1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32oct("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 135 loff_t len, vma_len; 136 int ret; 137 struct hstate *h = hstate_file(file); 138 139 /* 140 * vma address alignment (but not the pgoff alignment) has 141 * already been checked by prepare_hugepage_range. If you add 142 * any error returns here, do so after setting VM_HUGETLB, so 143 * is_vm_hugetlb_page tests below unmap_region go the right 144 * way when do_mmap unwinds (may be important on powerpc 145 * and ia64). 146 */ 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 148 vma->vm_ops = &hugetlb_vm_ops; 149 150 ret = seal_check_future_write(info->seals, vma); 151 if (ret) 152 return ret; 153 154 /* 155 * page based offset in vm_pgoff could be sufficiently large to 156 * overflow a loff_t when converted to byte offset. This can 157 * only happen on architectures where sizeof(loff_t) == 158 * sizeof(unsigned long). So, only check in those instances. 159 */ 160 if (sizeof(unsigned long) == sizeof(loff_t)) { 161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 162 return -EINVAL; 163 } 164 165 /* must be huge page aligned */ 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 167 return -EINVAL; 168 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 171 /* check for overflow */ 172 if (len < vma_len) 173 return -EINVAL; 174 175 inode_lock(inode); 176 file_accessed(file); 177 178 ret = -ENOMEM; 179 if (!hugetlb_reserve_pages(inode, 180 vma->vm_pgoff >> huge_page_order(h), 181 len >> huge_page_shift(h), vma, 182 vma->vm_flags)) 183 goto out; 184 185 ret = 0; 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 187 i_size_write(inode, len); 188 out: 189 inode_unlock(inode); 190 191 return ret; 192 } 193 194 /* 195 * Called under mmap_write_lock(mm). 196 */ 197 198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 199 static unsigned long 200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 201 unsigned long len, unsigned long pgoff, unsigned long flags) 202 { 203 struct hstate *h = hstate_file(file); 204 struct vm_unmapped_area_info info; 205 206 info.flags = 0; 207 info.length = len; 208 info.low_limit = current->mm->mmap_base; 209 info.high_limit = TASK_SIZE; 210 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 211 info.align_offset = 0; 212 return vm_unmapped_area(&info); 213 } 214 215 static unsigned long 216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 217 unsigned long len, unsigned long pgoff, unsigned long flags) 218 { 219 struct hstate *h = hstate_file(file); 220 struct vm_unmapped_area_info info; 221 222 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 223 info.length = len; 224 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 225 info.high_limit = current->mm->mmap_base; 226 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 227 info.align_offset = 0; 228 addr = vm_unmapped_area(&info); 229 230 /* 231 * A failed mmap() very likely causes application failure, 232 * so fall back to the bottom-up function here. This scenario 233 * can happen with large stack limits and large mmap() 234 * allocations. 235 */ 236 if (unlikely(offset_in_page(addr))) { 237 VM_BUG_ON(addr != -ENOMEM); 238 info.flags = 0; 239 info.low_limit = current->mm->mmap_base; 240 info.high_limit = TASK_SIZE; 241 addr = vm_unmapped_area(&info); 242 } 243 244 return addr; 245 } 246 247 static unsigned long 248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 249 unsigned long len, unsigned long pgoff, unsigned long flags) 250 { 251 struct mm_struct *mm = current->mm; 252 struct vm_area_struct *vma; 253 struct hstate *h = hstate_file(file); 254 255 if (len & ~huge_page_mask(h)) 256 return -EINVAL; 257 if (len > TASK_SIZE) 258 return -ENOMEM; 259 260 if (flags & MAP_FIXED) { 261 if (prepare_hugepage_range(file, addr, len)) 262 return -EINVAL; 263 return addr; 264 } 265 266 if (addr) { 267 addr = ALIGN(addr, huge_page_size(h)); 268 vma = find_vma(mm, addr); 269 if (TASK_SIZE - len >= addr && 270 (!vma || addr + len <= vm_start_gap(vma))) 271 return addr; 272 } 273 274 /* 275 * Use mm->get_unmapped_area value as a hint to use topdown routine. 276 * If architectures have special needs, they should define their own 277 * version of hugetlb_get_unmapped_area. 278 */ 279 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 280 return hugetlb_get_unmapped_area_topdown(file, addr, len, 281 pgoff, flags); 282 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 283 pgoff, flags); 284 } 285 #endif 286 287 static size_t 288 hugetlbfs_read_actor(struct page *page, unsigned long offset, 289 struct iov_iter *to, unsigned long size) 290 { 291 size_t copied = 0; 292 int i, chunksize; 293 294 /* Find which 4k chunk and offset with in that chunk */ 295 i = offset >> PAGE_SHIFT; 296 offset = offset & ~PAGE_MASK; 297 298 while (size) { 299 size_t n; 300 chunksize = PAGE_SIZE; 301 if (offset) 302 chunksize -= offset; 303 if (chunksize > size) 304 chunksize = size; 305 n = copy_page_to_iter(&page[i], offset, chunksize, to); 306 copied += n; 307 if (n != chunksize) 308 return copied; 309 offset = 0; 310 size -= chunksize; 311 i++; 312 } 313 return copied; 314 } 315 316 /* 317 * Support for read() - Find the page attached to f_mapping and copy out the 318 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 319 * since it has PAGE_SIZE assumptions. 320 */ 321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 322 { 323 struct file *file = iocb->ki_filp; 324 struct hstate *h = hstate_file(file); 325 struct address_space *mapping = file->f_mapping; 326 struct inode *inode = mapping->host; 327 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 328 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 329 unsigned long end_index; 330 loff_t isize; 331 ssize_t retval = 0; 332 333 while (iov_iter_count(to)) { 334 struct page *page; 335 size_t nr, copied; 336 337 /* nr is the maximum number of bytes to copy from this page */ 338 nr = huge_page_size(h); 339 isize = i_size_read(inode); 340 if (!isize) 341 break; 342 end_index = (isize - 1) >> huge_page_shift(h); 343 if (index > end_index) 344 break; 345 if (index == end_index) { 346 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 347 if (nr <= offset) 348 break; 349 } 350 nr = nr - offset; 351 352 /* Find the page */ 353 page = find_lock_page(mapping, index); 354 if (unlikely(page == NULL)) { 355 /* 356 * We have a HOLE, zero out the user-buffer for the 357 * length of the hole or request. 358 */ 359 copied = iov_iter_zero(nr, to); 360 } else { 361 unlock_page(page); 362 363 /* 364 * We have the page, copy it to user space buffer. 365 */ 366 copied = hugetlbfs_read_actor(page, offset, to, nr); 367 put_page(page); 368 } 369 offset += copied; 370 retval += copied; 371 if (copied != nr && iov_iter_count(to)) { 372 if (!retval) 373 retval = -EFAULT; 374 break; 375 } 376 index += offset >> huge_page_shift(h); 377 offset &= ~huge_page_mask(h); 378 } 379 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 380 return retval; 381 } 382 383 static int hugetlbfs_write_begin(struct file *file, 384 struct address_space *mapping, 385 loff_t pos, unsigned len, unsigned flags, 386 struct page **pagep, void **fsdata) 387 { 388 return -EINVAL; 389 } 390 391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 392 loff_t pos, unsigned len, unsigned copied, 393 struct page *page, void *fsdata) 394 { 395 BUG(); 396 return -EINVAL; 397 } 398 399 static void remove_huge_page(struct page *page) 400 { 401 ClearPageDirty(page); 402 ClearPageUptodate(page); 403 delete_from_page_cache(page); 404 } 405 406 static void 407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 408 { 409 struct vm_area_struct *vma; 410 411 /* 412 * end == 0 indicates that the entire range after start should be 413 * unmapped. Note, end is exclusive, whereas the interval tree takes 414 * an inclusive "last". 415 */ 416 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 417 unsigned long v_offset; 418 unsigned long v_end; 419 420 /* 421 * Can the expression below overflow on 32-bit arches? 422 * No, because the interval tree returns us only those vmas 423 * which overlap the truncated area starting at pgoff, 424 * and no vma on a 32-bit arch can span beyond the 4GB. 425 */ 426 if (vma->vm_pgoff < start) 427 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 428 else 429 v_offset = 0; 430 431 if (!end) 432 v_end = vma->vm_end; 433 else { 434 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 435 + vma->vm_start; 436 if (v_end > vma->vm_end) 437 v_end = vma->vm_end; 438 } 439 440 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 441 NULL); 442 } 443 } 444 445 /* 446 * remove_inode_hugepages handles two distinct cases: truncation and hole 447 * punch. There are subtle differences in operation for each case. 448 * 449 * truncation is indicated by end of range being LLONG_MAX 450 * In this case, we first scan the range and release found pages. 451 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 452 * maps and global counts. Page faults can not race with truncation 453 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 454 * page faults in the truncated range by checking i_size. i_size is 455 * modified while holding i_mmap_rwsem. 456 * hole punch is indicated if end is not LLONG_MAX 457 * In the hole punch case we scan the range and release found pages. 458 * Only when releasing a page is the associated region/reserve map 459 * deleted. The region/reserve map for ranges without associated 460 * pages are not modified. Page faults can race with hole punch. 461 * This is indicated if we find a mapped page. 462 * Note: If the passed end of range value is beyond the end of file, but 463 * not LLONG_MAX this routine still performs a hole punch operation. 464 */ 465 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 466 loff_t lend) 467 { 468 struct hstate *h = hstate_inode(inode); 469 struct address_space *mapping = &inode->i_data; 470 const pgoff_t start = lstart >> huge_page_shift(h); 471 const pgoff_t end = lend >> huge_page_shift(h); 472 struct pagevec pvec; 473 pgoff_t next, index; 474 int i, freed = 0; 475 bool truncate_op = (lend == LLONG_MAX); 476 477 pagevec_init(&pvec); 478 next = start; 479 while (next < end) { 480 /* 481 * When no more pages are found, we are done. 482 */ 483 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 484 break; 485 486 for (i = 0; i < pagevec_count(&pvec); ++i) { 487 struct page *page = pvec.pages[i]; 488 u32 hash = 0; 489 490 index = page->index; 491 if (!truncate_op) { 492 /* 493 * Only need to hold the fault mutex in the 494 * hole punch case. This prevents races with 495 * page faults. Races are not possible in the 496 * case of truncation. 497 */ 498 hash = hugetlb_fault_mutex_hash(mapping, index); 499 mutex_lock(&hugetlb_fault_mutex_table[hash]); 500 } 501 502 /* 503 * If page is mapped, it was faulted in after being 504 * unmapped in caller. Unmap (again) now after taking 505 * the fault mutex. The mutex will prevent faults 506 * until we finish removing the page. 507 * 508 * This race can only happen in the hole punch case. 509 * Getting here in a truncate operation is a bug. 510 */ 511 if (unlikely(page_mapped(page))) { 512 BUG_ON(truncate_op); 513 514 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 515 i_mmap_lock_write(mapping); 516 mutex_lock(&hugetlb_fault_mutex_table[hash]); 517 hugetlb_vmdelete_list(&mapping->i_mmap, 518 index * pages_per_huge_page(h), 519 (index + 1) * pages_per_huge_page(h)); 520 i_mmap_unlock_write(mapping); 521 } 522 523 lock_page(page); 524 /* 525 * We must free the huge page and remove from page 526 * cache (remove_huge_page) BEFORE removing the 527 * region/reserve map (hugetlb_unreserve_pages). In 528 * rare out of memory conditions, removal of the 529 * region/reserve map could fail. Correspondingly, 530 * the subpool and global reserve usage count can need 531 * to be adjusted. 532 */ 533 VM_BUG_ON(HPageRestoreReserve(page)); 534 remove_huge_page(page); 535 freed++; 536 if (!truncate_op) { 537 if (unlikely(hugetlb_unreserve_pages(inode, 538 index, index + 1, 1))) 539 hugetlb_fix_reserve_counts(inode); 540 } 541 542 unlock_page(page); 543 if (!truncate_op) 544 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 545 } 546 huge_pagevec_release(&pvec); 547 cond_resched(); 548 } 549 550 if (truncate_op) 551 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 552 } 553 554 static void hugetlbfs_evict_inode(struct inode *inode) 555 { 556 struct resv_map *resv_map; 557 558 remove_inode_hugepages(inode, 0, LLONG_MAX); 559 560 /* 561 * Get the resv_map from the address space embedded in the inode. 562 * This is the address space which points to any resv_map allocated 563 * at inode creation time. If this is a device special inode, 564 * i_mapping may not point to the original address space. 565 */ 566 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 567 /* Only regular and link inodes have associated reserve maps */ 568 if (resv_map) 569 resv_map_release(&resv_map->refs); 570 clear_inode(inode); 571 } 572 573 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 574 { 575 pgoff_t pgoff; 576 struct address_space *mapping = inode->i_mapping; 577 struct hstate *h = hstate_inode(inode); 578 579 BUG_ON(offset & ~huge_page_mask(h)); 580 pgoff = offset >> PAGE_SHIFT; 581 582 i_mmap_lock_write(mapping); 583 i_size_write(inode, offset); 584 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 585 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 586 i_mmap_unlock_write(mapping); 587 remove_inode_hugepages(inode, offset, LLONG_MAX); 588 } 589 590 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 591 { 592 struct hstate *h = hstate_inode(inode); 593 loff_t hpage_size = huge_page_size(h); 594 loff_t hole_start, hole_end; 595 596 /* 597 * For hole punch round up the beginning offset of the hole and 598 * round down the end. 599 */ 600 hole_start = round_up(offset, hpage_size); 601 hole_end = round_down(offset + len, hpage_size); 602 603 if (hole_end > hole_start) { 604 struct address_space *mapping = inode->i_mapping; 605 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 606 607 inode_lock(inode); 608 609 /* protected by i_rwsem */ 610 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 611 inode_unlock(inode); 612 return -EPERM; 613 } 614 615 i_mmap_lock_write(mapping); 616 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 617 hugetlb_vmdelete_list(&mapping->i_mmap, 618 hole_start >> PAGE_SHIFT, 619 hole_end >> PAGE_SHIFT); 620 i_mmap_unlock_write(mapping); 621 remove_inode_hugepages(inode, hole_start, hole_end); 622 inode_unlock(inode); 623 } 624 625 return 0; 626 } 627 628 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 629 loff_t len) 630 { 631 struct inode *inode = file_inode(file); 632 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 633 struct address_space *mapping = inode->i_mapping; 634 struct hstate *h = hstate_inode(inode); 635 struct vm_area_struct pseudo_vma; 636 struct mm_struct *mm = current->mm; 637 loff_t hpage_size = huge_page_size(h); 638 unsigned long hpage_shift = huge_page_shift(h); 639 pgoff_t start, index, end; 640 int error; 641 u32 hash; 642 643 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 644 return -EOPNOTSUPP; 645 646 if (mode & FALLOC_FL_PUNCH_HOLE) 647 return hugetlbfs_punch_hole(inode, offset, len); 648 649 /* 650 * Default preallocate case. 651 * For this range, start is rounded down and end is rounded up 652 * as well as being converted to page offsets. 653 */ 654 start = offset >> hpage_shift; 655 end = (offset + len + hpage_size - 1) >> hpage_shift; 656 657 inode_lock(inode); 658 659 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 660 error = inode_newsize_ok(inode, offset + len); 661 if (error) 662 goto out; 663 664 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 665 error = -EPERM; 666 goto out; 667 } 668 669 /* 670 * Initialize a pseudo vma as this is required by the huge page 671 * allocation routines. If NUMA is configured, use page index 672 * as input to create an allocation policy. 673 */ 674 vma_init(&pseudo_vma, mm); 675 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 676 pseudo_vma.vm_file = file; 677 678 for (index = start; index < end; index++) { 679 /* 680 * This is supposed to be the vaddr where the page is being 681 * faulted in, but we have no vaddr here. 682 */ 683 struct page *page; 684 unsigned long addr; 685 686 cond_resched(); 687 688 /* 689 * fallocate(2) manpage permits EINTR; we may have been 690 * interrupted because we are using up too much memory. 691 */ 692 if (signal_pending(current)) { 693 error = -EINTR; 694 break; 695 } 696 697 /* Set numa allocation policy based on index */ 698 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 699 700 /* addr is the offset within the file (zero based) */ 701 addr = index * hpage_size; 702 703 /* 704 * fault mutex taken here, protects against fault path 705 * and hole punch. inode_lock previously taken protects 706 * against truncation. 707 */ 708 hash = hugetlb_fault_mutex_hash(mapping, index); 709 mutex_lock(&hugetlb_fault_mutex_table[hash]); 710 711 /* See if already present in mapping to avoid alloc/free */ 712 page = find_get_page(mapping, index); 713 if (page) { 714 put_page(page); 715 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 716 hugetlb_drop_vma_policy(&pseudo_vma); 717 continue; 718 } 719 720 /* 721 * Allocate page without setting the avoid_reserve argument. 722 * There certainly are no reserves associated with the 723 * pseudo_vma. However, there could be shared mappings with 724 * reserves for the file at the inode level. If we fallocate 725 * pages in these areas, we need to consume the reserves 726 * to keep reservation accounting consistent. 727 */ 728 page = alloc_huge_page(&pseudo_vma, addr, 0); 729 hugetlb_drop_vma_policy(&pseudo_vma); 730 if (IS_ERR(page)) { 731 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 732 error = PTR_ERR(page); 733 goto out; 734 } 735 clear_huge_page(page, addr, pages_per_huge_page(h)); 736 __SetPageUptodate(page); 737 error = huge_add_to_page_cache(page, mapping, index); 738 if (unlikely(error)) { 739 restore_reserve_on_error(h, &pseudo_vma, addr, page); 740 put_page(page); 741 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 742 goto out; 743 } 744 745 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 746 747 SetHPageMigratable(page); 748 /* 749 * unlock_page because locked by add_to_page_cache() 750 * put_page() due to reference from alloc_huge_page() 751 */ 752 unlock_page(page); 753 put_page(page); 754 } 755 756 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 757 i_size_write(inode, offset + len); 758 inode->i_ctime = current_time(inode); 759 out: 760 inode_unlock(inode); 761 return error; 762 } 763 764 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 765 struct dentry *dentry, struct iattr *attr) 766 { 767 struct inode *inode = d_inode(dentry); 768 struct hstate *h = hstate_inode(inode); 769 int error; 770 unsigned int ia_valid = attr->ia_valid; 771 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 772 773 error = setattr_prepare(&init_user_ns, dentry, attr); 774 if (error) 775 return error; 776 777 if (ia_valid & ATTR_SIZE) { 778 loff_t oldsize = inode->i_size; 779 loff_t newsize = attr->ia_size; 780 781 if (newsize & ~huge_page_mask(h)) 782 return -EINVAL; 783 /* protected by i_rwsem */ 784 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 785 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 786 return -EPERM; 787 hugetlb_vmtruncate(inode, newsize); 788 } 789 790 setattr_copy(&init_user_ns, inode, attr); 791 mark_inode_dirty(inode); 792 return 0; 793 } 794 795 static struct inode *hugetlbfs_get_root(struct super_block *sb, 796 struct hugetlbfs_fs_context *ctx) 797 { 798 struct inode *inode; 799 800 inode = new_inode(sb); 801 if (inode) { 802 inode->i_ino = get_next_ino(); 803 inode->i_mode = S_IFDIR | ctx->mode; 804 inode->i_uid = ctx->uid; 805 inode->i_gid = ctx->gid; 806 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 807 inode->i_op = &hugetlbfs_dir_inode_operations; 808 inode->i_fop = &simple_dir_operations; 809 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 810 inc_nlink(inode); 811 lockdep_annotate_inode_mutex_key(inode); 812 } 813 return inode; 814 } 815 816 /* 817 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 818 * be taken from reclaim -- unlike regular filesystems. This needs an 819 * annotation because huge_pmd_share() does an allocation under hugetlb's 820 * i_mmap_rwsem. 821 */ 822 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 823 824 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 825 struct inode *dir, 826 umode_t mode, dev_t dev) 827 { 828 struct inode *inode; 829 struct resv_map *resv_map = NULL; 830 831 /* 832 * Reserve maps are only needed for inodes that can have associated 833 * page allocations. 834 */ 835 if (S_ISREG(mode) || S_ISLNK(mode)) { 836 resv_map = resv_map_alloc(); 837 if (!resv_map) 838 return NULL; 839 } 840 841 inode = new_inode(sb); 842 if (inode) { 843 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 844 845 inode->i_ino = get_next_ino(); 846 inode_init_owner(&init_user_ns, inode, dir, mode); 847 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 848 &hugetlbfs_i_mmap_rwsem_key); 849 inode->i_mapping->a_ops = &hugetlbfs_aops; 850 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 851 inode->i_mapping->private_data = resv_map; 852 info->seals = F_SEAL_SEAL; 853 switch (mode & S_IFMT) { 854 default: 855 init_special_inode(inode, mode, dev); 856 break; 857 case S_IFREG: 858 inode->i_op = &hugetlbfs_inode_operations; 859 inode->i_fop = &hugetlbfs_file_operations; 860 break; 861 case S_IFDIR: 862 inode->i_op = &hugetlbfs_dir_inode_operations; 863 inode->i_fop = &simple_dir_operations; 864 865 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 866 inc_nlink(inode); 867 break; 868 case S_IFLNK: 869 inode->i_op = &page_symlink_inode_operations; 870 inode_nohighmem(inode); 871 break; 872 } 873 lockdep_annotate_inode_mutex_key(inode); 874 } else { 875 if (resv_map) 876 kref_put(&resv_map->refs, resv_map_release); 877 } 878 879 return inode; 880 } 881 882 /* 883 * File creation. Allocate an inode, and we're done.. 884 */ 885 static int do_hugetlbfs_mknod(struct inode *dir, 886 struct dentry *dentry, 887 umode_t mode, 888 dev_t dev, 889 bool tmpfile) 890 { 891 struct inode *inode; 892 int error = -ENOSPC; 893 894 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 895 if (inode) { 896 dir->i_ctime = dir->i_mtime = current_time(dir); 897 if (tmpfile) { 898 d_tmpfile(dentry, inode); 899 } else { 900 d_instantiate(dentry, inode); 901 dget(dentry);/* Extra count - pin the dentry in core */ 902 } 903 error = 0; 904 } 905 return error; 906 } 907 908 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 909 struct dentry *dentry, umode_t mode, dev_t dev) 910 { 911 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 912 } 913 914 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 915 struct dentry *dentry, umode_t mode) 916 { 917 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 918 mode | S_IFDIR, 0); 919 if (!retval) 920 inc_nlink(dir); 921 return retval; 922 } 923 924 static int hugetlbfs_create(struct user_namespace *mnt_userns, 925 struct inode *dir, struct dentry *dentry, 926 umode_t mode, bool excl) 927 { 928 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 929 } 930 931 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 932 struct inode *dir, struct dentry *dentry, 933 umode_t mode) 934 { 935 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 936 } 937 938 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 939 struct inode *dir, struct dentry *dentry, 940 const char *symname) 941 { 942 struct inode *inode; 943 int error = -ENOSPC; 944 945 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 946 if (inode) { 947 int l = strlen(symname)+1; 948 error = page_symlink(inode, symname, l); 949 if (!error) { 950 d_instantiate(dentry, inode); 951 dget(dentry); 952 } else 953 iput(inode); 954 } 955 dir->i_ctime = dir->i_mtime = current_time(dir); 956 957 return error; 958 } 959 960 static int hugetlbfs_migrate_page(struct address_space *mapping, 961 struct page *newpage, struct page *page, 962 enum migrate_mode mode) 963 { 964 int rc; 965 966 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 967 if (rc != MIGRATEPAGE_SUCCESS) 968 return rc; 969 970 if (hugetlb_page_subpool(page)) { 971 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page)); 972 hugetlb_set_page_subpool(page, NULL); 973 } 974 975 if (mode != MIGRATE_SYNC_NO_COPY) 976 migrate_page_copy(newpage, page); 977 else 978 migrate_page_states(newpage, page); 979 980 return MIGRATEPAGE_SUCCESS; 981 } 982 983 static int hugetlbfs_error_remove_page(struct address_space *mapping, 984 struct page *page) 985 { 986 struct inode *inode = mapping->host; 987 pgoff_t index = page->index; 988 989 remove_huge_page(page); 990 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 991 hugetlb_fix_reserve_counts(inode); 992 993 return 0; 994 } 995 996 /* 997 * Display the mount options in /proc/mounts. 998 */ 999 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1000 { 1001 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1002 struct hugepage_subpool *spool = sbinfo->spool; 1003 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1004 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1005 char mod; 1006 1007 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1008 seq_printf(m, ",uid=%u", 1009 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1010 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1011 seq_printf(m, ",gid=%u", 1012 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1013 if (sbinfo->mode != 0755) 1014 seq_printf(m, ",mode=%o", sbinfo->mode); 1015 if (sbinfo->max_inodes != -1) 1016 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1017 1018 hpage_size /= 1024; 1019 mod = 'K'; 1020 if (hpage_size >= 1024) { 1021 hpage_size /= 1024; 1022 mod = 'M'; 1023 } 1024 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1025 if (spool) { 1026 if (spool->max_hpages != -1) 1027 seq_printf(m, ",size=%llu", 1028 (unsigned long long)spool->max_hpages << hpage_shift); 1029 if (spool->min_hpages != -1) 1030 seq_printf(m, ",min_size=%llu", 1031 (unsigned long long)spool->min_hpages << hpage_shift); 1032 } 1033 return 0; 1034 } 1035 1036 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1037 { 1038 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1039 struct hstate *h = hstate_inode(d_inode(dentry)); 1040 1041 buf->f_type = HUGETLBFS_MAGIC; 1042 buf->f_bsize = huge_page_size(h); 1043 if (sbinfo) { 1044 spin_lock(&sbinfo->stat_lock); 1045 /* If no limits set, just report 0 for max/free/used 1046 * blocks, like simple_statfs() */ 1047 if (sbinfo->spool) { 1048 long free_pages; 1049 1050 spin_lock(&sbinfo->spool->lock); 1051 buf->f_blocks = sbinfo->spool->max_hpages; 1052 free_pages = sbinfo->spool->max_hpages 1053 - sbinfo->spool->used_hpages; 1054 buf->f_bavail = buf->f_bfree = free_pages; 1055 spin_unlock(&sbinfo->spool->lock); 1056 buf->f_files = sbinfo->max_inodes; 1057 buf->f_ffree = sbinfo->free_inodes; 1058 } 1059 spin_unlock(&sbinfo->stat_lock); 1060 } 1061 buf->f_namelen = NAME_MAX; 1062 return 0; 1063 } 1064 1065 static void hugetlbfs_put_super(struct super_block *sb) 1066 { 1067 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1068 1069 if (sbi) { 1070 sb->s_fs_info = NULL; 1071 1072 if (sbi->spool) 1073 hugepage_put_subpool(sbi->spool); 1074 1075 kfree(sbi); 1076 } 1077 } 1078 1079 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1080 { 1081 if (sbinfo->free_inodes >= 0) { 1082 spin_lock(&sbinfo->stat_lock); 1083 if (unlikely(!sbinfo->free_inodes)) { 1084 spin_unlock(&sbinfo->stat_lock); 1085 return 0; 1086 } 1087 sbinfo->free_inodes--; 1088 spin_unlock(&sbinfo->stat_lock); 1089 } 1090 1091 return 1; 1092 } 1093 1094 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1095 { 1096 if (sbinfo->free_inodes >= 0) { 1097 spin_lock(&sbinfo->stat_lock); 1098 sbinfo->free_inodes++; 1099 spin_unlock(&sbinfo->stat_lock); 1100 } 1101 } 1102 1103 1104 static struct kmem_cache *hugetlbfs_inode_cachep; 1105 1106 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1107 { 1108 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1109 struct hugetlbfs_inode_info *p; 1110 1111 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1112 return NULL; 1113 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1114 if (unlikely(!p)) { 1115 hugetlbfs_inc_free_inodes(sbinfo); 1116 return NULL; 1117 } 1118 1119 /* 1120 * Any time after allocation, hugetlbfs_destroy_inode can be called 1121 * for the inode. mpol_free_shared_policy is unconditionally called 1122 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1123 * in case of a quick call to destroy. 1124 * 1125 * Note that the policy is initialized even if we are creating a 1126 * private inode. This simplifies hugetlbfs_destroy_inode. 1127 */ 1128 mpol_shared_policy_init(&p->policy, NULL); 1129 1130 return &p->vfs_inode; 1131 } 1132 1133 static void hugetlbfs_free_inode(struct inode *inode) 1134 { 1135 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1136 } 1137 1138 static void hugetlbfs_destroy_inode(struct inode *inode) 1139 { 1140 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1141 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1142 } 1143 1144 static const struct address_space_operations hugetlbfs_aops = { 1145 .write_begin = hugetlbfs_write_begin, 1146 .write_end = hugetlbfs_write_end, 1147 .set_page_dirty = __set_page_dirty_no_writeback, 1148 .migratepage = hugetlbfs_migrate_page, 1149 .error_remove_page = hugetlbfs_error_remove_page, 1150 }; 1151 1152 1153 static void init_once(void *foo) 1154 { 1155 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1156 1157 inode_init_once(&ei->vfs_inode); 1158 } 1159 1160 const struct file_operations hugetlbfs_file_operations = { 1161 .read_iter = hugetlbfs_read_iter, 1162 .mmap = hugetlbfs_file_mmap, 1163 .fsync = noop_fsync, 1164 .get_unmapped_area = hugetlb_get_unmapped_area, 1165 .llseek = default_llseek, 1166 .fallocate = hugetlbfs_fallocate, 1167 }; 1168 1169 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1170 .create = hugetlbfs_create, 1171 .lookup = simple_lookup, 1172 .link = simple_link, 1173 .unlink = simple_unlink, 1174 .symlink = hugetlbfs_symlink, 1175 .mkdir = hugetlbfs_mkdir, 1176 .rmdir = simple_rmdir, 1177 .mknod = hugetlbfs_mknod, 1178 .rename = simple_rename, 1179 .setattr = hugetlbfs_setattr, 1180 .tmpfile = hugetlbfs_tmpfile, 1181 }; 1182 1183 static const struct inode_operations hugetlbfs_inode_operations = { 1184 .setattr = hugetlbfs_setattr, 1185 }; 1186 1187 static const struct super_operations hugetlbfs_ops = { 1188 .alloc_inode = hugetlbfs_alloc_inode, 1189 .free_inode = hugetlbfs_free_inode, 1190 .destroy_inode = hugetlbfs_destroy_inode, 1191 .evict_inode = hugetlbfs_evict_inode, 1192 .statfs = hugetlbfs_statfs, 1193 .put_super = hugetlbfs_put_super, 1194 .show_options = hugetlbfs_show_options, 1195 }; 1196 1197 /* 1198 * Convert size option passed from command line to number of huge pages 1199 * in the pool specified by hstate. Size option could be in bytes 1200 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1201 */ 1202 static long 1203 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1204 enum hugetlbfs_size_type val_type) 1205 { 1206 if (val_type == NO_SIZE) 1207 return -1; 1208 1209 if (val_type == SIZE_PERCENT) { 1210 size_opt <<= huge_page_shift(h); 1211 size_opt *= h->max_huge_pages; 1212 do_div(size_opt, 100); 1213 } 1214 1215 size_opt >>= huge_page_shift(h); 1216 return size_opt; 1217 } 1218 1219 /* 1220 * Parse one mount parameter. 1221 */ 1222 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1223 { 1224 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1225 struct fs_parse_result result; 1226 char *rest; 1227 unsigned long ps; 1228 int opt; 1229 1230 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1231 if (opt < 0) 1232 return opt; 1233 1234 switch (opt) { 1235 case Opt_uid: 1236 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1237 if (!uid_valid(ctx->uid)) 1238 goto bad_val; 1239 return 0; 1240 1241 case Opt_gid: 1242 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1243 if (!gid_valid(ctx->gid)) 1244 goto bad_val; 1245 return 0; 1246 1247 case Opt_mode: 1248 ctx->mode = result.uint_32 & 01777U; 1249 return 0; 1250 1251 case Opt_size: 1252 /* memparse() will accept a K/M/G without a digit */ 1253 if (!isdigit(param->string[0])) 1254 goto bad_val; 1255 ctx->max_size_opt = memparse(param->string, &rest); 1256 ctx->max_val_type = SIZE_STD; 1257 if (*rest == '%') 1258 ctx->max_val_type = SIZE_PERCENT; 1259 return 0; 1260 1261 case Opt_nr_inodes: 1262 /* memparse() will accept a K/M/G without a digit */ 1263 if (!isdigit(param->string[0])) 1264 goto bad_val; 1265 ctx->nr_inodes = memparse(param->string, &rest); 1266 return 0; 1267 1268 case Opt_pagesize: 1269 ps = memparse(param->string, &rest); 1270 ctx->hstate = size_to_hstate(ps); 1271 if (!ctx->hstate) { 1272 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1273 return -EINVAL; 1274 } 1275 return 0; 1276 1277 case Opt_min_size: 1278 /* memparse() will accept a K/M/G without a digit */ 1279 if (!isdigit(param->string[0])) 1280 goto bad_val; 1281 ctx->min_size_opt = memparse(param->string, &rest); 1282 ctx->min_val_type = SIZE_STD; 1283 if (*rest == '%') 1284 ctx->min_val_type = SIZE_PERCENT; 1285 return 0; 1286 1287 default: 1288 return -EINVAL; 1289 } 1290 1291 bad_val: 1292 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1293 param->string, param->key); 1294 } 1295 1296 /* 1297 * Validate the parsed options. 1298 */ 1299 static int hugetlbfs_validate(struct fs_context *fc) 1300 { 1301 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1302 1303 /* 1304 * Use huge page pool size (in hstate) to convert the size 1305 * options to number of huge pages. If NO_SIZE, -1 is returned. 1306 */ 1307 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1308 ctx->max_size_opt, 1309 ctx->max_val_type); 1310 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1311 ctx->min_size_opt, 1312 ctx->min_val_type); 1313 1314 /* 1315 * If max_size was specified, then min_size must be smaller 1316 */ 1317 if (ctx->max_val_type > NO_SIZE && 1318 ctx->min_hpages > ctx->max_hpages) { 1319 pr_err("Minimum size can not be greater than maximum size\n"); 1320 return -EINVAL; 1321 } 1322 1323 return 0; 1324 } 1325 1326 static int 1327 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1328 { 1329 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1330 struct hugetlbfs_sb_info *sbinfo; 1331 1332 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1333 if (!sbinfo) 1334 return -ENOMEM; 1335 sb->s_fs_info = sbinfo; 1336 spin_lock_init(&sbinfo->stat_lock); 1337 sbinfo->hstate = ctx->hstate; 1338 sbinfo->max_inodes = ctx->nr_inodes; 1339 sbinfo->free_inodes = ctx->nr_inodes; 1340 sbinfo->spool = NULL; 1341 sbinfo->uid = ctx->uid; 1342 sbinfo->gid = ctx->gid; 1343 sbinfo->mode = ctx->mode; 1344 1345 /* 1346 * Allocate and initialize subpool if maximum or minimum size is 1347 * specified. Any needed reservations (for minimum size) are taken 1348 * taken when the subpool is created. 1349 */ 1350 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1351 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1352 ctx->max_hpages, 1353 ctx->min_hpages); 1354 if (!sbinfo->spool) 1355 goto out_free; 1356 } 1357 sb->s_maxbytes = MAX_LFS_FILESIZE; 1358 sb->s_blocksize = huge_page_size(ctx->hstate); 1359 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1360 sb->s_magic = HUGETLBFS_MAGIC; 1361 sb->s_op = &hugetlbfs_ops; 1362 sb->s_time_gran = 1; 1363 1364 /* 1365 * Due to the special and limited functionality of hugetlbfs, it does 1366 * not work well as a stacking filesystem. 1367 */ 1368 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1369 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1370 if (!sb->s_root) 1371 goto out_free; 1372 return 0; 1373 out_free: 1374 kfree(sbinfo->spool); 1375 kfree(sbinfo); 1376 return -ENOMEM; 1377 } 1378 1379 static int hugetlbfs_get_tree(struct fs_context *fc) 1380 { 1381 int err = hugetlbfs_validate(fc); 1382 if (err) 1383 return err; 1384 return get_tree_nodev(fc, hugetlbfs_fill_super); 1385 } 1386 1387 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1388 { 1389 kfree(fc->fs_private); 1390 } 1391 1392 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1393 .free = hugetlbfs_fs_context_free, 1394 .parse_param = hugetlbfs_parse_param, 1395 .get_tree = hugetlbfs_get_tree, 1396 }; 1397 1398 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1399 { 1400 struct hugetlbfs_fs_context *ctx; 1401 1402 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1403 if (!ctx) 1404 return -ENOMEM; 1405 1406 ctx->max_hpages = -1; /* No limit on size by default */ 1407 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1408 ctx->uid = current_fsuid(); 1409 ctx->gid = current_fsgid(); 1410 ctx->mode = 0755; 1411 ctx->hstate = &default_hstate; 1412 ctx->min_hpages = -1; /* No default minimum size */ 1413 ctx->max_val_type = NO_SIZE; 1414 ctx->min_val_type = NO_SIZE; 1415 fc->fs_private = ctx; 1416 fc->ops = &hugetlbfs_fs_context_ops; 1417 return 0; 1418 } 1419 1420 static struct file_system_type hugetlbfs_fs_type = { 1421 .name = "hugetlbfs", 1422 .init_fs_context = hugetlbfs_init_fs_context, 1423 .parameters = hugetlb_fs_parameters, 1424 .kill_sb = kill_litter_super, 1425 }; 1426 1427 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1428 1429 static int can_do_hugetlb_shm(void) 1430 { 1431 kgid_t shm_group; 1432 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1433 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1434 } 1435 1436 static int get_hstate_idx(int page_size_log) 1437 { 1438 struct hstate *h = hstate_sizelog(page_size_log); 1439 1440 if (!h) 1441 return -1; 1442 return hstate_index(h); 1443 } 1444 1445 /* 1446 * Note that size should be aligned to proper hugepage size in caller side, 1447 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1448 */ 1449 struct file *hugetlb_file_setup(const char *name, size_t size, 1450 vm_flags_t acctflag, int creat_flags, 1451 int page_size_log) 1452 { 1453 struct inode *inode; 1454 struct vfsmount *mnt; 1455 int hstate_idx; 1456 struct file *file; 1457 1458 hstate_idx = get_hstate_idx(page_size_log); 1459 if (hstate_idx < 0) 1460 return ERR_PTR(-ENODEV); 1461 1462 mnt = hugetlbfs_vfsmount[hstate_idx]; 1463 if (!mnt) 1464 return ERR_PTR(-ENOENT); 1465 1466 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1467 struct ucounts *ucounts = current_ucounts(); 1468 1469 if (user_shm_lock(size, ucounts)) { 1470 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1471 current->comm, current->pid); 1472 user_shm_unlock(size, ucounts); 1473 } 1474 return ERR_PTR(-EPERM); 1475 } 1476 1477 file = ERR_PTR(-ENOSPC); 1478 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1479 if (!inode) 1480 goto out; 1481 if (creat_flags == HUGETLB_SHMFS_INODE) 1482 inode->i_flags |= S_PRIVATE; 1483 1484 inode->i_size = size; 1485 clear_nlink(inode); 1486 1487 if (!hugetlb_reserve_pages(inode, 0, 1488 size >> huge_page_shift(hstate_inode(inode)), NULL, 1489 acctflag)) 1490 file = ERR_PTR(-ENOMEM); 1491 else 1492 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1493 &hugetlbfs_file_operations); 1494 if (!IS_ERR(file)) 1495 return file; 1496 1497 iput(inode); 1498 out: 1499 return file; 1500 } 1501 1502 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1503 { 1504 struct fs_context *fc; 1505 struct vfsmount *mnt; 1506 1507 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1508 if (IS_ERR(fc)) { 1509 mnt = ERR_CAST(fc); 1510 } else { 1511 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1512 ctx->hstate = h; 1513 mnt = fc_mount(fc); 1514 put_fs_context(fc); 1515 } 1516 if (IS_ERR(mnt)) 1517 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1518 huge_page_size(h) >> 10); 1519 return mnt; 1520 } 1521 1522 static int __init init_hugetlbfs_fs(void) 1523 { 1524 struct vfsmount *mnt; 1525 struct hstate *h; 1526 int error; 1527 int i; 1528 1529 if (!hugepages_supported()) { 1530 pr_info("disabling because there are no supported hugepage sizes\n"); 1531 return -ENOTSUPP; 1532 } 1533 1534 error = -ENOMEM; 1535 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1536 sizeof(struct hugetlbfs_inode_info), 1537 0, SLAB_ACCOUNT, init_once); 1538 if (hugetlbfs_inode_cachep == NULL) 1539 goto out; 1540 1541 error = register_filesystem(&hugetlbfs_fs_type); 1542 if (error) 1543 goto out_free; 1544 1545 /* default hstate mount is required */ 1546 mnt = mount_one_hugetlbfs(&default_hstate); 1547 if (IS_ERR(mnt)) { 1548 error = PTR_ERR(mnt); 1549 goto out_unreg; 1550 } 1551 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1552 1553 /* other hstates are optional */ 1554 i = 0; 1555 for_each_hstate(h) { 1556 if (i == default_hstate_idx) { 1557 i++; 1558 continue; 1559 } 1560 1561 mnt = mount_one_hugetlbfs(h); 1562 if (IS_ERR(mnt)) 1563 hugetlbfs_vfsmount[i] = NULL; 1564 else 1565 hugetlbfs_vfsmount[i] = mnt; 1566 i++; 1567 } 1568 1569 return 0; 1570 1571 out_unreg: 1572 (void)unregister_filesystem(&hugetlbfs_fs_type); 1573 out_free: 1574 kmem_cache_destroy(hugetlbfs_inode_cachep); 1575 out: 1576 return error; 1577 } 1578 fs_initcall(init_hugetlbfs_fs) 1579