1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32oct("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 135 loff_t len, vma_len; 136 int ret; 137 struct hstate *h = hstate_file(file); 138 139 /* 140 * vma address alignment (but not the pgoff alignment) has 141 * already been checked by prepare_hugepage_range. If you add 142 * any error returns here, do so after setting VM_HUGETLB, so 143 * is_vm_hugetlb_page tests below unmap_region go the right 144 * way when do_mmap unwinds (may be important on powerpc 145 * and ia64). 146 */ 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 148 vma->vm_ops = &hugetlb_vm_ops; 149 150 ret = seal_check_future_write(info->seals, vma); 151 if (ret) 152 return ret; 153 154 /* 155 * page based offset in vm_pgoff could be sufficiently large to 156 * overflow a loff_t when converted to byte offset. This can 157 * only happen on architectures where sizeof(loff_t) == 158 * sizeof(unsigned long). So, only check in those instances. 159 */ 160 if (sizeof(unsigned long) == sizeof(loff_t)) { 161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 162 return -EINVAL; 163 } 164 165 /* must be huge page aligned */ 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 167 return -EINVAL; 168 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 171 /* check for overflow */ 172 if (len < vma_len) 173 return -EINVAL; 174 175 inode_lock(inode); 176 file_accessed(file); 177 178 ret = -ENOMEM; 179 if (!hugetlb_reserve_pages(inode, 180 vma->vm_pgoff >> huge_page_order(h), 181 len >> huge_page_shift(h), vma, 182 vma->vm_flags)) 183 goto out; 184 185 ret = 0; 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 187 i_size_write(inode, len); 188 out: 189 inode_unlock(inode); 190 191 return ret; 192 } 193 194 /* 195 * Called under mmap_write_lock(mm). 196 */ 197 198 static unsigned long 199 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 200 unsigned long len, unsigned long pgoff, unsigned long flags) 201 { 202 struct hstate *h = hstate_file(file); 203 struct vm_unmapped_area_info info; 204 205 info.flags = 0; 206 info.length = len; 207 info.low_limit = current->mm->mmap_base; 208 info.high_limit = arch_get_mmap_end(addr, len, flags); 209 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 210 info.align_offset = 0; 211 return vm_unmapped_area(&info); 212 } 213 214 static unsigned long 215 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 216 unsigned long len, unsigned long pgoff, unsigned long flags) 217 { 218 struct hstate *h = hstate_file(file); 219 struct vm_unmapped_area_info info; 220 221 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 222 info.length = len; 223 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 224 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 225 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 226 info.align_offset = 0; 227 addr = vm_unmapped_area(&info); 228 229 /* 230 * A failed mmap() very likely causes application failure, 231 * so fall back to the bottom-up function here. This scenario 232 * can happen with large stack limits and large mmap() 233 * allocations. 234 */ 235 if (unlikely(offset_in_page(addr))) { 236 VM_BUG_ON(addr != -ENOMEM); 237 info.flags = 0; 238 info.low_limit = current->mm->mmap_base; 239 info.high_limit = arch_get_mmap_end(addr, len, flags); 240 addr = vm_unmapped_area(&info); 241 } 242 243 return addr; 244 } 245 246 unsigned long 247 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 248 unsigned long len, unsigned long pgoff, 249 unsigned long flags) 250 { 251 struct mm_struct *mm = current->mm; 252 struct vm_area_struct *vma; 253 struct hstate *h = hstate_file(file); 254 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 255 256 if (len & ~huge_page_mask(h)) 257 return -EINVAL; 258 if (len > TASK_SIZE) 259 return -ENOMEM; 260 261 if (flags & MAP_FIXED) { 262 if (prepare_hugepage_range(file, addr, len)) 263 return -EINVAL; 264 return addr; 265 } 266 267 if (addr) { 268 addr = ALIGN(addr, huge_page_size(h)); 269 vma = find_vma(mm, addr); 270 if (mmap_end - len >= addr && 271 (!vma || addr + len <= vm_start_gap(vma))) 272 return addr; 273 } 274 275 /* 276 * Use mm->get_unmapped_area value as a hint to use topdown routine. 277 * If architectures have special needs, they should define their own 278 * version of hugetlb_get_unmapped_area. 279 */ 280 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 281 return hugetlb_get_unmapped_area_topdown(file, addr, len, 282 pgoff, flags); 283 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 284 pgoff, flags); 285 } 286 287 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 288 static unsigned long 289 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 290 unsigned long len, unsigned long pgoff, 291 unsigned long flags) 292 { 293 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 294 } 295 #endif 296 297 static size_t 298 hugetlbfs_read_actor(struct page *page, unsigned long offset, 299 struct iov_iter *to, unsigned long size) 300 { 301 size_t copied = 0; 302 int i, chunksize; 303 304 /* Find which 4k chunk and offset with in that chunk */ 305 i = offset >> PAGE_SHIFT; 306 offset = offset & ~PAGE_MASK; 307 308 while (size) { 309 size_t n; 310 chunksize = PAGE_SIZE; 311 if (offset) 312 chunksize -= offset; 313 if (chunksize > size) 314 chunksize = size; 315 n = copy_page_to_iter(&page[i], offset, chunksize, to); 316 copied += n; 317 if (n != chunksize) 318 return copied; 319 offset = 0; 320 size -= chunksize; 321 i++; 322 } 323 return copied; 324 } 325 326 /* 327 * Support for read() - Find the page attached to f_mapping and copy out the 328 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 329 * since it has PAGE_SIZE assumptions. 330 */ 331 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 332 { 333 struct file *file = iocb->ki_filp; 334 struct hstate *h = hstate_file(file); 335 struct address_space *mapping = file->f_mapping; 336 struct inode *inode = mapping->host; 337 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 338 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 339 unsigned long end_index; 340 loff_t isize; 341 ssize_t retval = 0; 342 343 while (iov_iter_count(to)) { 344 struct page *page; 345 size_t nr, copied; 346 347 /* nr is the maximum number of bytes to copy from this page */ 348 nr = huge_page_size(h); 349 isize = i_size_read(inode); 350 if (!isize) 351 break; 352 end_index = (isize - 1) >> huge_page_shift(h); 353 if (index > end_index) 354 break; 355 if (index == end_index) { 356 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 357 if (nr <= offset) 358 break; 359 } 360 nr = nr - offset; 361 362 /* Find the page */ 363 page = find_lock_page(mapping, index); 364 if (unlikely(page == NULL)) { 365 /* 366 * We have a HOLE, zero out the user-buffer for the 367 * length of the hole or request. 368 */ 369 copied = iov_iter_zero(nr, to); 370 } else { 371 unlock_page(page); 372 373 /* 374 * We have the page, copy it to user space buffer. 375 */ 376 copied = hugetlbfs_read_actor(page, offset, to, nr); 377 put_page(page); 378 } 379 offset += copied; 380 retval += copied; 381 if (copied != nr && iov_iter_count(to)) { 382 if (!retval) 383 retval = -EFAULT; 384 break; 385 } 386 index += offset >> huge_page_shift(h); 387 offset &= ~huge_page_mask(h); 388 } 389 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 390 return retval; 391 } 392 393 static int hugetlbfs_write_begin(struct file *file, 394 struct address_space *mapping, 395 loff_t pos, unsigned len, 396 struct page **pagep, void **fsdata) 397 { 398 return -EINVAL; 399 } 400 401 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 402 loff_t pos, unsigned len, unsigned copied, 403 struct page *page, void *fsdata) 404 { 405 BUG(); 406 return -EINVAL; 407 } 408 409 static void remove_huge_page(struct page *page) 410 { 411 ClearPageDirty(page); 412 ClearPageUptodate(page); 413 delete_from_page_cache(page); 414 } 415 416 static void 417 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 418 zap_flags_t zap_flags) 419 { 420 struct vm_area_struct *vma; 421 422 /* 423 * end == 0 indicates that the entire range after start should be 424 * unmapped. Note, end is exclusive, whereas the interval tree takes 425 * an inclusive "last". 426 */ 427 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 428 unsigned long v_offset; 429 unsigned long v_end; 430 431 /* 432 * Can the expression below overflow on 32-bit arches? 433 * No, because the interval tree returns us only those vmas 434 * which overlap the truncated area starting at pgoff, 435 * and no vma on a 32-bit arch can span beyond the 4GB. 436 */ 437 if (vma->vm_pgoff < start) 438 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 439 else 440 v_offset = 0; 441 442 if (!end) 443 v_end = vma->vm_end; 444 else { 445 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 446 + vma->vm_start; 447 if (v_end > vma->vm_end) 448 v_end = vma->vm_end; 449 } 450 451 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 452 NULL, zap_flags); 453 } 454 } 455 456 /* 457 * remove_inode_hugepages handles two distinct cases: truncation and hole 458 * punch. There are subtle differences in operation for each case. 459 * 460 * truncation is indicated by end of range being LLONG_MAX 461 * In this case, we first scan the range and release found pages. 462 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 463 * maps and global counts. Page faults can not race with truncation 464 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 465 * page faults in the truncated range by checking i_size. i_size is 466 * modified while holding i_mmap_rwsem. 467 * hole punch is indicated if end is not LLONG_MAX 468 * In the hole punch case we scan the range and release found pages. 469 * Only when releasing a page is the associated region/reserve map 470 * deleted. The region/reserve map for ranges without associated 471 * pages are not modified. Page faults can race with hole punch. 472 * This is indicated if we find a mapped page. 473 * Note: If the passed end of range value is beyond the end of file, but 474 * not LLONG_MAX this routine still performs a hole punch operation. 475 */ 476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 477 loff_t lend) 478 { 479 struct hstate *h = hstate_inode(inode); 480 struct address_space *mapping = &inode->i_data; 481 const pgoff_t start = lstart >> huge_page_shift(h); 482 const pgoff_t end = lend >> huge_page_shift(h); 483 struct pagevec pvec; 484 pgoff_t next, index; 485 int i, freed = 0; 486 bool truncate_op = (lend == LLONG_MAX); 487 488 pagevec_init(&pvec); 489 next = start; 490 while (next < end) { 491 /* 492 * When no more pages are found, we are done. 493 */ 494 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 495 break; 496 497 for (i = 0; i < pagevec_count(&pvec); ++i) { 498 struct page *page = pvec.pages[i]; 499 u32 hash = 0; 500 501 index = page->index; 502 if (!truncate_op) { 503 /* 504 * Only need to hold the fault mutex in the 505 * hole punch case. This prevents races with 506 * page faults. Races are not possible in the 507 * case of truncation. 508 */ 509 hash = hugetlb_fault_mutex_hash(mapping, index); 510 mutex_lock(&hugetlb_fault_mutex_table[hash]); 511 } 512 513 /* 514 * If page is mapped, it was faulted in after being 515 * unmapped in caller. Unmap (again) now after taking 516 * the fault mutex. The mutex will prevent faults 517 * until we finish removing the page. 518 * 519 * This race can only happen in the hole punch case. 520 * Getting here in a truncate operation is a bug. 521 */ 522 if (unlikely(page_mapped(page))) { 523 BUG_ON(truncate_op); 524 525 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 526 i_mmap_lock_write(mapping); 527 mutex_lock(&hugetlb_fault_mutex_table[hash]); 528 hugetlb_vmdelete_list(&mapping->i_mmap, 529 index * pages_per_huge_page(h), 530 (index + 1) * pages_per_huge_page(h), 531 ZAP_FLAG_DROP_MARKER); 532 i_mmap_unlock_write(mapping); 533 } 534 535 lock_page(page); 536 /* 537 * We must free the huge page and remove from page 538 * cache (remove_huge_page) BEFORE removing the 539 * region/reserve map (hugetlb_unreserve_pages). In 540 * rare out of memory conditions, removal of the 541 * region/reserve map could fail. Correspondingly, 542 * the subpool and global reserve usage count can need 543 * to be adjusted. 544 */ 545 VM_BUG_ON(HPageRestoreReserve(page)); 546 remove_huge_page(page); 547 freed++; 548 if (!truncate_op) { 549 if (unlikely(hugetlb_unreserve_pages(inode, 550 index, index + 1, 1))) 551 hugetlb_fix_reserve_counts(inode); 552 } 553 554 unlock_page(page); 555 if (!truncate_op) 556 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 557 } 558 huge_pagevec_release(&pvec); 559 cond_resched(); 560 } 561 562 if (truncate_op) 563 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 564 } 565 566 static void hugetlbfs_evict_inode(struct inode *inode) 567 { 568 struct resv_map *resv_map; 569 570 remove_inode_hugepages(inode, 0, LLONG_MAX); 571 572 /* 573 * Get the resv_map from the address space embedded in the inode. 574 * This is the address space which points to any resv_map allocated 575 * at inode creation time. If this is a device special inode, 576 * i_mapping may not point to the original address space. 577 */ 578 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 579 /* Only regular and link inodes have associated reserve maps */ 580 if (resv_map) 581 resv_map_release(&resv_map->refs); 582 clear_inode(inode); 583 } 584 585 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 586 { 587 pgoff_t pgoff; 588 struct address_space *mapping = inode->i_mapping; 589 struct hstate *h = hstate_inode(inode); 590 591 BUG_ON(offset & ~huge_page_mask(h)); 592 pgoff = offset >> PAGE_SHIFT; 593 594 i_mmap_lock_write(mapping); 595 i_size_write(inode, offset); 596 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 597 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 598 ZAP_FLAG_DROP_MARKER); 599 i_mmap_unlock_write(mapping); 600 remove_inode_hugepages(inode, offset, LLONG_MAX); 601 } 602 603 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 604 { 605 struct hstate *h = hstate_inode(inode); 606 loff_t hpage_size = huge_page_size(h); 607 loff_t hole_start, hole_end; 608 609 /* 610 * For hole punch round up the beginning offset of the hole and 611 * round down the end. 612 */ 613 hole_start = round_up(offset, hpage_size); 614 hole_end = round_down(offset + len, hpage_size); 615 616 if (hole_end > hole_start) { 617 struct address_space *mapping = inode->i_mapping; 618 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 619 620 inode_lock(inode); 621 622 /* protected by i_rwsem */ 623 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 624 inode_unlock(inode); 625 return -EPERM; 626 } 627 628 i_mmap_lock_write(mapping); 629 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 630 hugetlb_vmdelete_list(&mapping->i_mmap, 631 hole_start >> PAGE_SHIFT, 632 hole_end >> PAGE_SHIFT, 0); 633 i_mmap_unlock_write(mapping); 634 remove_inode_hugepages(inode, hole_start, hole_end); 635 inode_unlock(inode); 636 } 637 638 return 0; 639 } 640 641 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 642 loff_t len) 643 { 644 struct inode *inode = file_inode(file); 645 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 646 struct address_space *mapping = inode->i_mapping; 647 struct hstate *h = hstate_inode(inode); 648 struct vm_area_struct pseudo_vma; 649 struct mm_struct *mm = current->mm; 650 loff_t hpage_size = huge_page_size(h); 651 unsigned long hpage_shift = huge_page_shift(h); 652 pgoff_t start, index, end; 653 int error; 654 u32 hash; 655 656 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 657 return -EOPNOTSUPP; 658 659 if (mode & FALLOC_FL_PUNCH_HOLE) 660 return hugetlbfs_punch_hole(inode, offset, len); 661 662 /* 663 * Default preallocate case. 664 * For this range, start is rounded down and end is rounded up 665 * as well as being converted to page offsets. 666 */ 667 start = offset >> hpage_shift; 668 end = (offset + len + hpage_size - 1) >> hpage_shift; 669 670 inode_lock(inode); 671 672 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 673 error = inode_newsize_ok(inode, offset + len); 674 if (error) 675 goto out; 676 677 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 678 error = -EPERM; 679 goto out; 680 } 681 682 /* 683 * Initialize a pseudo vma as this is required by the huge page 684 * allocation routines. If NUMA is configured, use page index 685 * as input to create an allocation policy. 686 */ 687 vma_init(&pseudo_vma, mm); 688 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 689 pseudo_vma.vm_file = file; 690 691 for (index = start; index < end; index++) { 692 /* 693 * This is supposed to be the vaddr where the page is being 694 * faulted in, but we have no vaddr here. 695 */ 696 struct page *page; 697 unsigned long addr; 698 699 cond_resched(); 700 701 /* 702 * fallocate(2) manpage permits EINTR; we may have been 703 * interrupted because we are using up too much memory. 704 */ 705 if (signal_pending(current)) { 706 error = -EINTR; 707 break; 708 } 709 710 /* Set numa allocation policy based on index */ 711 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 712 713 /* addr is the offset within the file (zero based) */ 714 addr = index * hpage_size; 715 716 /* 717 * fault mutex taken here, protects against fault path 718 * and hole punch. inode_lock previously taken protects 719 * against truncation. 720 */ 721 hash = hugetlb_fault_mutex_hash(mapping, index); 722 mutex_lock(&hugetlb_fault_mutex_table[hash]); 723 724 /* See if already present in mapping to avoid alloc/free */ 725 page = find_get_page(mapping, index); 726 if (page) { 727 put_page(page); 728 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 729 hugetlb_drop_vma_policy(&pseudo_vma); 730 continue; 731 } 732 733 /* 734 * Allocate page without setting the avoid_reserve argument. 735 * There certainly are no reserves associated with the 736 * pseudo_vma. However, there could be shared mappings with 737 * reserves for the file at the inode level. If we fallocate 738 * pages in these areas, we need to consume the reserves 739 * to keep reservation accounting consistent. 740 */ 741 page = alloc_huge_page(&pseudo_vma, addr, 0); 742 hugetlb_drop_vma_policy(&pseudo_vma); 743 if (IS_ERR(page)) { 744 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 745 error = PTR_ERR(page); 746 goto out; 747 } 748 clear_huge_page(page, addr, pages_per_huge_page(h)); 749 __SetPageUptodate(page); 750 error = huge_add_to_page_cache(page, mapping, index); 751 if (unlikely(error)) { 752 restore_reserve_on_error(h, &pseudo_vma, addr, page); 753 put_page(page); 754 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 755 goto out; 756 } 757 758 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 759 760 SetHPageMigratable(page); 761 /* 762 * unlock_page because locked by add_to_page_cache() 763 * put_page() due to reference from alloc_huge_page() 764 */ 765 unlock_page(page); 766 put_page(page); 767 } 768 769 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 770 i_size_write(inode, offset + len); 771 inode->i_ctime = current_time(inode); 772 out: 773 inode_unlock(inode); 774 return error; 775 } 776 777 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 778 struct dentry *dentry, struct iattr *attr) 779 { 780 struct inode *inode = d_inode(dentry); 781 struct hstate *h = hstate_inode(inode); 782 int error; 783 unsigned int ia_valid = attr->ia_valid; 784 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 785 786 error = setattr_prepare(&init_user_ns, dentry, attr); 787 if (error) 788 return error; 789 790 if (ia_valid & ATTR_SIZE) { 791 loff_t oldsize = inode->i_size; 792 loff_t newsize = attr->ia_size; 793 794 if (newsize & ~huge_page_mask(h)) 795 return -EINVAL; 796 /* protected by i_rwsem */ 797 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 798 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 799 return -EPERM; 800 hugetlb_vmtruncate(inode, newsize); 801 } 802 803 setattr_copy(&init_user_ns, inode, attr); 804 mark_inode_dirty(inode); 805 return 0; 806 } 807 808 static struct inode *hugetlbfs_get_root(struct super_block *sb, 809 struct hugetlbfs_fs_context *ctx) 810 { 811 struct inode *inode; 812 813 inode = new_inode(sb); 814 if (inode) { 815 inode->i_ino = get_next_ino(); 816 inode->i_mode = S_IFDIR | ctx->mode; 817 inode->i_uid = ctx->uid; 818 inode->i_gid = ctx->gid; 819 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 820 inode->i_op = &hugetlbfs_dir_inode_operations; 821 inode->i_fop = &simple_dir_operations; 822 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 823 inc_nlink(inode); 824 lockdep_annotate_inode_mutex_key(inode); 825 } 826 return inode; 827 } 828 829 /* 830 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 831 * be taken from reclaim -- unlike regular filesystems. This needs an 832 * annotation because huge_pmd_share() does an allocation under hugetlb's 833 * i_mmap_rwsem. 834 */ 835 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 836 837 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 838 struct inode *dir, 839 umode_t mode, dev_t dev) 840 { 841 struct inode *inode; 842 struct resv_map *resv_map = NULL; 843 844 /* 845 * Reserve maps are only needed for inodes that can have associated 846 * page allocations. 847 */ 848 if (S_ISREG(mode) || S_ISLNK(mode)) { 849 resv_map = resv_map_alloc(); 850 if (!resv_map) 851 return NULL; 852 } 853 854 inode = new_inode(sb); 855 if (inode) { 856 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 857 858 inode->i_ino = get_next_ino(); 859 inode_init_owner(&init_user_ns, inode, dir, mode); 860 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 861 &hugetlbfs_i_mmap_rwsem_key); 862 inode->i_mapping->a_ops = &hugetlbfs_aops; 863 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 864 inode->i_mapping->private_data = resv_map; 865 info->seals = F_SEAL_SEAL; 866 switch (mode & S_IFMT) { 867 default: 868 init_special_inode(inode, mode, dev); 869 break; 870 case S_IFREG: 871 inode->i_op = &hugetlbfs_inode_operations; 872 inode->i_fop = &hugetlbfs_file_operations; 873 break; 874 case S_IFDIR: 875 inode->i_op = &hugetlbfs_dir_inode_operations; 876 inode->i_fop = &simple_dir_operations; 877 878 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 879 inc_nlink(inode); 880 break; 881 case S_IFLNK: 882 inode->i_op = &page_symlink_inode_operations; 883 inode_nohighmem(inode); 884 break; 885 } 886 lockdep_annotate_inode_mutex_key(inode); 887 } else { 888 if (resv_map) 889 kref_put(&resv_map->refs, resv_map_release); 890 } 891 892 return inode; 893 } 894 895 /* 896 * File creation. Allocate an inode, and we're done.. 897 */ 898 static int do_hugetlbfs_mknod(struct inode *dir, 899 struct dentry *dentry, 900 umode_t mode, 901 dev_t dev, 902 bool tmpfile) 903 { 904 struct inode *inode; 905 int error = -ENOSPC; 906 907 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 908 if (inode) { 909 dir->i_ctime = dir->i_mtime = current_time(dir); 910 if (tmpfile) { 911 d_tmpfile(dentry, inode); 912 } else { 913 d_instantiate(dentry, inode); 914 dget(dentry);/* Extra count - pin the dentry in core */ 915 } 916 error = 0; 917 } 918 return error; 919 } 920 921 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 922 struct dentry *dentry, umode_t mode, dev_t dev) 923 { 924 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 925 } 926 927 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 928 struct dentry *dentry, umode_t mode) 929 { 930 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 931 mode | S_IFDIR, 0); 932 if (!retval) 933 inc_nlink(dir); 934 return retval; 935 } 936 937 static int hugetlbfs_create(struct user_namespace *mnt_userns, 938 struct inode *dir, struct dentry *dentry, 939 umode_t mode, bool excl) 940 { 941 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 942 } 943 944 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 945 struct inode *dir, struct dentry *dentry, 946 umode_t mode) 947 { 948 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 949 } 950 951 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 952 struct inode *dir, struct dentry *dentry, 953 const char *symname) 954 { 955 struct inode *inode; 956 int error = -ENOSPC; 957 958 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 959 if (inode) { 960 int l = strlen(symname)+1; 961 error = page_symlink(inode, symname, l); 962 if (!error) { 963 d_instantiate(dentry, inode); 964 dget(dentry); 965 } else 966 iput(inode); 967 } 968 dir->i_ctime = dir->i_mtime = current_time(dir); 969 970 return error; 971 } 972 973 static int hugetlbfs_migrate_page(struct address_space *mapping, 974 struct page *newpage, struct page *page, 975 enum migrate_mode mode) 976 { 977 int rc; 978 979 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 980 if (rc != MIGRATEPAGE_SUCCESS) 981 return rc; 982 983 if (hugetlb_page_subpool(page)) { 984 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page)); 985 hugetlb_set_page_subpool(page, NULL); 986 } 987 988 if (mode != MIGRATE_SYNC_NO_COPY) 989 migrate_page_copy(newpage, page); 990 else 991 migrate_page_states(newpage, page); 992 993 return MIGRATEPAGE_SUCCESS; 994 } 995 996 static int hugetlbfs_error_remove_page(struct address_space *mapping, 997 struct page *page) 998 { 999 struct inode *inode = mapping->host; 1000 pgoff_t index = page->index; 1001 1002 remove_huge_page(page); 1003 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 1004 hugetlb_fix_reserve_counts(inode); 1005 1006 return 0; 1007 } 1008 1009 /* 1010 * Display the mount options in /proc/mounts. 1011 */ 1012 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1013 { 1014 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1015 struct hugepage_subpool *spool = sbinfo->spool; 1016 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1017 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1018 char mod; 1019 1020 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1021 seq_printf(m, ",uid=%u", 1022 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1023 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1024 seq_printf(m, ",gid=%u", 1025 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1026 if (sbinfo->mode != 0755) 1027 seq_printf(m, ",mode=%o", sbinfo->mode); 1028 if (sbinfo->max_inodes != -1) 1029 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1030 1031 hpage_size /= 1024; 1032 mod = 'K'; 1033 if (hpage_size >= 1024) { 1034 hpage_size /= 1024; 1035 mod = 'M'; 1036 } 1037 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1038 if (spool) { 1039 if (spool->max_hpages != -1) 1040 seq_printf(m, ",size=%llu", 1041 (unsigned long long)spool->max_hpages << hpage_shift); 1042 if (spool->min_hpages != -1) 1043 seq_printf(m, ",min_size=%llu", 1044 (unsigned long long)spool->min_hpages << hpage_shift); 1045 } 1046 return 0; 1047 } 1048 1049 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1050 { 1051 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1052 struct hstate *h = hstate_inode(d_inode(dentry)); 1053 1054 buf->f_type = HUGETLBFS_MAGIC; 1055 buf->f_bsize = huge_page_size(h); 1056 if (sbinfo) { 1057 spin_lock(&sbinfo->stat_lock); 1058 /* If no limits set, just report 0 for max/free/used 1059 * blocks, like simple_statfs() */ 1060 if (sbinfo->spool) { 1061 long free_pages; 1062 1063 spin_lock_irq(&sbinfo->spool->lock); 1064 buf->f_blocks = sbinfo->spool->max_hpages; 1065 free_pages = sbinfo->spool->max_hpages 1066 - sbinfo->spool->used_hpages; 1067 buf->f_bavail = buf->f_bfree = free_pages; 1068 spin_unlock_irq(&sbinfo->spool->lock); 1069 buf->f_files = sbinfo->max_inodes; 1070 buf->f_ffree = sbinfo->free_inodes; 1071 } 1072 spin_unlock(&sbinfo->stat_lock); 1073 } 1074 buf->f_namelen = NAME_MAX; 1075 return 0; 1076 } 1077 1078 static void hugetlbfs_put_super(struct super_block *sb) 1079 { 1080 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1081 1082 if (sbi) { 1083 sb->s_fs_info = NULL; 1084 1085 if (sbi->spool) 1086 hugepage_put_subpool(sbi->spool); 1087 1088 kfree(sbi); 1089 } 1090 } 1091 1092 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1093 { 1094 if (sbinfo->free_inodes >= 0) { 1095 spin_lock(&sbinfo->stat_lock); 1096 if (unlikely(!sbinfo->free_inodes)) { 1097 spin_unlock(&sbinfo->stat_lock); 1098 return 0; 1099 } 1100 sbinfo->free_inodes--; 1101 spin_unlock(&sbinfo->stat_lock); 1102 } 1103 1104 return 1; 1105 } 1106 1107 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1108 { 1109 if (sbinfo->free_inodes >= 0) { 1110 spin_lock(&sbinfo->stat_lock); 1111 sbinfo->free_inodes++; 1112 spin_unlock(&sbinfo->stat_lock); 1113 } 1114 } 1115 1116 1117 static struct kmem_cache *hugetlbfs_inode_cachep; 1118 1119 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1120 { 1121 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1122 struct hugetlbfs_inode_info *p; 1123 1124 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1125 return NULL; 1126 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1127 if (unlikely(!p)) { 1128 hugetlbfs_inc_free_inodes(sbinfo); 1129 return NULL; 1130 } 1131 1132 /* 1133 * Any time after allocation, hugetlbfs_destroy_inode can be called 1134 * for the inode. mpol_free_shared_policy is unconditionally called 1135 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1136 * in case of a quick call to destroy. 1137 * 1138 * Note that the policy is initialized even if we are creating a 1139 * private inode. This simplifies hugetlbfs_destroy_inode. 1140 */ 1141 mpol_shared_policy_init(&p->policy, NULL); 1142 1143 return &p->vfs_inode; 1144 } 1145 1146 static void hugetlbfs_free_inode(struct inode *inode) 1147 { 1148 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1149 } 1150 1151 static void hugetlbfs_destroy_inode(struct inode *inode) 1152 { 1153 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1154 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1155 } 1156 1157 static const struct address_space_operations hugetlbfs_aops = { 1158 .write_begin = hugetlbfs_write_begin, 1159 .write_end = hugetlbfs_write_end, 1160 .dirty_folio = noop_dirty_folio, 1161 .migratepage = hugetlbfs_migrate_page, 1162 .error_remove_page = hugetlbfs_error_remove_page, 1163 }; 1164 1165 1166 static void init_once(void *foo) 1167 { 1168 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1169 1170 inode_init_once(&ei->vfs_inode); 1171 } 1172 1173 const struct file_operations hugetlbfs_file_operations = { 1174 .read_iter = hugetlbfs_read_iter, 1175 .mmap = hugetlbfs_file_mmap, 1176 .fsync = noop_fsync, 1177 .get_unmapped_area = hugetlb_get_unmapped_area, 1178 .llseek = default_llseek, 1179 .fallocate = hugetlbfs_fallocate, 1180 }; 1181 1182 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1183 .create = hugetlbfs_create, 1184 .lookup = simple_lookup, 1185 .link = simple_link, 1186 .unlink = simple_unlink, 1187 .symlink = hugetlbfs_symlink, 1188 .mkdir = hugetlbfs_mkdir, 1189 .rmdir = simple_rmdir, 1190 .mknod = hugetlbfs_mknod, 1191 .rename = simple_rename, 1192 .setattr = hugetlbfs_setattr, 1193 .tmpfile = hugetlbfs_tmpfile, 1194 }; 1195 1196 static const struct inode_operations hugetlbfs_inode_operations = { 1197 .setattr = hugetlbfs_setattr, 1198 }; 1199 1200 static const struct super_operations hugetlbfs_ops = { 1201 .alloc_inode = hugetlbfs_alloc_inode, 1202 .free_inode = hugetlbfs_free_inode, 1203 .destroy_inode = hugetlbfs_destroy_inode, 1204 .evict_inode = hugetlbfs_evict_inode, 1205 .statfs = hugetlbfs_statfs, 1206 .put_super = hugetlbfs_put_super, 1207 .show_options = hugetlbfs_show_options, 1208 }; 1209 1210 /* 1211 * Convert size option passed from command line to number of huge pages 1212 * in the pool specified by hstate. Size option could be in bytes 1213 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1214 */ 1215 static long 1216 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1217 enum hugetlbfs_size_type val_type) 1218 { 1219 if (val_type == NO_SIZE) 1220 return -1; 1221 1222 if (val_type == SIZE_PERCENT) { 1223 size_opt <<= huge_page_shift(h); 1224 size_opt *= h->max_huge_pages; 1225 do_div(size_opt, 100); 1226 } 1227 1228 size_opt >>= huge_page_shift(h); 1229 return size_opt; 1230 } 1231 1232 /* 1233 * Parse one mount parameter. 1234 */ 1235 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1236 { 1237 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1238 struct fs_parse_result result; 1239 char *rest; 1240 unsigned long ps; 1241 int opt; 1242 1243 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1244 if (opt < 0) 1245 return opt; 1246 1247 switch (opt) { 1248 case Opt_uid: 1249 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1250 if (!uid_valid(ctx->uid)) 1251 goto bad_val; 1252 return 0; 1253 1254 case Opt_gid: 1255 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1256 if (!gid_valid(ctx->gid)) 1257 goto bad_val; 1258 return 0; 1259 1260 case Opt_mode: 1261 ctx->mode = result.uint_32 & 01777U; 1262 return 0; 1263 1264 case Opt_size: 1265 /* memparse() will accept a K/M/G without a digit */ 1266 if (!isdigit(param->string[0])) 1267 goto bad_val; 1268 ctx->max_size_opt = memparse(param->string, &rest); 1269 ctx->max_val_type = SIZE_STD; 1270 if (*rest == '%') 1271 ctx->max_val_type = SIZE_PERCENT; 1272 return 0; 1273 1274 case Opt_nr_inodes: 1275 /* memparse() will accept a K/M/G without a digit */ 1276 if (!isdigit(param->string[0])) 1277 goto bad_val; 1278 ctx->nr_inodes = memparse(param->string, &rest); 1279 return 0; 1280 1281 case Opt_pagesize: 1282 ps = memparse(param->string, &rest); 1283 ctx->hstate = size_to_hstate(ps); 1284 if (!ctx->hstate) { 1285 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1286 return -EINVAL; 1287 } 1288 return 0; 1289 1290 case Opt_min_size: 1291 /* memparse() will accept a K/M/G without a digit */ 1292 if (!isdigit(param->string[0])) 1293 goto bad_val; 1294 ctx->min_size_opt = memparse(param->string, &rest); 1295 ctx->min_val_type = SIZE_STD; 1296 if (*rest == '%') 1297 ctx->min_val_type = SIZE_PERCENT; 1298 return 0; 1299 1300 default: 1301 return -EINVAL; 1302 } 1303 1304 bad_val: 1305 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1306 param->string, param->key); 1307 } 1308 1309 /* 1310 * Validate the parsed options. 1311 */ 1312 static int hugetlbfs_validate(struct fs_context *fc) 1313 { 1314 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1315 1316 /* 1317 * Use huge page pool size (in hstate) to convert the size 1318 * options to number of huge pages. If NO_SIZE, -1 is returned. 1319 */ 1320 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1321 ctx->max_size_opt, 1322 ctx->max_val_type); 1323 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1324 ctx->min_size_opt, 1325 ctx->min_val_type); 1326 1327 /* 1328 * If max_size was specified, then min_size must be smaller 1329 */ 1330 if (ctx->max_val_type > NO_SIZE && 1331 ctx->min_hpages > ctx->max_hpages) { 1332 pr_err("Minimum size can not be greater than maximum size\n"); 1333 return -EINVAL; 1334 } 1335 1336 return 0; 1337 } 1338 1339 static int 1340 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1341 { 1342 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1343 struct hugetlbfs_sb_info *sbinfo; 1344 1345 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1346 if (!sbinfo) 1347 return -ENOMEM; 1348 sb->s_fs_info = sbinfo; 1349 spin_lock_init(&sbinfo->stat_lock); 1350 sbinfo->hstate = ctx->hstate; 1351 sbinfo->max_inodes = ctx->nr_inodes; 1352 sbinfo->free_inodes = ctx->nr_inodes; 1353 sbinfo->spool = NULL; 1354 sbinfo->uid = ctx->uid; 1355 sbinfo->gid = ctx->gid; 1356 sbinfo->mode = ctx->mode; 1357 1358 /* 1359 * Allocate and initialize subpool if maximum or minimum size is 1360 * specified. Any needed reservations (for minimum size) are taken 1361 * taken when the subpool is created. 1362 */ 1363 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1364 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1365 ctx->max_hpages, 1366 ctx->min_hpages); 1367 if (!sbinfo->spool) 1368 goto out_free; 1369 } 1370 sb->s_maxbytes = MAX_LFS_FILESIZE; 1371 sb->s_blocksize = huge_page_size(ctx->hstate); 1372 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1373 sb->s_magic = HUGETLBFS_MAGIC; 1374 sb->s_op = &hugetlbfs_ops; 1375 sb->s_time_gran = 1; 1376 1377 /* 1378 * Due to the special and limited functionality of hugetlbfs, it does 1379 * not work well as a stacking filesystem. 1380 */ 1381 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1382 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1383 if (!sb->s_root) 1384 goto out_free; 1385 return 0; 1386 out_free: 1387 kfree(sbinfo->spool); 1388 kfree(sbinfo); 1389 return -ENOMEM; 1390 } 1391 1392 static int hugetlbfs_get_tree(struct fs_context *fc) 1393 { 1394 int err = hugetlbfs_validate(fc); 1395 if (err) 1396 return err; 1397 return get_tree_nodev(fc, hugetlbfs_fill_super); 1398 } 1399 1400 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1401 { 1402 kfree(fc->fs_private); 1403 } 1404 1405 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1406 .free = hugetlbfs_fs_context_free, 1407 .parse_param = hugetlbfs_parse_param, 1408 .get_tree = hugetlbfs_get_tree, 1409 }; 1410 1411 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1412 { 1413 struct hugetlbfs_fs_context *ctx; 1414 1415 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1416 if (!ctx) 1417 return -ENOMEM; 1418 1419 ctx->max_hpages = -1; /* No limit on size by default */ 1420 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1421 ctx->uid = current_fsuid(); 1422 ctx->gid = current_fsgid(); 1423 ctx->mode = 0755; 1424 ctx->hstate = &default_hstate; 1425 ctx->min_hpages = -1; /* No default minimum size */ 1426 ctx->max_val_type = NO_SIZE; 1427 ctx->min_val_type = NO_SIZE; 1428 fc->fs_private = ctx; 1429 fc->ops = &hugetlbfs_fs_context_ops; 1430 return 0; 1431 } 1432 1433 static struct file_system_type hugetlbfs_fs_type = { 1434 .name = "hugetlbfs", 1435 .init_fs_context = hugetlbfs_init_fs_context, 1436 .parameters = hugetlb_fs_parameters, 1437 .kill_sb = kill_litter_super, 1438 }; 1439 1440 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1441 1442 static int can_do_hugetlb_shm(void) 1443 { 1444 kgid_t shm_group; 1445 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1446 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1447 } 1448 1449 static int get_hstate_idx(int page_size_log) 1450 { 1451 struct hstate *h = hstate_sizelog(page_size_log); 1452 1453 if (!h) 1454 return -1; 1455 return hstate_index(h); 1456 } 1457 1458 /* 1459 * Note that size should be aligned to proper hugepage size in caller side, 1460 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1461 */ 1462 struct file *hugetlb_file_setup(const char *name, size_t size, 1463 vm_flags_t acctflag, int creat_flags, 1464 int page_size_log) 1465 { 1466 struct inode *inode; 1467 struct vfsmount *mnt; 1468 int hstate_idx; 1469 struct file *file; 1470 1471 hstate_idx = get_hstate_idx(page_size_log); 1472 if (hstate_idx < 0) 1473 return ERR_PTR(-ENODEV); 1474 1475 mnt = hugetlbfs_vfsmount[hstate_idx]; 1476 if (!mnt) 1477 return ERR_PTR(-ENOENT); 1478 1479 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1480 struct ucounts *ucounts = current_ucounts(); 1481 1482 if (user_shm_lock(size, ucounts)) { 1483 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1484 current->comm, current->pid); 1485 user_shm_unlock(size, ucounts); 1486 } 1487 return ERR_PTR(-EPERM); 1488 } 1489 1490 file = ERR_PTR(-ENOSPC); 1491 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1492 if (!inode) 1493 goto out; 1494 if (creat_flags == HUGETLB_SHMFS_INODE) 1495 inode->i_flags |= S_PRIVATE; 1496 1497 inode->i_size = size; 1498 clear_nlink(inode); 1499 1500 if (!hugetlb_reserve_pages(inode, 0, 1501 size >> huge_page_shift(hstate_inode(inode)), NULL, 1502 acctflag)) 1503 file = ERR_PTR(-ENOMEM); 1504 else 1505 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1506 &hugetlbfs_file_operations); 1507 if (!IS_ERR(file)) 1508 return file; 1509 1510 iput(inode); 1511 out: 1512 return file; 1513 } 1514 1515 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1516 { 1517 struct fs_context *fc; 1518 struct vfsmount *mnt; 1519 1520 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1521 if (IS_ERR(fc)) { 1522 mnt = ERR_CAST(fc); 1523 } else { 1524 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1525 ctx->hstate = h; 1526 mnt = fc_mount(fc); 1527 put_fs_context(fc); 1528 } 1529 if (IS_ERR(mnt)) 1530 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1531 huge_page_size(h) >> 10); 1532 return mnt; 1533 } 1534 1535 static int __init init_hugetlbfs_fs(void) 1536 { 1537 struct vfsmount *mnt; 1538 struct hstate *h; 1539 int error; 1540 int i; 1541 1542 if (!hugepages_supported()) { 1543 pr_info("disabling because there are no supported hugepage sizes\n"); 1544 return -ENOTSUPP; 1545 } 1546 1547 error = -ENOMEM; 1548 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1549 sizeof(struct hugetlbfs_inode_info), 1550 0, SLAB_ACCOUNT, init_once); 1551 if (hugetlbfs_inode_cachep == NULL) 1552 goto out; 1553 1554 error = register_filesystem(&hugetlbfs_fs_type); 1555 if (error) 1556 goto out_free; 1557 1558 /* default hstate mount is required */ 1559 mnt = mount_one_hugetlbfs(&default_hstate); 1560 if (IS_ERR(mnt)) { 1561 error = PTR_ERR(mnt); 1562 goto out_unreg; 1563 } 1564 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1565 1566 /* other hstates are optional */ 1567 i = 0; 1568 for_each_hstate(h) { 1569 if (i == default_hstate_idx) { 1570 i++; 1571 continue; 1572 } 1573 1574 mnt = mount_one_hugetlbfs(h); 1575 if (IS_ERR(mnt)) 1576 hugetlbfs_vfsmount[i] = NULL; 1577 else 1578 hugetlbfs_vfsmount[i] = mnt; 1579 i++; 1580 } 1581 1582 return 0; 1583 1584 out_unreg: 1585 (void)unregister_filesystem(&hugetlbfs_fs_type); 1586 out_free: 1587 kmem_cache_destroy(hugetlbfs_inode_cachep); 1588 out: 1589 return error; 1590 } 1591 fs_initcall(init_hugetlbfs_fs) 1592