xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 17408e59)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (!hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 		unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203 	struct hstate *h = hstate_file(file);
204 	struct vm_unmapped_area_info info;
205 
206 	info.flags = 0;
207 	info.length = len;
208 	info.low_limit = current->mm->mmap_base;
209 	info.high_limit = TASK_SIZE;
210 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 	info.align_offset = 0;
212 	return vm_unmapped_area(&info);
213 }
214 
215 static unsigned long
216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 		unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219 	struct hstate *h = hstate_file(file);
220 	struct vm_unmapped_area_info info;
221 
222 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 	info.length = len;
224 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 	info.high_limit = current->mm->mmap_base;
226 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 	info.align_offset = 0;
228 	addr = vm_unmapped_area(&info);
229 
230 	/*
231 	 * A failed mmap() very likely causes application failure,
232 	 * so fall back to the bottom-up function here. This scenario
233 	 * can happen with large stack limits and large mmap()
234 	 * allocations.
235 	 */
236 	if (unlikely(offset_in_page(addr))) {
237 		VM_BUG_ON(addr != -ENOMEM);
238 		info.flags = 0;
239 		info.low_limit = current->mm->mmap_base;
240 		info.high_limit = TASK_SIZE;
241 		addr = vm_unmapped_area(&info);
242 	}
243 
244 	return addr;
245 }
246 
247 static unsigned long
248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 		unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 
255 	if (len & ~huge_page_mask(h))
256 		return -EINVAL;
257 	if (len > TASK_SIZE)
258 		return -ENOMEM;
259 
260 	if (flags & MAP_FIXED) {
261 		if (prepare_hugepage_range(file, addr, len))
262 			return -EINVAL;
263 		return addr;
264 	}
265 
266 	if (addr) {
267 		addr = ALIGN(addr, huge_page_size(h));
268 		vma = find_vma(mm, addr);
269 		if (TASK_SIZE - len >= addr &&
270 		    (!vma || addr + len <= vm_start_gap(vma)))
271 			return addr;
272 	}
273 
274 	/*
275 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 	 * If architectures have special needs, they should define their own
277 	 * version of hugetlb_get_unmapped_area.
278 	 */
279 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
281 				pgoff, flags);
282 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
283 			pgoff, flags);
284 }
285 #endif
286 
287 static size_t
288 hugetlbfs_read_actor(struct page *page, unsigned long offset,
289 			struct iov_iter *to, unsigned long size)
290 {
291 	size_t copied = 0;
292 	int i, chunksize;
293 
294 	/* Find which 4k chunk and offset with in that chunk */
295 	i = offset >> PAGE_SHIFT;
296 	offset = offset & ~PAGE_MASK;
297 
298 	while (size) {
299 		size_t n;
300 		chunksize = PAGE_SIZE;
301 		if (offset)
302 			chunksize -= offset;
303 		if (chunksize > size)
304 			chunksize = size;
305 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
306 		copied += n;
307 		if (n != chunksize)
308 			return copied;
309 		offset = 0;
310 		size -= chunksize;
311 		i++;
312 	}
313 	return copied;
314 }
315 
316 /*
317  * Support for read() - Find the page attached to f_mapping and copy out the
318  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
319  * since it has PAGE_SIZE assumptions.
320  */
321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
322 {
323 	struct file *file = iocb->ki_filp;
324 	struct hstate *h = hstate_file(file);
325 	struct address_space *mapping = file->f_mapping;
326 	struct inode *inode = mapping->host;
327 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
328 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
329 	unsigned long end_index;
330 	loff_t isize;
331 	ssize_t retval = 0;
332 
333 	while (iov_iter_count(to)) {
334 		struct page *page;
335 		size_t nr, copied;
336 
337 		/* nr is the maximum number of bytes to copy from this page */
338 		nr = huge_page_size(h);
339 		isize = i_size_read(inode);
340 		if (!isize)
341 			break;
342 		end_index = (isize - 1) >> huge_page_shift(h);
343 		if (index > end_index)
344 			break;
345 		if (index == end_index) {
346 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
347 			if (nr <= offset)
348 				break;
349 		}
350 		nr = nr - offset;
351 
352 		/* Find the page */
353 		page = find_lock_page(mapping, index);
354 		if (unlikely(page == NULL)) {
355 			/*
356 			 * We have a HOLE, zero out the user-buffer for the
357 			 * length of the hole or request.
358 			 */
359 			copied = iov_iter_zero(nr, to);
360 		} else {
361 			unlock_page(page);
362 
363 			/*
364 			 * We have the page, copy it to user space buffer.
365 			 */
366 			copied = hugetlbfs_read_actor(page, offset, to, nr);
367 			put_page(page);
368 		}
369 		offset += copied;
370 		retval += copied;
371 		if (copied != nr && iov_iter_count(to)) {
372 			if (!retval)
373 				retval = -EFAULT;
374 			break;
375 		}
376 		index += offset >> huge_page_shift(h);
377 		offset &= ~huge_page_mask(h);
378 	}
379 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
380 	return retval;
381 }
382 
383 static int hugetlbfs_write_begin(struct file *file,
384 			struct address_space *mapping,
385 			loff_t pos, unsigned len, unsigned flags,
386 			struct page **pagep, void **fsdata)
387 {
388 	return -EINVAL;
389 }
390 
391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
392 			loff_t pos, unsigned len, unsigned copied,
393 			struct page *page, void *fsdata)
394 {
395 	BUG();
396 	return -EINVAL;
397 }
398 
399 static void remove_huge_page(struct page *page)
400 {
401 	ClearPageDirty(page);
402 	ClearPageUptodate(page);
403 	delete_from_page_cache(page);
404 }
405 
406 static void
407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
408 {
409 	struct vm_area_struct *vma;
410 
411 	/*
412 	 * end == 0 indicates that the entire range after start should be
413 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
414 	 * an inclusive "last".
415 	 */
416 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
417 		unsigned long v_offset;
418 		unsigned long v_end;
419 
420 		/*
421 		 * Can the expression below overflow on 32-bit arches?
422 		 * No, because the interval tree returns us only those vmas
423 		 * which overlap the truncated area starting at pgoff,
424 		 * and no vma on a 32-bit arch can span beyond the 4GB.
425 		 */
426 		if (vma->vm_pgoff < start)
427 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
428 		else
429 			v_offset = 0;
430 
431 		if (!end)
432 			v_end = vma->vm_end;
433 		else {
434 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
435 							+ vma->vm_start;
436 			if (v_end > vma->vm_end)
437 				v_end = vma->vm_end;
438 		}
439 
440 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
441 									NULL);
442 	}
443 }
444 
445 /*
446  * remove_inode_hugepages handles two distinct cases: truncation and hole
447  * punch.  There are subtle differences in operation for each case.
448  *
449  * truncation is indicated by end of range being LLONG_MAX
450  *	In this case, we first scan the range and release found pages.
451  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
452  *	maps and global counts.  Page faults can not race with truncation
453  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
454  *	page faults in the truncated range by checking i_size.  i_size is
455  *	modified while holding i_mmap_rwsem.
456  * hole punch is indicated if end is not LLONG_MAX
457  *	In the hole punch case we scan the range and release found pages.
458  *	Only when releasing a page is the associated region/reserve map
459  *	deleted.  The region/reserve map for ranges without associated
460  *	pages are not modified.  Page faults can race with hole punch.
461  *	This is indicated if we find a mapped page.
462  * Note: If the passed end of range value is beyond the end of file, but
463  * not LLONG_MAX this routine still performs a hole punch operation.
464  */
465 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
466 				   loff_t lend)
467 {
468 	struct hstate *h = hstate_inode(inode);
469 	struct address_space *mapping = &inode->i_data;
470 	const pgoff_t start = lstart >> huge_page_shift(h);
471 	const pgoff_t end = lend >> huge_page_shift(h);
472 	struct pagevec pvec;
473 	pgoff_t next, index;
474 	int i, freed = 0;
475 	bool truncate_op = (lend == LLONG_MAX);
476 
477 	pagevec_init(&pvec);
478 	next = start;
479 	while (next < end) {
480 		/*
481 		 * When no more pages are found, we are done.
482 		 */
483 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
484 			break;
485 
486 		for (i = 0; i < pagevec_count(&pvec); ++i) {
487 			struct page *page = pvec.pages[i];
488 			u32 hash = 0;
489 
490 			index = page->index;
491 			if (!truncate_op) {
492 				/*
493 				 * Only need to hold the fault mutex in the
494 				 * hole punch case.  This prevents races with
495 				 * page faults.  Races are not possible in the
496 				 * case of truncation.
497 				 */
498 				hash = hugetlb_fault_mutex_hash(mapping, index);
499 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
500 			}
501 
502 			/*
503 			 * If page is mapped, it was faulted in after being
504 			 * unmapped in caller.  Unmap (again) now after taking
505 			 * the fault mutex.  The mutex will prevent faults
506 			 * until we finish removing the page.
507 			 *
508 			 * This race can only happen in the hole punch case.
509 			 * Getting here in a truncate operation is a bug.
510 			 */
511 			if (unlikely(page_mapped(page))) {
512 				BUG_ON(truncate_op);
513 
514 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
515 				i_mmap_lock_write(mapping);
516 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
517 				hugetlb_vmdelete_list(&mapping->i_mmap,
518 					index * pages_per_huge_page(h),
519 					(index + 1) * pages_per_huge_page(h));
520 				i_mmap_unlock_write(mapping);
521 			}
522 
523 			lock_page(page);
524 			/*
525 			 * We must free the huge page and remove from page
526 			 * cache (remove_huge_page) BEFORE removing the
527 			 * region/reserve map (hugetlb_unreserve_pages).  In
528 			 * rare out of memory conditions, removal of the
529 			 * region/reserve map could fail. Correspondingly,
530 			 * the subpool and global reserve usage count can need
531 			 * to be adjusted.
532 			 */
533 			VM_BUG_ON(HPageRestoreReserve(page));
534 			remove_huge_page(page);
535 			freed++;
536 			if (!truncate_op) {
537 				if (unlikely(hugetlb_unreserve_pages(inode,
538 							index, index + 1, 1)))
539 					hugetlb_fix_reserve_counts(inode);
540 			}
541 
542 			unlock_page(page);
543 			if (!truncate_op)
544 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
545 		}
546 		huge_pagevec_release(&pvec);
547 		cond_resched();
548 	}
549 
550 	if (truncate_op)
551 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
552 }
553 
554 static void hugetlbfs_evict_inode(struct inode *inode)
555 {
556 	struct resv_map *resv_map;
557 
558 	remove_inode_hugepages(inode, 0, LLONG_MAX);
559 
560 	/*
561 	 * Get the resv_map from the address space embedded in the inode.
562 	 * This is the address space which points to any resv_map allocated
563 	 * at inode creation time.  If this is a device special inode,
564 	 * i_mapping may not point to the original address space.
565 	 */
566 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
567 	/* Only regular and link inodes have associated reserve maps */
568 	if (resv_map)
569 		resv_map_release(&resv_map->refs);
570 	clear_inode(inode);
571 }
572 
573 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
574 {
575 	pgoff_t pgoff;
576 	struct address_space *mapping = inode->i_mapping;
577 	struct hstate *h = hstate_inode(inode);
578 
579 	BUG_ON(offset & ~huge_page_mask(h));
580 	pgoff = offset >> PAGE_SHIFT;
581 
582 	i_mmap_lock_write(mapping);
583 	i_size_write(inode, offset);
584 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
585 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
586 	i_mmap_unlock_write(mapping);
587 	remove_inode_hugepages(inode, offset, LLONG_MAX);
588 }
589 
590 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
591 {
592 	struct hstate *h = hstate_inode(inode);
593 	loff_t hpage_size = huge_page_size(h);
594 	loff_t hole_start, hole_end;
595 
596 	/*
597 	 * For hole punch round up the beginning offset of the hole and
598 	 * round down the end.
599 	 */
600 	hole_start = round_up(offset, hpage_size);
601 	hole_end = round_down(offset + len, hpage_size);
602 
603 	if (hole_end > hole_start) {
604 		struct address_space *mapping = inode->i_mapping;
605 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
606 
607 		inode_lock(inode);
608 
609 		/* protected by i_rwsem */
610 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
611 			inode_unlock(inode);
612 			return -EPERM;
613 		}
614 
615 		i_mmap_lock_write(mapping);
616 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
617 			hugetlb_vmdelete_list(&mapping->i_mmap,
618 						hole_start >> PAGE_SHIFT,
619 						hole_end  >> PAGE_SHIFT);
620 		i_mmap_unlock_write(mapping);
621 		remove_inode_hugepages(inode, hole_start, hole_end);
622 		inode_unlock(inode);
623 	}
624 
625 	return 0;
626 }
627 
628 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
629 				loff_t len)
630 {
631 	struct inode *inode = file_inode(file);
632 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
633 	struct address_space *mapping = inode->i_mapping;
634 	struct hstate *h = hstate_inode(inode);
635 	struct vm_area_struct pseudo_vma;
636 	struct mm_struct *mm = current->mm;
637 	loff_t hpage_size = huge_page_size(h);
638 	unsigned long hpage_shift = huge_page_shift(h);
639 	pgoff_t start, index, end;
640 	int error;
641 	u32 hash;
642 
643 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
644 		return -EOPNOTSUPP;
645 
646 	if (mode & FALLOC_FL_PUNCH_HOLE)
647 		return hugetlbfs_punch_hole(inode, offset, len);
648 
649 	/*
650 	 * Default preallocate case.
651 	 * For this range, start is rounded down and end is rounded up
652 	 * as well as being converted to page offsets.
653 	 */
654 	start = offset >> hpage_shift;
655 	end = (offset + len + hpage_size - 1) >> hpage_shift;
656 
657 	inode_lock(inode);
658 
659 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
660 	error = inode_newsize_ok(inode, offset + len);
661 	if (error)
662 		goto out;
663 
664 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
665 		error = -EPERM;
666 		goto out;
667 	}
668 
669 	/*
670 	 * Initialize a pseudo vma as this is required by the huge page
671 	 * allocation routines.  If NUMA is configured, use page index
672 	 * as input to create an allocation policy.
673 	 */
674 	vma_init(&pseudo_vma, mm);
675 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
676 	pseudo_vma.vm_file = file;
677 
678 	for (index = start; index < end; index++) {
679 		/*
680 		 * This is supposed to be the vaddr where the page is being
681 		 * faulted in, but we have no vaddr here.
682 		 */
683 		struct page *page;
684 		unsigned long addr;
685 
686 		cond_resched();
687 
688 		/*
689 		 * fallocate(2) manpage permits EINTR; we may have been
690 		 * interrupted because we are using up too much memory.
691 		 */
692 		if (signal_pending(current)) {
693 			error = -EINTR;
694 			break;
695 		}
696 
697 		/* Set numa allocation policy based on index */
698 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
699 
700 		/* addr is the offset within the file (zero based) */
701 		addr = index * hpage_size;
702 
703 		/*
704 		 * fault mutex taken here, protects against fault path
705 		 * and hole punch.  inode_lock previously taken protects
706 		 * against truncation.
707 		 */
708 		hash = hugetlb_fault_mutex_hash(mapping, index);
709 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
710 
711 		/* See if already present in mapping to avoid alloc/free */
712 		page = find_get_page(mapping, index);
713 		if (page) {
714 			put_page(page);
715 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
716 			hugetlb_drop_vma_policy(&pseudo_vma);
717 			continue;
718 		}
719 
720 		/*
721 		 * Allocate page without setting the avoid_reserve argument.
722 		 * There certainly are no reserves associated with the
723 		 * pseudo_vma.  However, there could be shared mappings with
724 		 * reserves for the file at the inode level.  If we fallocate
725 		 * pages in these areas, we need to consume the reserves
726 		 * to keep reservation accounting consistent.
727 		 */
728 		page = alloc_huge_page(&pseudo_vma, addr, 0);
729 		hugetlb_drop_vma_policy(&pseudo_vma);
730 		if (IS_ERR(page)) {
731 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
732 			error = PTR_ERR(page);
733 			goto out;
734 		}
735 		clear_huge_page(page, addr, pages_per_huge_page(h));
736 		__SetPageUptodate(page);
737 		error = huge_add_to_page_cache(page, mapping, index);
738 		if (unlikely(error)) {
739 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
740 			put_page(page);
741 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
742 			goto out;
743 		}
744 
745 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
746 
747 		SetHPageMigratable(page);
748 		/*
749 		 * unlock_page because locked by add_to_page_cache()
750 		 * put_page() due to reference from alloc_huge_page()
751 		 */
752 		unlock_page(page);
753 		put_page(page);
754 	}
755 
756 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
757 		i_size_write(inode, offset + len);
758 	inode->i_ctime = current_time(inode);
759 out:
760 	inode_unlock(inode);
761 	return error;
762 }
763 
764 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
765 			     struct dentry *dentry, struct iattr *attr)
766 {
767 	struct inode *inode = d_inode(dentry);
768 	struct hstate *h = hstate_inode(inode);
769 	int error;
770 	unsigned int ia_valid = attr->ia_valid;
771 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
772 
773 	error = setattr_prepare(&init_user_ns, dentry, attr);
774 	if (error)
775 		return error;
776 
777 	if (ia_valid & ATTR_SIZE) {
778 		loff_t oldsize = inode->i_size;
779 		loff_t newsize = attr->ia_size;
780 
781 		if (newsize & ~huge_page_mask(h))
782 			return -EINVAL;
783 		/* protected by i_rwsem */
784 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
785 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
786 			return -EPERM;
787 		hugetlb_vmtruncate(inode, newsize);
788 	}
789 
790 	setattr_copy(&init_user_ns, inode, attr);
791 	mark_inode_dirty(inode);
792 	return 0;
793 }
794 
795 static struct inode *hugetlbfs_get_root(struct super_block *sb,
796 					struct hugetlbfs_fs_context *ctx)
797 {
798 	struct inode *inode;
799 
800 	inode = new_inode(sb);
801 	if (inode) {
802 		inode->i_ino = get_next_ino();
803 		inode->i_mode = S_IFDIR | ctx->mode;
804 		inode->i_uid = ctx->uid;
805 		inode->i_gid = ctx->gid;
806 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
807 		inode->i_op = &hugetlbfs_dir_inode_operations;
808 		inode->i_fop = &simple_dir_operations;
809 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
810 		inc_nlink(inode);
811 		lockdep_annotate_inode_mutex_key(inode);
812 	}
813 	return inode;
814 }
815 
816 /*
817  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
818  * be taken from reclaim -- unlike regular filesystems. This needs an
819  * annotation because huge_pmd_share() does an allocation under hugetlb's
820  * i_mmap_rwsem.
821  */
822 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
823 
824 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
825 					struct inode *dir,
826 					umode_t mode, dev_t dev)
827 {
828 	struct inode *inode;
829 	struct resv_map *resv_map = NULL;
830 
831 	/*
832 	 * Reserve maps are only needed for inodes that can have associated
833 	 * page allocations.
834 	 */
835 	if (S_ISREG(mode) || S_ISLNK(mode)) {
836 		resv_map = resv_map_alloc();
837 		if (!resv_map)
838 			return NULL;
839 	}
840 
841 	inode = new_inode(sb);
842 	if (inode) {
843 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
844 
845 		inode->i_ino = get_next_ino();
846 		inode_init_owner(&init_user_ns, inode, dir, mode);
847 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
848 				&hugetlbfs_i_mmap_rwsem_key);
849 		inode->i_mapping->a_ops = &hugetlbfs_aops;
850 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
851 		inode->i_mapping->private_data = resv_map;
852 		info->seals = F_SEAL_SEAL;
853 		switch (mode & S_IFMT) {
854 		default:
855 			init_special_inode(inode, mode, dev);
856 			break;
857 		case S_IFREG:
858 			inode->i_op = &hugetlbfs_inode_operations;
859 			inode->i_fop = &hugetlbfs_file_operations;
860 			break;
861 		case S_IFDIR:
862 			inode->i_op = &hugetlbfs_dir_inode_operations;
863 			inode->i_fop = &simple_dir_operations;
864 
865 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
866 			inc_nlink(inode);
867 			break;
868 		case S_IFLNK:
869 			inode->i_op = &page_symlink_inode_operations;
870 			inode_nohighmem(inode);
871 			break;
872 		}
873 		lockdep_annotate_inode_mutex_key(inode);
874 	} else {
875 		if (resv_map)
876 			kref_put(&resv_map->refs, resv_map_release);
877 	}
878 
879 	return inode;
880 }
881 
882 /*
883  * File creation. Allocate an inode, and we're done..
884  */
885 static int do_hugetlbfs_mknod(struct inode *dir,
886 			struct dentry *dentry,
887 			umode_t mode,
888 			dev_t dev,
889 			bool tmpfile)
890 {
891 	struct inode *inode;
892 	int error = -ENOSPC;
893 
894 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
895 	if (inode) {
896 		dir->i_ctime = dir->i_mtime = current_time(dir);
897 		if (tmpfile) {
898 			d_tmpfile(dentry, inode);
899 		} else {
900 			d_instantiate(dentry, inode);
901 			dget(dentry);/* Extra count - pin the dentry in core */
902 		}
903 		error = 0;
904 	}
905 	return error;
906 }
907 
908 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
909 			   struct dentry *dentry, umode_t mode, dev_t dev)
910 {
911 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
912 }
913 
914 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
915 			   struct dentry *dentry, umode_t mode)
916 {
917 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
918 				     mode | S_IFDIR, 0);
919 	if (!retval)
920 		inc_nlink(dir);
921 	return retval;
922 }
923 
924 static int hugetlbfs_create(struct user_namespace *mnt_userns,
925 			    struct inode *dir, struct dentry *dentry,
926 			    umode_t mode, bool excl)
927 {
928 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
929 }
930 
931 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
932 			     struct inode *dir, struct dentry *dentry,
933 			     umode_t mode)
934 {
935 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
936 }
937 
938 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
939 			     struct inode *dir, struct dentry *dentry,
940 			     const char *symname)
941 {
942 	struct inode *inode;
943 	int error = -ENOSPC;
944 
945 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
946 	if (inode) {
947 		int l = strlen(symname)+1;
948 		error = page_symlink(inode, symname, l);
949 		if (!error) {
950 			d_instantiate(dentry, inode);
951 			dget(dentry);
952 		} else
953 			iput(inode);
954 	}
955 	dir->i_ctime = dir->i_mtime = current_time(dir);
956 
957 	return error;
958 }
959 
960 static int hugetlbfs_migrate_page(struct address_space *mapping,
961 				struct page *newpage, struct page *page,
962 				enum migrate_mode mode)
963 {
964 	int rc;
965 
966 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
967 	if (rc != MIGRATEPAGE_SUCCESS)
968 		return rc;
969 
970 	if (hugetlb_page_subpool(page)) {
971 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
972 		hugetlb_set_page_subpool(page, NULL);
973 	}
974 
975 	if (mode != MIGRATE_SYNC_NO_COPY)
976 		migrate_page_copy(newpage, page);
977 	else
978 		migrate_page_states(newpage, page);
979 
980 	return MIGRATEPAGE_SUCCESS;
981 }
982 
983 static int hugetlbfs_error_remove_page(struct address_space *mapping,
984 				struct page *page)
985 {
986 	struct inode *inode = mapping->host;
987 	pgoff_t index = page->index;
988 
989 	remove_huge_page(page);
990 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
991 		hugetlb_fix_reserve_counts(inode);
992 
993 	return 0;
994 }
995 
996 /*
997  * Display the mount options in /proc/mounts.
998  */
999 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1000 {
1001 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1002 	struct hugepage_subpool *spool = sbinfo->spool;
1003 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1004 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1005 	char mod;
1006 
1007 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1008 		seq_printf(m, ",uid=%u",
1009 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1010 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1011 		seq_printf(m, ",gid=%u",
1012 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1013 	if (sbinfo->mode != 0755)
1014 		seq_printf(m, ",mode=%o", sbinfo->mode);
1015 	if (sbinfo->max_inodes != -1)
1016 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1017 
1018 	hpage_size /= 1024;
1019 	mod = 'K';
1020 	if (hpage_size >= 1024) {
1021 		hpage_size /= 1024;
1022 		mod = 'M';
1023 	}
1024 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1025 	if (spool) {
1026 		if (spool->max_hpages != -1)
1027 			seq_printf(m, ",size=%llu",
1028 				   (unsigned long long)spool->max_hpages << hpage_shift);
1029 		if (spool->min_hpages != -1)
1030 			seq_printf(m, ",min_size=%llu",
1031 				   (unsigned long long)spool->min_hpages << hpage_shift);
1032 	}
1033 	return 0;
1034 }
1035 
1036 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1037 {
1038 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1039 	struct hstate *h = hstate_inode(d_inode(dentry));
1040 
1041 	buf->f_type = HUGETLBFS_MAGIC;
1042 	buf->f_bsize = huge_page_size(h);
1043 	if (sbinfo) {
1044 		spin_lock(&sbinfo->stat_lock);
1045 		/* If no limits set, just report 0 for max/free/used
1046 		 * blocks, like simple_statfs() */
1047 		if (sbinfo->spool) {
1048 			long free_pages;
1049 
1050 			spin_lock(&sbinfo->spool->lock);
1051 			buf->f_blocks = sbinfo->spool->max_hpages;
1052 			free_pages = sbinfo->spool->max_hpages
1053 				- sbinfo->spool->used_hpages;
1054 			buf->f_bavail = buf->f_bfree = free_pages;
1055 			spin_unlock(&sbinfo->spool->lock);
1056 			buf->f_files = sbinfo->max_inodes;
1057 			buf->f_ffree = sbinfo->free_inodes;
1058 		}
1059 		spin_unlock(&sbinfo->stat_lock);
1060 	}
1061 	buf->f_namelen = NAME_MAX;
1062 	return 0;
1063 }
1064 
1065 static void hugetlbfs_put_super(struct super_block *sb)
1066 {
1067 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1068 
1069 	if (sbi) {
1070 		sb->s_fs_info = NULL;
1071 
1072 		if (sbi->spool)
1073 			hugepage_put_subpool(sbi->spool);
1074 
1075 		kfree(sbi);
1076 	}
1077 }
1078 
1079 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1080 {
1081 	if (sbinfo->free_inodes >= 0) {
1082 		spin_lock(&sbinfo->stat_lock);
1083 		if (unlikely(!sbinfo->free_inodes)) {
1084 			spin_unlock(&sbinfo->stat_lock);
1085 			return 0;
1086 		}
1087 		sbinfo->free_inodes--;
1088 		spin_unlock(&sbinfo->stat_lock);
1089 	}
1090 
1091 	return 1;
1092 }
1093 
1094 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1095 {
1096 	if (sbinfo->free_inodes >= 0) {
1097 		spin_lock(&sbinfo->stat_lock);
1098 		sbinfo->free_inodes++;
1099 		spin_unlock(&sbinfo->stat_lock);
1100 	}
1101 }
1102 
1103 
1104 static struct kmem_cache *hugetlbfs_inode_cachep;
1105 
1106 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1107 {
1108 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1109 	struct hugetlbfs_inode_info *p;
1110 
1111 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1112 		return NULL;
1113 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1114 	if (unlikely(!p)) {
1115 		hugetlbfs_inc_free_inodes(sbinfo);
1116 		return NULL;
1117 	}
1118 
1119 	/*
1120 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1121 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1122 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1123 	 * in case of a quick call to destroy.
1124 	 *
1125 	 * Note that the policy is initialized even if we are creating a
1126 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1127 	 */
1128 	mpol_shared_policy_init(&p->policy, NULL);
1129 
1130 	return &p->vfs_inode;
1131 }
1132 
1133 static void hugetlbfs_free_inode(struct inode *inode)
1134 {
1135 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1136 }
1137 
1138 static void hugetlbfs_destroy_inode(struct inode *inode)
1139 {
1140 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1141 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1142 }
1143 
1144 static const struct address_space_operations hugetlbfs_aops = {
1145 	.write_begin	= hugetlbfs_write_begin,
1146 	.write_end	= hugetlbfs_write_end,
1147 	.dirty_folio	= noop_dirty_folio,
1148 	.migratepage    = hugetlbfs_migrate_page,
1149 	.error_remove_page	= hugetlbfs_error_remove_page,
1150 };
1151 
1152 
1153 static void init_once(void *foo)
1154 {
1155 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1156 
1157 	inode_init_once(&ei->vfs_inode);
1158 }
1159 
1160 const struct file_operations hugetlbfs_file_operations = {
1161 	.read_iter		= hugetlbfs_read_iter,
1162 	.mmap			= hugetlbfs_file_mmap,
1163 	.fsync			= noop_fsync,
1164 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1165 	.llseek			= default_llseek,
1166 	.fallocate		= hugetlbfs_fallocate,
1167 };
1168 
1169 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1170 	.create		= hugetlbfs_create,
1171 	.lookup		= simple_lookup,
1172 	.link		= simple_link,
1173 	.unlink		= simple_unlink,
1174 	.symlink	= hugetlbfs_symlink,
1175 	.mkdir		= hugetlbfs_mkdir,
1176 	.rmdir		= simple_rmdir,
1177 	.mknod		= hugetlbfs_mknod,
1178 	.rename		= simple_rename,
1179 	.setattr	= hugetlbfs_setattr,
1180 	.tmpfile	= hugetlbfs_tmpfile,
1181 };
1182 
1183 static const struct inode_operations hugetlbfs_inode_operations = {
1184 	.setattr	= hugetlbfs_setattr,
1185 };
1186 
1187 static const struct super_operations hugetlbfs_ops = {
1188 	.alloc_inode    = hugetlbfs_alloc_inode,
1189 	.free_inode     = hugetlbfs_free_inode,
1190 	.destroy_inode  = hugetlbfs_destroy_inode,
1191 	.evict_inode	= hugetlbfs_evict_inode,
1192 	.statfs		= hugetlbfs_statfs,
1193 	.put_super	= hugetlbfs_put_super,
1194 	.show_options	= hugetlbfs_show_options,
1195 };
1196 
1197 /*
1198  * Convert size option passed from command line to number of huge pages
1199  * in the pool specified by hstate.  Size option could be in bytes
1200  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1201  */
1202 static long
1203 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1204 			 enum hugetlbfs_size_type val_type)
1205 {
1206 	if (val_type == NO_SIZE)
1207 		return -1;
1208 
1209 	if (val_type == SIZE_PERCENT) {
1210 		size_opt <<= huge_page_shift(h);
1211 		size_opt *= h->max_huge_pages;
1212 		do_div(size_opt, 100);
1213 	}
1214 
1215 	size_opt >>= huge_page_shift(h);
1216 	return size_opt;
1217 }
1218 
1219 /*
1220  * Parse one mount parameter.
1221  */
1222 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1223 {
1224 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1225 	struct fs_parse_result result;
1226 	char *rest;
1227 	unsigned long ps;
1228 	int opt;
1229 
1230 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1231 	if (opt < 0)
1232 		return opt;
1233 
1234 	switch (opt) {
1235 	case Opt_uid:
1236 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1237 		if (!uid_valid(ctx->uid))
1238 			goto bad_val;
1239 		return 0;
1240 
1241 	case Opt_gid:
1242 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1243 		if (!gid_valid(ctx->gid))
1244 			goto bad_val;
1245 		return 0;
1246 
1247 	case Opt_mode:
1248 		ctx->mode = result.uint_32 & 01777U;
1249 		return 0;
1250 
1251 	case Opt_size:
1252 		/* memparse() will accept a K/M/G without a digit */
1253 		if (!isdigit(param->string[0]))
1254 			goto bad_val;
1255 		ctx->max_size_opt = memparse(param->string, &rest);
1256 		ctx->max_val_type = SIZE_STD;
1257 		if (*rest == '%')
1258 			ctx->max_val_type = SIZE_PERCENT;
1259 		return 0;
1260 
1261 	case Opt_nr_inodes:
1262 		/* memparse() will accept a K/M/G without a digit */
1263 		if (!isdigit(param->string[0]))
1264 			goto bad_val;
1265 		ctx->nr_inodes = memparse(param->string, &rest);
1266 		return 0;
1267 
1268 	case Opt_pagesize:
1269 		ps = memparse(param->string, &rest);
1270 		ctx->hstate = size_to_hstate(ps);
1271 		if (!ctx->hstate) {
1272 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1273 			return -EINVAL;
1274 		}
1275 		return 0;
1276 
1277 	case Opt_min_size:
1278 		/* memparse() will accept a K/M/G without a digit */
1279 		if (!isdigit(param->string[0]))
1280 			goto bad_val;
1281 		ctx->min_size_opt = memparse(param->string, &rest);
1282 		ctx->min_val_type = SIZE_STD;
1283 		if (*rest == '%')
1284 			ctx->min_val_type = SIZE_PERCENT;
1285 		return 0;
1286 
1287 	default:
1288 		return -EINVAL;
1289 	}
1290 
1291 bad_val:
1292 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1293 		      param->string, param->key);
1294 }
1295 
1296 /*
1297  * Validate the parsed options.
1298  */
1299 static int hugetlbfs_validate(struct fs_context *fc)
1300 {
1301 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1302 
1303 	/*
1304 	 * Use huge page pool size (in hstate) to convert the size
1305 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1306 	 */
1307 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1308 						   ctx->max_size_opt,
1309 						   ctx->max_val_type);
1310 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1311 						   ctx->min_size_opt,
1312 						   ctx->min_val_type);
1313 
1314 	/*
1315 	 * If max_size was specified, then min_size must be smaller
1316 	 */
1317 	if (ctx->max_val_type > NO_SIZE &&
1318 	    ctx->min_hpages > ctx->max_hpages) {
1319 		pr_err("Minimum size can not be greater than maximum size\n");
1320 		return -EINVAL;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 static int
1327 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1328 {
1329 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1330 	struct hugetlbfs_sb_info *sbinfo;
1331 
1332 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1333 	if (!sbinfo)
1334 		return -ENOMEM;
1335 	sb->s_fs_info = sbinfo;
1336 	spin_lock_init(&sbinfo->stat_lock);
1337 	sbinfo->hstate		= ctx->hstate;
1338 	sbinfo->max_inodes	= ctx->nr_inodes;
1339 	sbinfo->free_inodes	= ctx->nr_inodes;
1340 	sbinfo->spool		= NULL;
1341 	sbinfo->uid		= ctx->uid;
1342 	sbinfo->gid		= ctx->gid;
1343 	sbinfo->mode		= ctx->mode;
1344 
1345 	/*
1346 	 * Allocate and initialize subpool if maximum or minimum size is
1347 	 * specified.  Any needed reservations (for minimum size) are taken
1348 	 * taken when the subpool is created.
1349 	 */
1350 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1351 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1352 						     ctx->max_hpages,
1353 						     ctx->min_hpages);
1354 		if (!sbinfo->spool)
1355 			goto out_free;
1356 	}
1357 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1358 	sb->s_blocksize = huge_page_size(ctx->hstate);
1359 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1360 	sb->s_magic = HUGETLBFS_MAGIC;
1361 	sb->s_op = &hugetlbfs_ops;
1362 	sb->s_time_gran = 1;
1363 
1364 	/*
1365 	 * Due to the special and limited functionality of hugetlbfs, it does
1366 	 * not work well as a stacking filesystem.
1367 	 */
1368 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1369 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1370 	if (!sb->s_root)
1371 		goto out_free;
1372 	return 0;
1373 out_free:
1374 	kfree(sbinfo->spool);
1375 	kfree(sbinfo);
1376 	return -ENOMEM;
1377 }
1378 
1379 static int hugetlbfs_get_tree(struct fs_context *fc)
1380 {
1381 	int err = hugetlbfs_validate(fc);
1382 	if (err)
1383 		return err;
1384 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1385 }
1386 
1387 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1388 {
1389 	kfree(fc->fs_private);
1390 }
1391 
1392 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1393 	.free		= hugetlbfs_fs_context_free,
1394 	.parse_param	= hugetlbfs_parse_param,
1395 	.get_tree	= hugetlbfs_get_tree,
1396 };
1397 
1398 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1399 {
1400 	struct hugetlbfs_fs_context *ctx;
1401 
1402 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1403 	if (!ctx)
1404 		return -ENOMEM;
1405 
1406 	ctx->max_hpages	= -1; /* No limit on size by default */
1407 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1408 	ctx->uid	= current_fsuid();
1409 	ctx->gid	= current_fsgid();
1410 	ctx->mode	= 0755;
1411 	ctx->hstate	= &default_hstate;
1412 	ctx->min_hpages	= -1; /* No default minimum size */
1413 	ctx->max_val_type = NO_SIZE;
1414 	ctx->min_val_type = NO_SIZE;
1415 	fc->fs_private = ctx;
1416 	fc->ops	= &hugetlbfs_fs_context_ops;
1417 	return 0;
1418 }
1419 
1420 static struct file_system_type hugetlbfs_fs_type = {
1421 	.name			= "hugetlbfs",
1422 	.init_fs_context	= hugetlbfs_init_fs_context,
1423 	.parameters		= hugetlb_fs_parameters,
1424 	.kill_sb		= kill_litter_super,
1425 };
1426 
1427 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1428 
1429 static int can_do_hugetlb_shm(void)
1430 {
1431 	kgid_t shm_group;
1432 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1433 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1434 }
1435 
1436 static int get_hstate_idx(int page_size_log)
1437 {
1438 	struct hstate *h = hstate_sizelog(page_size_log);
1439 
1440 	if (!h)
1441 		return -1;
1442 	return hstate_index(h);
1443 }
1444 
1445 /*
1446  * Note that size should be aligned to proper hugepage size in caller side,
1447  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1448  */
1449 struct file *hugetlb_file_setup(const char *name, size_t size,
1450 				vm_flags_t acctflag, int creat_flags,
1451 				int page_size_log)
1452 {
1453 	struct inode *inode;
1454 	struct vfsmount *mnt;
1455 	int hstate_idx;
1456 	struct file *file;
1457 
1458 	hstate_idx = get_hstate_idx(page_size_log);
1459 	if (hstate_idx < 0)
1460 		return ERR_PTR(-ENODEV);
1461 
1462 	mnt = hugetlbfs_vfsmount[hstate_idx];
1463 	if (!mnt)
1464 		return ERR_PTR(-ENOENT);
1465 
1466 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1467 		struct ucounts *ucounts = current_ucounts();
1468 
1469 		if (user_shm_lock(size, ucounts)) {
1470 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1471 				current->comm, current->pid);
1472 			user_shm_unlock(size, ucounts);
1473 		}
1474 		return ERR_PTR(-EPERM);
1475 	}
1476 
1477 	file = ERR_PTR(-ENOSPC);
1478 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1479 	if (!inode)
1480 		goto out;
1481 	if (creat_flags == HUGETLB_SHMFS_INODE)
1482 		inode->i_flags |= S_PRIVATE;
1483 
1484 	inode->i_size = size;
1485 	clear_nlink(inode);
1486 
1487 	if (!hugetlb_reserve_pages(inode, 0,
1488 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1489 			acctflag))
1490 		file = ERR_PTR(-ENOMEM);
1491 	else
1492 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1493 					&hugetlbfs_file_operations);
1494 	if (!IS_ERR(file))
1495 		return file;
1496 
1497 	iput(inode);
1498 out:
1499 	return file;
1500 }
1501 
1502 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1503 {
1504 	struct fs_context *fc;
1505 	struct vfsmount *mnt;
1506 
1507 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1508 	if (IS_ERR(fc)) {
1509 		mnt = ERR_CAST(fc);
1510 	} else {
1511 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1512 		ctx->hstate = h;
1513 		mnt = fc_mount(fc);
1514 		put_fs_context(fc);
1515 	}
1516 	if (IS_ERR(mnt))
1517 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1518 		       huge_page_size(h) >> 10);
1519 	return mnt;
1520 }
1521 
1522 static int __init init_hugetlbfs_fs(void)
1523 {
1524 	struct vfsmount *mnt;
1525 	struct hstate *h;
1526 	int error;
1527 	int i;
1528 
1529 	if (!hugepages_supported()) {
1530 		pr_info("disabling because there are no supported hugepage sizes\n");
1531 		return -ENOTSUPP;
1532 	}
1533 
1534 	error = -ENOMEM;
1535 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1536 					sizeof(struct hugetlbfs_inode_info),
1537 					0, SLAB_ACCOUNT, init_once);
1538 	if (hugetlbfs_inode_cachep == NULL)
1539 		goto out;
1540 
1541 	error = register_filesystem(&hugetlbfs_fs_type);
1542 	if (error)
1543 		goto out_free;
1544 
1545 	/* default hstate mount is required */
1546 	mnt = mount_one_hugetlbfs(&default_hstate);
1547 	if (IS_ERR(mnt)) {
1548 		error = PTR_ERR(mnt);
1549 		goto out_unreg;
1550 	}
1551 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1552 
1553 	/* other hstates are optional */
1554 	i = 0;
1555 	for_each_hstate(h) {
1556 		if (i == default_hstate_idx) {
1557 			i++;
1558 			continue;
1559 		}
1560 
1561 		mnt = mount_one_hugetlbfs(h);
1562 		if (IS_ERR(mnt))
1563 			hugetlbfs_vfsmount[i] = NULL;
1564 		else
1565 			hugetlbfs_vfsmount[i] = mnt;
1566 		i++;
1567 	}
1568 
1569 	return 0;
1570 
1571  out_unreg:
1572 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1573  out_free:
1574 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1575  out:
1576 	return error;
1577 }
1578 fs_initcall(init_hugetlbfs_fs)
1579