1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 49 50 struct hugetlbfs_fs_context { 51 struct hstate *hstate; 52 unsigned long long max_size_opt; 53 unsigned long long min_size_opt; 54 long max_hpages; 55 long nr_inodes; 56 long min_hpages; 57 enum hugetlbfs_size_type max_val_type; 58 enum hugetlbfs_size_type min_val_type; 59 kuid_t uid; 60 kgid_t gid; 61 umode_t mode; 62 }; 63 64 int sysctl_hugetlb_shm_group; 65 66 enum hugetlb_param { 67 Opt_gid, 68 Opt_min_size, 69 Opt_mode, 70 Opt_nr_inodes, 71 Opt_pagesize, 72 Opt_size, 73 Opt_uid, 74 }; 75 76 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 77 fsparam_u32 ("gid", Opt_gid), 78 fsparam_string("min_size", Opt_min_size), 79 fsparam_u32 ("mode", Opt_mode), 80 fsparam_string("nr_inodes", Opt_nr_inodes), 81 fsparam_string("pagesize", Opt_pagesize), 82 fsparam_string("size", Opt_size), 83 fsparam_u32 ("uid", Opt_uid), 84 {} 85 }; 86 87 #ifdef CONFIG_NUMA 88 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 89 struct inode *inode, pgoff_t index) 90 { 91 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 92 index); 93 } 94 95 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 96 { 97 mpol_cond_put(vma->vm_policy); 98 } 99 #else 100 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 101 struct inode *inode, pgoff_t index) 102 { 103 } 104 105 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 106 { 107 } 108 #endif 109 110 static void huge_pagevec_release(struct pagevec *pvec) 111 { 112 int i; 113 114 for (i = 0; i < pagevec_count(pvec); ++i) 115 put_page(pvec->pages[i]); 116 117 pagevec_reinit(pvec); 118 } 119 120 /* 121 * Mask used when checking the page offset value passed in via system 122 * calls. This value will be converted to a loff_t which is signed. 123 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 124 * value. The extra bit (- 1 in the shift value) is to take the sign 125 * bit into account. 126 */ 127 #define PGOFF_LOFFT_MAX \ 128 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 129 130 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 131 { 132 struct inode *inode = file_inode(file); 133 loff_t len, vma_len; 134 int ret; 135 struct hstate *h = hstate_file(file); 136 137 /* 138 * vma address alignment (but not the pgoff alignment) has 139 * already been checked by prepare_hugepage_range. If you add 140 * any error returns here, do so after setting VM_HUGETLB, so 141 * is_vm_hugetlb_page tests below unmap_region go the right 142 * way when do_mmap_pgoff unwinds (may be important on powerpc 143 * and ia64). 144 */ 145 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 146 vma->vm_ops = &hugetlb_vm_ops; 147 148 /* 149 * page based offset in vm_pgoff could be sufficiently large to 150 * overflow a loff_t when converted to byte offset. This can 151 * only happen on architectures where sizeof(loff_t) == 152 * sizeof(unsigned long). So, only check in those instances. 153 */ 154 if (sizeof(unsigned long) == sizeof(loff_t)) { 155 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 156 return -EINVAL; 157 } 158 159 /* must be huge page aligned */ 160 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 161 return -EINVAL; 162 163 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 164 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 165 /* check for overflow */ 166 if (len < vma_len) 167 return -EINVAL; 168 169 inode_lock(inode); 170 file_accessed(file); 171 172 ret = -ENOMEM; 173 if (hugetlb_reserve_pages(inode, 174 vma->vm_pgoff >> huge_page_order(h), 175 len >> huge_page_shift(h), vma, 176 vma->vm_flags)) 177 goto out; 178 179 ret = 0; 180 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 181 i_size_write(inode, len); 182 out: 183 inode_unlock(inode); 184 185 return ret; 186 } 187 188 /* 189 * Called under down_write(mmap_sem). 190 */ 191 192 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 193 static unsigned long 194 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 195 unsigned long len, unsigned long pgoff, unsigned long flags) 196 { 197 struct mm_struct *mm = current->mm; 198 struct vm_area_struct *vma; 199 struct hstate *h = hstate_file(file); 200 struct vm_unmapped_area_info info; 201 202 if (len & ~huge_page_mask(h)) 203 return -EINVAL; 204 if (len > TASK_SIZE) 205 return -ENOMEM; 206 207 if (flags & MAP_FIXED) { 208 if (prepare_hugepage_range(file, addr, len)) 209 return -EINVAL; 210 return addr; 211 } 212 213 if (addr) { 214 addr = ALIGN(addr, huge_page_size(h)); 215 vma = find_vma(mm, addr); 216 if (TASK_SIZE - len >= addr && 217 (!vma || addr + len <= vm_start_gap(vma))) 218 return addr; 219 } 220 221 info.flags = 0; 222 info.length = len; 223 info.low_limit = TASK_UNMAPPED_BASE; 224 info.high_limit = TASK_SIZE; 225 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 226 info.align_offset = 0; 227 return vm_unmapped_area(&info); 228 } 229 #endif 230 231 static size_t 232 hugetlbfs_read_actor(struct page *page, unsigned long offset, 233 struct iov_iter *to, unsigned long size) 234 { 235 size_t copied = 0; 236 int i, chunksize; 237 238 /* Find which 4k chunk and offset with in that chunk */ 239 i = offset >> PAGE_SHIFT; 240 offset = offset & ~PAGE_MASK; 241 242 while (size) { 243 size_t n; 244 chunksize = PAGE_SIZE; 245 if (offset) 246 chunksize -= offset; 247 if (chunksize > size) 248 chunksize = size; 249 n = copy_page_to_iter(&page[i], offset, chunksize, to); 250 copied += n; 251 if (n != chunksize) 252 return copied; 253 offset = 0; 254 size -= chunksize; 255 i++; 256 } 257 return copied; 258 } 259 260 /* 261 * Support for read() - Find the page attached to f_mapping and copy out the 262 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 263 * since it has PAGE_SIZE assumptions. 264 */ 265 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 266 { 267 struct file *file = iocb->ki_filp; 268 struct hstate *h = hstate_file(file); 269 struct address_space *mapping = file->f_mapping; 270 struct inode *inode = mapping->host; 271 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 272 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 273 unsigned long end_index; 274 loff_t isize; 275 ssize_t retval = 0; 276 277 while (iov_iter_count(to)) { 278 struct page *page; 279 size_t nr, copied; 280 281 /* nr is the maximum number of bytes to copy from this page */ 282 nr = huge_page_size(h); 283 isize = i_size_read(inode); 284 if (!isize) 285 break; 286 end_index = (isize - 1) >> huge_page_shift(h); 287 if (index > end_index) 288 break; 289 if (index == end_index) { 290 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 291 if (nr <= offset) 292 break; 293 } 294 nr = nr - offset; 295 296 /* Find the page */ 297 page = find_lock_page(mapping, index); 298 if (unlikely(page == NULL)) { 299 /* 300 * We have a HOLE, zero out the user-buffer for the 301 * length of the hole or request. 302 */ 303 copied = iov_iter_zero(nr, to); 304 } else { 305 unlock_page(page); 306 307 /* 308 * We have the page, copy it to user space buffer. 309 */ 310 copied = hugetlbfs_read_actor(page, offset, to, nr); 311 put_page(page); 312 } 313 offset += copied; 314 retval += copied; 315 if (copied != nr && iov_iter_count(to)) { 316 if (!retval) 317 retval = -EFAULT; 318 break; 319 } 320 index += offset >> huge_page_shift(h); 321 offset &= ~huge_page_mask(h); 322 } 323 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 324 return retval; 325 } 326 327 static int hugetlbfs_write_begin(struct file *file, 328 struct address_space *mapping, 329 loff_t pos, unsigned len, unsigned flags, 330 struct page **pagep, void **fsdata) 331 { 332 return -EINVAL; 333 } 334 335 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 336 loff_t pos, unsigned len, unsigned copied, 337 struct page *page, void *fsdata) 338 { 339 BUG(); 340 return -EINVAL; 341 } 342 343 static void remove_huge_page(struct page *page) 344 { 345 ClearPageDirty(page); 346 ClearPageUptodate(page); 347 delete_from_page_cache(page); 348 } 349 350 static void 351 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 352 { 353 struct vm_area_struct *vma; 354 355 /* 356 * end == 0 indicates that the entire range after 357 * start should be unmapped. 358 */ 359 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 360 unsigned long v_offset; 361 unsigned long v_end; 362 363 /* 364 * Can the expression below overflow on 32-bit arches? 365 * No, because the interval tree returns us only those vmas 366 * which overlap the truncated area starting at pgoff, 367 * and no vma on a 32-bit arch can span beyond the 4GB. 368 */ 369 if (vma->vm_pgoff < start) 370 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 371 else 372 v_offset = 0; 373 374 if (!end) 375 v_end = vma->vm_end; 376 else { 377 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 378 + vma->vm_start; 379 if (v_end > vma->vm_end) 380 v_end = vma->vm_end; 381 } 382 383 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 384 NULL); 385 } 386 } 387 388 /* 389 * remove_inode_hugepages handles two distinct cases: truncation and hole 390 * punch. There are subtle differences in operation for each case. 391 * 392 * truncation is indicated by end of range being LLONG_MAX 393 * In this case, we first scan the range and release found pages. 394 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 395 * maps and global counts. Page faults can not race with truncation 396 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 397 * page faults in the truncated range by checking i_size. i_size is 398 * modified while holding i_mmap_rwsem. 399 * hole punch is indicated if end is not LLONG_MAX 400 * In the hole punch case we scan the range and release found pages. 401 * Only when releasing a page is the associated region/reserv map 402 * deleted. The region/reserv map for ranges without associated 403 * pages are not modified. Page faults can race with hole punch. 404 * This is indicated if we find a mapped page. 405 * Note: If the passed end of range value is beyond the end of file, but 406 * not LLONG_MAX this routine still performs a hole punch operation. 407 */ 408 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 409 loff_t lend) 410 { 411 struct hstate *h = hstate_inode(inode); 412 struct address_space *mapping = &inode->i_data; 413 const pgoff_t start = lstart >> huge_page_shift(h); 414 const pgoff_t end = lend >> huge_page_shift(h); 415 struct vm_area_struct pseudo_vma; 416 struct pagevec pvec; 417 pgoff_t next, index; 418 int i, freed = 0; 419 bool truncate_op = (lend == LLONG_MAX); 420 421 vma_init(&pseudo_vma, current->mm); 422 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 423 pagevec_init(&pvec); 424 next = start; 425 while (next < end) { 426 /* 427 * When no more pages are found, we are done. 428 */ 429 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 430 break; 431 432 for (i = 0; i < pagevec_count(&pvec); ++i) { 433 struct page *page = pvec.pages[i]; 434 u32 hash; 435 436 index = page->index; 437 hash = hugetlb_fault_mutex_hash(mapping, index); 438 if (!truncate_op) { 439 /* 440 * Only need to hold the fault mutex in the 441 * hole punch case. This prevents races with 442 * page faults. Races are not possible in the 443 * case of truncation. 444 */ 445 mutex_lock(&hugetlb_fault_mutex_table[hash]); 446 } 447 448 /* 449 * If page is mapped, it was faulted in after being 450 * unmapped in caller. Unmap (again) now after taking 451 * the fault mutex. The mutex will prevent faults 452 * until we finish removing the page. 453 * 454 * This race can only happen in the hole punch case. 455 * Getting here in a truncate operation is a bug. 456 */ 457 if (unlikely(page_mapped(page))) { 458 BUG_ON(truncate_op); 459 460 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 461 i_mmap_lock_write(mapping); 462 mutex_lock(&hugetlb_fault_mutex_table[hash]); 463 hugetlb_vmdelete_list(&mapping->i_mmap, 464 index * pages_per_huge_page(h), 465 (index + 1) * pages_per_huge_page(h)); 466 i_mmap_unlock_write(mapping); 467 } 468 469 lock_page(page); 470 /* 471 * We must free the huge page and remove from page 472 * cache (remove_huge_page) BEFORE removing the 473 * region/reserve map (hugetlb_unreserve_pages). In 474 * rare out of memory conditions, removal of the 475 * region/reserve map could fail. Correspondingly, 476 * the subpool and global reserve usage count can need 477 * to be adjusted. 478 */ 479 VM_BUG_ON(PagePrivate(page)); 480 remove_huge_page(page); 481 freed++; 482 if (!truncate_op) { 483 if (unlikely(hugetlb_unreserve_pages(inode, 484 index, index + 1, 1))) 485 hugetlb_fix_reserve_counts(inode); 486 } 487 488 unlock_page(page); 489 if (!truncate_op) 490 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 491 } 492 huge_pagevec_release(&pvec); 493 cond_resched(); 494 } 495 496 if (truncate_op) 497 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 498 } 499 500 static void hugetlbfs_evict_inode(struct inode *inode) 501 { 502 struct resv_map *resv_map; 503 504 remove_inode_hugepages(inode, 0, LLONG_MAX); 505 506 /* 507 * Get the resv_map from the address space embedded in the inode. 508 * This is the address space which points to any resv_map allocated 509 * at inode creation time. If this is a device special inode, 510 * i_mapping may not point to the original address space. 511 */ 512 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 513 /* Only regular and link inodes have associated reserve maps */ 514 if (resv_map) 515 resv_map_release(&resv_map->refs); 516 clear_inode(inode); 517 } 518 519 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 520 { 521 pgoff_t pgoff; 522 struct address_space *mapping = inode->i_mapping; 523 struct hstate *h = hstate_inode(inode); 524 525 BUG_ON(offset & ~huge_page_mask(h)); 526 pgoff = offset >> PAGE_SHIFT; 527 528 i_mmap_lock_write(mapping); 529 i_size_write(inode, offset); 530 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 531 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 532 i_mmap_unlock_write(mapping); 533 remove_inode_hugepages(inode, offset, LLONG_MAX); 534 return 0; 535 } 536 537 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 538 { 539 struct hstate *h = hstate_inode(inode); 540 loff_t hpage_size = huge_page_size(h); 541 loff_t hole_start, hole_end; 542 543 /* 544 * For hole punch round up the beginning offset of the hole and 545 * round down the end. 546 */ 547 hole_start = round_up(offset, hpage_size); 548 hole_end = round_down(offset + len, hpage_size); 549 550 if (hole_end > hole_start) { 551 struct address_space *mapping = inode->i_mapping; 552 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 553 554 inode_lock(inode); 555 556 /* protected by i_mutex */ 557 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 558 inode_unlock(inode); 559 return -EPERM; 560 } 561 562 i_mmap_lock_write(mapping); 563 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 564 hugetlb_vmdelete_list(&mapping->i_mmap, 565 hole_start >> PAGE_SHIFT, 566 hole_end >> PAGE_SHIFT); 567 i_mmap_unlock_write(mapping); 568 remove_inode_hugepages(inode, hole_start, hole_end); 569 inode_unlock(inode); 570 } 571 572 return 0; 573 } 574 575 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 576 loff_t len) 577 { 578 struct inode *inode = file_inode(file); 579 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 580 struct address_space *mapping = inode->i_mapping; 581 struct hstate *h = hstate_inode(inode); 582 struct vm_area_struct pseudo_vma; 583 struct mm_struct *mm = current->mm; 584 loff_t hpage_size = huge_page_size(h); 585 unsigned long hpage_shift = huge_page_shift(h); 586 pgoff_t start, index, end; 587 int error; 588 u32 hash; 589 590 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 591 return -EOPNOTSUPP; 592 593 if (mode & FALLOC_FL_PUNCH_HOLE) 594 return hugetlbfs_punch_hole(inode, offset, len); 595 596 /* 597 * Default preallocate case. 598 * For this range, start is rounded down and end is rounded up 599 * as well as being converted to page offsets. 600 */ 601 start = offset >> hpage_shift; 602 end = (offset + len + hpage_size - 1) >> hpage_shift; 603 604 inode_lock(inode); 605 606 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 607 error = inode_newsize_ok(inode, offset + len); 608 if (error) 609 goto out; 610 611 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 612 error = -EPERM; 613 goto out; 614 } 615 616 /* 617 * Initialize a pseudo vma as this is required by the huge page 618 * allocation routines. If NUMA is configured, use page index 619 * as input to create an allocation policy. 620 */ 621 vma_init(&pseudo_vma, mm); 622 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 623 pseudo_vma.vm_file = file; 624 625 for (index = start; index < end; index++) { 626 /* 627 * This is supposed to be the vaddr where the page is being 628 * faulted in, but we have no vaddr here. 629 */ 630 struct page *page; 631 unsigned long addr; 632 int avoid_reserve = 0; 633 634 cond_resched(); 635 636 /* 637 * fallocate(2) manpage permits EINTR; we may have been 638 * interrupted because we are using up too much memory. 639 */ 640 if (signal_pending(current)) { 641 error = -EINTR; 642 break; 643 } 644 645 /* Set numa allocation policy based on index */ 646 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 647 648 /* addr is the offset within the file (zero based) */ 649 addr = index * hpage_size; 650 651 /* 652 * fault mutex taken here, protects against fault path 653 * and hole punch. inode_lock previously taken protects 654 * against truncation. 655 */ 656 hash = hugetlb_fault_mutex_hash(mapping, index); 657 mutex_lock(&hugetlb_fault_mutex_table[hash]); 658 659 /* See if already present in mapping to avoid alloc/free */ 660 page = find_get_page(mapping, index); 661 if (page) { 662 put_page(page); 663 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 664 hugetlb_drop_vma_policy(&pseudo_vma); 665 continue; 666 } 667 668 /* Allocate page and add to page cache */ 669 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 670 hugetlb_drop_vma_policy(&pseudo_vma); 671 if (IS_ERR(page)) { 672 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 673 error = PTR_ERR(page); 674 goto out; 675 } 676 clear_huge_page(page, addr, pages_per_huge_page(h)); 677 __SetPageUptodate(page); 678 error = huge_add_to_page_cache(page, mapping, index); 679 if (unlikely(error)) { 680 put_page(page); 681 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 682 goto out; 683 } 684 685 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 686 687 /* 688 * unlock_page because locked by add_to_page_cache() 689 * page_put due to reference from alloc_huge_page() 690 */ 691 unlock_page(page); 692 put_page(page); 693 } 694 695 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 696 i_size_write(inode, offset + len); 697 inode->i_ctime = current_time(inode); 698 out: 699 inode_unlock(inode); 700 return error; 701 } 702 703 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 704 { 705 struct inode *inode = d_inode(dentry); 706 struct hstate *h = hstate_inode(inode); 707 int error; 708 unsigned int ia_valid = attr->ia_valid; 709 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 710 711 BUG_ON(!inode); 712 713 error = setattr_prepare(dentry, attr); 714 if (error) 715 return error; 716 717 if (ia_valid & ATTR_SIZE) { 718 loff_t oldsize = inode->i_size; 719 loff_t newsize = attr->ia_size; 720 721 if (newsize & ~huge_page_mask(h)) 722 return -EINVAL; 723 /* protected by i_mutex */ 724 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 725 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 726 return -EPERM; 727 error = hugetlb_vmtruncate(inode, newsize); 728 if (error) 729 return error; 730 } 731 732 setattr_copy(inode, attr); 733 mark_inode_dirty(inode); 734 return 0; 735 } 736 737 static struct inode *hugetlbfs_get_root(struct super_block *sb, 738 struct hugetlbfs_fs_context *ctx) 739 { 740 struct inode *inode; 741 742 inode = new_inode(sb); 743 if (inode) { 744 inode->i_ino = get_next_ino(); 745 inode->i_mode = S_IFDIR | ctx->mode; 746 inode->i_uid = ctx->uid; 747 inode->i_gid = ctx->gid; 748 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 749 inode->i_op = &hugetlbfs_dir_inode_operations; 750 inode->i_fop = &simple_dir_operations; 751 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 752 inc_nlink(inode); 753 lockdep_annotate_inode_mutex_key(inode); 754 } 755 return inode; 756 } 757 758 /* 759 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 760 * be taken from reclaim -- unlike regular filesystems. This needs an 761 * annotation because huge_pmd_share() does an allocation under hugetlb's 762 * i_mmap_rwsem. 763 */ 764 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 765 766 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 767 struct inode *dir, 768 umode_t mode, dev_t dev) 769 { 770 struct inode *inode; 771 struct resv_map *resv_map = NULL; 772 773 /* 774 * Reserve maps are only needed for inodes that can have associated 775 * page allocations. 776 */ 777 if (S_ISREG(mode) || S_ISLNK(mode)) { 778 resv_map = resv_map_alloc(); 779 if (!resv_map) 780 return NULL; 781 } 782 783 inode = new_inode(sb); 784 if (inode) { 785 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 786 787 inode->i_ino = get_next_ino(); 788 inode_init_owner(inode, dir, mode); 789 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 790 &hugetlbfs_i_mmap_rwsem_key); 791 inode->i_mapping->a_ops = &hugetlbfs_aops; 792 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 793 inode->i_mapping->private_data = resv_map; 794 info->seals = F_SEAL_SEAL; 795 switch (mode & S_IFMT) { 796 default: 797 init_special_inode(inode, mode, dev); 798 break; 799 case S_IFREG: 800 inode->i_op = &hugetlbfs_inode_operations; 801 inode->i_fop = &hugetlbfs_file_operations; 802 break; 803 case S_IFDIR: 804 inode->i_op = &hugetlbfs_dir_inode_operations; 805 inode->i_fop = &simple_dir_operations; 806 807 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 808 inc_nlink(inode); 809 break; 810 case S_IFLNK: 811 inode->i_op = &page_symlink_inode_operations; 812 inode_nohighmem(inode); 813 break; 814 } 815 lockdep_annotate_inode_mutex_key(inode); 816 } else { 817 if (resv_map) 818 kref_put(&resv_map->refs, resv_map_release); 819 } 820 821 return inode; 822 } 823 824 /* 825 * File creation. Allocate an inode, and we're done.. 826 */ 827 static int do_hugetlbfs_mknod(struct inode *dir, 828 struct dentry *dentry, 829 umode_t mode, 830 dev_t dev, 831 bool tmpfile) 832 { 833 struct inode *inode; 834 int error = -ENOSPC; 835 836 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 837 if (inode) { 838 dir->i_ctime = dir->i_mtime = current_time(dir); 839 if (tmpfile) { 840 d_tmpfile(dentry, inode); 841 } else { 842 d_instantiate(dentry, inode); 843 dget(dentry);/* Extra count - pin the dentry in core */ 844 } 845 error = 0; 846 } 847 return error; 848 } 849 850 static int hugetlbfs_mknod(struct inode *dir, 851 struct dentry *dentry, umode_t mode, dev_t dev) 852 { 853 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 854 } 855 856 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 857 { 858 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 859 if (!retval) 860 inc_nlink(dir); 861 return retval; 862 } 863 864 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 865 { 866 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 867 } 868 869 static int hugetlbfs_tmpfile(struct inode *dir, 870 struct dentry *dentry, umode_t mode) 871 { 872 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 873 } 874 875 static int hugetlbfs_symlink(struct inode *dir, 876 struct dentry *dentry, const char *symname) 877 { 878 struct inode *inode; 879 int error = -ENOSPC; 880 881 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 882 if (inode) { 883 int l = strlen(symname)+1; 884 error = page_symlink(inode, symname, l); 885 if (!error) { 886 d_instantiate(dentry, inode); 887 dget(dentry); 888 } else 889 iput(inode); 890 } 891 dir->i_ctime = dir->i_mtime = current_time(dir); 892 893 return error; 894 } 895 896 /* 897 * mark the head page dirty 898 */ 899 static int hugetlbfs_set_page_dirty(struct page *page) 900 { 901 struct page *head = compound_head(page); 902 903 SetPageDirty(head); 904 return 0; 905 } 906 907 static int hugetlbfs_migrate_page(struct address_space *mapping, 908 struct page *newpage, struct page *page, 909 enum migrate_mode mode) 910 { 911 int rc; 912 913 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 914 if (rc != MIGRATEPAGE_SUCCESS) 915 return rc; 916 917 /* 918 * page_private is subpool pointer in hugetlb pages. Transfer to 919 * new page. PagePrivate is not associated with page_private for 920 * hugetlb pages and can not be set here as only page_huge_active 921 * pages can be migrated. 922 */ 923 if (page_private(page)) { 924 set_page_private(newpage, page_private(page)); 925 set_page_private(page, 0); 926 } 927 928 if (mode != MIGRATE_SYNC_NO_COPY) 929 migrate_page_copy(newpage, page); 930 else 931 migrate_page_states(newpage, page); 932 933 return MIGRATEPAGE_SUCCESS; 934 } 935 936 static int hugetlbfs_error_remove_page(struct address_space *mapping, 937 struct page *page) 938 { 939 struct inode *inode = mapping->host; 940 pgoff_t index = page->index; 941 942 remove_huge_page(page); 943 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 944 hugetlb_fix_reserve_counts(inode); 945 946 return 0; 947 } 948 949 /* 950 * Display the mount options in /proc/mounts. 951 */ 952 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 953 { 954 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 955 struct hugepage_subpool *spool = sbinfo->spool; 956 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 957 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 958 char mod; 959 960 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 961 seq_printf(m, ",uid=%u", 962 from_kuid_munged(&init_user_ns, sbinfo->uid)); 963 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 964 seq_printf(m, ",gid=%u", 965 from_kgid_munged(&init_user_ns, sbinfo->gid)); 966 if (sbinfo->mode != 0755) 967 seq_printf(m, ",mode=%o", sbinfo->mode); 968 if (sbinfo->max_inodes != -1) 969 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 970 971 hpage_size /= 1024; 972 mod = 'K'; 973 if (hpage_size >= 1024) { 974 hpage_size /= 1024; 975 mod = 'M'; 976 } 977 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 978 if (spool) { 979 if (spool->max_hpages != -1) 980 seq_printf(m, ",size=%llu", 981 (unsigned long long)spool->max_hpages << hpage_shift); 982 if (spool->min_hpages != -1) 983 seq_printf(m, ",min_size=%llu", 984 (unsigned long long)spool->min_hpages << hpage_shift); 985 } 986 return 0; 987 } 988 989 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 990 { 991 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 992 struct hstate *h = hstate_inode(d_inode(dentry)); 993 994 buf->f_type = HUGETLBFS_MAGIC; 995 buf->f_bsize = huge_page_size(h); 996 if (sbinfo) { 997 spin_lock(&sbinfo->stat_lock); 998 /* If no limits set, just report 0 for max/free/used 999 * blocks, like simple_statfs() */ 1000 if (sbinfo->spool) { 1001 long free_pages; 1002 1003 spin_lock(&sbinfo->spool->lock); 1004 buf->f_blocks = sbinfo->spool->max_hpages; 1005 free_pages = sbinfo->spool->max_hpages 1006 - sbinfo->spool->used_hpages; 1007 buf->f_bavail = buf->f_bfree = free_pages; 1008 spin_unlock(&sbinfo->spool->lock); 1009 buf->f_files = sbinfo->max_inodes; 1010 buf->f_ffree = sbinfo->free_inodes; 1011 } 1012 spin_unlock(&sbinfo->stat_lock); 1013 } 1014 buf->f_namelen = NAME_MAX; 1015 return 0; 1016 } 1017 1018 static void hugetlbfs_put_super(struct super_block *sb) 1019 { 1020 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1021 1022 if (sbi) { 1023 sb->s_fs_info = NULL; 1024 1025 if (sbi->spool) 1026 hugepage_put_subpool(sbi->spool); 1027 1028 kfree(sbi); 1029 } 1030 } 1031 1032 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1033 { 1034 if (sbinfo->free_inodes >= 0) { 1035 spin_lock(&sbinfo->stat_lock); 1036 if (unlikely(!sbinfo->free_inodes)) { 1037 spin_unlock(&sbinfo->stat_lock); 1038 return 0; 1039 } 1040 sbinfo->free_inodes--; 1041 spin_unlock(&sbinfo->stat_lock); 1042 } 1043 1044 return 1; 1045 } 1046 1047 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1048 { 1049 if (sbinfo->free_inodes >= 0) { 1050 spin_lock(&sbinfo->stat_lock); 1051 sbinfo->free_inodes++; 1052 spin_unlock(&sbinfo->stat_lock); 1053 } 1054 } 1055 1056 1057 static struct kmem_cache *hugetlbfs_inode_cachep; 1058 1059 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1060 { 1061 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1062 struct hugetlbfs_inode_info *p; 1063 1064 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1065 return NULL; 1066 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1067 if (unlikely(!p)) { 1068 hugetlbfs_inc_free_inodes(sbinfo); 1069 return NULL; 1070 } 1071 1072 /* 1073 * Any time after allocation, hugetlbfs_destroy_inode can be called 1074 * for the inode. mpol_free_shared_policy is unconditionally called 1075 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1076 * in case of a quick call to destroy. 1077 * 1078 * Note that the policy is initialized even if we are creating a 1079 * private inode. This simplifies hugetlbfs_destroy_inode. 1080 */ 1081 mpol_shared_policy_init(&p->policy, NULL); 1082 1083 return &p->vfs_inode; 1084 } 1085 1086 static void hugetlbfs_free_inode(struct inode *inode) 1087 { 1088 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1089 } 1090 1091 static void hugetlbfs_destroy_inode(struct inode *inode) 1092 { 1093 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1094 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1095 } 1096 1097 static const struct address_space_operations hugetlbfs_aops = { 1098 .write_begin = hugetlbfs_write_begin, 1099 .write_end = hugetlbfs_write_end, 1100 .set_page_dirty = hugetlbfs_set_page_dirty, 1101 .migratepage = hugetlbfs_migrate_page, 1102 .error_remove_page = hugetlbfs_error_remove_page, 1103 }; 1104 1105 1106 static void init_once(void *foo) 1107 { 1108 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1109 1110 inode_init_once(&ei->vfs_inode); 1111 } 1112 1113 const struct file_operations hugetlbfs_file_operations = { 1114 .read_iter = hugetlbfs_read_iter, 1115 .mmap = hugetlbfs_file_mmap, 1116 .fsync = noop_fsync, 1117 .get_unmapped_area = hugetlb_get_unmapped_area, 1118 .llseek = default_llseek, 1119 .fallocate = hugetlbfs_fallocate, 1120 }; 1121 1122 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1123 .create = hugetlbfs_create, 1124 .lookup = simple_lookup, 1125 .link = simple_link, 1126 .unlink = simple_unlink, 1127 .symlink = hugetlbfs_symlink, 1128 .mkdir = hugetlbfs_mkdir, 1129 .rmdir = simple_rmdir, 1130 .mknod = hugetlbfs_mknod, 1131 .rename = simple_rename, 1132 .setattr = hugetlbfs_setattr, 1133 .tmpfile = hugetlbfs_tmpfile, 1134 }; 1135 1136 static const struct inode_operations hugetlbfs_inode_operations = { 1137 .setattr = hugetlbfs_setattr, 1138 }; 1139 1140 static const struct super_operations hugetlbfs_ops = { 1141 .alloc_inode = hugetlbfs_alloc_inode, 1142 .free_inode = hugetlbfs_free_inode, 1143 .destroy_inode = hugetlbfs_destroy_inode, 1144 .evict_inode = hugetlbfs_evict_inode, 1145 .statfs = hugetlbfs_statfs, 1146 .put_super = hugetlbfs_put_super, 1147 .show_options = hugetlbfs_show_options, 1148 }; 1149 1150 /* 1151 * Convert size option passed from command line to number of huge pages 1152 * in the pool specified by hstate. Size option could be in bytes 1153 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1154 */ 1155 static long 1156 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1157 enum hugetlbfs_size_type val_type) 1158 { 1159 if (val_type == NO_SIZE) 1160 return -1; 1161 1162 if (val_type == SIZE_PERCENT) { 1163 size_opt <<= huge_page_shift(h); 1164 size_opt *= h->max_huge_pages; 1165 do_div(size_opt, 100); 1166 } 1167 1168 size_opt >>= huge_page_shift(h); 1169 return size_opt; 1170 } 1171 1172 /* 1173 * Parse one mount parameter. 1174 */ 1175 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1176 { 1177 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1178 struct fs_parse_result result; 1179 char *rest; 1180 unsigned long ps; 1181 int opt; 1182 1183 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1184 if (opt < 0) 1185 return opt; 1186 1187 switch (opt) { 1188 case Opt_uid: 1189 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1190 if (!uid_valid(ctx->uid)) 1191 goto bad_val; 1192 return 0; 1193 1194 case Opt_gid: 1195 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1196 if (!gid_valid(ctx->gid)) 1197 goto bad_val; 1198 return 0; 1199 1200 case Opt_mode: 1201 ctx->mode = result.uint_32 & 01777U; 1202 return 0; 1203 1204 case Opt_size: 1205 /* memparse() will accept a K/M/G without a digit */ 1206 if (!isdigit(param->string[0])) 1207 goto bad_val; 1208 ctx->max_size_opt = memparse(param->string, &rest); 1209 ctx->max_val_type = SIZE_STD; 1210 if (*rest == '%') 1211 ctx->max_val_type = SIZE_PERCENT; 1212 return 0; 1213 1214 case Opt_nr_inodes: 1215 /* memparse() will accept a K/M/G without a digit */ 1216 if (!isdigit(param->string[0])) 1217 goto bad_val; 1218 ctx->nr_inodes = memparse(param->string, &rest); 1219 return 0; 1220 1221 case Opt_pagesize: 1222 ps = memparse(param->string, &rest); 1223 ctx->hstate = size_to_hstate(ps); 1224 if (!ctx->hstate) { 1225 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1226 return -EINVAL; 1227 } 1228 return 0; 1229 1230 case Opt_min_size: 1231 /* memparse() will accept a K/M/G without a digit */ 1232 if (!isdigit(param->string[0])) 1233 goto bad_val; 1234 ctx->min_size_opt = memparse(param->string, &rest); 1235 ctx->min_val_type = SIZE_STD; 1236 if (*rest == '%') 1237 ctx->min_val_type = SIZE_PERCENT; 1238 return 0; 1239 1240 default: 1241 return -EINVAL; 1242 } 1243 1244 bad_val: 1245 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1246 param->string, param->key); 1247 } 1248 1249 /* 1250 * Validate the parsed options. 1251 */ 1252 static int hugetlbfs_validate(struct fs_context *fc) 1253 { 1254 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1255 1256 /* 1257 * Use huge page pool size (in hstate) to convert the size 1258 * options to number of huge pages. If NO_SIZE, -1 is returned. 1259 */ 1260 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1261 ctx->max_size_opt, 1262 ctx->max_val_type); 1263 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1264 ctx->min_size_opt, 1265 ctx->min_val_type); 1266 1267 /* 1268 * If max_size was specified, then min_size must be smaller 1269 */ 1270 if (ctx->max_val_type > NO_SIZE && 1271 ctx->min_hpages > ctx->max_hpages) { 1272 pr_err("Minimum size can not be greater than maximum size\n"); 1273 return -EINVAL; 1274 } 1275 1276 return 0; 1277 } 1278 1279 static int 1280 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1281 { 1282 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1283 struct hugetlbfs_sb_info *sbinfo; 1284 1285 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1286 if (!sbinfo) 1287 return -ENOMEM; 1288 sb->s_fs_info = sbinfo; 1289 spin_lock_init(&sbinfo->stat_lock); 1290 sbinfo->hstate = ctx->hstate; 1291 sbinfo->max_inodes = ctx->nr_inodes; 1292 sbinfo->free_inodes = ctx->nr_inodes; 1293 sbinfo->spool = NULL; 1294 sbinfo->uid = ctx->uid; 1295 sbinfo->gid = ctx->gid; 1296 sbinfo->mode = ctx->mode; 1297 1298 /* 1299 * Allocate and initialize subpool if maximum or minimum size is 1300 * specified. Any needed reservations (for minimim size) are taken 1301 * taken when the subpool is created. 1302 */ 1303 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1304 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1305 ctx->max_hpages, 1306 ctx->min_hpages); 1307 if (!sbinfo->spool) 1308 goto out_free; 1309 } 1310 sb->s_maxbytes = MAX_LFS_FILESIZE; 1311 sb->s_blocksize = huge_page_size(ctx->hstate); 1312 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1313 sb->s_magic = HUGETLBFS_MAGIC; 1314 sb->s_op = &hugetlbfs_ops; 1315 sb->s_time_gran = 1; 1316 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1317 if (!sb->s_root) 1318 goto out_free; 1319 return 0; 1320 out_free: 1321 kfree(sbinfo->spool); 1322 kfree(sbinfo); 1323 return -ENOMEM; 1324 } 1325 1326 static int hugetlbfs_get_tree(struct fs_context *fc) 1327 { 1328 int err = hugetlbfs_validate(fc); 1329 if (err) 1330 return err; 1331 return get_tree_nodev(fc, hugetlbfs_fill_super); 1332 } 1333 1334 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1335 { 1336 kfree(fc->fs_private); 1337 } 1338 1339 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1340 .free = hugetlbfs_fs_context_free, 1341 .parse_param = hugetlbfs_parse_param, 1342 .get_tree = hugetlbfs_get_tree, 1343 }; 1344 1345 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1346 { 1347 struct hugetlbfs_fs_context *ctx; 1348 1349 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1350 if (!ctx) 1351 return -ENOMEM; 1352 1353 ctx->max_hpages = -1; /* No limit on size by default */ 1354 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1355 ctx->uid = current_fsuid(); 1356 ctx->gid = current_fsgid(); 1357 ctx->mode = 0755; 1358 ctx->hstate = &default_hstate; 1359 ctx->min_hpages = -1; /* No default minimum size */ 1360 ctx->max_val_type = NO_SIZE; 1361 ctx->min_val_type = NO_SIZE; 1362 fc->fs_private = ctx; 1363 fc->ops = &hugetlbfs_fs_context_ops; 1364 return 0; 1365 } 1366 1367 static struct file_system_type hugetlbfs_fs_type = { 1368 .name = "hugetlbfs", 1369 .init_fs_context = hugetlbfs_init_fs_context, 1370 .parameters = hugetlb_fs_parameters, 1371 .kill_sb = kill_litter_super, 1372 }; 1373 1374 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1375 1376 static int can_do_hugetlb_shm(void) 1377 { 1378 kgid_t shm_group; 1379 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1380 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1381 } 1382 1383 static int get_hstate_idx(int page_size_log) 1384 { 1385 struct hstate *h = hstate_sizelog(page_size_log); 1386 1387 if (!h) 1388 return -1; 1389 return h - hstates; 1390 } 1391 1392 /* 1393 * Note that size should be aligned to proper hugepage size in caller side, 1394 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1395 */ 1396 struct file *hugetlb_file_setup(const char *name, size_t size, 1397 vm_flags_t acctflag, struct user_struct **user, 1398 int creat_flags, int page_size_log) 1399 { 1400 struct inode *inode; 1401 struct vfsmount *mnt; 1402 int hstate_idx; 1403 struct file *file; 1404 1405 hstate_idx = get_hstate_idx(page_size_log); 1406 if (hstate_idx < 0) 1407 return ERR_PTR(-ENODEV); 1408 1409 *user = NULL; 1410 mnt = hugetlbfs_vfsmount[hstate_idx]; 1411 if (!mnt) 1412 return ERR_PTR(-ENOENT); 1413 1414 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1415 *user = current_user(); 1416 if (user_shm_lock(size, *user)) { 1417 task_lock(current); 1418 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1419 current->comm, current->pid); 1420 task_unlock(current); 1421 } else { 1422 *user = NULL; 1423 return ERR_PTR(-EPERM); 1424 } 1425 } 1426 1427 file = ERR_PTR(-ENOSPC); 1428 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1429 if (!inode) 1430 goto out; 1431 if (creat_flags == HUGETLB_SHMFS_INODE) 1432 inode->i_flags |= S_PRIVATE; 1433 1434 inode->i_size = size; 1435 clear_nlink(inode); 1436 1437 if (hugetlb_reserve_pages(inode, 0, 1438 size >> huge_page_shift(hstate_inode(inode)), NULL, 1439 acctflag)) 1440 file = ERR_PTR(-ENOMEM); 1441 else 1442 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1443 &hugetlbfs_file_operations); 1444 if (!IS_ERR(file)) 1445 return file; 1446 1447 iput(inode); 1448 out: 1449 if (*user) { 1450 user_shm_unlock(size, *user); 1451 *user = NULL; 1452 } 1453 return file; 1454 } 1455 1456 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1457 { 1458 struct fs_context *fc; 1459 struct vfsmount *mnt; 1460 1461 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1462 if (IS_ERR(fc)) { 1463 mnt = ERR_CAST(fc); 1464 } else { 1465 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1466 ctx->hstate = h; 1467 mnt = fc_mount(fc); 1468 put_fs_context(fc); 1469 } 1470 if (IS_ERR(mnt)) 1471 pr_err("Cannot mount internal hugetlbfs for page size %uK", 1472 1U << (h->order + PAGE_SHIFT - 10)); 1473 return mnt; 1474 } 1475 1476 static int __init init_hugetlbfs_fs(void) 1477 { 1478 struct vfsmount *mnt; 1479 struct hstate *h; 1480 int error; 1481 int i; 1482 1483 if (!hugepages_supported()) { 1484 pr_info("disabling because there are no supported hugepage sizes\n"); 1485 return -ENOTSUPP; 1486 } 1487 1488 error = -ENOMEM; 1489 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1490 sizeof(struct hugetlbfs_inode_info), 1491 0, SLAB_ACCOUNT, init_once); 1492 if (hugetlbfs_inode_cachep == NULL) 1493 goto out; 1494 1495 error = register_filesystem(&hugetlbfs_fs_type); 1496 if (error) 1497 goto out_free; 1498 1499 /* default hstate mount is required */ 1500 mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]); 1501 if (IS_ERR(mnt)) { 1502 error = PTR_ERR(mnt); 1503 goto out_unreg; 1504 } 1505 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1506 1507 /* other hstates are optional */ 1508 i = 0; 1509 for_each_hstate(h) { 1510 if (i == default_hstate_idx) { 1511 i++; 1512 continue; 1513 } 1514 1515 mnt = mount_one_hugetlbfs(h); 1516 if (IS_ERR(mnt)) 1517 hugetlbfs_vfsmount[i] = NULL; 1518 else 1519 hugetlbfs_vfsmount[i] = mnt; 1520 i++; 1521 } 1522 1523 return 0; 1524 1525 out_unreg: 1526 (void)unregister_filesystem(&hugetlbfs_fs_type); 1527 out_free: 1528 kmem_cache_destroy(hugetlbfs_inode_cachep); 1529 out: 1530 return error; 1531 } 1532 fs_initcall(init_hugetlbfs_fs) 1533