xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47 
48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49 
50 struct hugetlbfs_fs_context {
51 	struct hstate		*hstate;
52 	unsigned long long	max_size_opt;
53 	unsigned long long	min_size_opt;
54 	long			max_hpages;
55 	long			nr_inodes;
56 	long			min_hpages;
57 	enum hugetlbfs_size_type max_val_type;
58 	enum hugetlbfs_size_type min_val_type;
59 	kuid_t			uid;
60 	kgid_t			gid;
61 	umode_t			mode;
62 };
63 
64 int sysctl_hugetlb_shm_group;
65 
66 enum hugetlb_param {
67 	Opt_gid,
68 	Opt_min_size,
69 	Opt_mode,
70 	Opt_nr_inodes,
71 	Opt_pagesize,
72 	Opt_size,
73 	Opt_uid,
74 };
75 
76 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
77 	fsparam_u32   ("gid",		Opt_gid),
78 	fsparam_string("min_size",	Opt_min_size),
79 	fsparam_u32   ("mode",		Opt_mode),
80 	fsparam_string("nr_inodes",	Opt_nr_inodes),
81 	fsparam_string("pagesize",	Opt_pagesize),
82 	fsparam_string("size",		Opt_size),
83 	fsparam_u32   ("uid",		Opt_uid),
84 	{}
85 };
86 
87 #ifdef CONFIG_NUMA
88 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
89 					struct inode *inode, pgoff_t index)
90 {
91 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
92 							index);
93 }
94 
95 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
96 {
97 	mpol_cond_put(vma->vm_policy);
98 }
99 #else
100 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
101 					struct inode *inode, pgoff_t index)
102 {
103 }
104 
105 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
106 {
107 }
108 #endif
109 
110 static void huge_pagevec_release(struct pagevec *pvec)
111 {
112 	int i;
113 
114 	for (i = 0; i < pagevec_count(pvec); ++i)
115 		put_page(pvec->pages[i]);
116 
117 	pagevec_reinit(pvec);
118 }
119 
120 /*
121  * Mask used when checking the page offset value passed in via system
122  * calls.  This value will be converted to a loff_t which is signed.
123  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
124  * value.  The extra bit (- 1 in the shift value) is to take the sign
125  * bit into account.
126  */
127 #define PGOFF_LOFFT_MAX \
128 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
129 
130 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
131 {
132 	struct inode *inode = file_inode(file);
133 	loff_t len, vma_len;
134 	int ret;
135 	struct hstate *h = hstate_file(file);
136 
137 	/*
138 	 * vma address alignment (but not the pgoff alignment) has
139 	 * already been checked by prepare_hugepage_range.  If you add
140 	 * any error returns here, do so after setting VM_HUGETLB, so
141 	 * is_vm_hugetlb_page tests below unmap_region go the right
142 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
143 	 * and ia64).
144 	 */
145 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
146 	vma->vm_ops = &hugetlb_vm_ops;
147 
148 	/*
149 	 * page based offset in vm_pgoff could be sufficiently large to
150 	 * overflow a loff_t when converted to byte offset.  This can
151 	 * only happen on architectures where sizeof(loff_t) ==
152 	 * sizeof(unsigned long).  So, only check in those instances.
153 	 */
154 	if (sizeof(unsigned long) == sizeof(loff_t)) {
155 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
156 			return -EINVAL;
157 	}
158 
159 	/* must be huge page aligned */
160 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
161 		return -EINVAL;
162 
163 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
164 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
165 	/* check for overflow */
166 	if (len < vma_len)
167 		return -EINVAL;
168 
169 	inode_lock(inode);
170 	file_accessed(file);
171 
172 	ret = -ENOMEM;
173 	if (hugetlb_reserve_pages(inode,
174 				vma->vm_pgoff >> huge_page_order(h),
175 				len >> huge_page_shift(h), vma,
176 				vma->vm_flags))
177 		goto out;
178 
179 	ret = 0;
180 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
181 		i_size_write(inode, len);
182 out:
183 	inode_unlock(inode);
184 
185 	return ret;
186 }
187 
188 /*
189  * Called under down_write(mmap_sem).
190  */
191 
192 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
193 static unsigned long
194 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
195 		unsigned long len, unsigned long pgoff, unsigned long flags)
196 {
197 	struct mm_struct *mm = current->mm;
198 	struct vm_area_struct *vma;
199 	struct hstate *h = hstate_file(file);
200 	struct vm_unmapped_area_info info;
201 
202 	if (len & ~huge_page_mask(h))
203 		return -EINVAL;
204 	if (len > TASK_SIZE)
205 		return -ENOMEM;
206 
207 	if (flags & MAP_FIXED) {
208 		if (prepare_hugepage_range(file, addr, len))
209 			return -EINVAL;
210 		return addr;
211 	}
212 
213 	if (addr) {
214 		addr = ALIGN(addr, huge_page_size(h));
215 		vma = find_vma(mm, addr);
216 		if (TASK_SIZE - len >= addr &&
217 		    (!vma || addr + len <= vm_start_gap(vma)))
218 			return addr;
219 	}
220 
221 	info.flags = 0;
222 	info.length = len;
223 	info.low_limit = TASK_UNMAPPED_BASE;
224 	info.high_limit = TASK_SIZE;
225 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
226 	info.align_offset = 0;
227 	return vm_unmapped_area(&info);
228 }
229 #endif
230 
231 static size_t
232 hugetlbfs_read_actor(struct page *page, unsigned long offset,
233 			struct iov_iter *to, unsigned long size)
234 {
235 	size_t copied = 0;
236 	int i, chunksize;
237 
238 	/* Find which 4k chunk and offset with in that chunk */
239 	i = offset >> PAGE_SHIFT;
240 	offset = offset & ~PAGE_MASK;
241 
242 	while (size) {
243 		size_t n;
244 		chunksize = PAGE_SIZE;
245 		if (offset)
246 			chunksize -= offset;
247 		if (chunksize > size)
248 			chunksize = size;
249 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
250 		copied += n;
251 		if (n != chunksize)
252 			return copied;
253 		offset = 0;
254 		size -= chunksize;
255 		i++;
256 	}
257 	return copied;
258 }
259 
260 /*
261  * Support for read() - Find the page attached to f_mapping and copy out the
262  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
263  * since it has PAGE_SIZE assumptions.
264  */
265 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
266 {
267 	struct file *file = iocb->ki_filp;
268 	struct hstate *h = hstate_file(file);
269 	struct address_space *mapping = file->f_mapping;
270 	struct inode *inode = mapping->host;
271 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
272 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
273 	unsigned long end_index;
274 	loff_t isize;
275 	ssize_t retval = 0;
276 
277 	while (iov_iter_count(to)) {
278 		struct page *page;
279 		size_t nr, copied;
280 
281 		/* nr is the maximum number of bytes to copy from this page */
282 		nr = huge_page_size(h);
283 		isize = i_size_read(inode);
284 		if (!isize)
285 			break;
286 		end_index = (isize - 1) >> huge_page_shift(h);
287 		if (index > end_index)
288 			break;
289 		if (index == end_index) {
290 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
291 			if (nr <= offset)
292 				break;
293 		}
294 		nr = nr - offset;
295 
296 		/* Find the page */
297 		page = find_lock_page(mapping, index);
298 		if (unlikely(page == NULL)) {
299 			/*
300 			 * We have a HOLE, zero out the user-buffer for the
301 			 * length of the hole or request.
302 			 */
303 			copied = iov_iter_zero(nr, to);
304 		} else {
305 			unlock_page(page);
306 
307 			/*
308 			 * We have the page, copy it to user space buffer.
309 			 */
310 			copied = hugetlbfs_read_actor(page, offset, to, nr);
311 			put_page(page);
312 		}
313 		offset += copied;
314 		retval += copied;
315 		if (copied != nr && iov_iter_count(to)) {
316 			if (!retval)
317 				retval = -EFAULT;
318 			break;
319 		}
320 		index += offset >> huge_page_shift(h);
321 		offset &= ~huge_page_mask(h);
322 	}
323 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
324 	return retval;
325 }
326 
327 static int hugetlbfs_write_begin(struct file *file,
328 			struct address_space *mapping,
329 			loff_t pos, unsigned len, unsigned flags,
330 			struct page **pagep, void **fsdata)
331 {
332 	return -EINVAL;
333 }
334 
335 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
336 			loff_t pos, unsigned len, unsigned copied,
337 			struct page *page, void *fsdata)
338 {
339 	BUG();
340 	return -EINVAL;
341 }
342 
343 static void remove_huge_page(struct page *page)
344 {
345 	ClearPageDirty(page);
346 	ClearPageUptodate(page);
347 	delete_from_page_cache(page);
348 }
349 
350 static void
351 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
352 {
353 	struct vm_area_struct *vma;
354 
355 	/*
356 	 * end == 0 indicates that the entire range after
357 	 * start should be unmapped.
358 	 */
359 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
360 		unsigned long v_offset;
361 		unsigned long v_end;
362 
363 		/*
364 		 * Can the expression below overflow on 32-bit arches?
365 		 * No, because the interval tree returns us only those vmas
366 		 * which overlap the truncated area starting at pgoff,
367 		 * and no vma on a 32-bit arch can span beyond the 4GB.
368 		 */
369 		if (vma->vm_pgoff < start)
370 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
371 		else
372 			v_offset = 0;
373 
374 		if (!end)
375 			v_end = vma->vm_end;
376 		else {
377 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
378 							+ vma->vm_start;
379 			if (v_end > vma->vm_end)
380 				v_end = vma->vm_end;
381 		}
382 
383 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
384 									NULL);
385 	}
386 }
387 
388 /*
389  * remove_inode_hugepages handles two distinct cases: truncation and hole
390  * punch.  There are subtle differences in operation for each case.
391  *
392  * truncation is indicated by end of range being LLONG_MAX
393  *	In this case, we first scan the range and release found pages.
394  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
395  *	maps and global counts.  Page faults can not race with truncation
396  *	in this routine.  hugetlb_no_page() prevents page faults in the
397  *	truncated range.  It checks i_size before allocation, and again after
398  *	with the page table lock for the page held.  The same lock must be
399  *	acquired to unmap a page.
400  * hole punch is indicated if end is not LLONG_MAX
401  *	In the hole punch case we scan the range and release found pages.
402  *	Only when releasing a page is the associated region/reserv map
403  *	deleted.  The region/reserv map for ranges without associated
404  *	pages are not modified.  Page faults can race with hole punch.
405  *	This is indicated if we find a mapped page.
406  * Note: If the passed end of range value is beyond the end of file, but
407  * not LLONG_MAX this routine still performs a hole punch operation.
408  */
409 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
410 				   loff_t lend)
411 {
412 	struct hstate *h = hstate_inode(inode);
413 	struct address_space *mapping = &inode->i_data;
414 	const pgoff_t start = lstart >> huge_page_shift(h);
415 	const pgoff_t end = lend >> huge_page_shift(h);
416 	struct vm_area_struct pseudo_vma;
417 	struct pagevec pvec;
418 	pgoff_t next, index;
419 	int i, freed = 0;
420 	bool truncate_op = (lend == LLONG_MAX);
421 
422 	vma_init(&pseudo_vma, current->mm);
423 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
424 	pagevec_init(&pvec);
425 	next = start;
426 	while (next < end) {
427 		/*
428 		 * When no more pages are found, we are done.
429 		 */
430 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
431 			break;
432 
433 		for (i = 0; i < pagevec_count(&pvec); ++i) {
434 			struct page *page = pvec.pages[i];
435 			u32 hash;
436 
437 			index = page->index;
438 			hash = hugetlb_fault_mutex_hash(mapping, index);
439 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
440 
441 			/*
442 			 * If page is mapped, it was faulted in after being
443 			 * unmapped in caller.  Unmap (again) now after taking
444 			 * the fault mutex.  The mutex will prevent faults
445 			 * until we finish removing the page.
446 			 *
447 			 * This race can only happen in the hole punch case.
448 			 * Getting here in a truncate operation is a bug.
449 			 */
450 			if (unlikely(page_mapped(page))) {
451 				BUG_ON(truncate_op);
452 
453 				i_mmap_lock_write(mapping);
454 				hugetlb_vmdelete_list(&mapping->i_mmap,
455 					index * pages_per_huge_page(h),
456 					(index + 1) * pages_per_huge_page(h));
457 				i_mmap_unlock_write(mapping);
458 			}
459 
460 			lock_page(page);
461 			/*
462 			 * We must free the huge page and remove from page
463 			 * cache (remove_huge_page) BEFORE removing the
464 			 * region/reserve map (hugetlb_unreserve_pages).  In
465 			 * rare out of memory conditions, removal of the
466 			 * region/reserve map could fail. Correspondingly,
467 			 * the subpool and global reserve usage count can need
468 			 * to be adjusted.
469 			 */
470 			VM_BUG_ON(PagePrivate(page));
471 			remove_huge_page(page);
472 			freed++;
473 			if (!truncate_op) {
474 				if (unlikely(hugetlb_unreserve_pages(inode,
475 							index, index + 1, 1)))
476 					hugetlb_fix_reserve_counts(inode);
477 			}
478 
479 			unlock_page(page);
480 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
481 		}
482 		huge_pagevec_release(&pvec);
483 		cond_resched();
484 	}
485 
486 	if (truncate_op)
487 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
488 }
489 
490 static void hugetlbfs_evict_inode(struct inode *inode)
491 {
492 	struct resv_map *resv_map;
493 
494 	remove_inode_hugepages(inode, 0, LLONG_MAX);
495 
496 	/*
497 	 * Get the resv_map from the address space embedded in the inode.
498 	 * This is the address space which points to any resv_map allocated
499 	 * at inode creation time.  If this is a device special inode,
500 	 * i_mapping may not point to the original address space.
501 	 */
502 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
503 	/* Only regular and link inodes have associated reserve maps */
504 	if (resv_map)
505 		resv_map_release(&resv_map->refs);
506 	clear_inode(inode);
507 }
508 
509 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
510 {
511 	pgoff_t pgoff;
512 	struct address_space *mapping = inode->i_mapping;
513 	struct hstate *h = hstate_inode(inode);
514 
515 	BUG_ON(offset & ~huge_page_mask(h));
516 	pgoff = offset >> PAGE_SHIFT;
517 
518 	i_size_write(inode, offset);
519 	i_mmap_lock_write(mapping);
520 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
521 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
522 	i_mmap_unlock_write(mapping);
523 	remove_inode_hugepages(inode, offset, LLONG_MAX);
524 	return 0;
525 }
526 
527 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
528 {
529 	struct hstate *h = hstate_inode(inode);
530 	loff_t hpage_size = huge_page_size(h);
531 	loff_t hole_start, hole_end;
532 
533 	/*
534 	 * For hole punch round up the beginning offset of the hole and
535 	 * round down the end.
536 	 */
537 	hole_start = round_up(offset, hpage_size);
538 	hole_end = round_down(offset + len, hpage_size);
539 
540 	if (hole_end > hole_start) {
541 		struct address_space *mapping = inode->i_mapping;
542 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
543 
544 		inode_lock(inode);
545 
546 		/* protected by i_mutex */
547 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
548 			inode_unlock(inode);
549 			return -EPERM;
550 		}
551 
552 		i_mmap_lock_write(mapping);
553 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
554 			hugetlb_vmdelete_list(&mapping->i_mmap,
555 						hole_start >> PAGE_SHIFT,
556 						hole_end  >> PAGE_SHIFT);
557 		i_mmap_unlock_write(mapping);
558 		remove_inode_hugepages(inode, hole_start, hole_end);
559 		inode_unlock(inode);
560 	}
561 
562 	return 0;
563 }
564 
565 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
566 				loff_t len)
567 {
568 	struct inode *inode = file_inode(file);
569 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
570 	struct address_space *mapping = inode->i_mapping;
571 	struct hstate *h = hstate_inode(inode);
572 	struct vm_area_struct pseudo_vma;
573 	struct mm_struct *mm = current->mm;
574 	loff_t hpage_size = huge_page_size(h);
575 	unsigned long hpage_shift = huge_page_shift(h);
576 	pgoff_t start, index, end;
577 	int error;
578 	u32 hash;
579 
580 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
581 		return -EOPNOTSUPP;
582 
583 	if (mode & FALLOC_FL_PUNCH_HOLE)
584 		return hugetlbfs_punch_hole(inode, offset, len);
585 
586 	/*
587 	 * Default preallocate case.
588 	 * For this range, start is rounded down and end is rounded up
589 	 * as well as being converted to page offsets.
590 	 */
591 	start = offset >> hpage_shift;
592 	end = (offset + len + hpage_size - 1) >> hpage_shift;
593 
594 	inode_lock(inode);
595 
596 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
597 	error = inode_newsize_ok(inode, offset + len);
598 	if (error)
599 		goto out;
600 
601 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
602 		error = -EPERM;
603 		goto out;
604 	}
605 
606 	/*
607 	 * Initialize a pseudo vma as this is required by the huge page
608 	 * allocation routines.  If NUMA is configured, use page index
609 	 * as input to create an allocation policy.
610 	 */
611 	vma_init(&pseudo_vma, mm);
612 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
613 	pseudo_vma.vm_file = file;
614 
615 	for (index = start; index < end; index++) {
616 		/*
617 		 * This is supposed to be the vaddr where the page is being
618 		 * faulted in, but we have no vaddr here.
619 		 */
620 		struct page *page;
621 		unsigned long addr;
622 		int avoid_reserve = 0;
623 
624 		cond_resched();
625 
626 		/*
627 		 * fallocate(2) manpage permits EINTR; we may have been
628 		 * interrupted because we are using up too much memory.
629 		 */
630 		if (signal_pending(current)) {
631 			error = -EINTR;
632 			break;
633 		}
634 
635 		/* Set numa allocation policy based on index */
636 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
637 
638 		/* addr is the offset within the file (zero based) */
639 		addr = index * hpage_size;
640 
641 		/* mutex taken here, fault path and hole punch */
642 		hash = hugetlb_fault_mutex_hash(mapping, index);
643 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
644 
645 		/* See if already present in mapping to avoid alloc/free */
646 		page = find_get_page(mapping, index);
647 		if (page) {
648 			put_page(page);
649 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
650 			hugetlb_drop_vma_policy(&pseudo_vma);
651 			continue;
652 		}
653 
654 		/* Allocate page and add to page cache */
655 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
656 		hugetlb_drop_vma_policy(&pseudo_vma);
657 		if (IS_ERR(page)) {
658 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
659 			error = PTR_ERR(page);
660 			goto out;
661 		}
662 		clear_huge_page(page, addr, pages_per_huge_page(h));
663 		__SetPageUptodate(page);
664 		error = huge_add_to_page_cache(page, mapping, index);
665 		if (unlikely(error)) {
666 			put_page(page);
667 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
668 			goto out;
669 		}
670 
671 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
672 
673 		/*
674 		 * unlock_page because locked by add_to_page_cache()
675 		 * page_put due to reference from alloc_huge_page()
676 		 */
677 		unlock_page(page);
678 		put_page(page);
679 	}
680 
681 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
682 		i_size_write(inode, offset + len);
683 	inode->i_ctime = current_time(inode);
684 out:
685 	inode_unlock(inode);
686 	return error;
687 }
688 
689 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
690 {
691 	struct inode *inode = d_inode(dentry);
692 	struct hstate *h = hstate_inode(inode);
693 	int error;
694 	unsigned int ia_valid = attr->ia_valid;
695 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
696 
697 	BUG_ON(!inode);
698 
699 	error = setattr_prepare(dentry, attr);
700 	if (error)
701 		return error;
702 
703 	if (ia_valid & ATTR_SIZE) {
704 		loff_t oldsize = inode->i_size;
705 		loff_t newsize = attr->ia_size;
706 
707 		if (newsize & ~huge_page_mask(h))
708 			return -EINVAL;
709 		/* protected by i_mutex */
710 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
711 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
712 			return -EPERM;
713 		error = hugetlb_vmtruncate(inode, newsize);
714 		if (error)
715 			return error;
716 	}
717 
718 	setattr_copy(inode, attr);
719 	mark_inode_dirty(inode);
720 	return 0;
721 }
722 
723 static struct inode *hugetlbfs_get_root(struct super_block *sb,
724 					struct hugetlbfs_fs_context *ctx)
725 {
726 	struct inode *inode;
727 
728 	inode = new_inode(sb);
729 	if (inode) {
730 		inode->i_ino = get_next_ino();
731 		inode->i_mode = S_IFDIR | ctx->mode;
732 		inode->i_uid = ctx->uid;
733 		inode->i_gid = ctx->gid;
734 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
735 		inode->i_op = &hugetlbfs_dir_inode_operations;
736 		inode->i_fop = &simple_dir_operations;
737 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
738 		inc_nlink(inode);
739 		lockdep_annotate_inode_mutex_key(inode);
740 	}
741 	return inode;
742 }
743 
744 /*
745  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
746  * be taken from reclaim -- unlike regular filesystems. This needs an
747  * annotation because huge_pmd_share() does an allocation under hugetlb's
748  * i_mmap_rwsem.
749  */
750 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
751 
752 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
753 					struct inode *dir,
754 					umode_t mode, dev_t dev)
755 {
756 	struct inode *inode;
757 	struct resv_map *resv_map = NULL;
758 
759 	/*
760 	 * Reserve maps are only needed for inodes that can have associated
761 	 * page allocations.
762 	 */
763 	if (S_ISREG(mode) || S_ISLNK(mode)) {
764 		resv_map = resv_map_alloc();
765 		if (!resv_map)
766 			return NULL;
767 	}
768 
769 	inode = new_inode(sb);
770 	if (inode) {
771 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
772 
773 		inode->i_ino = get_next_ino();
774 		inode_init_owner(inode, dir, mode);
775 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
776 				&hugetlbfs_i_mmap_rwsem_key);
777 		inode->i_mapping->a_ops = &hugetlbfs_aops;
778 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
779 		inode->i_mapping->private_data = resv_map;
780 		info->seals = F_SEAL_SEAL;
781 		switch (mode & S_IFMT) {
782 		default:
783 			init_special_inode(inode, mode, dev);
784 			break;
785 		case S_IFREG:
786 			inode->i_op = &hugetlbfs_inode_operations;
787 			inode->i_fop = &hugetlbfs_file_operations;
788 			break;
789 		case S_IFDIR:
790 			inode->i_op = &hugetlbfs_dir_inode_operations;
791 			inode->i_fop = &simple_dir_operations;
792 
793 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
794 			inc_nlink(inode);
795 			break;
796 		case S_IFLNK:
797 			inode->i_op = &page_symlink_inode_operations;
798 			inode_nohighmem(inode);
799 			break;
800 		}
801 		lockdep_annotate_inode_mutex_key(inode);
802 	} else {
803 		if (resv_map)
804 			kref_put(&resv_map->refs, resv_map_release);
805 	}
806 
807 	return inode;
808 }
809 
810 /*
811  * File creation. Allocate an inode, and we're done..
812  */
813 static int do_hugetlbfs_mknod(struct inode *dir,
814 			struct dentry *dentry,
815 			umode_t mode,
816 			dev_t dev,
817 			bool tmpfile)
818 {
819 	struct inode *inode;
820 	int error = -ENOSPC;
821 
822 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
823 	if (inode) {
824 		dir->i_ctime = dir->i_mtime = current_time(dir);
825 		if (tmpfile) {
826 			d_tmpfile(dentry, inode);
827 		} else {
828 			d_instantiate(dentry, inode);
829 			dget(dentry);/* Extra count - pin the dentry in core */
830 		}
831 		error = 0;
832 	}
833 	return error;
834 }
835 
836 static int hugetlbfs_mknod(struct inode *dir,
837 			struct dentry *dentry, umode_t mode, dev_t dev)
838 {
839 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
840 }
841 
842 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
843 {
844 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
845 	if (!retval)
846 		inc_nlink(dir);
847 	return retval;
848 }
849 
850 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
851 {
852 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
853 }
854 
855 static int hugetlbfs_tmpfile(struct inode *dir,
856 			struct dentry *dentry, umode_t mode)
857 {
858 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
859 }
860 
861 static int hugetlbfs_symlink(struct inode *dir,
862 			struct dentry *dentry, const char *symname)
863 {
864 	struct inode *inode;
865 	int error = -ENOSPC;
866 
867 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
868 	if (inode) {
869 		int l = strlen(symname)+1;
870 		error = page_symlink(inode, symname, l);
871 		if (!error) {
872 			d_instantiate(dentry, inode);
873 			dget(dentry);
874 		} else
875 			iput(inode);
876 	}
877 	dir->i_ctime = dir->i_mtime = current_time(dir);
878 
879 	return error;
880 }
881 
882 /*
883  * mark the head page dirty
884  */
885 static int hugetlbfs_set_page_dirty(struct page *page)
886 {
887 	struct page *head = compound_head(page);
888 
889 	SetPageDirty(head);
890 	return 0;
891 }
892 
893 static int hugetlbfs_migrate_page(struct address_space *mapping,
894 				struct page *newpage, struct page *page,
895 				enum migrate_mode mode)
896 {
897 	int rc;
898 
899 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
900 	if (rc != MIGRATEPAGE_SUCCESS)
901 		return rc;
902 
903 	/*
904 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
905 	 * new page.  PagePrivate is not associated with page_private for
906 	 * hugetlb pages and can not be set here as only page_huge_active
907 	 * pages can be migrated.
908 	 */
909 	if (page_private(page)) {
910 		set_page_private(newpage, page_private(page));
911 		set_page_private(page, 0);
912 	}
913 
914 	if (mode != MIGRATE_SYNC_NO_COPY)
915 		migrate_page_copy(newpage, page);
916 	else
917 		migrate_page_states(newpage, page);
918 
919 	return MIGRATEPAGE_SUCCESS;
920 }
921 
922 static int hugetlbfs_error_remove_page(struct address_space *mapping,
923 				struct page *page)
924 {
925 	struct inode *inode = mapping->host;
926 	pgoff_t index = page->index;
927 
928 	remove_huge_page(page);
929 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
930 		hugetlb_fix_reserve_counts(inode);
931 
932 	return 0;
933 }
934 
935 /*
936  * Display the mount options in /proc/mounts.
937  */
938 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
939 {
940 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
941 	struct hugepage_subpool *spool = sbinfo->spool;
942 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
943 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
944 	char mod;
945 
946 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
947 		seq_printf(m, ",uid=%u",
948 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
949 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
950 		seq_printf(m, ",gid=%u",
951 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
952 	if (sbinfo->mode != 0755)
953 		seq_printf(m, ",mode=%o", sbinfo->mode);
954 	if (sbinfo->max_inodes != -1)
955 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
956 
957 	hpage_size /= 1024;
958 	mod = 'K';
959 	if (hpage_size >= 1024) {
960 		hpage_size /= 1024;
961 		mod = 'M';
962 	}
963 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
964 	if (spool) {
965 		if (spool->max_hpages != -1)
966 			seq_printf(m, ",size=%llu",
967 				   (unsigned long long)spool->max_hpages << hpage_shift);
968 		if (spool->min_hpages != -1)
969 			seq_printf(m, ",min_size=%llu",
970 				   (unsigned long long)spool->min_hpages << hpage_shift);
971 	}
972 	return 0;
973 }
974 
975 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
976 {
977 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
978 	struct hstate *h = hstate_inode(d_inode(dentry));
979 
980 	buf->f_type = HUGETLBFS_MAGIC;
981 	buf->f_bsize = huge_page_size(h);
982 	if (sbinfo) {
983 		spin_lock(&sbinfo->stat_lock);
984 		/* If no limits set, just report 0 for max/free/used
985 		 * blocks, like simple_statfs() */
986 		if (sbinfo->spool) {
987 			long free_pages;
988 
989 			spin_lock(&sbinfo->spool->lock);
990 			buf->f_blocks = sbinfo->spool->max_hpages;
991 			free_pages = sbinfo->spool->max_hpages
992 				- sbinfo->spool->used_hpages;
993 			buf->f_bavail = buf->f_bfree = free_pages;
994 			spin_unlock(&sbinfo->spool->lock);
995 			buf->f_files = sbinfo->max_inodes;
996 			buf->f_ffree = sbinfo->free_inodes;
997 		}
998 		spin_unlock(&sbinfo->stat_lock);
999 	}
1000 	buf->f_namelen = NAME_MAX;
1001 	return 0;
1002 }
1003 
1004 static void hugetlbfs_put_super(struct super_block *sb)
1005 {
1006 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1007 
1008 	if (sbi) {
1009 		sb->s_fs_info = NULL;
1010 
1011 		if (sbi->spool)
1012 			hugepage_put_subpool(sbi->spool);
1013 
1014 		kfree(sbi);
1015 	}
1016 }
1017 
1018 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1019 {
1020 	if (sbinfo->free_inodes >= 0) {
1021 		spin_lock(&sbinfo->stat_lock);
1022 		if (unlikely(!sbinfo->free_inodes)) {
1023 			spin_unlock(&sbinfo->stat_lock);
1024 			return 0;
1025 		}
1026 		sbinfo->free_inodes--;
1027 		spin_unlock(&sbinfo->stat_lock);
1028 	}
1029 
1030 	return 1;
1031 }
1032 
1033 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1034 {
1035 	if (sbinfo->free_inodes >= 0) {
1036 		spin_lock(&sbinfo->stat_lock);
1037 		sbinfo->free_inodes++;
1038 		spin_unlock(&sbinfo->stat_lock);
1039 	}
1040 }
1041 
1042 
1043 static struct kmem_cache *hugetlbfs_inode_cachep;
1044 
1045 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1046 {
1047 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1048 	struct hugetlbfs_inode_info *p;
1049 
1050 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1051 		return NULL;
1052 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1053 	if (unlikely(!p)) {
1054 		hugetlbfs_inc_free_inodes(sbinfo);
1055 		return NULL;
1056 	}
1057 
1058 	/*
1059 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1060 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1061 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1062 	 * in case of a quick call to destroy.
1063 	 *
1064 	 * Note that the policy is initialized even if we are creating a
1065 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1066 	 */
1067 	mpol_shared_policy_init(&p->policy, NULL);
1068 
1069 	return &p->vfs_inode;
1070 }
1071 
1072 static void hugetlbfs_free_inode(struct inode *inode)
1073 {
1074 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1075 }
1076 
1077 static void hugetlbfs_destroy_inode(struct inode *inode)
1078 {
1079 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1080 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1081 }
1082 
1083 static const struct address_space_operations hugetlbfs_aops = {
1084 	.write_begin	= hugetlbfs_write_begin,
1085 	.write_end	= hugetlbfs_write_end,
1086 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1087 	.migratepage    = hugetlbfs_migrate_page,
1088 	.error_remove_page	= hugetlbfs_error_remove_page,
1089 };
1090 
1091 
1092 static void init_once(void *foo)
1093 {
1094 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1095 
1096 	inode_init_once(&ei->vfs_inode);
1097 }
1098 
1099 const struct file_operations hugetlbfs_file_operations = {
1100 	.read_iter		= hugetlbfs_read_iter,
1101 	.mmap			= hugetlbfs_file_mmap,
1102 	.fsync			= noop_fsync,
1103 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1104 	.llseek			= default_llseek,
1105 	.fallocate		= hugetlbfs_fallocate,
1106 };
1107 
1108 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1109 	.create		= hugetlbfs_create,
1110 	.lookup		= simple_lookup,
1111 	.link		= simple_link,
1112 	.unlink		= simple_unlink,
1113 	.symlink	= hugetlbfs_symlink,
1114 	.mkdir		= hugetlbfs_mkdir,
1115 	.rmdir		= simple_rmdir,
1116 	.mknod		= hugetlbfs_mknod,
1117 	.rename		= simple_rename,
1118 	.setattr	= hugetlbfs_setattr,
1119 	.tmpfile	= hugetlbfs_tmpfile,
1120 };
1121 
1122 static const struct inode_operations hugetlbfs_inode_operations = {
1123 	.setattr	= hugetlbfs_setattr,
1124 };
1125 
1126 static const struct super_operations hugetlbfs_ops = {
1127 	.alloc_inode    = hugetlbfs_alloc_inode,
1128 	.free_inode     = hugetlbfs_free_inode,
1129 	.destroy_inode  = hugetlbfs_destroy_inode,
1130 	.evict_inode	= hugetlbfs_evict_inode,
1131 	.statfs		= hugetlbfs_statfs,
1132 	.put_super	= hugetlbfs_put_super,
1133 	.show_options	= hugetlbfs_show_options,
1134 };
1135 
1136 /*
1137  * Convert size option passed from command line to number of huge pages
1138  * in the pool specified by hstate.  Size option could be in bytes
1139  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1140  */
1141 static long
1142 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1143 			 enum hugetlbfs_size_type val_type)
1144 {
1145 	if (val_type == NO_SIZE)
1146 		return -1;
1147 
1148 	if (val_type == SIZE_PERCENT) {
1149 		size_opt <<= huge_page_shift(h);
1150 		size_opt *= h->max_huge_pages;
1151 		do_div(size_opt, 100);
1152 	}
1153 
1154 	size_opt >>= huge_page_shift(h);
1155 	return size_opt;
1156 }
1157 
1158 /*
1159  * Parse one mount parameter.
1160  */
1161 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1162 {
1163 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1164 	struct fs_parse_result result;
1165 	char *rest;
1166 	unsigned long ps;
1167 	int opt;
1168 
1169 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1170 	if (opt < 0)
1171 		return opt;
1172 
1173 	switch (opt) {
1174 	case Opt_uid:
1175 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1176 		if (!uid_valid(ctx->uid))
1177 			goto bad_val;
1178 		return 0;
1179 
1180 	case Opt_gid:
1181 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1182 		if (!gid_valid(ctx->gid))
1183 			goto bad_val;
1184 		return 0;
1185 
1186 	case Opt_mode:
1187 		ctx->mode = result.uint_32 & 01777U;
1188 		return 0;
1189 
1190 	case Opt_size:
1191 		/* memparse() will accept a K/M/G without a digit */
1192 		if (!isdigit(param->string[0]))
1193 			goto bad_val;
1194 		ctx->max_size_opt = memparse(param->string, &rest);
1195 		ctx->max_val_type = SIZE_STD;
1196 		if (*rest == '%')
1197 			ctx->max_val_type = SIZE_PERCENT;
1198 		return 0;
1199 
1200 	case Opt_nr_inodes:
1201 		/* memparse() will accept a K/M/G without a digit */
1202 		if (!isdigit(param->string[0]))
1203 			goto bad_val;
1204 		ctx->nr_inodes = memparse(param->string, &rest);
1205 		return 0;
1206 
1207 	case Opt_pagesize:
1208 		ps = memparse(param->string, &rest);
1209 		ctx->hstate = size_to_hstate(ps);
1210 		if (!ctx->hstate) {
1211 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1212 			return -EINVAL;
1213 		}
1214 		return 0;
1215 
1216 	case Opt_min_size:
1217 		/* memparse() will accept a K/M/G without a digit */
1218 		if (!isdigit(param->string[0]))
1219 			goto bad_val;
1220 		ctx->min_size_opt = memparse(param->string, &rest);
1221 		ctx->min_val_type = SIZE_STD;
1222 		if (*rest == '%')
1223 			ctx->min_val_type = SIZE_PERCENT;
1224 		return 0;
1225 
1226 	default:
1227 		return -EINVAL;
1228 	}
1229 
1230 bad_val:
1231 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1232 		      param->string, param->key);
1233 }
1234 
1235 /*
1236  * Validate the parsed options.
1237  */
1238 static int hugetlbfs_validate(struct fs_context *fc)
1239 {
1240 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1241 
1242 	/*
1243 	 * Use huge page pool size (in hstate) to convert the size
1244 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1245 	 */
1246 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1247 						   ctx->max_size_opt,
1248 						   ctx->max_val_type);
1249 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1250 						   ctx->min_size_opt,
1251 						   ctx->min_val_type);
1252 
1253 	/*
1254 	 * If max_size was specified, then min_size must be smaller
1255 	 */
1256 	if (ctx->max_val_type > NO_SIZE &&
1257 	    ctx->min_hpages > ctx->max_hpages) {
1258 		pr_err("Minimum size can not be greater than maximum size\n");
1259 		return -EINVAL;
1260 	}
1261 
1262 	return 0;
1263 }
1264 
1265 static int
1266 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1267 {
1268 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1269 	struct hugetlbfs_sb_info *sbinfo;
1270 
1271 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1272 	if (!sbinfo)
1273 		return -ENOMEM;
1274 	sb->s_fs_info = sbinfo;
1275 	spin_lock_init(&sbinfo->stat_lock);
1276 	sbinfo->hstate		= ctx->hstate;
1277 	sbinfo->max_inodes	= ctx->nr_inodes;
1278 	sbinfo->free_inodes	= ctx->nr_inodes;
1279 	sbinfo->spool		= NULL;
1280 	sbinfo->uid		= ctx->uid;
1281 	sbinfo->gid		= ctx->gid;
1282 	sbinfo->mode		= ctx->mode;
1283 
1284 	/*
1285 	 * Allocate and initialize subpool if maximum or minimum size is
1286 	 * specified.  Any needed reservations (for minimim size) are taken
1287 	 * taken when the subpool is created.
1288 	 */
1289 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1290 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1291 						     ctx->max_hpages,
1292 						     ctx->min_hpages);
1293 		if (!sbinfo->spool)
1294 			goto out_free;
1295 	}
1296 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1297 	sb->s_blocksize = huge_page_size(ctx->hstate);
1298 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1299 	sb->s_magic = HUGETLBFS_MAGIC;
1300 	sb->s_op = &hugetlbfs_ops;
1301 	sb->s_time_gran = 1;
1302 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1303 	if (!sb->s_root)
1304 		goto out_free;
1305 	return 0;
1306 out_free:
1307 	kfree(sbinfo->spool);
1308 	kfree(sbinfo);
1309 	return -ENOMEM;
1310 }
1311 
1312 static int hugetlbfs_get_tree(struct fs_context *fc)
1313 {
1314 	int err = hugetlbfs_validate(fc);
1315 	if (err)
1316 		return err;
1317 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1318 }
1319 
1320 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1321 {
1322 	kfree(fc->fs_private);
1323 }
1324 
1325 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1326 	.free		= hugetlbfs_fs_context_free,
1327 	.parse_param	= hugetlbfs_parse_param,
1328 	.get_tree	= hugetlbfs_get_tree,
1329 };
1330 
1331 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1332 {
1333 	struct hugetlbfs_fs_context *ctx;
1334 
1335 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1336 	if (!ctx)
1337 		return -ENOMEM;
1338 
1339 	ctx->max_hpages	= -1; /* No limit on size by default */
1340 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1341 	ctx->uid	= current_fsuid();
1342 	ctx->gid	= current_fsgid();
1343 	ctx->mode	= 0755;
1344 	ctx->hstate	= &default_hstate;
1345 	ctx->min_hpages	= -1; /* No default minimum size */
1346 	ctx->max_val_type = NO_SIZE;
1347 	ctx->min_val_type = NO_SIZE;
1348 	fc->fs_private = ctx;
1349 	fc->ops	= &hugetlbfs_fs_context_ops;
1350 	return 0;
1351 }
1352 
1353 static struct file_system_type hugetlbfs_fs_type = {
1354 	.name			= "hugetlbfs",
1355 	.init_fs_context	= hugetlbfs_init_fs_context,
1356 	.parameters		= hugetlb_fs_parameters,
1357 	.kill_sb		= kill_litter_super,
1358 };
1359 
1360 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1361 
1362 static int can_do_hugetlb_shm(void)
1363 {
1364 	kgid_t shm_group;
1365 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1366 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1367 }
1368 
1369 static int get_hstate_idx(int page_size_log)
1370 {
1371 	struct hstate *h = hstate_sizelog(page_size_log);
1372 
1373 	if (!h)
1374 		return -1;
1375 	return h - hstates;
1376 }
1377 
1378 /*
1379  * Note that size should be aligned to proper hugepage size in caller side,
1380  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1381  */
1382 struct file *hugetlb_file_setup(const char *name, size_t size,
1383 				vm_flags_t acctflag, struct user_struct **user,
1384 				int creat_flags, int page_size_log)
1385 {
1386 	struct inode *inode;
1387 	struct vfsmount *mnt;
1388 	int hstate_idx;
1389 	struct file *file;
1390 
1391 	hstate_idx = get_hstate_idx(page_size_log);
1392 	if (hstate_idx < 0)
1393 		return ERR_PTR(-ENODEV);
1394 
1395 	*user = NULL;
1396 	mnt = hugetlbfs_vfsmount[hstate_idx];
1397 	if (!mnt)
1398 		return ERR_PTR(-ENOENT);
1399 
1400 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1401 		*user = current_user();
1402 		if (user_shm_lock(size, *user)) {
1403 			task_lock(current);
1404 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1405 				current->comm, current->pid);
1406 			task_unlock(current);
1407 		} else {
1408 			*user = NULL;
1409 			return ERR_PTR(-EPERM);
1410 		}
1411 	}
1412 
1413 	file = ERR_PTR(-ENOSPC);
1414 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1415 	if (!inode)
1416 		goto out;
1417 	if (creat_flags == HUGETLB_SHMFS_INODE)
1418 		inode->i_flags |= S_PRIVATE;
1419 
1420 	inode->i_size = size;
1421 	clear_nlink(inode);
1422 
1423 	if (hugetlb_reserve_pages(inode, 0,
1424 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1425 			acctflag))
1426 		file = ERR_PTR(-ENOMEM);
1427 	else
1428 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1429 					&hugetlbfs_file_operations);
1430 	if (!IS_ERR(file))
1431 		return file;
1432 
1433 	iput(inode);
1434 out:
1435 	if (*user) {
1436 		user_shm_unlock(size, *user);
1437 		*user = NULL;
1438 	}
1439 	return file;
1440 }
1441 
1442 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1443 {
1444 	struct fs_context *fc;
1445 	struct vfsmount *mnt;
1446 
1447 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1448 	if (IS_ERR(fc)) {
1449 		mnt = ERR_CAST(fc);
1450 	} else {
1451 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1452 		ctx->hstate = h;
1453 		mnt = fc_mount(fc);
1454 		put_fs_context(fc);
1455 	}
1456 	if (IS_ERR(mnt))
1457 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1458 		       1U << (h->order + PAGE_SHIFT - 10));
1459 	return mnt;
1460 }
1461 
1462 static int __init init_hugetlbfs_fs(void)
1463 {
1464 	struct vfsmount *mnt;
1465 	struct hstate *h;
1466 	int error;
1467 	int i;
1468 
1469 	if (!hugepages_supported()) {
1470 		pr_info("disabling because there are no supported hugepage sizes\n");
1471 		return -ENOTSUPP;
1472 	}
1473 
1474 	error = -ENOMEM;
1475 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1476 					sizeof(struct hugetlbfs_inode_info),
1477 					0, SLAB_ACCOUNT, init_once);
1478 	if (hugetlbfs_inode_cachep == NULL)
1479 		goto out;
1480 
1481 	error = register_filesystem(&hugetlbfs_fs_type);
1482 	if (error)
1483 		goto out_free;
1484 
1485 	/* default hstate mount is required */
1486 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1487 	if (IS_ERR(mnt)) {
1488 		error = PTR_ERR(mnt);
1489 		goto out_unreg;
1490 	}
1491 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1492 
1493 	/* other hstates are optional */
1494 	i = 0;
1495 	for_each_hstate(h) {
1496 		if (i == default_hstate_idx) {
1497 			i++;
1498 			continue;
1499 		}
1500 
1501 		mnt = mount_one_hugetlbfs(h);
1502 		if (IS_ERR(mnt))
1503 			hugetlbfs_vfsmount[i] = NULL;
1504 		else
1505 			hugetlbfs_vfsmount[i] = mnt;
1506 		i++;
1507 	}
1508 
1509 	return 0;
1510 
1511  out_unreg:
1512 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1513  out_free:
1514 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1515  out:
1516 	return error;
1517 }
1518 fs_initcall(init_hugetlbfs_fs)
1519