink, 1035 .mkdir = hugetlbfs_mkdir, 1036 .rmdir = simple_rmdir, 1037 .mknod = hugetlbfs_mknod, 1038 .rename = simple_rename, 1039 .setattr = hugetlbfs_setattr, 1040 }; 1041 1042 static const struct inode_operations hugetlbfs_inode_operations = { 1043 .setattr = hugetlbfs_setattr, 1044 }; 1045 1046 static const struct super_operations hugetlbfs_ops = { 1047 .alloc_inode = hugetlbfs_alloc_inode, 1048 .destroy_inode = hugetlbfs_destroy_inode, 1049 .evict_inode = hugetlbfs_evict_inode, 1050 .statfs = hugetlbfs_statfs, 1051 .put_super = hugetlbfs_put_super, 1052 .show_options = hugetlbfs_show_options, 1053 }; 1054 1055 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1056 1057 /* 1058 * Convert size option passed from command line to number of huge pages 1059 * in the pool specified by hstate. Size option could be in bytes 1060 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1061 */ 1062 static long 1063 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1064 enum hugetlbfs_size_type val_type) 1065 { 1066 if (val_type == NO_SIZE) 1067 return -1; 1068 1069 if (val_type == SIZE_PERCENT) { 1070 size_opt <<= huge_page_shift(h); 1071 size_opt *= h->max_huge_pages; 1072 do_div(size_opt, 100); 1073 } 1074 1075 size_opt >>= huge_page_shift(h); 1076 return size_opt; 1077 } 1078 1079 static int 1080 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1081 { 1082 char *p, *rest; 1083 substring_t args[MAX_OPT_ARGS]; 1084 int option; 1085 unsigned long long max_size_opt = 0, min_size_opt = 0; 1086 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1087 1088 if (!options) 1089 return 0; 1090 1091 while ((p = strsep(&options, ",")) != NULL) { 1092 int token; 1093 if (!*p) 1094 continue; 1095 1096 token = match_token(p, tokens, args); 1097 switch (token) { 1098 case Opt_uid: 1099 if (match_int(&args[0], &option)) 1100 goto bad_val; 1101 pconfig->uid = make_kuid(current_user_ns(), option); 1102 if (!uid_valid(pconfig->uid)) 1103 goto bad_val; 1104 break; 1105 1106 case Opt_gid: 1107 if (match_int(&args[0], &option)) 1108 goto bad_val; 1109 pconfig->gid = make_kgid(current_user_ns(), option); 1110 if (!gid_valid(pconfig->gid)) 1111 goto bad_val; 1112 break; 1113 1114 case Opt_mode: 1115 if (match_octal(&args[0], &option)) 1116 goto bad_val; 1117 pconfig->mode = option & 01777U; 1118 break; 1119 1120 case Opt_size: { 1121 /* memparse() will accept a K/M/G without a digit */ 1122 if (!isdigit(*args[0].from)) 1123 goto bad_val; 1124 max_size_opt = memparse(args[0].from, &rest); 1125 max_val_type = SIZE_STD; 1126 if (*rest == '%') 1127 max_val_type = SIZE_PERCENT; 1128 break; 1129 } 1130 1131 case Opt_nr_inodes: 1132 /* memparse() will accept a K/M/G without a digit */ 1133 if (!isdigit(*args[0].from)) 1134 goto bad_val; 1135 pconfig->nr_inodes = memparse(args[0].from, &rest); 1136 break; 1137 1138 case Opt_pagesize: { 1139 unsigned long ps; 1140 ps = memparse(args[0].from, &rest); 1141 pconfig->hstate = size_to_hstate(ps); 1142 if (!pconfig->hstate) { 1143 pr_err("Unsupported page size %lu MB\n", 1144 ps >> 20); 1145 return -EINVAL; 1146 } 1147 break; 1148 } 1149 1150 case Opt_min_size: { 1151 /* memparse() will accept a K/M/G without a digit */ 1152 if (!isdigit(*args[0].from)) 1153 goto bad_val; 1154 min_size_opt = memparse(args[0].from, &rest); 1155 min_val_type = SIZE_STD; 1156 if (*rest == '%') 1157 min_val_type = SIZE_PERCENT; 1158 break; 1159 } 1160 1161 default: 1162 pr_err("Bad mount option: \"%s\"\n", p); 1163 return -EINVAL; 1164 break; 1165 } 1166 } 1167 1168 /* 1169 * Use huge page pool size (in hstate) to convert the size 1170 * options to number of huge pages. If NO_SIZE, -1 is returned. 1171 */ 1172 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1173 max_size_opt, max_val_type); 1174 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1175 min_size_opt, min_val_type); 1176 1177 /* 1178 * If max_size was specified, then min_size must be smaller 1179 */ 1180 if (max_val_type > NO_SIZE && 1181 pconfig->min_hpages > pconfig->max_hpages) { 1182 pr_err("minimum size can not be greater than maximum size\n"); 1183 return -EINVAL; 1184 } 1185 1186 return 0; 1187 1188 bad_val: 1189 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1190 return -EINVAL; 1191 } 1192 1193 static int 1194 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1195 { 1196 int ret; 1197 struct hugetlbfs_config config; 1198 struct hugetlbfs_sb_info *sbinfo; 1199 1200 config.max_hpages = -1; /* No limit on size by default */ 1201 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1202 config.uid = current_fsuid(); 1203 config.gid = current_fsgid(); 1204 config.mode = 0755; 1205 config.hstate = &default_hstate; 1206 config.min_hpages = -1; /* No default minimum size */ 1207 ret = hugetlbfs_parse_options(data, &config); 1208 if (ret) 1209 return ret; 1210 1211 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1212 if (!sbinfo) 1213 return -ENOMEM; 1214 sb->s_fs_info = sbinfo; 1215 sbinfo->hstate = config.hstate; 1216 spin_lock_init(&sbinfo->stat_lock); 1217 sbinfo->max_inodes = config.nr_inodes; 1218 sbinfo->free_inodes = config.nr_inodes; 1219 sbinfo->spool = NULL; 1220 sbinfo->uid = config.uid; 1221 sbinfo->gid = config.gid; 1222 sbinfo->mode = config.mode; 1223 1224 /* 1225 * Allocate and initialize subpool if maximum or minimum size is 1226 * specified. Any needed reservations (for minimim size) are taken 1227 * taken when the subpool is created. 1228 */ 1229 if (config.max_hpages != -1 || config.min_hpages != -1) { 1230 sbinfo->spool = hugepage_new_subpool(config.hstate, 1231 config.max_hpages, 1232 config.min_hpages); 1233 if (!sbinfo->spool) 1234 goto out_free; 1235 } 1236 sb->s_maxbytes = MAX_LFS_FILESIZE; 1237 sb->s_blocksize = huge_page_size(config.hstate); 1238 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1239 sb->s_magic = HUGETLBFS_MAGIC; 1240 sb->s_op = &hugetlbfs_ops; 1241 sb->s_time_gran = 1; 1242 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1243 if (!sb->s_root) 1244 goto out_free; 1245 return 0; 1246 out_free: 1247 kfree(sbinfo->spool); 1248 kfree(sbinfo); 1249 return -ENOMEM; 1250 } 1251 1252 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1253 int flags, const char *dev_name, void *data) 1254 { 1255 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1256 } 1257 1258 static struct file_system_type hugetlbfs_fs_type = { 1259 .name = "hugetlbfs", 1260 .mount = hugetlbfs_mount, 1261 .kill_sb = kill_litter_super, 1262 }; 1263 1264 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1265 1266 static int can_do_hugetlb_shm(void) 1267 { 1268 kgid_t shm_group; 1269 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1270 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1271 } 1272 1273 static int get_hstate_idx(int page_size_log) 1274 { 1275 struct hstate *h = hstate_sizelog(page_size_log); 1276 1277 if (!h) 1278 return -1; 1279 return h - hstates; 1280 } 1281 1282 static const struct dentry_operations anon_ops = { 1283 .d_dname = simple_dname 1284 }; 1285 1286 /* 1287 * Note that size should be aligned to proper hugepage size in caller side, 1288 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1289 */ 1290 struct file *hugetlb_file_setup(const char *name, size_t size, 1291 vm_flags_t acctflag, struct user_struct **user, 1292 int creat_flags, int page_size_log) 1293 { 1294 struct file *file = ERR_PTR(-ENOMEM); 1295 struct inode *inode; 1296 struct path path; 1297 struct super_block *sb; 1298 struct qstr quick_string; 1299 int hstate_idx; 1300 1301 hstate_idx = get_hstate_idx(page_size_log); 1302 if (hstate_idx < 0) 1303 return ERR_PTR(-ENODEV); 1304 1305 *user = NULL; 1306 if (!hugetlbfs_vfsmount[hstate_idx]) 1307 return ERR_PTR(-ENOENT); 1308 1309 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1310 *user = current_user(); 1311 if (user_shm_lock(size, *user)) { 1312 task_lock(current); 1313 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1314 current->comm, current->pid); 1315 task_unlock(current); 1316 } else { 1317 *user = NULL; 1318 return ERR_PTR(-EPERM); 1319 } 1320 } 1321 1322 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb; 1323 quick_string.name = name; 1324 quick_string.len = strlen(quick_string.name); 1325 quick_string.hash = 0; 1326 path.dentry = d_alloc_pseudo(sb, &quick_string); 1327 if (!path.dentry) 1328 goto out_shm_unlock; 1329 1330 d_set_d_op(path.dentry, &anon_ops); 1331 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]); 1332 file = ERR_PTR(-ENOSPC); 1333 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0); 1334 if (!inode) 1335 goto out_dentry; 1336 if (creat_flags == HUGETLB_SHMFS_INODE) 1337 inode->i_flags |= S_PRIVATE; 1338 1339 file = ERR_PTR(-ENOMEM); 1340 if (hugetlb_reserve_pages(inode, 0, 1341 size >> huge_page_shift(hstate_inode(inode)), NULL, 1342 acctflag)) 1343 goto out_inode; 1344 1345 d_instantiate(path.dentry, inode); 1346 inode->i_size = size; 1347 clear_nlink(inode); 1348 1349 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 1350 &hugetlbfs_file_operations); 1351 if (IS_ERR(file)) 1352 goto out_dentry; /* inode is already attached */ 1353 1354 return file; 1355 1356 out_inode: 1357 iput(inode); 1358 out_dentry: 1359 path_put(&path); 1360 out_shm_unlock: 1361 if (*user) { 1362 user_shm_unlock(size, *user); 1363 *user = NULL; 1364 } 1365 return file; 1366 } 1367 1368 static int __init init_hugetlbfs_fs(void) 1369 { 1370 struct hstate *h; 1371 int error; 1372 int i; 1373 1374 if (!hugepages_supported()) { 1375 pr_info("disabling because there are no supported hugepage sizes\n"); 1376 return -ENOTSUPP; 1377 } 1378 1379 error = -ENOMEM; 1380 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1381 sizeof(struct hugetlbfs_inode_info), 1382 0, SLAB_ACCOUNT, init_once); 1383 if (hugetlbfs_inode_cachep == NULL) 1384 goto out2; 1385 1386 error = register_filesystem(&hugetlbfs_fs_type); 1387 if (error) 1388 goto out; 1389 1390 i = 0; 1391 for_each_hstate(h) { 1392 char buf[50]; 1393 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1394 1395 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1396 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1397 buf); 1398 1399 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1400 pr_err("Cannot mount internal hugetlbfs for " 1401 "page size %uK", ps_kb); 1402 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1403 hugetlbfs_vfsmount[i] = NULL; 1404 } 1405 i++; 1406 } 1407 /* Non default hstates are optional */ 1408 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1409 return 0; 1410 1411 out: 1412 kmem_cache_destroy(hugetlbfs_inode_cachep); 1413 out2: 1414 return error; 1415 } 1416 fs_initcall(init_hugetlbfs_fs) 1417