xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 01486861)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32   ("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 		unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203 	struct hstate *h = hstate_file(file);
204 	struct vm_unmapped_area_info info;
205 
206 	info.flags = 0;
207 	info.length = len;
208 	info.low_limit = current->mm->mmap_base;
209 	info.high_limit = TASK_SIZE;
210 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 	info.align_offset = 0;
212 	return vm_unmapped_area(&info);
213 }
214 
215 static unsigned long
216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 		unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219 	struct hstate *h = hstate_file(file);
220 	struct vm_unmapped_area_info info;
221 
222 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 	info.length = len;
224 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 	info.high_limit = current->mm->mmap_base;
226 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 	info.align_offset = 0;
228 	addr = vm_unmapped_area(&info);
229 
230 	/*
231 	 * A failed mmap() very likely causes application failure,
232 	 * so fall back to the bottom-up function here. This scenario
233 	 * can happen with large stack limits and large mmap()
234 	 * allocations.
235 	 */
236 	if (unlikely(offset_in_page(addr))) {
237 		VM_BUG_ON(addr != -ENOMEM);
238 		info.flags = 0;
239 		info.low_limit = current->mm->mmap_base;
240 		info.high_limit = TASK_SIZE;
241 		addr = vm_unmapped_area(&info);
242 	}
243 
244 	return addr;
245 }
246 
247 static unsigned long
248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 		unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 
255 	if (len & ~huge_page_mask(h))
256 		return -EINVAL;
257 	if (len > TASK_SIZE)
258 		return -ENOMEM;
259 
260 	if (flags & MAP_FIXED) {
261 		if (prepare_hugepage_range(file, addr, len))
262 			return -EINVAL;
263 		return addr;
264 	}
265 
266 	if (addr) {
267 		addr = ALIGN(addr, huge_page_size(h));
268 		vma = find_vma(mm, addr);
269 		if (TASK_SIZE - len >= addr &&
270 		    (!vma || addr + len <= vm_start_gap(vma)))
271 			return addr;
272 	}
273 
274 	/*
275 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 	 * If architectures have special needs, they should define their own
277 	 * version of hugetlb_get_unmapped_area.
278 	 */
279 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
281 				pgoff, flags);
282 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
283 			pgoff, flags);
284 }
285 #endif
286 
287 static size_t
288 hugetlbfs_read_actor(struct page *page, unsigned long offset,
289 			struct iov_iter *to, unsigned long size)
290 {
291 	size_t copied = 0;
292 	int i, chunksize;
293 
294 	/* Find which 4k chunk and offset with in that chunk */
295 	i = offset >> PAGE_SHIFT;
296 	offset = offset & ~PAGE_MASK;
297 
298 	while (size) {
299 		size_t n;
300 		chunksize = PAGE_SIZE;
301 		if (offset)
302 			chunksize -= offset;
303 		if (chunksize > size)
304 			chunksize = size;
305 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
306 		copied += n;
307 		if (n != chunksize)
308 			return copied;
309 		offset = 0;
310 		size -= chunksize;
311 		i++;
312 	}
313 	return copied;
314 }
315 
316 /*
317  * Support for read() - Find the page attached to f_mapping and copy out the
318  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
319  * since it has PAGE_SIZE assumptions.
320  */
321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
322 {
323 	struct file *file = iocb->ki_filp;
324 	struct hstate *h = hstate_file(file);
325 	struct address_space *mapping = file->f_mapping;
326 	struct inode *inode = mapping->host;
327 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
328 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
329 	unsigned long end_index;
330 	loff_t isize;
331 	ssize_t retval = 0;
332 
333 	while (iov_iter_count(to)) {
334 		struct page *page;
335 		size_t nr, copied;
336 
337 		/* nr is the maximum number of bytes to copy from this page */
338 		nr = huge_page_size(h);
339 		isize = i_size_read(inode);
340 		if (!isize)
341 			break;
342 		end_index = (isize - 1) >> huge_page_shift(h);
343 		if (index > end_index)
344 			break;
345 		if (index == end_index) {
346 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
347 			if (nr <= offset)
348 				break;
349 		}
350 		nr = nr - offset;
351 
352 		/* Find the page */
353 		page = find_lock_page(mapping, index);
354 		if (unlikely(page == NULL)) {
355 			/*
356 			 * We have a HOLE, zero out the user-buffer for the
357 			 * length of the hole or request.
358 			 */
359 			copied = iov_iter_zero(nr, to);
360 		} else {
361 			unlock_page(page);
362 
363 			/*
364 			 * We have the page, copy it to user space buffer.
365 			 */
366 			copied = hugetlbfs_read_actor(page, offset, to, nr);
367 			put_page(page);
368 		}
369 		offset += copied;
370 		retval += copied;
371 		if (copied != nr && iov_iter_count(to)) {
372 			if (!retval)
373 				retval = -EFAULT;
374 			break;
375 		}
376 		index += offset >> huge_page_shift(h);
377 		offset &= ~huge_page_mask(h);
378 	}
379 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
380 	return retval;
381 }
382 
383 static int hugetlbfs_write_begin(struct file *file,
384 			struct address_space *mapping,
385 			loff_t pos, unsigned len, unsigned flags,
386 			struct page **pagep, void **fsdata)
387 {
388 	return -EINVAL;
389 }
390 
391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
392 			loff_t pos, unsigned len, unsigned copied,
393 			struct page *page, void *fsdata)
394 {
395 	BUG();
396 	return -EINVAL;
397 }
398 
399 static void remove_huge_page(struct page *page)
400 {
401 	ClearPageDirty(page);
402 	ClearPageUptodate(page);
403 	delete_from_page_cache(page);
404 }
405 
406 static void
407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
408 {
409 	struct vm_area_struct *vma;
410 
411 	/*
412 	 * end == 0 indicates that the entire range after
413 	 * start should be unmapped.
414 	 */
415 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
416 		unsigned long v_offset;
417 		unsigned long v_end;
418 
419 		/*
420 		 * Can the expression below overflow on 32-bit arches?
421 		 * No, because the interval tree returns us only those vmas
422 		 * which overlap the truncated area starting at pgoff,
423 		 * and no vma on a 32-bit arch can span beyond the 4GB.
424 		 */
425 		if (vma->vm_pgoff < start)
426 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
427 		else
428 			v_offset = 0;
429 
430 		if (!end)
431 			v_end = vma->vm_end;
432 		else {
433 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
434 							+ vma->vm_start;
435 			if (v_end > vma->vm_end)
436 				v_end = vma->vm_end;
437 		}
438 
439 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
440 									NULL);
441 	}
442 }
443 
444 /*
445  * remove_inode_hugepages handles two distinct cases: truncation and hole
446  * punch.  There are subtle differences in operation for each case.
447  *
448  * truncation is indicated by end of range being LLONG_MAX
449  *	In this case, we first scan the range and release found pages.
450  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
451  *	maps and global counts.  Page faults can not race with truncation
452  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
453  *	page faults in the truncated range by checking i_size.  i_size is
454  *	modified while holding i_mmap_rwsem.
455  * hole punch is indicated if end is not LLONG_MAX
456  *	In the hole punch case we scan the range and release found pages.
457  *	Only when releasing a page is the associated region/reserv map
458  *	deleted.  The region/reserv map for ranges without associated
459  *	pages are not modified.  Page faults can race with hole punch.
460  *	This is indicated if we find a mapped page.
461  * Note: If the passed end of range value is beyond the end of file, but
462  * not LLONG_MAX this routine still performs a hole punch operation.
463  */
464 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
465 				   loff_t lend)
466 {
467 	struct hstate *h = hstate_inode(inode);
468 	struct address_space *mapping = &inode->i_data;
469 	const pgoff_t start = lstart >> huge_page_shift(h);
470 	const pgoff_t end = lend >> huge_page_shift(h);
471 	struct vm_area_struct pseudo_vma;
472 	struct pagevec pvec;
473 	pgoff_t next, index;
474 	int i, freed = 0;
475 	bool truncate_op = (lend == LLONG_MAX);
476 
477 	vma_init(&pseudo_vma, current->mm);
478 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
479 	pagevec_init(&pvec);
480 	next = start;
481 	while (next < end) {
482 		/*
483 		 * When no more pages are found, we are done.
484 		 */
485 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
486 			break;
487 
488 		for (i = 0; i < pagevec_count(&pvec); ++i) {
489 			struct page *page = pvec.pages[i];
490 			u32 hash;
491 
492 			index = page->index;
493 			hash = hugetlb_fault_mutex_hash(mapping, index);
494 			if (!truncate_op) {
495 				/*
496 				 * Only need to hold the fault mutex in the
497 				 * hole punch case.  This prevents races with
498 				 * page faults.  Races are not possible in the
499 				 * case of truncation.
500 				 */
501 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
502 			}
503 
504 			/*
505 			 * If page is mapped, it was faulted in after being
506 			 * unmapped in caller.  Unmap (again) now after taking
507 			 * the fault mutex.  The mutex will prevent faults
508 			 * until we finish removing the page.
509 			 *
510 			 * This race can only happen in the hole punch case.
511 			 * Getting here in a truncate operation is a bug.
512 			 */
513 			if (unlikely(page_mapped(page))) {
514 				BUG_ON(truncate_op);
515 
516 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
517 				i_mmap_lock_write(mapping);
518 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
519 				hugetlb_vmdelete_list(&mapping->i_mmap,
520 					index * pages_per_huge_page(h),
521 					(index + 1) * pages_per_huge_page(h));
522 				i_mmap_unlock_write(mapping);
523 			}
524 
525 			lock_page(page);
526 			/*
527 			 * We must free the huge page and remove from page
528 			 * cache (remove_huge_page) BEFORE removing the
529 			 * region/reserve map (hugetlb_unreserve_pages).  In
530 			 * rare out of memory conditions, removal of the
531 			 * region/reserve map could fail. Correspondingly,
532 			 * the subpool and global reserve usage count can need
533 			 * to be adjusted.
534 			 */
535 			VM_BUG_ON(PagePrivate(page));
536 			remove_huge_page(page);
537 			freed++;
538 			if (!truncate_op) {
539 				if (unlikely(hugetlb_unreserve_pages(inode,
540 							index, index + 1, 1)))
541 					hugetlb_fix_reserve_counts(inode);
542 			}
543 
544 			unlock_page(page);
545 			if (!truncate_op)
546 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
547 		}
548 		huge_pagevec_release(&pvec);
549 		cond_resched();
550 	}
551 
552 	if (truncate_op)
553 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
554 }
555 
556 static void hugetlbfs_evict_inode(struct inode *inode)
557 {
558 	struct resv_map *resv_map;
559 
560 	remove_inode_hugepages(inode, 0, LLONG_MAX);
561 
562 	/*
563 	 * Get the resv_map from the address space embedded in the inode.
564 	 * This is the address space which points to any resv_map allocated
565 	 * at inode creation time.  If this is a device special inode,
566 	 * i_mapping may not point to the original address space.
567 	 */
568 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
569 	/* Only regular and link inodes have associated reserve maps */
570 	if (resv_map)
571 		resv_map_release(&resv_map->refs);
572 	clear_inode(inode);
573 }
574 
575 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
576 {
577 	pgoff_t pgoff;
578 	struct address_space *mapping = inode->i_mapping;
579 	struct hstate *h = hstate_inode(inode);
580 
581 	BUG_ON(offset & ~huge_page_mask(h));
582 	pgoff = offset >> PAGE_SHIFT;
583 
584 	i_mmap_lock_write(mapping);
585 	i_size_write(inode, offset);
586 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
587 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
588 	i_mmap_unlock_write(mapping);
589 	remove_inode_hugepages(inode, offset, LLONG_MAX);
590 	return 0;
591 }
592 
593 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
594 {
595 	struct hstate *h = hstate_inode(inode);
596 	loff_t hpage_size = huge_page_size(h);
597 	loff_t hole_start, hole_end;
598 
599 	/*
600 	 * For hole punch round up the beginning offset of the hole and
601 	 * round down the end.
602 	 */
603 	hole_start = round_up(offset, hpage_size);
604 	hole_end = round_down(offset + len, hpage_size);
605 
606 	if (hole_end > hole_start) {
607 		struct address_space *mapping = inode->i_mapping;
608 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
609 
610 		inode_lock(inode);
611 
612 		/* protected by i_mutex */
613 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
614 			inode_unlock(inode);
615 			return -EPERM;
616 		}
617 
618 		i_mmap_lock_write(mapping);
619 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
620 			hugetlb_vmdelete_list(&mapping->i_mmap,
621 						hole_start >> PAGE_SHIFT,
622 						hole_end  >> PAGE_SHIFT);
623 		i_mmap_unlock_write(mapping);
624 		remove_inode_hugepages(inode, hole_start, hole_end);
625 		inode_unlock(inode);
626 	}
627 
628 	return 0;
629 }
630 
631 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
632 				loff_t len)
633 {
634 	struct inode *inode = file_inode(file);
635 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
636 	struct address_space *mapping = inode->i_mapping;
637 	struct hstate *h = hstate_inode(inode);
638 	struct vm_area_struct pseudo_vma;
639 	struct mm_struct *mm = current->mm;
640 	loff_t hpage_size = huge_page_size(h);
641 	unsigned long hpage_shift = huge_page_shift(h);
642 	pgoff_t start, index, end;
643 	int error;
644 	u32 hash;
645 
646 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
647 		return -EOPNOTSUPP;
648 
649 	if (mode & FALLOC_FL_PUNCH_HOLE)
650 		return hugetlbfs_punch_hole(inode, offset, len);
651 
652 	/*
653 	 * Default preallocate case.
654 	 * For this range, start is rounded down and end is rounded up
655 	 * as well as being converted to page offsets.
656 	 */
657 	start = offset >> hpage_shift;
658 	end = (offset + len + hpage_size - 1) >> hpage_shift;
659 
660 	inode_lock(inode);
661 
662 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
663 	error = inode_newsize_ok(inode, offset + len);
664 	if (error)
665 		goto out;
666 
667 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
668 		error = -EPERM;
669 		goto out;
670 	}
671 
672 	/*
673 	 * Initialize a pseudo vma as this is required by the huge page
674 	 * allocation routines.  If NUMA is configured, use page index
675 	 * as input to create an allocation policy.
676 	 */
677 	vma_init(&pseudo_vma, mm);
678 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
679 	pseudo_vma.vm_file = file;
680 
681 	for (index = start; index < end; index++) {
682 		/*
683 		 * This is supposed to be the vaddr where the page is being
684 		 * faulted in, but we have no vaddr here.
685 		 */
686 		struct page *page;
687 		unsigned long addr;
688 		int avoid_reserve = 0;
689 
690 		cond_resched();
691 
692 		/*
693 		 * fallocate(2) manpage permits EINTR; we may have been
694 		 * interrupted because we are using up too much memory.
695 		 */
696 		if (signal_pending(current)) {
697 			error = -EINTR;
698 			break;
699 		}
700 
701 		/* Set numa allocation policy based on index */
702 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
703 
704 		/* addr is the offset within the file (zero based) */
705 		addr = index * hpage_size;
706 
707 		/*
708 		 * fault mutex taken here, protects against fault path
709 		 * and hole punch.  inode_lock previously taken protects
710 		 * against truncation.
711 		 */
712 		hash = hugetlb_fault_mutex_hash(mapping, index);
713 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
714 
715 		/* See if already present in mapping to avoid alloc/free */
716 		page = find_get_page(mapping, index);
717 		if (page) {
718 			put_page(page);
719 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
720 			hugetlb_drop_vma_policy(&pseudo_vma);
721 			continue;
722 		}
723 
724 		/* Allocate page and add to page cache */
725 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
726 		hugetlb_drop_vma_policy(&pseudo_vma);
727 		if (IS_ERR(page)) {
728 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
729 			error = PTR_ERR(page);
730 			goto out;
731 		}
732 		clear_huge_page(page, addr, pages_per_huge_page(h));
733 		__SetPageUptodate(page);
734 		error = huge_add_to_page_cache(page, mapping, index);
735 		if (unlikely(error)) {
736 			put_page(page);
737 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
738 			goto out;
739 		}
740 
741 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
742 
743 		set_page_huge_active(page);
744 		/*
745 		 * unlock_page because locked by add_to_page_cache()
746 		 * put_page() due to reference from alloc_huge_page()
747 		 */
748 		unlock_page(page);
749 		put_page(page);
750 	}
751 
752 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
753 		i_size_write(inode, offset + len);
754 	inode->i_ctime = current_time(inode);
755 out:
756 	inode_unlock(inode);
757 	return error;
758 }
759 
760 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
761 {
762 	struct inode *inode = d_inode(dentry);
763 	struct hstate *h = hstate_inode(inode);
764 	int error;
765 	unsigned int ia_valid = attr->ia_valid;
766 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
767 
768 	BUG_ON(!inode);
769 
770 	error = setattr_prepare(dentry, attr);
771 	if (error)
772 		return error;
773 
774 	if (ia_valid & ATTR_SIZE) {
775 		loff_t oldsize = inode->i_size;
776 		loff_t newsize = attr->ia_size;
777 
778 		if (newsize & ~huge_page_mask(h))
779 			return -EINVAL;
780 		/* protected by i_mutex */
781 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
782 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
783 			return -EPERM;
784 		error = hugetlb_vmtruncate(inode, newsize);
785 		if (error)
786 			return error;
787 	}
788 
789 	setattr_copy(inode, attr);
790 	mark_inode_dirty(inode);
791 	return 0;
792 }
793 
794 static struct inode *hugetlbfs_get_root(struct super_block *sb,
795 					struct hugetlbfs_fs_context *ctx)
796 {
797 	struct inode *inode;
798 
799 	inode = new_inode(sb);
800 	if (inode) {
801 		inode->i_ino = get_next_ino();
802 		inode->i_mode = S_IFDIR | ctx->mode;
803 		inode->i_uid = ctx->uid;
804 		inode->i_gid = ctx->gid;
805 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
806 		inode->i_op = &hugetlbfs_dir_inode_operations;
807 		inode->i_fop = &simple_dir_operations;
808 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
809 		inc_nlink(inode);
810 		lockdep_annotate_inode_mutex_key(inode);
811 	}
812 	return inode;
813 }
814 
815 /*
816  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
817  * be taken from reclaim -- unlike regular filesystems. This needs an
818  * annotation because huge_pmd_share() does an allocation under hugetlb's
819  * i_mmap_rwsem.
820  */
821 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
822 
823 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
824 					struct inode *dir,
825 					umode_t mode, dev_t dev)
826 {
827 	struct inode *inode;
828 	struct resv_map *resv_map = NULL;
829 
830 	/*
831 	 * Reserve maps are only needed for inodes that can have associated
832 	 * page allocations.
833 	 */
834 	if (S_ISREG(mode) || S_ISLNK(mode)) {
835 		resv_map = resv_map_alloc();
836 		if (!resv_map)
837 			return NULL;
838 	}
839 
840 	inode = new_inode(sb);
841 	if (inode) {
842 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
843 
844 		inode->i_ino = get_next_ino();
845 		inode_init_owner(inode, dir, mode);
846 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
847 				&hugetlbfs_i_mmap_rwsem_key);
848 		inode->i_mapping->a_ops = &hugetlbfs_aops;
849 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
850 		inode->i_mapping->private_data = resv_map;
851 		info->seals = F_SEAL_SEAL;
852 		switch (mode & S_IFMT) {
853 		default:
854 			init_special_inode(inode, mode, dev);
855 			break;
856 		case S_IFREG:
857 			inode->i_op = &hugetlbfs_inode_operations;
858 			inode->i_fop = &hugetlbfs_file_operations;
859 			break;
860 		case S_IFDIR:
861 			inode->i_op = &hugetlbfs_dir_inode_operations;
862 			inode->i_fop = &simple_dir_operations;
863 
864 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
865 			inc_nlink(inode);
866 			break;
867 		case S_IFLNK:
868 			inode->i_op = &page_symlink_inode_operations;
869 			inode_nohighmem(inode);
870 			break;
871 		}
872 		lockdep_annotate_inode_mutex_key(inode);
873 	} else {
874 		if (resv_map)
875 			kref_put(&resv_map->refs, resv_map_release);
876 	}
877 
878 	return inode;
879 }
880 
881 /*
882  * File creation. Allocate an inode, and we're done..
883  */
884 static int do_hugetlbfs_mknod(struct inode *dir,
885 			struct dentry *dentry,
886 			umode_t mode,
887 			dev_t dev,
888 			bool tmpfile)
889 {
890 	struct inode *inode;
891 	int error = -ENOSPC;
892 
893 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
894 	if (inode) {
895 		dir->i_ctime = dir->i_mtime = current_time(dir);
896 		if (tmpfile) {
897 			d_tmpfile(dentry, inode);
898 		} else {
899 			d_instantiate(dentry, inode);
900 			dget(dentry);/* Extra count - pin the dentry in core */
901 		}
902 		error = 0;
903 	}
904 	return error;
905 }
906 
907 static int hugetlbfs_mknod(struct inode *dir,
908 			struct dentry *dentry, umode_t mode, dev_t dev)
909 {
910 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
911 }
912 
913 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
914 {
915 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
916 	if (!retval)
917 		inc_nlink(dir);
918 	return retval;
919 }
920 
921 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
922 {
923 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
924 }
925 
926 static int hugetlbfs_tmpfile(struct inode *dir,
927 			struct dentry *dentry, umode_t mode)
928 {
929 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
930 }
931 
932 static int hugetlbfs_symlink(struct inode *dir,
933 			struct dentry *dentry, const char *symname)
934 {
935 	struct inode *inode;
936 	int error = -ENOSPC;
937 
938 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
939 	if (inode) {
940 		int l = strlen(symname)+1;
941 		error = page_symlink(inode, symname, l);
942 		if (!error) {
943 			d_instantiate(dentry, inode);
944 			dget(dentry);
945 		} else
946 			iput(inode);
947 	}
948 	dir->i_ctime = dir->i_mtime = current_time(dir);
949 
950 	return error;
951 }
952 
953 /*
954  * mark the head page dirty
955  */
956 static int hugetlbfs_set_page_dirty(struct page *page)
957 {
958 	struct page *head = compound_head(page);
959 
960 	SetPageDirty(head);
961 	return 0;
962 }
963 
964 static int hugetlbfs_migrate_page(struct address_space *mapping,
965 				struct page *newpage, struct page *page,
966 				enum migrate_mode mode)
967 {
968 	int rc;
969 
970 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
971 	if (rc != MIGRATEPAGE_SUCCESS)
972 		return rc;
973 
974 	/*
975 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
976 	 * new page.  PagePrivate is not associated with page_private for
977 	 * hugetlb pages and can not be set here as only page_huge_active
978 	 * pages can be migrated.
979 	 */
980 	if (page_private(page)) {
981 		set_page_private(newpage, page_private(page));
982 		set_page_private(page, 0);
983 	}
984 
985 	if (mode != MIGRATE_SYNC_NO_COPY)
986 		migrate_page_copy(newpage, page);
987 	else
988 		migrate_page_states(newpage, page);
989 
990 	return MIGRATEPAGE_SUCCESS;
991 }
992 
993 static int hugetlbfs_error_remove_page(struct address_space *mapping,
994 				struct page *page)
995 {
996 	struct inode *inode = mapping->host;
997 	pgoff_t index = page->index;
998 
999 	remove_huge_page(page);
1000 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1001 		hugetlb_fix_reserve_counts(inode);
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Display the mount options in /proc/mounts.
1008  */
1009 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1010 {
1011 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1012 	struct hugepage_subpool *spool = sbinfo->spool;
1013 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1014 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1015 	char mod;
1016 
1017 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1018 		seq_printf(m, ",uid=%u",
1019 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1020 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1021 		seq_printf(m, ",gid=%u",
1022 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1023 	if (sbinfo->mode != 0755)
1024 		seq_printf(m, ",mode=%o", sbinfo->mode);
1025 	if (sbinfo->max_inodes != -1)
1026 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1027 
1028 	hpage_size /= 1024;
1029 	mod = 'K';
1030 	if (hpage_size >= 1024) {
1031 		hpage_size /= 1024;
1032 		mod = 'M';
1033 	}
1034 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1035 	if (spool) {
1036 		if (spool->max_hpages != -1)
1037 			seq_printf(m, ",size=%llu",
1038 				   (unsigned long long)spool->max_hpages << hpage_shift);
1039 		if (spool->min_hpages != -1)
1040 			seq_printf(m, ",min_size=%llu",
1041 				   (unsigned long long)spool->min_hpages << hpage_shift);
1042 	}
1043 	return 0;
1044 }
1045 
1046 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1047 {
1048 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1049 	struct hstate *h = hstate_inode(d_inode(dentry));
1050 
1051 	buf->f_type = HUGETLBFS_MAGIC;
1052 	buf->f_bsize = huge_page_size(h);
1053 	if (sbinfo) {
1054 		spin_lock(&sbinfo->stat_lock);
1055 		/* If no limits set, just report 0 for max/free/used
1056 		 * blocks, like simple_statfs() */
1057 		if (sbinfo->spool) {
1058 			long free_pages;
1059 
1060 			spin_lock(&sbinfo->spool->lock);
1061 			buf->f_blocks = sbinfo->spool->max_hpages;
1062 			free_pages = sbinfo->spool->max_hpages
1063 				- sbinfo->spool->used_hpages;
1064 			buf->f_bavail = buf->f_bfree = free_pages;
1065 			spin_unlock(&sbinfo->spool->lock);
1066 			buf->f_files = sbinfo->max_inodes;
1067 			buf->f_ffree = sbinfo->free_inodes;
1068 		}
1069 		spin_unlock(&sbinfo->stat_lock);
1070 	}
1071 	buf->f_namelen = NAME_MAX;
1072 	return 0;
1073 }
1074 
1075 static void hugetlbfs_put_super(struct super_block *sb)
1076 {
1077 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1078 
1079 	if (sbi) {
1080 		sb->s_fs_info = NULL;
1081 
1082 		if (sbi->spool)
1083 			hugepage_put_subpool(sbi->spool);
1084 
1085 		kfree(sbi);
1086 	}
1087 }
1088 
1089 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1090 {
1091 	if (sbinfo->free_inodes >= 0) {
1092 		spin_lock(&sbinfo->stat_lock);
1093 		if (unlikely(!sbinfo->free_inodes)) {
1094 			spin_unlock(&sbinfo->stat_lock);
1095 			return 0;
1096 		}
1097 		sbinfo->free_inodes--;
1098 		spin_unlock(&sbinfo->stat_lock);
1099 	}
1100 
1101 	return 1;
1102 }
1103 
1104 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1105 {
1106 	if (sbinfo->free_inodes >= 0) {
1107 		spin_lock(&sbinfo->stat_lock);
1108 		sbinfo->free_inodes++;
1109 		spin_unlock(&sbinfo->stat_lock);
1110 	}
1111 }
1112 
1113 
1114 static struct kmem_cache *hugetlbfs_inode_cachep;
1115 
1116 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1117 {
1118 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1119 	struct hugetlbfs_inode_info *p;
1120 
1121 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1122 		return NULL;
1123 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1124 	if (unlikely(!p)) {
1125 		hugetlbfs_inc_free_inodes(sbinfo);
1126 		return NULL;
1127 	}
1128 
1129 	/*
1130 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1131 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1132 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1133 	 * in case of a quick call to destroy.
1134 	 *
1135 	 * Note that the policy is initialized even if we are creating a
1136 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1137 	 */
1138 	mpol_shared_policy_init(&p->policy, NULL);
1139 
1140 	return &p->vfs_inode;
1141 }
1142 
1143 static void hugetlbfs_free_inode(struct inode *inode)
1144 {
1145 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1146 }
1147 
1148 static void hugetlbfs_destroy_inode(struct inode *inode)
1149 {
1150 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1151 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1152 }
1153 
1154 static const struct address_space_operations hugetlbfs_aops = {
1155 	.write_begin	= hugetlbfs_write_begin,
1156 	.write_end	= hugetlbfs_write_end,
1157 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1158 	.migratepage    = hugetlbfs_migrate_page,
1159 	.error_remove_page	= hugetlbfs_error_remove_page,
1160 };
1161 
1162 
1163 static void init_once(void *foo)
1164 {
1165 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1166 
1167 	inode_init_once(&ei->vfs_inode);
1168 }
1169 
1170 const struct file_operations hugetlbfs_file_operations = {
1171 	.read_iter		= hugetlbfs_read_iter,
1172 	.mmap			= hugetlbfs_file_mmap,
1173 	.fsync			= noop_fsync,
1174 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1175 	.llseek			= default_llseek,
1176 	.fallocate		= hugetlbfs_fallocate,
1177 };
1178 
1179 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1180 	.create		= hugetlbfs_create,
1181 	.lookup		= simple_lookup,
1182 	.link		= simple_link,
1183 	.unlink		= simple_unlink,
1184 	.symlink	= hugetlbfs_symlink,
1185 	.mkdir		= hugetlbfs_mkdir,
1186 	.rmdir		= simple_rmdir,
1187 	.mknod		= hugetlbfs_mknod,
1188 	.rename		= simple_rename,
1189 	.setattr	= hugetlbfs_setattr,
1190 	.tmpfile	= hugetlbfs_tmpfile,
1191 };
1192 
1193 static const struct inode_operations hugetlbfs_inode_operations = {
1194 	.setattr	= hugetlbfs_setattr,
1195 };
1196 
1197 static const struct super_operations hugetlbfs_ops = {
1198 	.alloc_inode    = hugetlbfs_alloc_inode,
1199 	.free_inode     = hugetlbfs_free_inode,
1200 	.destroy_inode  = hugetlbfs_destroy_inode,
1201 	.evict_inode	= hugetlbfs_evict_inode,
1202 	.statfs		= hugetlbfs_statfs,
1203 	.put_super	= hugetlbfs_put_super,
1204 	.show_options	= hugetlbfs_show_options,
1205 };
1206 
1207 /*
1208  * Convert size option passed from command line to number of huge pages
1209  * in the pool specified by hstate.  Size option could be in bytes
1210  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1211  */
1212 static long
1213 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1214 			 enum hugetlbfs_size_type val_type)
1215 {
1216 	if (val_type == NO_SIZE)
1217 		return -1;
1218 
1219 	if (val_type == SIZE_PERCENT) {
1220 		size_opt <<= huge_page_shift(h);
1221 		size_opt *= h->max_huge_pages;
1222 		do_div(size_opt, 100);
1223 	}
1224 
1225 	size_opt >>= huge_page_shift(h);
1226 	return size_opt;
1227 }
1228 
1229 /*
1230  * Parse one mount parameter.
1231  */
1232 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1233 {
1234 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1235 	struct fs_parse_result result;
1236 	char *rest;
1237 	unsigned long ps;
1238 	int opt;
1239 
1240 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1241 	if (opt < 0)
1242 		return opt;
1243 
1244 	switch (opt) {
1245 	case Opt_uid:
1246 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1247 		if (!uid_valid(ctx->uid))
1248 			goto bad_val;
1249 		return 0;
1250 
1251 	case Opt_gid:
1252 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1253 		if (!gid_valid(ctx->gid))
1254 			goto bad_val;
1255 		return 0;
1256 
1257 	case Opt_mode:
1258 		ctx->mode = result.uint_32 & 01777U;
1259 		return 0;
1260 
1261 	case Opt_size:
1262 		/* memparse() will accept a K/M/G without a digit */
1263 		if (!isdigit(param->string[0]))
1264 			goto bad_val;
1265 		ctx->max_size_opt = memparse(param->string, &rest);
1266 		ctx->max_val_type = SIZE_STD;
1267 		if (*rest == '%')
1268 			ctx->max_val_type = SIZE_PERCENT;
1269 		return 0;
1270 
1271 	case Opt_nr_inodes:
1272 		/* memparse() will accept a K/M/G without a digit */
1273 		if (!isdigit(param->string[0]))
1274 			goto bad_val;
1275 		ctx->nr_inodes = memparse(param->string, &rest);
1276 		return 0;
1277 
1278 	case Opt_pagesize:
1279 		ps = memparse(param->string, &rest);
1280 		ctx->hstate = size_to_hstate(ps);
1281 		if (!ctx->hstate) {
1282 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1283 			return -EINVAL;
1284 		}
1285 		return 0;
1286 
1287 	case Opt_min_size:
1288 		/* memparse() will accept a K/M/G without a digit */
1289 		if (!isdigit(param->string[0]))
1290 			goto bad_val;
1291 		ctx->min_size_opt = memparse(param->string, &rest);
1292 		ctx->min_val_type = SIZE_STD;
1293 		if (*rest == '%')
1294 			ctx->min_val_type = SIZE_PERCENT;
1295 		return 0;
1296 
1297 	default:
1298 		return -EINVAL;
1299 	}
1300 
1301 bad_val:
1302 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1303 		      param->string, param->key);
1304 }
1305 
1306 /*
1307  * Validate the parsed options.
1308  */
1309 static int hugetlbfs_validate(struct fs_context *fc)
1310 {
1311 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1312 
1313 	/*
1314 	 * Use huge page pool size (in hstate) to convert the size
1315 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1316 	 */
1317 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1318 						   ctx->max_size_opt,
1319 						   ctx->max_val_type);
1320 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1321 						   ctx->min_size_opt,
1322 						   ctx->min_val_type);
1323 
1324 	/*
1325 	 * If max_size was specified, then min_size must be smaller
1326 	 */
1327 	if (ctx->max_val_type > NO_SIZE &&
1328 	    ctx->min_hpages > ctx->max_hpages) {
1329 		pr_err("Minimum size can not be greater than maximum size\n");
1330 		return -EINVAL;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 static int
1337 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1338 {
1339 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1340 	struct hugetlbfs_sb_info *sbinfo;
1341 
1342 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1343 	if (!sbinfo)
1344 		return -ENOMEM;
1345 	sb->s_fs_info = sbinfo;
1346 	spin_lock_init(&sbinfo->stat_lock);
1347 	sbinfo->hstate		= ctx->hstate;
1348 	sbinfo->max_inodes	= ctx->nr_inodes;
1349 	sbinfo->free_inodes	= ctx->nr_inodes;
1350 	sbinfo->spool		= NULL;
1351 	sbinfo->uid		= ctx->uid;
1352 	sbinfo->gid		= ctx->gid;
1353 	sbinfo->mode		= ctx->mode;
1354 
1355 	/*
1356 	 * Allocate and initialize subpool if maximum or minimum size is
1357 	 * specified.  Any needed reservations (for minimim size) are taken
1358 	 * taken when the subpool is created.
1359 	 */
1360 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1361 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1362 						     ctx->max_hpages,
1363 						     ctx->min_hpages);
1364 		if (!sbinfo->spool)
1365 			goto out_free;
1366 	}
1367 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1368 	sb->s_blocksize = huge_page_size(ctx->hstate);
1369 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1370 	sb->s_magic = HUGETLBFS_MAGIC;
1371 	sb->s_op = &hugetlbfs_ops;
1372 	sb->s_time_gran = 1;
1373 
1374 	/*
1375 	 * Due to the special and limited functionality of hugetlbfs, it does
1376 	 * not work well as a stacking filesystem.
1377 	 */
1378 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1379 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1380 	if (!sb->s_root)
1381 		goto out_free;
1382 	return 0;
1383 out_free:
1384 	kfree(sbinfo->spool);
1385 	kfree(sbinfo);
1386 	return -ENOMEM;
1387 }
1388 
1389 static int hugetlbfs_get_tree(struct fs_context *fc)
1390 {
1391 	int err = hugetlbfs_validate(fc);
1392 	if (err)
1393 		return err;
1394 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1395 }
1396 
1397 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1398 {
1399 	kfree(fc->fs_private);
1400 }
1401 
1402 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1403 	.free		= hugetlbfs_fs_context_free,
1404 	.parse_param	= hugetlbfs_parse_param,
1405 	.get_tree	= hugetlbfs_get_tree,
1406 };
1407 
1408 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1409 {
1410 	struct hugetlbfs_fs_context *ctx;
1411 
1412 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1413 	if (!ctx)
1414 		return -ENOMEM;
1415 
1416 	ctx->max_hpages	= -1; /* No limit on size by default */
1417 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1418 	ctx->uid	= current_fsuid();
1419 	ctx->gid	= current_fsgid();
1420 	ctx->mode	= 0755;
1421 	ctx->hstate	= &default_hstate;
1422 	ctx->min_hpages	= -1; /* No default minimum size */
1423 	ctx->max_val_type = NO_SIZE;
1424 	ctx->min_val_type = NO_SIZE;
1425 	fc->fs_private = ctx;
1426 	fc->ops	= &hugetlbfs_fs_context_ops;
1427 	return 0;
1428 }
1429 
1430 static struct file_system_type hugetlbfs_fs_type = {
1431 	.name			= "hugetlbfs",
1432 	.init_fs_context	= hugetlbfs_init_fs_context,
1433 	.parameters		= hugetlb_fs_parameters,
1434 	.kill_sb		= kill_litter_super,
1435 };
1436 
1437 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1438 
1439 static int can_do_hugetlb_shm(void)
1440 {
1441 	kgid_t shm_group;
1442 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1443 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1444 }
1445 
1446 static int get_hstate_idx(int page_size_log)
1447 {
1448 	struct hstate *h = hstate_sizelog(page_size_log);
1449 
1450 	if (!h)
1451 		return -1;
1452 	return h - hstates;
1453 }
1454 
1455 /*
1456  * Note that size should be aligned to proper hugepage size in caller side,
1457  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1458  */
1459 struct file *hugetlb_file_setup(const char *name, size_t size,
1460 				vm_flags_t acctflag, struct user_struct **user,
1461 				int creat_flags, int page_size_log)
1462 {
1463 	struct inode *inode;
1464 	struct vfsmount *mnt;
1465 	int hstate_idx;
1466 	struct file *file;
1467 
1468 	hstate_idx = get_hstate_idx(page_size_log);
1469 	if (hstate_idx < 0)
1470 		return ERR_PTR(-ENODEV);
1471 
1472 	*user = NULL;
1473 	mnt = hugetlbfs_vfsmount[hstate_idx];
1474 	if (!mnt)
1475 		return ERR_PTR(-ENOENT);
1476 
1477 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1478 		*user = current_user();
1479 		if (user_shm_lock(size, *user)) {
1480 			task_lock(current);
1481 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1482 				current->comm, current->pid);
1483 			task_unlock(current);
1484 		} else {
1485 			*user = NULL;
1486 			return ERR_PTR(-EPERM);
1487 		}
1488 	}
1489 
1490 	file = ERR_PTR(-ENOSPC);
1491 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1492 	if (!inode)
1493 		goto out;
1494 	if (creat_flags == HUGETLB_SHMFS_INODE)
1495 		inode->i_flags |= S_PRIVATE;
1496 
1497 	inode->i_size = size;
1498 	clear_nlink(inode);
1499 
1500 	if (hugetlb_reserve_pages(inode, 0,
1501 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1502 			acctflag))
1503 		file = ERR_PTR(-ENOMEM);
1504 	else
1505 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1506 					&hugetlbfs_file_operations);
1507 	if (!IS_ERR(file))
1508 		return file;
1509 
1510 	iput(inode);
1511 out:
1512 	if (*user) {
1513 		user_shm_unlock(size, *user);
1514 		*user = NULL;
1515 	}
1516 	return file;
1517 }
1518 
1519 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1520 {
1521 	struct fs_context *fc;
1522 	struct vfsmount *mnt;
1523 
1524 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1525 	if (IS_ERR(fc)) {
1526 		mnt = ERR_CAST(fc);
1527 	} else {
1528 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1529 		ctx->hstate = h;
1530 		mnt = fc_mount(fc);
1531 		put_fs_context(fc);
1532 	}
1533 	if (IS_ERR(mnt))
1534 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1535 		       1U << (h->order + PAGE_SHIFT - 10));
1536 	return mnt;
1537 }
1538 
1539 static int __init init_hugetlbfs_fs(void)
1540 {
1541 	struct vfsmount *mnt;
1542 	struct hstate *h;
1543 	int error;
1544 	int i;
1545 
1546 	if (!hugepages_supported()) {
1547 		pr_info("disabling because there are no supported hugepage sizes\n");
1548 		return -ENOTSUPP;
1549 	}
1550 
1551 	error = -ENOMEM;
1552 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1553 					sizeof(struct hugetlbfs_inode_info),
1554 					0, SLAB_ACCOUNT, init_once);
1555 	if (hugetlbfs_inode_cachep == NULL)
1556 		goto out;
1557 
1558 	error = register_filesystem(&hugetlbfs_fs_type);
1559 	if (error)
1560 		goto out_free;
1561 
1562 	/* default hstate mount is required */
1563 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1564 	if (IS_ERR(mnt)) {
1565 		error = PTR_ERR(mnt);
1566 		goto out_unreg;
1567 	}
1568 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1569 
1570 	/* other hstates are optional */
1571 	i = 0;
1572 	for_each_hstate(h) {
1573 		if (i == default_hstate_idx) {
1574 			i++;
1575 			continue;
1576 		}
1577 
1578 		mnt = mount_one_hugetlbfs(h);
1579 		if (IS_ERR(mnt))
1580 			hugetlbfs_vfsmount[i] = NULL;
1581 		else
1582 			hugetlbfs_vfsmount[i] = mnt;
1583 		i++;
1584 	}
1585 
1586 	return 0;
1587 
1588  out_unreg:
1589 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1590  out_free:
1591 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1592  out:
1593 	return error;
1594 }
1595 fs_initcall(init_hugetlbfs_fs)
1596