1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32oct("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 135 loff_t len, vma_len; 136 int ret; 137 struct hstate *h = hstate_file(file); 138 139 /* 140 * vma address alignment (but not the pgoff alignment) has 141 * already been checked by prepare_hugepage_range. If you add 142 * any error returns here, do so after setting VM_HUGETLB, so 143 * is_vm_hugetlb_page tests below unmap_region go the right 144 * way when do_mmap unwinds (may be important on powerpc 145 * and ia64). 146 */ 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 148 vma->vm_ops = &hugetlb_vm_ops; 149 150 ret = seal_check_future_write(info->seals, vma); 151 if (ret) 152 return ret; 153 154 /* 155 * page based offset in vm_pgoff could be sufficiently large to 156 * overflow a loff_t when converted to byte offset. This can 157 * only happen on architectures where sizeof(loff_t) == 158 * sizeof(unsigned long). So, only check in those instances. 159 */ 160 if (sizeof(unsigned long) == sizeof(loff_t)) { 161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 162 return -EINVAL; 163 } 164 165 /* must be huge page aligned */ 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 167 return -EINVAL; 168 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 171 /* check for overflow */ 172 if (len < vma_len) 173 return -EINVAL; 174 175 inode_lock(inode); 176 file_accessed(file); 177 178 ret = -ENOMEM; 179 if (!hugetlb_reserve_pages(inode, 180 vma->vm_pgoff >> huge_page_order(h), 181 len >> huge_page_shift(h), vma, 182 vma->vm_flags)) 183 goto out; 184 185 ret = 0; 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 187 i_size_write(inode, len); 188 out: 189 inode_unlock(inode); 190 191 return ret; 192 } 193 194 /* 195 * Called under mmap_write_lock(mm). 196 */ 197 198 static unsigned long 199 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 200 unsigned long len, unsigned long pgoff, unsigned long flags) 201 { 202 struct hstate *h = hstate_file(file); 203 struct vm_unmapped_area_info info; 204 205 info.flags = 0; 206 info.length = len; 207 info.low_limit = current->mm->mmap_base; 208 info.high_limit = arch_get_mmap_end(addr, len, flags); 209 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 210 info.align_offset = 0; 211 return vm_unmapped_area(&info); 212 } 213 214 static unsigned long 215 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 216 unsigned long len, unsigned long pgoff, unsigned long flags) 217 { 218 struct hstate *h = hstate_file(file); 219 struct vm_unmapped_area_info info; 220 221 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 222 info.length = len; 223 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 224 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 225 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 226 info.align_offset = 0; 227 addr = vm_unmapped_area(&info); 228 229 /* 230 * A failed mmap() very likely causes application failure, 231 * so fall back to the bottom-up function here. This scenario 232 * can happen with large stack limits and large mmap() 233 * allocations. 234 */ 235 if (unlikely(offset_in_page(addr))) { 236 VM_BUG_ON(addr != -ENOMEM); 237 info.flags = 0; 238 info.low_limit = current->mm->mmap_base; 239 info.high_limit = arch_get_mmap_end(addr, len, flags); 240 addr = vm_unmapped_area(&info); 241 } 242 243 return addr; 244 } 245 246 unsigned long 247 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 248 unsigned long len, unsigned long pgoff, 249 unsigned long flags) 250 { 251 struct mm_struct *mm = current->mm; 252 struct vm_area_struct *vma; 253 struct hstate *h = hstate_file(file); 254 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 255 256 if (len & ~huge_page_mask(h)) 257 return -EINVAL; 258 if (len > TASK_SIZE) 259 return -ENOMEM; 260 261 if (flags & MAP_FIXED) { 262 if (prepare_hugepage_range(file, addr, len)) 263 return -EINVAL; 264 return addr; 265 } 266 267 if (addr) { 268 addr = ALIGN(addr, huge_page_size(h)); 269 vma = find_vma(mm, addr); 270 if (mmap_end - len >= addr && 271 (!vma || addr + len <= vm_start_gap(vma))) 272 return addr; 273 } 274 275 /* 276 * Use mm->get_unmapped_area value as a hint to use topdown routine. 277 * If architectures have special needs, they should define their own 278 * version of hugetlb_get_unmapped_area. 279 */ 280 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 281 return hugetlb_get_unmapped_area_topdown(file, addr, len, 282 pgoff, flags); 283 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 284 pgoff, flags); 285 } 286 287 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 288 static unsigned long 289 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 290 unsigned long len, unsigned long pgoff, 291 unsigned long flags) 292 { 293 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 294 } 295 #endif 296 297 static size_t 298 hugetlbfs_read_actor(struct page *page, unsigned long offset, 299 struct iov_iter *to, unsigned long size) 300 { 301 size_t copied = 0; 302 int i, chunksize; 303 304 /* Find which 4k chunk and offset with in that chunk */ 305 i = offset >> PAGE_SHIFT; 306 offset = offset & ~PAGE_MASK; 307 308 while (size) { 309 size_t n; 310 chunksize = PAGE_SIZE; 311 if (offset) 312 chunksize -= offset; 313 if (chunksize > size) 314 chunksize = size; 315 n = copy_page_to_iter(&page[i], offset, chunksize, to); 316 copied += n; 317 if (n != chunksize) 318 return copied; 319 offset = 0; 320 size -= chunksize; 321 i++; 322 } 323 return copied; 324 } 325 326 /* 327 * Support for read() - Find the page attached to f_mapping and copy out the 328 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 329 * since it has PAGE_SIZE assumptions. 330 */ 331 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 332 { 333 struct file *file = iocb->ki_filp; 334 struct hstate *h = hstate_file(file); 335 struct address_space *mapping = file->f_mapping; 336 struct inode *inode = mapping->host; 337 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 338 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 339 unsigned long end_index; 340 loff_t isize; 341 ssize_t retval = 0; 342 343 while (iov_iter_count(to)) { 344 struct page *page; 345 size_t nr, copied; 346 347 /* nr is the maximum number of bytes to copy from this page */ 348 nr = huge_page_size(h); 349 isize = i_size_read(inode); 350 if (!isize) 351 break; 352 end_index = (isize - 1) >> huge_page_shift(h); 353 if (index > end_index) 354 break; 355 if (index == end_index) { 356 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 357 if (nr <= offset) 358 break; 359 } 360 nr = nr - offset; 361 362 /* Find the page */ 363 page = find_lock_page(mapping, index); 364 if (unlikely(page == NULL)) { 365 /* 366 * We have a HOLE, zero out the user-buffer for the 367 * length of the hole or request. 368 */ 369 copied = iov_iter_zero(nr, to); 370 } else { 371 unlock_page(page); 372 373 /* 374 * We have the page, copy it to user space buffer. 375 */ 376 copied = hugetlbfs_read_actor(page, offset, to, nr); 377 put_page(page); 378 } 379 offset += copied; 380 retval += copied; 381 if (copied != nr && iov_iter_count(to)) { 382 if (!retval) 383 retval = -EFAULT; 384 break; 385 } 386 index += offset >> huge_page_shift(h); 387 offset &= ~huge_page_mask(h); 388 } 389 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 390 return retval; 391 } 392 393 static int hugetlbfs_write_begin(struct file *file, 394 struct address_space *mapping, 395 loff_t pos, unsigned len, unsigned flags, 396 struct page **pagep, void **fsdata) 397 { 398 return -EINVAL; 399 } 400 401 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 402 loff_t pos, unsigned len, unsigned copied, 403 struct page *page, void *fsdata) 404 { 405 BUG(); 406 return -EINVAL; 407 } 408 409 static void remove_huge_page(struct page *page) 410 { 411 ClearPageDirty(page); 412 ClearPageUptodate(page); 413 delete_from_page_cache(page); 414 } 415 416 static void 417 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 418 { 419 struct vm_area_struct *vma; 420 421 /* 422 * end == 0 indicates that the entire range after start should be 423 * unmapped. Note, end is exclusive, whereas the interval tree takes 424 * an inclusive "last". 425 */ 426 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 427 unsigned long v_offset; 428 unsigned long v_end; 429 430 /* 431 * Can the expression below overflow on 32-bit arches? 432 * No, because the interval tree returns us only those vmas 433 * which overlap the truncated area starting at pgoff, 434 * and no vma on a 32-bit arch can span beyond the 4GB. 435 */ 436 if (vma->vm_pgoff < start) 437 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 438 else 439 v_offset = 0; 440 441 if (!end) 442 v_end = vma->vm_end; 443 else { 444 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 445 + vma->vm_start; 446 if (v_end > vma->vm_end) 447 v_end = vma->vm_end; 448 } 449 450 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 451 NULL); 452 } 453 } 454 455 /* 456 * remove_inode_hugepages handles two distinct cases: truncation and hole 457 * punch. There are subtle differences in operation for each case. 458 * 459 * truncation is indicated by end of range being LLONG_MAX 460 * In this case, we first scan the range and release found pages. 461 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 462 * maps and global counts. Page faults can not race with truncation 463 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 464 * page faults in the truncated range by checking i_size. i_size is 465 * modified while holding i_mmap_rwsem. 466 * hole punch is indicated if end is not LLONG_MAX 467 * In the hole punch case we scan the range and release found pages. 468 * Only when releasing a page is the associated region/reserve map 469 * deleted. The region/reserve map for ranges without associated 470 * pages are not modified. Page faults can race with hole punch. 471 * This is indicated if we find a mapped page. 472 * Note: If the passed end of range value is beyond the end of file, but 473 * not LLONG_MAX this routine still performs a hole punch operation. 474 */ 475 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 476 loff_t lend) 477 { 478 struct hstate *h = hstate_inode(inode); 479 struct address_space *mapping = &inode->i_data; 480 const pgoff_t start = lstart >> huge_page_shift(h); 481 const pgoff_t end = lend >> huge_page_shift(h); 482 struct pagevec pvec; 483 pgoff_t next, index; 484 int i, freed = 0; 485 bool truncate_op = (lend == LLONG_MAX); 486 487 pagevec_init(&pvec); 488 next = start; 489 while (next < end) { 490 /* 491 * When no more pages are found, we are done. 492 */ 493 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 494 break; 495 496 for (i = 0; i < pagevec_count(&pvec); ++i) { 497 struct page *page = pvec.pages[i]; 498 u32 hash = 0; 499 500 index = page->index; 501 if (!truncate_op) { 502 /* 503 * Only need to hold the fault mutex in the 504 * hole punch case. This prevents races with 505 * page faults. Races are not possible in the 506 * case of truncation. 507 */ 508 hash = hugetlb_fault_mutex_hash(mapping, index); 509 mutex_lock(&hugetlb_fault_mutex_table[hash]); 510 } 511 512 /* 513 * If page is mapped, it was faulted in after being 514 * unmapped in caller. Unmap (again) now after taking 515 * the fault mutex. The mutex will prevent faults 516 * until we finish removing the page. 517 * 518 * This race can only happen in the hole punch case. 519 * Getting here in a truncate operation is a bug. 520 */ 521 if (unlikely(page_mapped(page))) { 522 BUG_ON(truncate_op); 523 524 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 525 i_mmap_lock_write(mapping); 526 mutex_lock(&hugetlb_fault_mutex_table[hash]); 527 hugetlb_vmdelete_list(&mapping->i_mmap, 528 index * pages_per_huge_page(h), 529 (index + 1) * pages_per_huge_page(h)); 530 i_mmap_unlock_write(mapping); 531 } 532 533 lock_page(page); 534 /* 535 * We must free the huge page and remove from page 536 * cache (remove_huge_page) BEFORE removing the 537 * region/reserve map (hugetlb_unreserve_pages). In 538 * rare out of memory conditions, removal of the 539 * region/reserve map could fail. Correspondingly, 540 * the subpool and global reserve usage count can need 541 * to be adjusted. 542 */ 543 VM_BUG_ON(HPageRestoreReserve(page)); 544 remove_huge_page(page); 545 freed++; 546 if (!truncate_op) { 547 if (unlikely(hugetlb_unreserve_pages(inode, 548 index, index + 1, 1))) 549 hugetlb_fix_reserve_counts(inode); 550 } 551 552 unlock_page(page); 553 if (!truncate_op) 554 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 555 } 556 huge_pagevec_release(&pvec); 557 cond_resched(); 558 } 559 560 if (truncate_op) 561 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 562 } 563 564 static void hugetlbfs_evict_inode(struct inode *inode) 565 { 566 struct resv_map *resv_map; 567 568 remove_inode_hugepages(inode, 0, LLONG_MAX); 569 570 /* 571 * Get the resv_map from the address space embedded in the inode. 572 * This is the address space which points to any resv_map allocated 573 * at inode creation time. If this is a device special inode, 574 * i_mapping may not point to the original address space. 575 */ 576 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 577 /* Only regular and link inodes have associated reserve maps */ 578 if (resv_map) 579 resv_map_release(&resv_map->refs); 580 clear_inode(inode); 581 } 582 583 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 584 { 585 pgoff_t pgoff; 586 struct address_space *mapping = inode->i_mapping; 587 struct hstate *h = hstate_inode(inode); 588 589 BUG_ON(offset & ~huge_page_mask(h)); 590 pgoff = offset >> PAGE_SHIFT; 591 592 i_mmap_lock_write(mapping); 593 i_size_write(inode, offset); 594 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 595 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 596 i_mmap_unlock_write(mapping); 597 remove_inode_hugepages(inode, offset, LLONG_MAX); 598 } 599 600 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 601 { 602 struct hstate *h = hstate_inode(inode); 603 loff_t hpage_size = huge_page_size(h); 604 loff_t hole_start, hole_end; 605 606 /* 607 * For hole punch round up the beginning offset of the hole and 608 * round down the end. 609 */ 610 hole_start = round_up(offset, hpage_size); 611 hole_end = round_down(offset + len, hpage_size); 612 613 if (hole_end > hole_start) { 614 struct address_space *mapping = inode->i_mapping; 615 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 616 617 inode_lock(inode); 618 619 /* protected by i_rwsem */ 620 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 621 inode_unlock(inode); 622 return -EPERM; 623 } 624 625 i_mmap_lock_write(mapping); 626 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 627 hugetlb_vmdelete_list(&mapping->i_mmap, 628 hole_start >> PAGE_SHIFT, 629 hole_end >> PAGE_SHIFT); 630 i_mmap_unlock_write(mapping); 631 remove_inode_hugepages(inode, hole_start, hole_end); 632 inode_unlock(inode); 633 } 634 635 return 0; 636 } 637 638 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 639 loff_t len) 640 { 641 struct inode *inode = file_inode(file); 642 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 643 struct address_space *mapping = inode->i_mapping; 644 struct hstate *h = hstate_inode(inode); 645 struct vm_area_struct pseudo_vma; 646 struct mm_struct *mm = current->mm; 647 loff_t hpage_size = huge_page_size(h); 648 unsigned long hpage_shift = huge_page_shift(h); 649 pgoff_t start, index, end; 650 int error; 651 u32 hash; 652 653 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 654 return -EOPNOTSUPP; 655 656 if (mode & FALLOC_FL_PUNCH_HOLE) 657 return hugetlbfs_punch_hole(inode, offset, len); 658 659 /* 660 * Default preallocate case. 661 * For this range, start is rounded down and end is rounded up 662 * as well as being converted to page offsets. 663 */ 664 start = offset >> hpage_shift; 665 end = (offset + len + hpage_size - 1) >> hpage_shift; 666 667 inode_lock(inode); 668 669 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 670 error = inode_newsize_ok(inode, offset + len); 671 if (error) 672 goto out; 673 674 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 675 error = -EPERM; 676 goto out; 677 } 678 679 /* 680 * Initialize a pseudo vma as this is required by the huge page 681 * allocation routines. If NUMA is configured, use page index 682 * as input to create an allocation policy. 683 */ 684 vma_init(&pseudo_vma, mm); 685 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 686 pseudo_vma.vm_file = file; 687 688 for (index = start; index < end; index++) { 689 /* 690 * This is supposed to be the vaddr where the page is being 691 * faulted in, but we have no vaddr here. 692 */ 693 struct page *page; 694 unsigned long addr; 695 696 cond_resched(); 697 698 /* 699 * fallocate(2) manpage permits EINTR; we may have been 700 * interrupted because we are using up too much memory. 701 */ 702 if (signal_pending(current)) { 703 error = -EINTR; 704 break; 705 } 706 707 /* Set numa allocation policy based on index */ 708 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 709 710 /* addr is the offset within the file (zero based) */ 711 addr = index * hpage_size; 712 713 /* 714 * fault mutex taken here, protects against fault path 715 * and hole punch. inode_lock previously taken protects 716 * against truncation. 717 */ 718 hash = hugetlb_fault_mutex_hash(mapping, index); 719 mutex_lock(&hugetlb_fault_mutex_table[hash]); 720 721 /* See if already present in mapping to avoid alloc/free */ 722 page = find_get_page(mapping, index); 723 if (page) { 724 put_page(page); 725 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 726 hugetlb_drop_vma_policy(&pseudo_vma); 727 continue; 728 } 729 730 /* 731 * Allocate page without setting the avoid_reserve argument. 732 * There certainly are no reserves associated with the 733 * pseudo_vma. However, there could be shared mappings with 734 * reserves for the file at the inode level. If we fallocate 735 * pages in these areas, we need to consume the reserves 736 * to keep reservation accounting consistent. 737 */ 738 page = alloc_huge_page(&pseudo_vma, addr, 0); 739 hugetlb_drop_vma_policy(&pseudo_vma); 740 if (IS_ERR(page)) { 741 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 742 error = PTR_ERR(page); 743 goto out; 744 } 745 clear_huge_page(page, addr, pages_per_huge_page(h)); 746 __SetPageUptodate(page); 747 error = huge_add_to_page_cache(page, mapping, index); 748 if (unlikely(error)) { 749 restore_reserve_on_error(h, &pseudo_vma, addr, page); 750 put_page(page); 751 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 752 goto out; 753 } 754 755 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 756 757 SetHPageMigratable(page); 758 /* 759 * unlock_page because locked by add_to_page_cache() 760 * put_page() due to reference from alloc_huge_page() 761 */ 762 unlock_page(page); 763 put_page(page); 764 } 765 766 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 767 i_size_write(inode, offset + len); 768 inode->i_ctime = current_time(inode); 769 out: 770 inode_unlock(inode); 771 return error; 772 } 773 774 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 775 struct dentry *dentry, struct iattr *attr) 776 { 777 struct inode *inode = d_inode(dentry); 778 struct hstate *h = hstate_inode(inode); 779 int error; 780 unsigned int ia_valid = attr->ia_valid; 781 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 782 783 error = setattr_prepare(&init_user_ns, dentry, attr); 784 if (error) 785 return error; 786 787 if (ia_valid & ATTR_SIZE) { 788 loff_t oldsize = inode->i_size; 789 loff_t newsize = attr->ia_size; 790 791 if (newsize & ~huge_page_mask(h)) 792 return -EINVAL; 793 /* protected by i_rwsem */ 794 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 795 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 796 return -EPERM; 797 hugetlb_vmtruncate(inode, newsize); 798 } 799 800 setattr_copy(&init_user_ns, inode, attr); 801 mark_inode_dirty(inode); 802 return 0; 803 } 804 805 static struct inode *hugetlbfs_get_root(struct super_block *sb, 806 struct hugetlbfs_fs_context *ctx) 807 { 808 struct inode *inode; 809 810 inode = new_inode(sb); 811 if (inode) { 812 inode->i_ino = get_next_ino(); 813 inode->i_mode = S_IFDIR | ctx->mode; 814 inode->i_uid = ctx->uid; 815 inode->i_gid = ctx->gid; 816 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 817 inode->i_op = &hugetlbfs_dir_inode_operations; 818 inode->i_fop = &simple_dir_operations; 819 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 820 inc_nlink(inode); 821 lockdep_annotate_inode_mutex_key(inode); 822 } 823 return inode; 824 } 825 826 /* 827 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 828 * be taken from reclaim -- unlike regular filesystems. This needs an 829 * annotation because huge_pmd_share() does an allocation under hugetlb's 830 * i_mmap_rwsem. 831 */ 832 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 833 834 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 835 struct inode *dir, 836 umode_t mode, dev_t dev) 837 { 838 struct inode *inode; 839 struct resv_map *resv_map = NULL; 840 841 /* 842 * Reserve maps are only needed for inodes that can have associated 843 * page allocations. 844 */ 845 if (S_ISREG(mode) || S_ISLNK(mode)) { 846 resv_map = resv_map_alloc(); 847 if (!resv_map) 848 return NULL; 849 } 850 851 inode = new_inode(sb); 852 if (inode) { 853 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 854 855 inode->i_ino = get_next_ino(); 856 inode_init_owner(&init_user_ns, inode, dir, mode); 857 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 858 &hugetlbfs_i_mmap_rwsem_key); 859 inode->i_mapping->a_ops = &hugetlbfs_aops; 860 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 861 inode->i_mapping->private_data = resv_map; 862 info->seals = F_SEAL_SEAL; 863 switch (mode & S_IFMT) { 864 default: 865 init_special_inode(inode, mode, dev); 866 break; 867 case S_IFREG: 868 inode->i_op = &hugetlbfs_inode_operations; 869 inode->i_fop = &hugetlbfs_file_operations; 870 break; 871 case S_IFDIR: 872 inode->i_op = &hugetlbfs_dir_inode_operations; 873 inode->i_fop = &simple_dir_operations; 874 875 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 876 inc_nlink(inode); 877 break; 878 case S_IFLNK: 879 inode->i_op = &page_symlink_inode_operations; 880 inode_nohighmem(inode); 881 break; 882 } 883 lockdep_annotate_inode_mutex_key(inode); 884 } else { 885 if (resv_map) 886 kref_put(&resv_map->refs, resv_map_release); 887 } 888 889 return inode; 890 } 891 892 /* 893 * File creation. Allocate an inode, and we're done.. 894 */ 895 static int do_hugetlbfs_mknod(struct inode *dir, 896 struct dentry *dentry, 897 umode_t mode, 898 dev_t dev, 899 bool tmpfile) 900 { 901 struct inode *inode; 902 int error = -ENOSPC; 903 904 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 905 if (inode) { 906 dir->i_ctime = dir->i_mtime = current_time(dir); 907 if (tmpfile) { 908 d_tmpfile(dentry, inode); 909 } else { 910 d_instantiate(dentry, inode); 911 dget(dentry);/* Extra count - pin the dentry in core */ 912 } 913 error = 0; 914 } 915 return error; 916 } 917 918 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 919 struct dentry *dentry, umode_t mode, dev_t dev) 920 { 921 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 922 } 923 924 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 925 struct dentry *dentry, umode_t mode) 926 { 927 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 928 mode | S_IFDIR, 0); 929 if (!retval) 930 inc_nlink(dir); 931 return retval; 932 } 933 934 static int hugetlbfs_create(struct user_namespace *mnt_userns, 935 struct inode *dir, struct dentry *dentry, 936 umode_t mode, bool excl) 937 { 938 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 939 } 940 941 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 942 struct inode *dir, struct dentry *dentry, 943 umode_t mode) 944 { 945 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 946 } 947 948 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 949 struct inode *dir, struct dentry *dentry, 950 const char *symname) 951 { 952 struct inode *inode; 953 int error = -ENOSPC; 954 955 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 956 if (inode) { 957 int l = strlen(symname)+1; 958 error = page_symlink(inode, symname, l); 959 if (!error) { 960 d_instantiate(dentry, inode); 961 dget(dentry); 962 } else 963 iput(inode); 964 } 965 dir->i_ctime = dir->i_mtime = current_time(dir); 966 967 return error; 968 } 969 970 static int hugetlbfs_migrate_page(struct address_space *mapping, 971 struct page *newpage, struct page *page, 972 enum migrate_mode mode) 973 { 974 int rc; 975 976 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 977 if (rc != MIGRATEPAGE_SUCCESS) 978 return rc; 979 980 if (hugetlb_page_subpool(page)) { 981 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page)); 982 hugetlb_set_page_subpool(page, NULL); 983 } 984 985 if (mode != MIGRATE_SYNC_NO_COPY) 986 migrate_page_copy(newpage, page); 987 else 988 migrate_page_states(newpage, page); 989 990 return MIGRATEPAGE_SUCCESS; 991 } 992 993 static int hugetlbfs_error_remove_page(struct address_space *mapping, 994 struct page *page) 995 { 996 struct inode *inode = mapping->host; 997 pgoff_t index = page->index; 998 999 remove_huge_page(page); 1000 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 1001 hugetlb_fix_reserve_counts(inode); 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * Display the mount options in /proc/mounts. 1008 */ 1009 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1010 { 1011 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1012 struct hugepage_subpool *spool = sbinfo->spool; 1013 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1014 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1015 char mod; 1016 1017 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1018 seq_printf(m, ",uid=%u", 1019 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1020 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1021 seq_printf(m, ",gid=%u", 1022 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1023 if (sbinfo->mode != 0755) 1024 seq_printf(m, ",mode=%o", sbinfo->mode); 1025 if (sbinfo->max_inodes != -1) 1026 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1027 1028 hpage_size /= 1024; 1029 mod = 'K'; 1030 if (hpage_size >= 1024) { 1031 hpage_size /= 1024; 1032 mod = 'M'; 1033 } 1034 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1035 if (spool) { 1036 if (spool->max_hpages != -1) 1037 seq_printf(m, ",size=%llu", 1038 (unsigned long long)spool->max_hpages << hpage_shift); 1039 if (spool->min_hpages != -1) 1040 seq_printf(m, ",min_size=%llu", 1041 (unsigned long long)spool->min_hpages << hpage_shift); 1042 } 1043 return 0; 1044 } 1045 1046 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1047 { 1048 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1049 struct hstate *h = hstate_inode(d_inode(dentry)); 1050 1051 buf->f_type = HUGETLBFS_MAGIC; 1052 buf->f_bsize = huge_page_size(h); 1053 if (sbinfo) { 1054 spin_lock(&sbinfo->stat_lock); 1055 /* If no limits set, just report 0 for max/free/used 1056 * blocks, like simple_statfs() */ 1057 if (sbinfo->spool) { 1058 long free_pages; 1059 1060 spin_lock(&sbinfo->spool->lock); 1061 buf->f_blocks = sbinfo->spool->max_hpages; 1062 free_pages = sbinfo->spool->max_hpages 1063 - sbinfo->spool->used_hpages; 1064 buf->f_bavail = buf->f_bfree = free_pages; 1065 spin_unlock(&sbinfo->spool->lock); 1066 buf->f_files = sbinfo->max_inodes; 1067 buf->f_ffree = sbinfo->free_inodes; 1068 } 1069 spin_unlock(&sbinfo->stat_lock); 1070 } 1071 buf->f_namelen = NAME_MAX; 1072 return 0; 1073 } 1074 1075 static void hugetlbfs_put_super(struct super_block *sb) 1076 { 1077 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1078 1079 if (sbi) { 1080 sb->s_fs_info = NULL; 1081 1082 if (sbi->spool) 1083 hugepage_put_subpool(sbi->spool); 1084 1085 kfree(sbi); 1086 } 1087 } 1088 1089 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1090 { 1091 if (sbinfo->free_inodes >= 0) { 1092 spin_lock(&sbinfo->stat_lock); 1093 if (unlikely(!sbinfo->free_inodes)) { 1094 spin_unlock(&sbinfo->stat_lock); 1095 return 0; 1096 } 1097 sbinfo->free_inodes--; 1098 spin_unlock(&sbinfo->stat_lock); 1099 } 1100 1101 return 1; 1102 } 1103 1104 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1105 { 1106 if (sbinfo->free_inodes >= 0) { 1107 spin_lock(&sbinfo->stat_lock); 1108 sbinfo->free_inodes++; 1109 spin_unlock(&sbinfo->stat_lock); 1110 } 1111 } 1112 1113 1114 static struct kmem_cache *hugetlbfs_inode_cachep; 1115 1116 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1117 { 1118 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1119 struct hugetlbfs_inode_info *p; 1120 1121 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1122 return NULL; 1123 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1124 if (unlikely(!p)) { 1125 hugetlbfs_inc_free_inodes(sbinfo); 1126 return NULL; 1127 } 1128 1129 /* 1130 * Any time after allocation, hugetlbfs_destroy_inode can be called 1131 * for the inode. mpol_free_shared_policy is unconditionally called 1132 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1133 * in case of a quick call to destroy. 1134 * 1135 * Note that the policy is initialized even if we are creating a 1136 * private inode. This simplifies hugetlbfs_destroy_inode. 1137 */ 1138 mpol_shared_policy_init(&p->policy, NULL); 1139 1140 return &p->vfs_inode; 1141 } 1142 1143 static void hugetlbfs_free_inode(struct inode *inode) 1144 { 1145 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1146 } 1147 1148 static void hugetlbfs_destroy_inode(struct inode *inode) 1149 { 1150 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1151 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1152 } 1153 1154 static const struct address_space_operations hugetlbfs_aops = { 1155 .write_begin = hugetlbfs_write_begin, 1156 .write_end = hugetlbfs_write_end, 1157 .dirty_folio = noop_dirty_folio, 1158 .migratepage = hugetlbfs_migrate_page, 1159 .error_remove_page = hugetlbfs_error_remove_page, 1160 }; 1161 1162 1163 static void init_once(void *foo) 1164 { 1165 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1166 1167 inode_init_once(&ei->vfs_inode); 1168 } 1169 1170 const struct file_operations hugetlbfs_file_operations = { 1171 .read_iter = hugetlbfs_read_iter, 1172 .mmap = hugetlbfs_file_mmap, 1173 .fsync = noop_fsync, 1174 .get_unmapped_area = hugetlb_get_unmapped_area, 1175 .llseek = default_llseek, 1176 .fallocate = hugetlbfs_fallocate, 1177 }; 1178 1179 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1180 .create = hugetlbfs_create, 1181 .lookup = simple_lookup, 1182 .link = simple_link, 1183 .unlink = simple_unlink, 1184 .symlink = hugetlbfs_symlink, 1185 .mkdir = hugetlbfs_mkdir, 1186 .rmdir = simple_rmdir, 1187 .mknod = hugetlbfs_mknod, 1188 .rename = simple_rename, 1189 .setattr = hugetlbfs_setattr, 1190 .tmpfile = hugetlbfs_tmpfile, 1191 }; 1192 1193 static const struct inode_operations hugetlbfs_inode_operations = { 1194 .setattr = hugetlbfs_setattr, 1195 }; 1196 1197 static const struct super_operations hugetlbfs_ops = { 1198 .alloc_inode = hugetlbfs_alloc_inode, 1199 .free_inode = hugetlbfs_free_inode, 1200 .destroy_inode = hugetlbfs_destroy_inode, 1201 .evict_inode = hugetlbfs_evict_inode, 1202 .statfs = hugetlbfs_statfs, 1203 .put_super = hugetlbfs_put_super, 1204 .show_options = hugetlbfs_show_options, 1205 }; 1206 1207 /* 1208 * Convert size option passed from command line to number of huge pages 1209 * in the pool specified by hstate. Size option could be in bytes 1210 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1211 */ 1212 static long 1213 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1214 enum hugetlbfs_size_type val_type) 1215 { 1216 if (val_type == NO_SIZE) 1217 return -1; 1218 1219 if (val_type == SIZE_PERCENT) { 1220 size_opt <<= huge_page_shift(h); 1221 size_opt *= h->max_huge_pages; 1222 do_div(size_opt, 100); 1223 } 1224 1225 size_opt >>= huge_page_shift(h); 1226 return size_opt; 1227 } 1228 1229 /* 1230 * Parse one mount parameter. 1231 */ 1232 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1233 { 1234 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1235 struct fs_parse_result result; 1236 char *rest; 1237 unsigned long ps; 1238 int opt; 1239 1240 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1241 if (opt < 0) 1242 return opt; 1243 1244 switch (opt) { 1245 case Opt_uid: 1246 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1247 if (!uid_valid(ctx->uid)) 1248 goto bad_val; 1249 return 0; 1250 1251 case Opt_gid: 1252 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1253 if (!gid_valid(ctx->gid)) 1254 goto bad_val; 1255 return 0; 1256 1257 case Opt_mode: 1258 ctx->mode = result.uint_32 & 01777U; 1259 return 0; 1260 1261 case Opt_size: 1262 /* memparse() will accept a K/M/G without a digit */ 1263 if (!isdigit(param->string[0])) 1264 goto bad_val; 1265 ctx->max_size_opt = memparse(param->string, &rest); 1266 ctx->max_val_type = SIZE_STD; 1267 if (*rest == '%') 1268 ctx->max_val_type = SIZE_PERCENT; 1269 return 0; 1270 1271 case Opt_nr_inodes: 1272 /* memparse() will accept a K/M/G without a digit */ 1273 if (!isdigit(param->string[0])) 1274 goto bad_val; 1275 ctx->nr_inodes = memparse(param->string, &rest); 1276 return 0; 1277 1278 case Opt_pagesize: 1279 ps = memparse(param->string, &rest); 1280 ctx->hstate = size_to_hstate(ps); 1281 if (!ctx->hstate) { 1282 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1283 return -EINVAL; 1284 } 1285 return 0; 1286 1287 case Opt_min_size: 1288 /* memparse() will accept a K/M/G without a digit */ 1289 if (!isdigit(param->string[0])) 1290 goto bad_val; 1291 ctx->min_size_opt = memparse(param->string, &rest); 1292 ctx->min_val_type = SIZE_STD; 1293 if (*rest == '%') 1294 ctx->min_val_type = SIZE_PERCENT; 1295 return 0; 1296 1297 default: 1298 return -EINVAL; 1299 } 1300 1301 bad_val: 1302 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1303 param->string, param->key); 1304 } 1305 1306 /* 1307 * Validate the parsed options. 1308 */ 1309 static int hugetlbfs_validate(struct fs_context *fc) 1310 { 1311 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1312 1313 /* 1314 * Use huge page pool size (in hstate) to convert the size 1315 * options to number of huge pages. If NO_SIZE, -1 is returned. 1316 */ 1317 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1318 ctx->max_size_opt, 1319 ctx->max_val_type); 1320 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1321 ctx->min_size_opt, 1322 ctx->min_val_type); 1323 1324 /* 1325 * If max_size was specified, then min_size must be smaller 1326 */ 1327 if (ctx->max_val_type > NO_SIZE && 1328 ctx->min_hpages > ctx->max_hpages) { 1329 pr_err("Minimum size can not be greater than maximum size\n"); 1330 return -EINVAL; 1331 } 1332 1333 return 0; 1334 } 1335 1336 static int 1337 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1338 { 1339 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1340 struct hugetlbfs_sb_info *sbinfo; 1341 1342 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1343 if (!sbinfo) 1344 return -ENOMEM; 1345 sb->s_fs_info = sbinfo; 1346 spin_lock_init(&sbinfo->stat_lock); 1347 sbinfo->hstate = ctx->hstate; 1348 sbinfo->max_inodes = ctx->nr_inodes; 1349 sbinfo->free_inodes = ctx->nr_inodes; 1350 sbinfo->spool = NULL; 1351 sbinfo->uid = ctx->uid; 1352 sbinfo->gid = ctx->gid; 1353 sbinfo->mode = ctx->mode; 1354 1355 /* 1356 * Allocate and initialize subpool if maximum or minimum size is 1357 * specified. Any needed reservations (for minimum size) are taken 1358 * taken when the subpool is created. 1359 */ 1360 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1361 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1362 ctx->max_hpages, 1363 ctx->min_hpages); 1364 if (!sbinfo->spool) 1365 goto out_free; 1366 } 1367 sb->s_maxbytes = MAX_LFS_FILESIZE; 1368 sb->s_blocksize = huge_page_size(ctx->hstate); 1369 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1370 sb->s_magic = HUGETLBFS_MAGIC; 1371 sb->s_op = &hugetlbfs_ops; 1372 sb->s_time_gran = 1; 1373 1374 /* 1375 * Due to the special and limited functionality of hugetlbfs, it does 1376 * not work well as a stacking filesystem. 1377 */ 1378 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1379 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1380 if (!sb->s_root) 1381 goto out_free; 1382 return 0; 1383 out_free: 1384 kfree(sbinfo->spool); 1385 kfree(sbinfo); 1386 return -ENOMEM; 1387 } 1388 1389 static int hugetlbfs_get_tree(struct fs_context *fc) 1390 { 1391 int err = hugetlbfs_validate(fc); 1392 if (err) 1393 return err; 1394 return get_tree_nodev(fc, hugetlbfs_fill_super); 1395 } 1396 1397 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1398 { 1399 kfree(fc->fs_private); 1400 } 1401 1402 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1403 .free = hugetlbfs_fs_context_free, 1404 .parse_param = hugetlbfs_parse_param, 1405 .get_tree = hugetlbfs_get_tree, 1406 }; 1407 1408 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1409 { 1410 struct hugetlbfs_fs_context *ctx; 1411 1412 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1413 if (!ctx) 1414 return -ENOMEM; 1415 1416 ctx->max_hpages = -1; /* No limit on size by default */ 1417 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1418 ctx->uid = current_fsuid(); 1419 ctx->gid = current_fsgid(); 1420 ctx->mode = 0755; 1421 ctx->hstate = &default_hstate; 1422 ctx->min_hpages = -1; /* No default minimum size */ 1423 ctx->max_val_type = NO_SIZE; 1424 ctx->min_val_type = NO_SIZE; 1425 fc->fs_private = ctx; 1426 fc->ops = &hugetlbfs_fs_context_ops; 1427 return 0; 1428 } 1429 1430 static struct file_system_type hugetlbfs_fs_type = { 1431 .name = "hugetlbfs", 1432 .init_fs_context = hugetlbfs_init_fs_context, 1433 .parameters = hugetlb_fs_parameters, 1434 .kill_sb = kill_litter_super, 1435 }; 1436 1437 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1438 1439 static int can_do_hugetlb_shm(void) 1440 { 1441 kgid_t shm_group; 1442 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1443 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1444 } 1445 1446 static int get_hstate_idx(int page_size_log) 1447 { 1448 struct hstate *h = hstate_sizelog(page_size_log); 1449 1450 if (!h) 1451 return -1; 1452 return hstate_index(h); 1453 } 1454 1455 /* 1456 * Note that size should be aligned to proper hugepage size in caller side, 1457 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1458 */ 1459 struct file *hugetlb_file_setup(const char *name, size_t size, 1460 vm_flags_t acctflag, int creat_flags, 1461 int page_size_log) 1462 { 1463 struct inode *inode; 1464 struct vfsmount *mnt; 1465 int hstate_idx; 1466 struct file *file; 1467 1468 hstate_idx = get_hstate_idx(page_size_log); 1469 if (hstate_idx < 0) 1470 return ERR_PTR(-ENODEV); 1471 1472 mnt = hugetlbfs_vfsmount[hstate_idx]; 1473 if (!mnt) 1474 return ERR_PTR(-ENOENT); 1475 1476 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1477 struct ucounts *ucounts = current_ucounts(); 1478 1479 if (user_shm_lock(size, ucounts)) { 1480 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1481 current->comm, current->pid); 1482 user_shm_unlock(size, ucounts); 1483 } 1484 return ERR_PTR(-EPERM); 1485 } 1486 1487 file = ERR_PTR(-ENOSPC); 1488 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1489 if (!inode) 1490 goto out; 1491 if (creat_flags == HUGETLB_SHMFS_INODE) 1492 inode->i_flags |= S_PRIVATE; 1493 1494 inode->i_size = size; 1495 clear_nlink(inode); 1496 1497 if (!hugetlb_reserve_pages(inode, 0, 1498 size >> huge_page_shift(hstate_inode(inode)), NULL, 1499 acctflag)) 1500 file = ERR_PTR(-ENOMEM); 1501 else 1502 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1503 &hugetlbfs_file_operations); 1504 if (!IS_ERR(file)) 1505 return file; 1506 1507 iput(inode); 1508 out: 1509 return file; 1510 } 1511 1512 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1513 { 1514 struct fs_context *fc; 1515 struct vfsmount *mnt; 1516 1517 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1518 if (IS_ERR(fc)) { 1519 mnt = ERR_CAST(fc); 1520 } else { 1521 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1522 ctx->hstate = h; 1523 mnt = fc_mount(fc); 1524 put_fs_context(fc); 1525 } 1526 if (IS_ERR(mnt)) 1527 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1528 huge_page_size(h) >> 10); 1529 return mnt; 1530 } 1531 1532 static int __init init_hugetlbfs_fs(void) 1533 { 1534 struct vfsmount *mnt; 1535 struct hstate *h; 1536 int error; 1537 int i; 1538 1539 if (!hugepages_supported()) { 1540 pr_info("disabling because there are no supported hugepage sizes\n"); 1541 return -ENOTSUPP; 1542 } 1543 1544 error = -ENOMEM; 1545 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1546 sizeof(struct hugetlbfs_inode_info), 1547 0, SLAB_ACCOUNT, init_once); 1548 if (hugetlbfs_inode_cachep == NULL) 1549 goto out; 1550 1551 error = register_filesystem(&hugetlbfs_fs_type); 1552 if (error) 1553 goto out_free; 1554 1555 /* default hstate mount is required */ 1556 mnt = mount_one_hugetlbfs(&default_hstate); 1557 if (IS_ERR(mnt)) { 1558 error = PTR_ERR(mnt); 1559 goto out_unreg; 1560 } 1561 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1562 1563 /* other hstates are optional */ 1564 i = 0; 1565 for_each_hstate(h) { 1566 if (i == default_hstate_idx) { 1567 i++; 1568 continue; 1569 } 1570 1571 mnt = mount_one_hugetlbfs(h); 1572 if (IS_ERR(mnt)) 1573 hugetlbfs_vfsmount[i] = NULL; 1574 else 1575 hugetlbfs_vfsmount[i] = mnt; 1576 i++; 1577 } 1578 1579 return 0; 1580 1581 out_unreg: 1582 (void)unregister_filesystem(&hugetlbfs_fs_type); 1583 out_free: 1584 kmem_cache_destroy(hugetlbfs_inode_cachep); 1585 out: 1586 return error; 1587 } 1588 fs_initcall(init_hugetlbfs_fs) 1589