xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 294299b3)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (!hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 static unsigned long
199 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
200 		unsigned long len, unsigned long pgoff, unsigned long flags)
201 {
202 	struct hstate *h = hstate_file(file);
203 	struct vm_unmapped_area_info info;
204 
205 	info.flags = 0;
206 	info.length = len;
207 	info.low_limit = current->mm->mmap_base;
208 	info.high_limit = arch_get_mmap_end(addr, len, flags);
209 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
210 	info.align_offset = 0;
211 	return vm_unmapped_area(&info);
212 }
213 
214 static unsigned long
215 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
216 		unsigned long len, unsigned long pgoff, unsigned long flags)
217 {
218 	struct hstate *h = hstate_file(file);
219 	struct vm_unmapped_area_info info;
220 
221 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
222 	info.length = len;
223 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
224 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
225 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226 	info.align_offset = 0;
227 	addr = vm_unmapped_area(&info);
228 
229 	/*
230 	 * A failed mmap() very likely causes application failure,
231 	 * so fall back to the bottom-up function here. This scenario
232 	 * can happen with large stack limits and large mmap()
233 	 * allocations.
234 	 */
235 	if (unlikely(offset_in_page(addr))) {
236 		VM_BUG_ON(addr != -ENOMEM);
237 		info.flags = 0;
238 		info.low_limit = current->mm->mmap_base;
239 		info.high_limit = arch_get_mmap_end(addr, len, flags);
240 		addr = vm_unmapped_area(&info);
241 	}
242 
243 	return addr;
244 }
245 
246 unsigned long
247 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
248 				  unsigned long len, unsigned long pgoff,
249 				  unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
255 
256 	if (len & ~huge_page_mask(h))
257 		return -EINVAL;
258 	if (len > TASK_SIZE)
259 		return -ENOMEM;
260 
261 	if (flags & MAP_FIXED) {
262 		if (prepare_hugepage_range(file, addr, len))
263 			return -EINVAL;
264 		return addr;
265 	}
266 
267 	if (addr) {
268 		addr = ALIGN(addr, huge_page_size(h));
269 		vma = find_vma(mm, addr);
270 		if (mmap_end - len >= addr &&
271 		    (!vma || addr + len <= vm_start_gap(vma)))
272 			return addr;
273 	}
274 
275 	/*
276 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
277 	 * If architectures have special needs, they should define their own
278 	 * version of hugetlb_get_unmapped_area.
279 	 */
280 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
282 				pgoff, flags);
283 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284 			pgoff, flags);
285 }
286 
287 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
288 static unsigned long
289 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
290 			  unsigned long len, unsigned long pgoff,
291 			  unsigned long flags)
292 {
293 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
294 }
295 #endif
296 
297 static size_t
298 hugetlbfs_read_actor(struct page *page, unsigned long offset,
299 			struct iov_iter *to, unsigned long size)
300 {
301 	size_t copied = 0;
302 	int i, chunksize;
303 
304 	/* Find which 4k chunk and offset with in that chunk */
305 	i = offset >> PAGE_SHIFT;
306 	offset = offset & ~PAGE_MASK;
307 
308 	while (size) {
309 		size_t n;
310 		chunksize = PAGE_SIZE;
311 		if (offset)
312 			chunksize -= offset;
313 		if (chunksize > size)
314 			chunksize = size;
315 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
316 		copied += n;
317 		if (n != chunksize)
318 			return copied;
319 		offset = 0;
320 		size -= chunksize;
321 		i++;
322 	}
323 	return copied;
324 }
325 
326 /*
327  * Support for read() - Find the page attached to f_mapping and copy out the
328  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
329  * since it has PAGE_SIZE assumptions.
330  */
331 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
332 {
333 	struct file *file = iocb->ki_filp;
334 	struct hstate *h = hstate_file(file);
335 	struct address_space *mapping = file->f_mapping;
336 	struct inode *inode = mapping->host;
337 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
338 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
339 	unsigned long end_index;
340 	loff_t isize;
341 	ssize_t retval = 0;
342 
343 	while (iov_iter_count(to)) {
344 		struct page *page;
345 		size_t nr, copied;
346 
347 		/* nr is the maximum number of bytes to copy from this page */
348 		nr = huge_page_size(h);
349 		isize = i_size_read(inode);
350 		if (!isize)
351 			break;
352 		end_index = (isize - 1) >> huge_page_shift(h);
353 		if (index > end_index)
354 			break;
355 		if (index == end_index) {
356 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
357 			if (nr <= offset)
358 				break;
359 		}
360 		nr = nr - offset;
361 
362 		/* Find the page */
363 		page = find_lock_page(mapping, index);
364 		if (unlikely(page == NULL)) {
365 			/*
366 			 * We have a HOLE, zero out the user-buffer for the
367 			 * length of the hole or request.
368 			 */
369 			copied = iov_iter_zero(nr, to);
370 		} else {
371 			unlock_page(page);
372 
373 			/*
374 			 * We have the page, copy it to user space buffer.
375 			 */
376 			copied = hugetlbfs_read_actor(page, offset, to, nr);
377 			put_page(page);
378 		}
379 		offset += copied;
380 		retval += copied;
381 		if (copied != nr && iov_iter_count(to)) {
382 			if (!retval)
383 				retval = -EFAULT;
384 			break;
385 		}
386 		index += offset >> huge_page_shift(h);
387 		offset &= ~huge_page_mask(h);
388 	}
389 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
390 	return retval;
391 }
392 
393 static int hugetlbfs_write_begin(struct file *file,
394 			struct address_space *mapping,
395 			loff_t pos, unsigned len, unsigned flags,
396 			struct page **pagep, void **fsdata)
397 {
398 	return -EINVAL;
399 }
400 
401 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
402 			loff_t pos, unsigned len, unsigned copied,
403 			struct page *page, void *fsdata)
404 {
405 	BUG();
406 	return -EINVAL;
407 }
408 
409 static void remove_huge_page(struct page *page)
410 {
411 	ClearPageDirty(page);
412 	ClearPageUptodate(page);
413 	delete_from_page_cache(page);
414 }
415 
416 static void
417 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
418 {
419 	struct vm_area_struct *vma;
420 
421 	/*
422 	 * end == 0 indicates that the entire range after start should be
423 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
424 	 * an inclusive "last".
425 	 */
426 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
427 		unsigned long v_offset;
428 		unsigned long v_end;
429 
430 		/*
431 		 * Can the expression below overflow on 32-bit arches?
432 		 * No, because the interval tree returns us only those vmas
433 		 * which overlap the truncated area starting at pgoff,
434 		 * and no vma on a 32-bit arch can span beyond the 4GB.
435 		 */
436 		if (vma->vm_pgoff < start)
437 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
438 		else
439 			v_offset = 0;
440 
441 		if (!end)
442 			v_end = vma->vm_end;
443 		else {
444 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
445 							+ vma->vm_start;
446 			if (v_end > vma->vm_end)
447 				v_end = vma->vm_end;
448 		}
449 
450 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
451 									NULL);
452 	}
453 }
454 
455 /*
456  * remove_inode_hugepages handles two distinct cases: truncation and hole
457  * punch.  There are subtle differences in operation for each case.
458  *
459  * truncation is indicated by end of range being LLONG_MAX
460  *	In this case, we first scan the range and release found pages.
461  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
462  *	maps and global counts.  Page faults can not race with truncation
463  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
464  *	page faults in the truncated range by checking i_size.  i_size is
465  *	modified while holding i_mmap_rwsem.
466  * hole punch is indicated if end is not LLONG_MAX
467  *	In the hole punch case we scan the range and release found pages.
468  *	Only when releasing a page is the associated region/reserve map
469  *	deleted.  The region/reserve map for ranges without associated
470  *	pages are not modified.  Page faults can race with hole punch.
471  *	This is indicated if we find a mapped page.
472  * Note: If the passed end of range value is beyond the end of file, but
473  * not LLONG_MAX this routine still performs a hole punch operation.
474  */
475 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
476 				   loff_t lend)
477 {
478 	struct hstate *h = hstate_inode(inode);
479 	struct address_space *mapping = &inode->i_data;
480 	const pgoff_t start = lstart >> huge_page_shift(h);
481 	const pgoff_t end = lend >> huge_page_shift(h);
482 	struct pagevec pvec;
483 	pgoff_t next, index;
484 	int i, freed = 0;
485 	bool truncate_op = (lend == LLONG_MAX);
486 
487 	pagevec_init(&pvec);
488 	next = start;
489 	while (next < end) {
490 		/*
491 		 * When no more pages are found, we are done.
492 		 */
493 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
494 			break;
495 
496 		for (i = 0; i < pagevec_count(&pvec); ++i) {
497 			struct page *page = pvec.pages[i];
498 			u32 hash = 0;
499 
500 			index = page->index;
501 			if (!truncate_op) {
502 				/*
503 				 * Only need to hold the fault mutex in the
504 				 * hole punch case.  This prevents races with
505 				 * page faults.  Races are not possible in the
506 				 * case of truncation.
507 				 */
508 				hash = hugetlb_fault_mutex_hash(mapping, index);
509 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
510 			}
511 
512 			/*
513 			 * If page is mapped, it was faulted in after being
514 			 * unmapped in caller.  Unmap (again) now after taking
515 			 * the fault mutex.  The mutex will prevent faults
516 			 * until we finish removing the page.
517 			 *
518 			 * This race can only happen in the hole punch case.
519 			 * Getting here in a truncate operation is a bug.
520 			 */
521 			if (unlikely(page_mapped(page))) {
522 				BUG_ON(truncate_op);
523 
524 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
525 				i_mmap_lock_write(mapping);
526 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
527 				hugetlb_vmdelete_list(&mapping->i_mmap,
528 					index * pages_per_huge_page(h),
529 					(index + 1) * pages_per_huge_page(h));
530 				i_mmap_unlock_write(mapping);
531 			}
532 
533 			lock_page(page);
534 			/*
535 			 * We must free the huge page and remove from page
536 			 * cache (remove_huge_page) BEFORE removing the
537 			 * region/reserve map (hugetlb_unreserve_pages).  In
538 			 * rare out of memory conditions, removal of the
539 			 * region/reserve map could fail. Correspondingly,
540 			 * the subpool and global reserve usage count can need
541 			 * to be adjusted.
542 			 */
543 			VM_BUG_ON(HPageRestoreReserve(page));
544 			remove_huge_page(page);
545 			freed++;
546 			if (!truncate_op) {
547 				if (unlikely(hugetlb_unreserve_pages(inode,
548 							index, index + 1, 1)))
549 					hugetlb_fix_reserve_counts(inode);
550 			}
551 
552 			unlock_page(page);
553 			if (!truncate_op)
554 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
555 		}
556 		huge_pagevec_release(&pvec);
557 		cond_resched();
558 	}
559 
560 	if (truncate_op)
561 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
562 }
563 
564 static void hugetlbfs_evict_inode(struct inode *inode)
565 {
566 	struct resv_map *resv_map;
567 
568 	remove_inode_hugepages(inode, 0, LLONG_MAX);
569 
570 	/*
571 	 * Get the resv_map from the address space embedded in the inode.
572 	 * This is the address space which points to any resv_map allocated
573 	 * at inode creation time.  If this is a device special inode,
574 	 * i_mapping may not point to the original address space.
575 	 */
576 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
577 	/* Only regular and link inodes have associated reserve maps */
578 	if (resv_map)
579 		resv_map_release(&resv_map->refs);
580 	clear_inode(inode);
581 }
582 
583 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
584 {
585 	pgoff_t pgoff;
586 	struct address_space *mapping = inode->i_mapping;
587 	struct hstate *h = hstate_inode(inode);
588 
589 	BUG_ON(offset & ~huge_page_mask(h));
590 	pgoff = offset >> PAGE_SHIFT;
591 
592 	i_mmap_lock_write(mapping);
593 	i_size_write(inode, offset);
594 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
595 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
596 	i_mmap_unlock_write(mapping);
597 	remove_inode_hugepages(inode, offset, LLONG_MAX);
598 }
599 
600 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
601 {
602 	struct hstate *h = hstate_inode(inode);
603 	loff_t hpage_size = huge_page_size(h);
604 	loff_t hole_start, hole_end;
605 
606 	/*
607 	 * For hole punch round up the beginning offset of the hole and
608 	 * round down the end.
609 	 */
610 	hole_start = round_up(offset, hpage_size);
611 	hole_end = round_down(offset + len, hpage_size);
612 
613 	if (hole_end > hole_start) {
614 		struct address_space *mapping = inode->i_mapping;
615 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
616 
617 		inode_lock(inode);
618 
619 		/* protected by i_rwsem */
620 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
621 			inode_unlock(inode);
622 			return -EPERM;
623 		}
624 
625 		i_mmap_lock_write(mapping);
626 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
627 			hugetlb_vmdelete_list(&mapping->i_mmap,
628 						hole_start >> PAGE_SHIFT,
629 						hole_end  >> PAGE_SHIFT);
630 		i_mmap_unlock_write(mapping);
631 		remove_inode_hugepages(inode, hole_start, hole_end);
632 		inode_unlock(inode);
633 	}
634 
635 	return 0;
636 }
637 
638 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
639 				loff_t len)
640 {
641 	struct inode *inode = file_inode(file);
642 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
643 	struct address_space *mapping = inode->i_mapping;
644 	struct hstate *h = hstate_inode(inode);
645 	struct vm_area_struct pseudo_vma;
646 	struct mm_struct *mm = current->mm;
647 	loff_t hpage_size = huge_page_size(h);
648 	unsigned long hpage_shift = huge_page_shift(h);
649 	pgoff_t start, index, end;
650 	int error;
651 	u32 hash;
652 
653 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
654 		return -EOPNOTSUPP;
655 
656 	if (mode & FALLOC_FL_PUNCH_HOLE)
657 		return hugetlbfs_punch_hole(inode, offset, len);
658 
659 	/*
660 	 * Default preallocate case.
661 	 * For this range, start is rounded down and end is rounded up
662 	 * as well as being converted to page offsets.
663 	 */
664 	start = offset >> hpage_shift;
665 	end = (offset + len + hpage_size - 1) >> hpage_shift;
666 
667 	inode_lock(inode);
668 
669 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
670 	error = inode_newsize_ok(inode, offset + len);
671 	if (error)
672 		goto out;
673 
674 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
675 		error = -EPERM;
676 		goto out;
677 	}
678 
679 	/*
680 	 * Initialize a pseudo vma as this is required by the huge page
681 	 * allocation routines.  If NUMA is configured, use page index
682 	 * as input to create an allocation policy.
683 	 */
684 	vma_init(&pseudo_vma, mm);
685 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
686 	pseudo_vma.vm_file = file;
687 
688 	for (index = start; index < end; index++) {
689 		/*
690 		 * This is supposed to be the vaddr where the page is being
691 		 * faulted in, but we have no vaddr here.
692 		 */
693 		struct page *page;
694 		unsigned long addr;
695 
696 		cond_resched();
697 
698 		/*
699 		 * fallocate(2) manpage permits EINTR; we may have been
700 		 * interrupted because we are using up too much memory.
701 		 */
702 		if (signal_pending(current)) {
703 			error = -EINTR;
704 			break;
705 		}
706 
707 		/* Set numa allocation policy based on index */
708 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
709 
710 		/* addr is the offset within the file (zero based) */
711 		addr = index * hpage_size;
712 
713 		/*
714 		 * fault mutex taken here, protects against fault path
715 		 * and hole punch.  inode_lock previously taken protects
716 		 * against truncation.
717 		 */
718 		hash = hugetlb_fault_mutex_hash(mapping, index);
719 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
720 
721 		/* See if already present in mapping to avoid alloc/free */
722 		page = find_get_page(mapping, index);
723 		if (page) {
724 			put_page(page);
725 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
726 			hugetlb_drop_vma_policy(&pseudo_vma);
727 			continue;
728 		}
729 
730 		/*
731 		 * Allocate page without setting the avoid_reserve argument.
732 		 * There certainly are no reserves associated with the
733 		 * pseudo_vma.  However, there could be shared mappings with
734 		 * reserves for the file at the inode level.  If we fallocate
735 		 * pages in these areas, we need to consume the reserves
736 		 * to keep reservation accounting consistent.
737 		 */
738 		page = alloc_huge_page(&pseudo_vma, addr, 0);
739 		hugetlb_drop_vma_policy(&pseudo_vma);
740 		if (IS_ERR(page)) {
741 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
742 			error = PTR_ERR(page);
743 			goto out;
744 		}
745 		clear_huge_page(page, addr, pages_per_huge_page(h));
746 		__SetPageUptodate(page);
747 		error = huge_add_to_page_cache(page, mapping, index);
748 		if (unlikely(error)) {
749 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
750 			put_page(page);
751 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
752 			goto out;
753 		}
754 
755 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
756 
757 		SetHPageMigratable(page);
758 		/*
759 		 * unlock_page because locked by add_to_page_cache()
760 		 * put_page() due to reference from alloc_huge_page()
761 		 */
762 		unlock_page(page);
763 		put_page(page);
764 	}
765 
766 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
767 		i_size_write(inode, offset + len);
768 	inode->i_ctime = current_time(inode);
769 out:
770 	inode_unlock(inode);
771 	return error;
772 }
773 
774 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
775 			     struct dentry *dentry, struct iattr *attr)
776 {
777 	struct inode *inode = d_inode(dentry);
778 	struct hstate *h = hstate_inode(inode);
779 	int error;
780 	unsigned int ia_valid = attr->ia_valid;
781 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
782 
783 	error = setattr_prepare(&init_user_ns, dentry, attr);
784 	if (error)
785 		return error;
786 
787 	if (ia_valid & ATTR_SIZE) {
788 		loff_t oldsize = inode->i_size;
789 		loff_t newsize = attr->ia_size;
790 
791 		if (newsize & ~huge_page_mask(h))
792 			return -EINVAL;
793 		/* protected by i_rwsem */
794 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
795 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
796 			return -EPERM;
797 		hugetlb_vmtruncate(inode, newsize);
798 	}
799 
800 	setattr_copy(&init_user_ns, inode, attr);
801 	mark_inode_dirty(inode);
802 	return 0;
803 }
804 
805 static struct inode *hugetlbfs_get_root(struct super_block *sb,
806 					struct hugetlbfs_fs_context *ctx)
807 {
808 	struct inode *inode;
809 
810 	inode = new_inode(sb);
811 	if (inode) {
812 		inode->i_ino = get_next_ino();
813 		inode->i_mode = S_IFDIR | ctx->mode;
814 		inode->i_uid = ctx->uid;
815 		inode->i_gid = ctx->gid;
816 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
817 		inode->i_op = &hugetlbfs_dir_inode_operations;
818 		inode->i_fop = &simple_dir_operations;
819 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
820 		inc_nlink(inode);
821 		lockdep_annotate_inode_mutex_key(inode);
822 	}
823 	return inode;
824 }
825 
826 /*
827  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
828  * be taken from reclaim -- unlike regular filesystems. This needs an
829  * annotation because huge_pmd_share() does an allocation under hugetlb's
830  * i_mmap_rwsem.
831  */
832 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
833 
834 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
835 					struct inode *dir,
836 					umode_t mode, dev_t dev)
837 {
838 	struct inode *inode;
839 	struct resv_map *resv_map = NULL;
840 
841 	/*
842 	 * Reserve maps are only needed for inodes that can have associated
843 	 * page allocations.
844 	 */
845 	if (S_ISREG(mode) || S_ISLNK(mode)) {
846 		resv_map = resv_map_alloc();
847 		if (!resv_map)
848 			return NULL;
849 	}
850 
851 	inode = new_inode(sb);
852 	if (inode) {
853 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
854 
855 		inode->i_ino = get_next_ino();
856 		inode_init_owner(&init_user_ns, inode, dir, mode);
857 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
858 				&hugetlbfs_i_mmap_rwsem_key);
859 		inode->i_mapping->a_ops = &hugetlbfs_aops;
860 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
861 		inode->i_mapping->private_data = resv_map;
862 		info->seals = F_SEAL_SEAL;
863 		switch (mode & S_IFMT) {
864 		default:
865 			init_special_inode(inode, mode, dev);
866 			break;
867 		case S_IFREG:
868 			inode->i_op = &hugetlbfs_inode_operations;
869 			inode->i_fop = &hugetlbfs_file_operations;
870 			break;
871 		case S_IFDIR:
872 			inode->i_op = &hugetlbfs_dir_inode_operations;
873 			inode->i_fop = &simple_dir_operations;
874 
875 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
876 			inc_nlink(inode);
877 			break;
878 		case S_IFLNK:
879 			inode->i_op = &page_symlink_inode_operations;
880 			inode_nohighmem(inode);
881 			break;
882 		}
883 		lockdep_annotate_inode_mutex_key(inode);
884 	} else {
885 		if (resv_map)
886 			kref_put(&resv_map->refs, resv_map_release);
887 	}
888 
889 	return inode;
890 }
891 
892 /*
893  * File creation. Allocate an inode, and we're done..
894  */
895 static int do_hugetlbfs_mknod(struct inode *dir,
896 			struct dentry *dentry,
897 			umode_t mode,
898 			dev_t dev,
899 			bool tmpfile)
900 {
901 	struct inode *inode;
902 	int error = -ENOSPC;
903 
904 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
905 	if (inode) {
906 		dir->i_ctime = dir->i_mtime = current_time(dir);
907 		if (tmpfile) {
908 			d_tmpfile(dentry, inode);
909 		} else {
910 			d_instantiate(dentry, inode);
911 			dget(dentry);/* Extra count - pin the dentry in core */
912 		}
913 		error = 0;
914 	}
915 	return error;
916 }
917 
918 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
919 			   struct dentry *dentry, umode_t mode, dev_t dev)
920 {
921 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
922 }
923 
924 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
925 			   struct dentry *dentry, umode_t mode)
926 {
927 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
928 				     mode | S_IFDIR, 0);
929 	if (!retval)
930 		inc_nlink(dir);
931 	return retval;
932 }
933 
934 static int hugetlbfs_create(struct user_namespace *mnt_userns,
935 			    struct inode *dir, struct dentry *dentry,
936 			    umode_t mode, bool excl)
937 {
938 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
939 }
940 
941 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
942 			     struct inode *dir, struct dentry *dentry,
943 			     umode_t mode)
944 {
945 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
946 }
947 
948 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
949 			     struct inode *dir, struct dentry *dentry,
950 			     const char *symname)
951 {
952 	struct inode *inode;
953 	int error = -ENOSPC;
954 
955 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
956 	if (inode) {
957 		int l = strlen(symname)+1;
958 		error = page_symlink(inode, symname, l);
959 		if (!error) {
960 			d_instantiate(dentry, inode);
961 			dget(dentry);
962 		} else
963 			iput(inode);
964 	}
965 	dir->i_ctime = dir->i_mtime = current_time(dir);
966 
967 	return error;
968 }
969 
970 static int hugetlbfs_migrate_page(struct address_space *mapping,
971 				struct page *newpage, struct page *page,
972 				enum migrate_mode mode)
973 {
974 	int rc;
975 
976 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
977 	if (rc != MIGRATEPAGE_SUCCESS)
978 		return rc;
979 
980 	if (hugetlb_page_subpool(page)) {
981 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
982 		hugetlb_set_page_subpool(page, NULL);
983 	}
984 
985 	if (mode != MIGRATE_SYNC_NO_COPY)
986 		migrate_page_copy(newpage, page);
987 	else
988 		migrate_page_states(newpage, page);
989 
990 	return MIGRATEPAGE_SUCCESS;
991 }
992 
993 static int hugetlbfs_error_remove_page(struct address_space *mapping,
994 				struct page *page)
995 {
996 	struct inode *inode = mapping->host;
997 	pgoff_t index = page->index;
998 
999 	remove_huge_page(page);
1000 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1001 		hugetlb_fix_reserve_counts(inode);
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Display the mount options in /proc/mounts.
1008  */
1009 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1010 {
1011 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1012 	struct hugepage_subpool *spool = sbinfo->spool;
1013 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1014 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1015 	char mod;
1016 
1017 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1018 		seq_printf(m, ",uid=%u",
1019 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1020 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1021 		seq_printf(m, ",gid=%u",
1022 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1023 	if (sbinfo->mode != 0755)
1024 		seq_printf(m, ",mode=%o", sbinfo->mode);
1025 	if (sbinfo->max_inodes != -1)
1026 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1027 
1028 	hpage_size /= 1024;
1029 	mod = 'K';
1030 	if (hpage_size >= 1024) {
1031 		hpage_size /= 1024;
1032 		mod = 'M';
1033 	}
1034 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1035 	if (spool) {
1036 		if (spool->max_hpages != -1)
1037 			seq_printf(m, ",size=%llu",
1038 				   (unsigned long long)spool->max_hpages << hpage_shift);
1039 		if (spool->min_hpages != -1)
1040 			seq_printf(m, ",min_size=%llu",
1041 				   (unsigned long long)spool->min_hpages << hpage_shift);
1042 	}
1043 	return 0;
1044 }
1045 
1046 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1047 {
1048 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1049 	struct hstate *h = hstate_inode(d_inode(dentry));
1050 
1051 	buf->f_type = HUGETLBFS_MAGIC;
1052 	buf->f_bsize = huge_page_size(h);
1053 	if (sbinfo) {
1054 		spin_lock(&sbinfo->stat_lock);
1055 		/* If no limits set, just report 0 for max/free/used
1056 		 * blocks, like simple_statfs() */
1057 		if (sbinfo->spool) {
1058 			long free_pages;
1059 
1060 			spin_lock(&sbinfo->spool->lock);
1061 			buf->f_blocks = sbinfo->spool->max_hpages;
1062 			free_pages = sbinfo->spool->max_hpages
1063 				- sbinfo->spool->used_hpages;
1064 			buf->f_bavail = buf->f_bfree = free_pages;
1065 			spin_unlock(&sbinfo->spool->lock);
1066 			buf->f_files = sbinfo->max_inodes;
1067 			buf->f_ffree = sbinfo->free_inodes;
1068 		}
1069 		spin_unlock(&sbinfo->stat_lock);
1070 	}
1071 	buf->f_namelen = NAME_MAX;
1072 	return 0;
1073 }
1074 
1075 static void hugetlbfs_put_super(struct super_block *sb)
1076 {
1077 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1078 
1079 	if (sbi) {
1080 		sb->s_fs_info = NULL;
1081 
1082 		if (sbi->spool)
1083 			hugepage_put_subpool(sbi->spool);
1084 
1085 		kfree(sbi);
1086 	}
1087 }
1088 
1089 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1090 {
1091 	if (sbinfo->free_inodes >= 0) {
1092 		spin_lock(&sbinfo->stat_lock);
1093 		if (unlikely(!sbinfo->free_inodes)) {
1094 			spin_unlock(&sbinfo->stat_lock);
1095 			return 0;
1096 		}
1097 		sbinfo->free_inodes--;
1098 		spin_unlock(&sbinfo->stat_lock);
1099 	}
1100 
1101 	return 1;
1102 }
1103 
1104 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1105 {
1106 	if (sbinfo->free_inodes >= 0) {
1107 		spin_lock(&sbinfo->stat_lock);
1108 		sbinfo->free_inodes++;
1109 		spin_unlock(&sbinfo->stat_lock);
1110 	}
1111 }
1112 
1113 
1114 static struct kmem_cache *hugetlbfs_inode_cachep;
1115 
1116 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1117 {
1118 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1119 	struct hugetlbfs_inode_info *p;
1120 
1121 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1122 		return NULL;
1123 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1124 	if (unlikely(!p)) {
1125 		hugetlbfs_inc_free_inodes(sbinfo);
1126 		return NULL;
1127 	}
1128 
1129 	/*
1130 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1131 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1132 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1133 	 * in case of a quick call to destroy.
1134 	 *
1135 	 * Note that the policy is initialized even if we are creating a
1136 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1137 	 */
1138 	mpol_shared_policy_init(&p->policy, NULL);
1139 
1140 	return &p->vfs_inode;
1141 }
1142 
1143 static void hugetlbfs_free_inode(struct inode *inode)
1144 {
1145 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1146 }
1147 
1148 static void hugetlbfs_destroy_inode(struct inode *inode)
1149 {
1150 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1151 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1152 }
1153 
1154 static const struct address_space_operations hugetlbfs_aops = {
1155 	.write_begin	= hugetlbfs_write_begin,
1156 	.write_end	= hugetlbfs_write_end,
1157 	.dirty_folio	= noop_dirty_folio,
1158 	.migratepage    = hugetlbfs_migrate_page,
1159 	.error_remove_page	= hugetlbfs_error_remove_page,
1160 };
1161 
1162 
1163 static void init_once(void *foo)
1164 {
1165 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1166 
1167 	inode_init_once(&ei->vfs_inode);
1168 }
1169 
1170 const struct file_operations hugetlbfs_file_operations = {
1171 	.read_iter		= hugetlbfs_read_iter,
1172 	.mmap			= hugetlbfs_file_mmap,
1173 	.fsync			= noop_fsync,
1174 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1175 	.llseek			= default_llseek,
1176 	.fallocate		= hugetlbfs_fallocate,
1177 };
1178 
1179 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1180 	.create		= hugetlbfs_create,
1181 	.lookup		= simple_lookup,
1182 	.link		= simple_link,
1183 	.unlink		= simple_unlink,
1184 	.symlink	= hugetlbfs_symlink,
1185 	.mkdir		= hugetlbfs_mkdir,
1186 	.rmdir		= simple_rmdir,
1187 	.mknod		= hugetlbfs_mknod,
1188 	.rename		= simple_rename,
1189 	.setattr	= hugetlbfs_setattr,
1190 	.tmpfile	= hugetlbfs_tmpfile,
1191 };
1192 
1193 static const struct inode_operations hugetlbfs_inode_operations = {
1194 	.setattr	= hugetlbfs_setattr,
1195 };
1196 
1197 static const struct super_operations hugetlbfs_ops = {
1198 	.alloc_inode    = hugetlbfs_alloc_inode,
1199 	.free_inode     = hugetlbfs_free_inode,
1200 	.destroy_inode  = hugetlbfs_destroy_inode,
1201 	.evict_inode	= hugetlbfs_evict_inode,
1202 	.statfs		= hugetlbfs_statfs,
1203 	.put_super	= hugetlbfs_put_super,
1204 	.show_options	= hugetlbfs_show_options,
1205 };
1206 
1207 /*
1208  * Convert size option passed from command line to number of huge pages
1209  * in the pool specified by hstate.  Size option could be in bytes
1210  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1211  */
1212 static long
1213 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1214 			 enum hugetlbfs_size_type val_type)
1215 {
1216 	if (val_type == NO_SIZE)
1217 		return -1;
1218 
1219 	if (val_type == SIZE_PERCENT) {
1220 		size_opt <<= huge_page_shift(h);
1221 		size_opt *= h->max_huge_pages;
1222 		do_div(size_opt, 100);
1223 	}
1224 
1225 	size_opt >>= huge_page_shift(h);
1226 	return size_opt;
1227 }
1228 
1229 /*
1230  * Parse one mount parameter.
1231  */
1232 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1233 {
1234 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1235 	struct fs_parse_result result;
1236 	char *rest;
1237 	unsigned long ps;
1238 	int opt;
1239 
1240 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1241 	if (opt < 0)
1242 		return opt;
1243 
1244 	switch (opt) {
1245 	case Opt_uid:
1246 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1247 		if (!uid_valid(ctx->uid))
1248 			goto bad_val;
1249 		return 0;
1250 
1251 	case Opt_gid:
1252 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1253 		if (!gid_valid(ctx->gid))
1254 			goto bad_val;
1255 		return 0;
1256 
1257 	case Opt_mode:
1258 		ctx->mode = result.uint_32 & 01777U;
1259 		return 0;
1260 
1261 	case Opt_size:
1262 		/* memparse() will accept a K/M/G without a digit */
1263 		if (!isdigit(param->string[0]))
1264 			goto bad_val;
1265 		ctx->max_size_opt = memparse(param->string, &rest);
1266 		ctx->max_val_type = SIZE_STD;
1267 		if (*rest == '%')
1268 			ctx->max_val_type = SIZE_PERCENT;
1269 		return 0;
1270 
1271 	case Opt_nr_inodes:
1272 		/* memparse() will accept a K/M/G without a digit */
1273 		if (!isdigit(param->string[0]))
1274 			goto bad_val;
1275 		ctx->nr_inodes = memparse(param->string, &rest);
1276 		return 0;
1277 
1278 	case Opt_pagesize:
1279 		ps = memparse(param->string, &rest);
1280 		ctx->hstate = size_to_hstate(ps);
1281 		if (!ctx->hstate) {
1282 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1283 			return -EINVAL;
1284 		}
1285 		return 0;
1286 
1287 	case Opt_min_size:
1288 		/* memparse() will accept a K/M/G without a digit */
1289 		if (!isdigit(param->string[0]))
1290 			goto bad_val;
1291 		ctx->min_size_opt = memparse(param->string, &rest);
1292 		ctx->min_val_type = SIZE_STD;
1293 		if (*rest == '%')
1294 			ctx->min_val_type = SIZE_PERCENT;
1295 		return 0;
1296 
1297 	default:
1298 		return -EINVAL;
1299 	}
1300 
1301 bad_val:
1302 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1303 		      param->string, param->key);
1304 }
1305 
1306 /*
1307  * Validate the parsed options.
1308  */
1309 static int hugetlbfs_validate(struct fs_context *fc)
1310 {
1311 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1312 
1313 	/*
1314 	 * Use huge page pool size (in hstate) to convert the size
1315 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1316 	 */
1317 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1318 						   ctx->max_size_opt,
1319 						   ctx->max_val_type);
1320 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1321 						   ctx->min_size_opt,
1322 						   ctx->min_val_type);
1323 
1324 	/*
1325 	 * If max_size was specified, then min_size must be smaller
1326 	 */
1327 	if (ctx->max_val_type > NO_SIZE &&
1328 	    ctx->min_hpages > ctx->max_hpages) {
1329 		pr_err("Minimum size can not be greater than maximum size\n");
1330 		return -EINVAL;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 static int
1337 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1338 {
1339 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1340 	struct hugetlbfs_sb_info *sbinfo;
1341 
1342 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1343 	if (!sbinfo)
1344 		return -ENOMEM;
1345 	sb->s_fs_info = sbinfo;
1346 	spin_lock_init(&sbinfo->stat_lock);
1347 	sbinfo->hstate		= ctx->hstate;
1348 	sbinfo->max_inodes	= ctx->nr_inodes;
1349 	sbinfo->free_inodes	= ctx->nr_inodes;
1350 	sbinfo->spool		= NULL;
1351 	sbinfo->uid		= ctx->uid;
1352 	sbinfo->gid		= ctx->gid;
1353 	sbinfo->mode		= ctx->mode;
1354 
1355 	/*
1356 	 * Allocate and initialize subpool if maximum or minimum size is
1357 	 * specified.  Any needed reservations (for minimum size) are taken
1358 	 * taken when the subpool is created.
1359 	 */
1360 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1361 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1362 						     ctx->max_hpages,
1363 						     ctx->min_hpages);
1364 		if (!sbinfo->spool)
1365 			goto out_free;
1366 	}
1367 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1368 	sb->s_blocksize = huge_page_size(ctx->hstate);
1369 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1370 	sb->s_magic = HUGETLBFS_MAGIC;
1371 	sb->s_op = &hugetlbfs_ops;
1372 	sb->s_time_gran = 1;
1373 
1374 	/*
1375 	 * Due to the special and limited functionality of hugetlbfs, it does
1376 	 * not work well as a stacking filesystem.
1377 	 */
1378 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1379 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1380 	if (!sb->s_root)
1381 		goto out_free;
1382 	return 0;
1383 out_free:
1384 	kfree(sbinfo->spool);
1385 	kfree(sbinfo);
1386 	return -ENOMEM;
1387 }
1388 
1389 static int hugetlbfs_get_tree(struct fs_context *fc)
1390 {
1391 	int err = hugetlbfs_validate(fc);
1392 	if (err)
1393 		return err;
1394 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1395 }
1396 
1397 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1398 {
1399 	kfree(fc->fs_private);
1400 }
1401 
1402 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1403 	.free		= hugetlbfs_fs_context_free,
1404 	.parse_param	= hugetlbfs_parse_param,
1405 	.get_tree	= hugetlbfs_get_tree,
1406 };
1407 
1408 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1409 {
1410 	struct hugetlbfs_fs_context *ctx;
1411 
1412 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1413 	if (!ctx)
1414 		return -ENOMEM;
1415 
1416 	ctx->max_hpages	= -1; /* No limit on size by default */
1417 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1418 	ctx->uid	= current_fsuid();
1419 	ctx->gid	= current_fsgid();
1420 	ctx->mode	= 0755;
1421 	ctx->hstate	= &default_hstate;
1422 	ctx->min_hpages	= -1; /* No default minimum size */
1423 	ctx->max_val_type = NO_SIZE;
1424 	ctx->min_val_type = NO_SIZE;
1425 	fc->fs_private = ctx;
1426 	fc->ops	= &hugetlbfs_fs_context_ops;
1427 	return 0;
1428 }
1429 
1430 static struct file_system_type hugetlbfs_fs_type = {
1431 	.name			= "hugetlbfs",
1432 	.init_fs_context	= hugetlbfs_init_fs_context,
1433 	.parameters		= hugetlb_fs_parameters,
1434 	.kill_sb		= kill_litter_super,
1435 };
1436 
1437 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1438 
1439 static int can_do_hugetlb_shm(void)
1440 {
1441 	kgid_t shm_group;
1442 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1443 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1444 }
1445 
1446 static int get_hstate_idx(int page_size_log)
1447 {
1448 	struct hstate *h = hstate_sizelog(page_size_log);
1449 
1450 	if (!h)
1451 		return -1;
1452 	return hstate_index(h);
1453 }
1454 
1455 /*
1456  * Note that size should be aligned to proper hugepage size in caller side,
1457  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1458  */
1459 struct file *hugetlb_file_setup(const char *name, size_t size,
1460 				vm_flags_t acctflag, int creat_flags,
1461 				int page_size_log)
1462 {
1463 	struct inode *inode;
1464 	struct vfsmount *mnt;
1465 	int hstate_idx;
1466 	struct file *file;
1467 
1468 	hstate_idx = get_hstate_idx(page_size_log);
1469 	if (hstate_idx < 0)
1470 		return ERR_PTR(-ENODEV);
1471 
1472 	mnt = hugetlbfs_vfsmount[hstate_idx];
1473 	if (!mnt)
1474 		return ERR_PTR(-ENOENT);
1475 
1476 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1477 		struct ucounts *ucounts = current_ucounts();
1478 
1479 		if (user_shm_lock(size, ucounts)) {
1480 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1481 				current->comm, current->pid);
1482 			user_shm_unlock(size, ucounts);
1483 		}
1484 		return ERR_PTR(-EPERM);
1485 	}
1486 
1487 	file = ERR_PTR(-ENOSPC);
1488 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1489 	if (!inode)
1490 		goto out;
1491 	if (creat_flags == HUGETLB_SHMFS_INODE)
1492 		inode->i_flags |= S_PRIVATE;
1493 
1494 	inode->i_size = size;
1495 	clear_nlink(inode);
1496 
1497 	if (!hugetlb_reserve_pages(inode, 0,
1498 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1499 			acctflag))
1500 		file = ERR_PTR(-ENOMEM);
1501 	else
1502 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1503 					&hugetlbfs_file_operations);
1504 	if (!IS_ERR(file))
1505 		return file;
1506 
1507 	iput(inode);
1508 out:
1509 	return file;
1510 }
1511 
1512 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1513 {
1514 	struct fs_context *fc;
1515 	struct vfsmount *mnt;
1516 
1517 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1518 	if (IS_ERR(fc)) {
1519 		mnt = ERR_CAST(fc);
1520 	} else {
1521 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1522 		ctx->hstate = h;
1523 		mnt = fc_mount(fc);
1524 		put_fs_context(fc);
1525 	}
1526 	if (IS_ERR(mnt))
1527 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1528 		       huge_page_size(h) >> 10);
1529 	return mnt;
1530 }
1531 
1532 static int __init init_hugetlbfs_fs(void)
1533 {
1534 	struct vfsmount *mnt;
1535 	struct hstate *h;
1536 	int error;
1537 	int i;
1538 
1539 	if (!hugepages_supported()) {
1540 		pr_info("disabling because there are no supported hugepage sizes\n");
1541 		return -ENOTSUPP;
1542 	}
1543 
1544 	error = -ENOMEM;
1545 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1546 					sizeof(struct hugetlbfs_inode_info),
1547 					0, SLAB_ACCOUNT, init_once);
1548 	if (hugetlbfs_inode_cachep == NULL)
1549 		goto out;
1550 
1551 	error = register_filesystem(&hugetlbfs_fs_type);
1552 	if (error)
1553 		goto out_free;
1554 
1555 	/* default hstate mount is required */
1556 	mnt = mount_one_hugetlbfs(&default_hstate);
1557 	if (IS_ERR(mnt)) {
1558 		error = PTR_ERR(mnt);
1559 		goto out_unreg;
1560 	}
1561 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1562 
1563 	/* other hstates are optional */
1564 	i = 0;
1565 	for_each_hstate(h) {
1566 		if (i == default_hstate_idx) {
1567 			i++;
1568 			continue;
1569 		}
1570 
1571 		mnt = mount_one_hugetlbfs(h);
1572 		if (IS_ERR(mnt))
1573 			hugetlbfs_vfsmount[i] = NULL;
1574 		else
1575 			hugetlbfs_vfsmount[i] = mnt;
1576 		i++;
1577 	}
1578 
1579 	return 0;
1580 
1581  out_unreg:
1582 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1583  out_free:
1584 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1585  out:
1586 	return error;
1587 }
1588 fs_initcall(init_hugetlbfs_fs)
1589