1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <asm/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 kuid_t uid; 50 kgid_t gid; 51 umode_t mode; 52 long max_hpages; 53 long nr_inodes; 54 struct hstate *hstate; 55 long min_hpages; 56 }; 57 58 struct hugetlbfs_inode_info { 59 struct shared_policy policy; 60 struct inode vfs_inode; 61 }; 62 63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode) 64 { 65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode); 66 } 67 68 int sysctl_hugetlb_shm_group; 69 70 enum { 71 Opt_size, Opt_nr_inodes, 72 Opt_mode, Opt_uid, Opt_gid, 73 Opt_pagesize, Opt_min_size, 74 Opt_err, 75 }; 76 77 static const match_table_t tokens = { 78 {Opt_size, "size=%s"}, 79 {Opt_nr_inodes, "nr_inodes=%s"}, 80 {Opt_mode, "mode=%o"}, 81 {Opt_uid, "uid=%u"}, 82 {Opt_gid, "gid=%u"}, 83 {Opt_pagesize, "pagesize=%s"}, 84 {Opt_min_size, "min_size=%s"}, 85 {Opt_err, NULL}, 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 loff_t len, vma_len; 125 int ret; 126 struct hstate *h = hstate_file(file); 127 128 /* 129 * vma address alignment (but not the pgoff alignment) has 130 * already been checked by prepare_hugepage_range. If you add 131 * any error returns here, do so after setting VM_HUGETLB, so 132 * is_vm_hugetlb_page tests below unmap_region go the right 133 * way when do_mmap_pgoff unwinds (may be important on powerpc 134 * and ia64). 135 */ 136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 137 vma->vm_ops = &hugetlb_vm_ops; 138 139 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 140 return -EINVAL; 141 142 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 143 144 mutex_lock(&inode->i_mutex); 145 file_accessed(file); 146 147 ret = -ENOMEM; 148 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 149 150 if (hugetlb_reserve_pages(inode, 151 vma->vm_pgoff >> huge_page_order(h), 152 len >> huge_page_shift(h), vma, 153 vma->vm_flags)) 154 goto out; 155 156 ret = 0; 157 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 158 inode->i_size = len; 159 out: 160 mutex_unlock(&inode->i_mutex); 161 162 return ret; 163 } 164 165 /* 166 * Called under down_write(mmap_sem). 167 */ 168 169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 170 static unsigned long 171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 172 unsigned long len, unsigned long pgoff, unsigned long flags) 173 { 174 struct mm_struct *mm = current->mm; 175 struct vm_area_struct *vma; 176 struct hstate *h = hstate_file(file); 177 struct vm_unmapped_area_info info; 178 179 if (len & ~huge_page_mask(h)) 180 return -EINVAL; 181 if (len > TASK_SIZE) 182 return -ENOMEM; 183 184 if (flags & MAP_FIXED) { 185 if (prepare_hugepage_range(file, addr, len)) 186 return -EINVAL; 187 return addr; 188 } 189 190 if (addr) { 191 addr = ALIGN(addr, huge_page_size(h)); 192 vma = find_vma(mm, addr); 193 if (TASK_SIZE - len >= addr && 194 (!vma || addr + len <= vma->vm_start)) 195 return addr; 196 } 197 198 info.flags = 0; 199 info.length = len; 200 info.low_limit = TASK_UNMAPPED_BASE; 201 info.high_limit = TASK_SIZE; 202 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 203 info.align_offset = 0; 204 return vm_unmapped_area(&info); 205 } 206 #endif 207 208 static size_t 209 hugetlbfs_read_actor(struct page *page, unsigned long offset, 210 struct iov_iter *to, unsigned long size) 211 { 212 size_t copied = 0; 213 int i, chunksize; 214 215 /* Find which 4k chunk and offset with in that chunk */ 216 i = offset >> PAGE_CACHE_SHIFT; 217 offset = offset & ~PAGE_CACHE_MASK; 218 219 while (size) { 220 size_t n; 221 chunksize = PAGE_CACHE_SIZE; 222 if (offset) 223 chunksize -= offset; 224 if (chunksize > size) 225 chunksize = size; 226 n = copy_page_to_iter(&page[i], offset, chunksize, to); 227 copied += n; 228 if (n != chunksize) 229 return copied; 230 offset = 0; 231 size -= chunksize; 232 i++; 233 } 234 return copied; 235 } 236 237 /* 238 * Support for read() - Find the page attached to f_mapping and copy out the 239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 240 * since it has PAGE_CACHE_SIZE assumptions. 241 */ 242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 243 { 244 struct file *file = iocb->ki_filp; 245 struct hstate *h = hstate_file(file); 246 struct address_space *mapping = file->f_mapping; 247 struct inode *inode = mapping->host; 248 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 249 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 250 unsigned long end_index; 251 loff_t isize; 252 ssize_t retval = 0; 253 254 while (iov_iter_count(to)) { 255 struct page *page; 256 size_t nr, copied; 257 258 /* nr is the maximum number of bytes to copy from this page */ 259 nr = huge_page_size(h); 260 isize = i_size_read(inode); 261 if (!isize) 262 break; 263 end_index = (isize - 1) >> huge_page_shift(h); 264 if (index > end_index) 265 break; 266 if (index == end_index) { 267 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 268 if (nr <= offset) 269 break; 270 } 271 nr = nr - offset; 272 273 /* Find the page */ 274 page = find_lock_page(mapping, index); 275 if (unlikely(page == NULL)) { 276 /* 277 * We have a HOLE, zero out the user-buffer for the 278 * length of the hole or request. 279 */ 280 copied = iov_iter_zero(nr, to); 281 } else { 282 unlock_page(page); 283 284 /* 285 * We have the page, copy it to user space buffer. 286 */ 287 copied = hugetlbfs_read_actor(page, offset, to, nr); 288 page_cache_release(page); 289 } 290 offset += copied; 291 retval += copied; 292 if (copied != nr && iov_iter_count(to)) { 293 if (!retval) 294 retval = -EFAULT; 295 break; 296 } 297 index += offset >> huge_page_shift(h); 298 offset &= ~huge_page_mask(h); 299 } 300 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 301 return retval; 302 } 303 304 static int hugetlbfs_write_begin(struct file *file, 305 struct address_space *mapping, 306 loff_t pos, unsigned len, unsigned flags, 307 struct page **pagep, void **fsdata) 308 { 309 return -EINVAL; 310 } 311 312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 313 loff_t pos, unsigned len, unsigned copied, 314 struct page *page, void *fsdata) 315 { 316 BUG(); 317 return -EINVAL; 318 } 319 320 static void remove_huge_page(struct page *page) 321 { 322 ClearPageDirty(page); 323 ClearPageUptodate(page); 324 delete_from_page_cache(page); 325 } 326 327 328 /* 329 * remove_inode_hugepages handles two distinct cases: truncation and hole 330 * punch. There are subtle differences in operation for each case. 331 332 * truncation is indicated by end of range being LLONG_MAX 333 * In this case, we first scan the range and release found pages. 334 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 335 * maps and global counts. Page faults can not race with truncation 336 * in this routine. hugetlb_no_page() prevents page faults in the 337 * truncated range. It checks i_size before allocation, and again after 338 * with the page table lock for the page held. The same lock must be 339 * acquired to unmap a page. 340 * hole punch is indicated if end is not LLONG_MAX 341 * In the hole punch case we scan the range and release found pages. 342 * Only when releasing a page is the associated region/reserv map 343 * deleted. The region/reserv map for ranges without associated 344 * pages are not modified. Page faults can race with hole punch. 345 * This is indicated if we find a mapped page. 346 * Note: If the passed end of range value is beyond the end of file, but 347 * not LLONG_MAX this routine still performs a hole punch operation. 348 */ 349 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 350 loff_t lend) 351 { 352 struct hstate *h = hstate_inode(inode); 353 struct address_space *mapping = &inode->i_data; 354 const pgoff_t start = lstart >> huge_page_shift(h); 355 const pgoff_t end = lend >> huge_page_shift(h); 356 struct vm_area_struct pseudo_vma; 357 struct pagevec pvec; 358 pgoff_t next; 359 int i, freed = 0; 360 long lookup_nr = PAGEVEC_SIZE; 361 bool truncate_op = (lend == LLONG_MAX); 362 363 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 364 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 365 pagevec_init(&pvec, 0); 366 next = start; 367 while (next < end) { 368 /* 369 * Don't grab more pages than the number left in the range. 370 */ 371 if (end - next < lookup_nr) 372 lookup_nr = end - next; 373 374 /* 375 * When no more pages are found, we are done. 376 */ 377 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr)) 378 break; 379 380 for (i = 0; i < pagevec_count(&pvec); ++i) { 381 struct page *page = pvec.pages[i]; 382 u32 hash; 383 384 /* 385 * The page (index) could be beyond end. This is 386 * only possible in the punch hole case as end is 387 * max page offset in the truncate case. 388 */ 389 next = page->index; 390 if (next >= end) 391 break; 392 393 hash = hugetlb_fault_mutex_hash(h, current->mm, 394 &pseudo_vma, 395 mapping, next, 0); 396 mutex_lock(&hugetlb_fault_mutex_table[hash]); 397 398 lock_page(page); 399 if (likely(!page_mapped(page))) { 400 bool rsv_on_error = !PagePrivate(page); 401 /* 402 * We must free the huge page and remove 403 * from page cache (remove_huge_page) BEFORE 404 * removing the region/reserve map 405 * (hugetlb_unreserve_pages). In rare out 406 * of memory conditions, removal of the 407 * region/reserve map could fail. Before 408 * free'ing the page, note PagePrivate which 409 * is used in case of error. 410 */ 411 remove_huge_page(page); 412 freed++; 413 if (!truncate_op) { 414 if (unlikely(hugetlb_unreserve_pages( 415 inode, next, 416 next + 1, 1))) 417 hugetlb_fix_reserve_counts( 418 inode, rsv_on_error); 419 } 420 } else { 421 /* 422 * If page is mapped, it was faulted in after 423 * being unmapped. It indicates a race between 424 * hole punch and page fault. Do nothing in 425 * this case. Getting here in a truncate 426 * operation is a bug. 427 */ 428 BUG_ON(truncate_op); 429 } 430 431 unlock_page(page); 432 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 433 } 434 ++next; 435 huge_pagevec_release(&pvec); 436 cond_resched(); 437 } 438 439 if (truncate_op) 440 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 441 } 442 443 static void hugetlbfs_evict_inode(struct inode *inode) 444 { 445 struct resv_map *resv_map; 446 447 remove_inode_hugepages(inode, 0, LLONG_MAX); 448 resv_map = (struct resv_map *)inode->i_mapping->private_data; 449 /* root inode doesn't have the resv_map, so we should check it */ 450 if (resv_map) 451 resv_map_release(&resv_map->refs); 452 clear_inode(inode); 453 } 454 455 static inline void 456 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end) 457 { 458 struct vm_area_struct *vma; 459 460 /* 461 * end == 0 indicates that the entire range after 462 * start should be unmapped. 463 */ 464 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 465 unsigned long v_offset; 466 467 /* 468 * Can the expression below overflow on 32-bit arches? 469 * No, because the interval tree returns us only those vmas 470 * which overlap the truncated area starting at pgoff, 471 * and no vma on a 32-bit arch can span beyond the 4GB. 472 */ 473 if (vma->vm_pgoff < start) 474 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 475 else 476 v_offset = 0; 477 478 if (end) { 479 end = ((end - start) << PAGE_SHIFT) + 480 vma->vm_start + v_offset; 481 if (end > vma->vm_end) 482 end = vma->vm_end; 483 } else 484 end = vma->vm_end; 485 486 unmap_hugepage_range(vma, vma->vm_start + v_offset, end, NULL); 487 } 488 } 489 490 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 491 { 492 pgoff_t pgoff; 493 struct address_space *mapping = inode->i_mapping; 494 struct hstate *h = hstate_inode(inode); 495 496 BUG_ON(offset & ~huge_page_mask(h)); 497 pgoff = offset >> PAGE_SHIFT; 498 499 i_size_write(inode, offset); 500 i_mmap_lock_write(mapping); 501 if (!RB_EMPTY_ROOT(&mapping->i_mmap)) 502 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 503 i_mmap_unlock_write(mapping); 504 remove_inode_hugepages(inode, offset, LLONG_MAX); 505 return 0; 506 } 507 508 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 509 { 510 struct hstate *h = hstate_inode(inode); 511 loff_t hpage_size = huge_page_size(h); 512 loff_t hole_start, hole_end; 513 514 /* 515 * For hole punch round up the beginning offset of the hole and 516 * round down the end. 517 */ 518 hole_start = round_up(offset, hpage_size); 519 hole_end = round_down(offset + len, hpage_size); 520 521 if (hole_end > hole_start) { 522 struct address_space *mapping = inode->i_mapping; 523 524 mutex_lock(&inode->i_mutex); 525 i_mmap_lock_write(mapping); 526 if (!RB_EMPTY_ROOT(&mapping->i_mmap)) 527 hugetlb_vmdelete_list(&mapping->i_mmap, 528 hole_start >> PAGE_SHIFT, 529 hole_end >> PAGE_SHIFT); 530 i_mmap_unlock_write(mapping); 531 remove_inode_hugepages(inode, hole_start, hole_end); 532 mutex_unlock(&inode->i_mutex); 533 } 534 535 return 0; 536 } 537 538 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 539 loff_t len) 540 { 541 struct inode *inode = file_inode(file); 542 struct address_space *mapping = inode->i_mapping; 543 struct hstate *h = hstate_inode(inode); 544 struct vm_area_struct pseudo_vma; 545 struct mm_struct *mm = current->mm; 546 loff_t hpage_size = huge_page_size(h); 547 unsigned long hpage_shift = huge_page_shift(h); 548 pgoff_t start, index, end; 549 int error; 550 u32 hash; 551 552 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 553 return -EOPNOTSUPP; 554 555 if (mode & FALLOC_FL_PUNCH_HOLE) 556 return hugetlbfs_punch_hole(inode, offset, len); 557 558 /* 559 * Default preallocate case. 560 * For this range, start is rounded down and end is rounded up 561 * as well as being converted to page offsets. 562 */ 563 start = offset >> hpage_shift; 564 end = (offset + len + hpage_size - 1) >> hpage_shift; 565 566 mutex_lock(&inode->i_mutex); 567 568 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 569 error = inode_newsize_ok(inode, offset + len); 570 if (error) 571 goto out; 572 573 /* 574 * Initialize a pseudo vma as this is required by the huge page 575 * allocation routines. If NUMA is configured, use page index 576 * as input to create an allocation policy. 577 */ 578 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 579 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 580 pseudo_vma.vm_file = file; 581 582 for (index = start; index < end; index++) { 583 /* 584 * This is supposed to be the vaddr where the page is being 585 * faulted in, but we have no vaddr here. 586 */ 587 struct page *page; 588 unsigned long addr; 589 int avoid_reserve = 0; 590 591 cond_resched(); 592 593 /* 594 * fallocate(2) manpage permits EINTR; we may have been 595 * interrupted because we are using up too much memory. 596 */ 597 if (signal_pending(current)) { 598 error = -EINTR; 599 break; 600 } 601 602 /* Set numa allocation policy based on index */ 603 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 604 605 /* addr is the offset within the file (zero based) */ 606 addr = index * hpage_size; 607 608 /* mutex taken here, fault path and hole punch */ 609 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 610 index, addr); 611 mutex_lock(&hugetlb_fault_mutex_table[hash]); 612 613 /* See if already present in mapping to avoid alloc/free */ 614 page = find_get_page(mapping, index); 615 if (page) { 616 put_page(page); 617 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 618 hugetlb_drop_vma_policy(&pseudo_vma); 619 continue; 620 } 621 622 /* Allocate page and add to page cache */ 623 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 624 hugetlb_drop_vma_policy(&pseudo_vma); 625 if (IS_ERR(page)) { 626 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 627 error = PTR_ERR(page); 628 goto out; 629 } 630 clear_huge_page(page, addr, pages_per_huge_page(h)); 631 __SetPageUptodate(page); 632 error = huge_add_to_page_cache(page, mapping, index); 633 if (unlikely(error)) { 634 put_page(page); 635 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 636 goto out; 637 } 638 639 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 640 641 /* 642 * page_put due to reference from alloc_huge_page() 643 * unlock_page because locked by add_to_page_cache() 644 */ 645 put_page(page); 646 unlock_page(page); 647 } 648 649 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 650 i_size_write(inode, offset + len); 651 inode->i_ctime = CURRENT_TIME; 652 out: 653 mutex_unlock(&inode->i_mutex); 654 return error; 655 } 656 657 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 658 { 659 struct inode *inode = d_inode(dentry); 660 struct hstate *h = hstate_inode(inode); 661 int error; 662 unsigned int ia_valid = attr->ia_valid; 663 664 BUG_ON(!inode); 665 666 error = inode_change_ok(inode, attr); 667 if (error) 668 return error; 669 670 if (ia_valid & ATTR_SIZE) { 671 error = -EINVAL; 672 if (attr->ia_size & ~huge_page_mask(h)) 673 return -EINVAL; 674 error = hugetlb_vmtruncate(inode, attr->ia_size); 675 if (error) 676 return error; 677 } 678 679 setattr_copy(inode, attr); 680 mark_inode_dirty(inode); 681 return 0; 682 } 683 684 static struct inode *hugetlbfs_get_root(struct super_block *sb, 685 struct hugetlbfs_config *config) 686 { 687 struct inode *inode; 688 689 inode = new_inode(sb); 690 if (inode) { 691 struct hugetlbfs_inode_info *info; 692 inode->i_ino = get_next_ino(); 693 inode->i_mode = S_IFDIR | config->mode; 694 inode->i_uid = config->uid; 695 inode->i_gid = config->gid; 696 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 697 info = HUGETLBFS_I(inode); 698 mpol_shared_policy_init(&info->policy, NULL); 699 inode->i_op = &hugetlbfs_dir_inode_operations; 700 inode->i_fop = &simple_dir_operations; 701 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 702 inc_nlink(inode); 703 lockdep_annotate_inode_mutex_key(inode); 704 } 705 return inode; 706 } 707 708 /* 709 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 710 * be taken from reclaim -- unlike regular filesystems. This needs an 711 * annotation because huge_pmd_share() does an allocation under 712 * i_mmap_rwsem. 713 */ 714 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 715 716 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 717 struct inode *dir, 718 umode_t mode, dev_t dev) 719 { 720 struct inode *inode; 721 struct resv_map *resv_map; 722 723 resv_map = resv_map_alloc(); 724 if (!resv_map) 725 return NULL; 726 727 inode = new_inode(sb); 728 if (inode) { 729 struct hugetlbfs_inode_info *info; 730 inode->i_ino = get_next_ino(); 731 inode_init_owner(inode, dir, mode); 732 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 733 &hugetlbfs_i_mmap_rwsem_key); 734 inode->i_mapping->a_ops = &hugetlbfs_aops; 735 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 736 inode->i_mapping->private_data = resv_map; 737 info = HUGETLBFS_I(inode); 738 /* 739 * The policy is initialized here even if we are creating a 740 * private inode because initialization simply creates an 741 * an empty rb tree and calls spin_lock_init(), later when we 742 * call mpol_free_shared_policy() it will just return because 743 * the rb tree will still be empty. 744 */ 745 mpol_shared_policy_init(&info->policy, NULL); 746 switch (mode & S_IFMT) { 747 default: 748 init_special_inode(inode, mode, dev); 749 break; 750 case S_IFREG: 751 inode->i_op = &hugetlbfs_inode_operations; 752 inode->i_fop = &hugetlbfs_file_operations; 753 break; 754 case S_IFDIR: 755 inode->i_op = &hugetlbfs_dir_inode_operations; 756 inode->i_fop = &simple_dir_operations; 757 758 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 759 inc_nlink(inode); 760 break; 761 case S_IFLNK: 762 inode->i_op = &page_symlink_inode_operations; 763 break; 764 } 765 lockdep_annotate_inode_mutex_key(inode); 766 } else 767 kref_put(&resv_map->refs, resv_map_release); 768 769 return inode; 770 } 771 772 /* 773 * File creation. Allocate an inode, and we're done.. 774 */ 775 static int hugetlbfs_mknod(struct inode *dir, 776 struct dentry *dentry, umode_t mode, dev_t dev) 777 { 778 struct inode *inode; 779 int error = -ENOSPC; 780 781 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 782 if (inode) { 783 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 784 d_instantiate(dentry, inode); 785 dget(dentry); /* Extra count - pin the dentry in core */ 786 error = 0; 787 } 788 return error; 789 } 790 791 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 792 { 793 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 794 if (!retval) 795 inc_nlink(dir); 796 return retval; 797 } 798 799 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 800 { 801 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 802 } 803 804 static int hugetlbfs_symlink(struct inode *dir, 805 struct dentry *dentry, const char *symname) 806 { 807 struct inode *inode; 808 int error = -ENOSPC; 809 810 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 811 if (inode) { 812 int l = strlen(symname)+1; 813 error = page_symlink(inode, symname, l); 814 if (!error) { 815 d_instantiate(dentry, inode); 816 dget(dentry); 817 } else 818 iput(inode); 819 } 820 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 821 822 return error; 823 } 824 825 /* 826 * mark the head page dirty 827 */ 828 static int hugetlbfs_set_page_dirty(struct page *page) 829 { 830 struct page *head = compound_head(page); 831 832 SetPageDirty(head); 833 return 0; 834 } 835 836 static int hugetlbfs_migrate_page(struct address_space *mapping, 837 struct page *newpage, struct page *page, 838 enum migrate_mode mode) 839 { 840 int rc; 841 842 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 843 if (rc != MIGRATEPAGE_SUCCESS) 844 return rc; 845 migrate_page_copy(newpage, page); 846 847 return MIGRATEPAGE_SUCCESS; 848 } 849 850 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 851 { 852 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 853 struct hstate *h = hstate_inode(d_inode(dentry)); 854 855 buf->f_type = HUGETLBFS_MAGIC; 856 buf->f_bsize = huge_page_size(h); 857 if (sbinfo) { 858 spin_lock(&sbinfo->stat_lock); 859 /* If no limits set, just report 0 for max/free/used 860 * blocks, like simple_statfs() */ 861 if (sbinfo->spool) { 862 long free_pages; 863 864 spin_lock(&sbinfo->spool->lock); 865 buf->f_blocks = sbinfo->spool->max_hpages; 866 free_pages = sbinfo->spool->max_hpages 867 - sbinfo->spool->used_hpages; 868 buf->f_bavail = buf->f_bfree = free_pages; 869 spin_unlock(&sbinfo->spool->lock); 870 buf->f_files = sbinfo->max_inodes; 871 buf->f_ffree = sbinfo->free_inodes; 872 } 873 spin_unlock(&sbinfo->stat_lock); 874 } 875 buf->f_namelen = NAME_MAX; 876 return 0; 877 } 878 879 static void hugetlbfs_put_super(struct super_block *sb) 880 { 881 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 882 883 if (sbi) { 884 sb->s_fs_info = NULL; 885 886 if (sbi->spool) 887 hugepage_put_subpool(sbi->spool); 888 889 kfree(sbi); 890 } 891 } 892 893 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 894 { 895 if (sbinfo->free_inodes >= 0) { 896 spin_lock(&sbinfo->stat_lock); 897 if (unlikely(!sbinfo->free_inodes)) { 898 spin_unlock(&sbinfo->stat_lock); 899 return 0; 900 } 901 sbinfo->free_inodes--; 902 spin_unlock(&sbinfo->stat_lock); 903 } 904 905 return 1; 906 } 907 908 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 909 { 910 if (sbinfo->free_inodes >= 0) { 911 spin_lock(&sbinfo->stat_lock); 912 sbinfo->free_inodes++; 913 spin_unlock(&sbinfo->stat_lock); 914 } 915 } 916 917 918 static struct kmem_cache *hugetlbfs_inode_cachep; 919 920 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 921 { 922 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 923 struct hugetlbfs_inode_info *p; 924 925 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 926 return NULL; 927 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 928 if (unlikely(!p)) { 929 hugetlbfs_inc_free_inodes(sbinfo); 930 return NULL; 931 } 932 return &p->vfs_inode; 933 } 934 935 static void hugetlbfs_i_callback(struct rcu_head *head) 936 { 937 struct inode *inode = container_of(head, struct inode, i_rcu); 938 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 939 } 940 941 static void hugetlbfs_destroy_inode(struct inode *inode) 942 { 943 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 944 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 945 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 946 } 947 948 static const struct address_space_operations hugetlbfs_aops = { 949 .write_begin = hugetlbfs_write_begin, 950 .write_end = hugetlbfs_write_end, 951 .set_page_dirty = hugetlbfs_set_page_dirty, 952 .migratepage = hugetlbfs_migrate_page, 953 }; 954 955 956 static void init_once(void *foo) 957 { 958 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 959 960 inode_init_once(&ei->vfs_inode); 961 } 962 963 const struct file_operations hugetlbfs_file_operations = { 964 .read_iter = hugetlbfs_read_iter, 965 .mmap = hugetlbfs_file_mmap, 966 .fsync = noop_fsync, 967 .get_unmapped_area = hugetlb_get_unmapped_area, 968 .llseek = default_llseek, 969 .fallocate = hugetlbfs_fallocate, 970 }; 971 972 static const struct inode_operations hugetlbfs_dir_inode_operations = { 973 .create = hugetlbfs_create, 974 .lookup = simple_lookup, 975 .link = simple_link, 976 .unlink = simple_unlink, 977 .symlink = hugetlbfs_symlink, 978 .mkdir = hugetlbfs_mkdir, 979 .rmdir = simple_rmdir, 980 .mknod = hugetlbfs_mknod, 981 .rename = simple_rename, 982 .setattr = hugetlbfs_setattr, 983 }; 984 985 static const struct inode_operations hugetlbfs_inode_operations = { 986 .setattr = hugetlbfs_setattr, 987 }; 988 989 static const struct super_operations hugetlbfs_ops = { 990 .alloc_inode = hugetlbfs_alloc_inode, 991 .destroy_inode = hugetlbfs_destroy_inode, 992 .evict_inode = hugetlbfs_evict_inode, 993 .statfs = hugetlbfs_statfs, 994 .put_super = hugetlbfs_put_super, 995 .show_options = generic_show_options, 996 }; 997 998 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 999 1000 /* 1001 * Convert size option passed from command line to number of huge pages 1002 * in the pool specified by hstate. Size option could be in bytes 1003 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1004 */ 1005 static long long 1006 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1007 int val_type) 1008 { 1009 if (val_type == NO_SIZE) 1010 return -1; 1011 1012 if (val_type == SIZE_PERCENT) { 1013 size_opt <<= huge_page_shift(h); 1014 size_opt *= h->max_huge_pages; 1015 do_div(size_opt, 100); 1016 } 1017 1018 size_opt >>= huge_page_shift(h); 1019 return size_opt; 1020 } 1021 1022 static int 1023 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1024 { 1025 char *p, *rest; 1026 substring_t args[MAX_OPT_ARGS]; 1027 int option; 1028 unsigned long long max_size_opt = 0, min_size_opt = 0; 1029 int max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1030 1031 if (!options) 1032 return 0; 1033 1034 while ((p = strsep(&options, ",")) != NULL) { 1035 int token; 1036 if (!*p) 1037 continue; 1038 1039 token = match_token(p, tokens, args); 1040 switch (token) { 1041 case Opt_uid: 1042 if (match_int(&args[0], &option)) 1043 goto bad_val; 1044 pconfig->uid = make_kuid(current_user_ns(), option); 1045 if (!uid_valid(pconfig->uid)) 1046 goto bad_val; 1047 break; 1048 1049 case Opt_gid: 1050 if (match_int(&args[0], &option)) 1051 goto bad_val; 1052 pconfig->gid = make_kgid(current_user_ns(), option); 1053 if (!gid_valid(pconfig->gid)) 1054 goto bad_val; 1055 break; 1056 1057 case Opt_mode: 1058 if (match_octal(&args[0], &option)) 1059 goto bad_val; 1060 pconfig->mode = option & 01777U; 1061 break; 1062 1063 case Opt_size: { 1064 /* memparse() will accept a K/M/G without a digit */ 1065 if (!isdigit(*args[0].from)) 1066 goto bad_val; 1067 max_size_opt = memparse(args[0].from, &rest); 1068 max_val_type = SIZE_STD; 1069 if (*rest == '%') 1070 max_val_type = SIZE_PERCENT; 1071 break; 1072 } 1073 1074 case Opt_nr_inodes: 1075 /* memparse() will accept a K/M/G without a digit */ 1076 if (!isdigit(*args[0].from)) 1077 goto bad_val; 1078 pconfig->nr_inodes = memparse(args[0].from, &rest); 1079 break; 1080 1081 case Opt_pagesize: { 1082 unsigned long ps; 1083 ps = memparse(args[0].from, &rest); 1084 pconfig->hstate = size_to_hstate(ps); 1085 if (!pconfig->hstate) { 1086 pr_err("Unsupported page size %lu MB\n", 1087 ps >> 20); 1088 return -EINVAL; 1089 } 1090 break; 1091 } 1092 1093 case Opt_min_size: { 1094 /* memparse() will accept a K/M/G without a digit */ 1095 if (!isdigit(*args[0].from)) 1096 goto bad_val; 1097 min_size_opt = memparse(args[0].from, &rest); 1098 min_val_type = SIZE_STD; 1099 if (*rest == '%') 1100 min_val_type = SIZE_PERCENT; 1101 break; 1102 } 1103 1104 default: 1105 pr_err("Bad mount option: \"%s\"\n", p); 1106 return -EINVAL; 1107 break; 1108 } 1109 } 1110 1111 /* 1112 * Use huge page pool size (in hstate) to convert the size 1113 * options to number of huge pages. If NO_SIZE, -1 is returned. 1114 */ 1115 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1116 max_size_opt, max_val_type); 1117 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1118 min_size_opt, min_val_type); 1119 1120 /* 1121 * If max_size was specified, then min_size must be smaller 1122 */ 1123 if (max_val_type > NO_SIZE && 1124 pconfig->min_hpages > pconfig->max_hpages) { 1125 pr_err("minimum size can not be greater than maximum size\n"); 1126 return -EINVAL; 1127 } 1128 1129 return 0; 1130 1131 bad_val: 1132 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1133 return -EINVAL; 1134 } 1135 1136 static int 1137 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1138 { 1139 int ret; 1140 struct hugetlbfs_config config; 1141 struct hugetlbfs_sb_info *sbinfo; 1142 1143 save_mount_options(sb, data); 1144 1145 config.max_hpages = -1; /* No limit on size by default */ 1146 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1147 config.uid = current_fsuid(); 1148 config.gid = current_fsgid(); 1149 config.mode = 0755; 1150 config.hstate = &default_hstate; 1151 config.min_hpages = -1; /* No default minimum size */ 1152 ret = hugetlbfs_parse_options(data, &config); 1153 if (ret) 1154 return ret; 1155 1156 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1157 if (!sbinfo) 1158 return -ENOMEM; 1159 sb->s_fs_info = sbinfo; 1160 sbinfo->hstate = config.hstate; 1161 spin_lock_init(&sbinfo->stat_lock); 1162 sbinfo->max_inodes = config.nr_inodes; 1163 sbinfo->free_inodes = config.nr_inodes; 1164 sbinfo->spool = NULL; 1165 /* 1166 * Allocate and initialize subpool if maximum or minimum size is 1167 * specified. Any needed reservations (for minimim size) are taken 1168 * taken when the subpool is created. 1169 */ 1170 if (config.max_hpages != -1 || config.min_hpages != -1) { 1171 sbinfo->spool = hugepage_new_subpool(config.hstate, 1172 config.max_hpages, 1173 config.min_hpages); 1174 if (!sbinfo->spool) 1175 goto out_free; 1176 } 1177 sb->s_maxbytes = MAX_LFS_FILESIZE; 1178 sb->s_blocksize = huge_page_size(config.hstate); 1179 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1180 sb->s_magic = HUGETLBFS_MAGIC; 1181 sb->s_op = &hugetlbfs_ops; 1182 sb->s_time_gran = 1; 1183 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1184 if (!sb->s_root) 1185 goto out_free; 1186 return 0; 1187 out_free: 1188 kfree(sbinfo->spool); 1189 kfree(sbinfo); 1190 return -ENOMEM; 1191 } 1192 1193 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1194 int flags, const char *dev_name, void *data) 1195 { 1196 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1197 } 1198 1199 static struct file_system_type hugetlbfs_fs_type = { 1200 .name = "hugetlbfs", 1201 .mount = hugetlbfs_mount, 1202 .kill_sb = kill_litter_super, 1203 }; 1204 MODULE_ALIAS_FS("hugetlbfs"); 1205 1206 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1207 1208 static int can_do_hugetlb_shm(void) 1209 { 1210 kgid_t shm_group; 1211 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1212 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1213 } 1214 1215 static int get_hstate_idx(int page_size_log) 1216 { 1217 struct hstate *h = hstate_sizelog(page_size_log); 1218 1219 if (!h) 1220 return -1; 1221 return h - hstates; 1222 } 1223 1224 static const struct dentry_operations anon_ops = { 1225 .d_dname = simple_dname 1226 }; 1227 1228 /* 1229 * Note that size should be aligned to proper hugepage size in caller side, 1230 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1231 */ 1232 struct file *hugetlb_file_setup(const char *name, size_t size, 1233 vm_flags_t acctflag, struct user_struct **user, 1234 int creat_flags, int page_size_log) 1235 { 1236 struct file *file = ERR_PTR(-ENOMEM); 1237 struct inode *inode; 1238 struct path path; 1239 struct super_block *sb; 1240 struct qstr quick_string; 1241 int hstate_idx; 1242 1243 hstate_idx = get_hstate_idx(page_size_log); 1244 if (hstate_idx < 0) 1245 return ERR_PTR(-ENODEV); 1246 1247 *user = NULL; 1248 if (!hugetlbfs_vfsmount[hstate_idx]) 1249 return ERR_PTR(-ENOENT); 1250 1251 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1252 *user = current_user(); 1253 if (user_shm_lock(size, *user)) { 1254 task_lock(current); 1255 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1256 current->comm, current->pid); 1257 task_unlock(current); 1258 } else { 1259 *user = NULL; 1260 return ERR_PTR(-EPERM); 1261 } 1262 } 1263 1264 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb; 1265 quick_string.name = name; 1266 quick_string.len = strlen(quick_string.name); 1267 quick_string.hash = 0; 1268 path.dentry = d_alloc_pseudo(sb, &quick_string); 1269 if (!path.dentry) 1270 goto out_shm_unlock; 1271 1272 d_set_d_op(path.dentry, &anon_ops); 1273 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]); 1274 file = ERR_PTR(-ENOSPC); 1275 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0); 1276 if (!inode) 1277 goto out_dentry; 1278 if (creat_flags == HUGETLB_SHMFS_INODE) 1279 inode->i_flags |= S_PRIVATE; 1280 1281 file = ERR_PTR(-ENOMEM); 1282 if (hugetlb_reserve_pages(inode, 0, 1283 size >> huge_page_shift(hstate_inode(inode)), NULL, 1284 acctflag)) 1285 goto out_inode; 1286 1287 d_instantiate(path.dentry, inode); 1288 inode->i_size = size; 1289 clear_nlink(inode); 1290 1291 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 1292 &hugetlbfs_file_operations); 1293 if (IS_ERR(file)) 1294 goto out_dentry; /* inode is already attached */ 1295 1296 return file; 1297 1298 out_inode: 1299 iput(inode); 1300 out_dentry: 1301 path_put(&path); 1302 out_shm_unlock: 1303 if (*user) { 1304 user_shm_unlock(size, *user); 1305 *user = NULL; 1306 } 1307 return file; 1308 } 1309 1310 static int __init init_hugetlbfs_fs(void) 1311 { 1312 struct hstate *h; 1313 int error; 1314 int i; 1315 1316 if (!hugepages_supported()) { 1317 pr_info("disabling because there are no supported hugepage sizes\n"); 1318 return -ENOTSUPP; 1319 } 1320 1321 error = -ENOMEM; 1322 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1323 sizeof(struct hugetlbfs_inode_info), 1324 0, 0, init_once); 1325 if (hugetlbfs_inode_cachep == NULL) 1326 goto out2; 1327 1328 error = register_filesystem(&hugetlbfs_fs_type); 1329 if (error) 1330 goto out; 1331 1332 i = 0; 1333 for_each_hstate(h) { 1334 char buf[50]; 1335 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1336 1337 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1338 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1339 buf); 1340 1341 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1342 pr_err("Cannot mount internal hugetlbfs for " 1343 "page size %uK", ps_kb); 1344 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1345 hugetlbfs_vfsmount[i] = NULL; 1346 } 1347 i++; 1348 } 1349 /* Non default hstates are optional */ 1350 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1351 return 0; 1352 1353 out: 1354 kmem_cache_destroy(hugetlbfs_inode_cachep); 1355 out2: 1356 return error; 1357 } 1358 1359 static void __exit exit_hugetlbfs_fs(void) 1360 { 1361 struct hstate *h; 1362 int i; 1363 1364 1365 /* 1366 * Make sure all delayed rcu free inodes are flushed before we 1367 * destroy cache. 1368 */ 1369 rcu_barrier(); 1370 kmem_cache_destroy(hugetlbfs_inode_cachep); 1371 i = 0; 1372 for_each_hstate(h) 1373 kern_unmount(hugetlbfs_vfsmount[i++]); 1374 unregister_filesystem(&hugetlbfs_fs_type); 1375 } 1376 1377 module_init(init_hugetlbfs_fs) 1378 module_exit(exit_hugetlbfs_fs) 1379 1380 MODULE_LICENSE("GPL"); 1381