xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision 002dff36)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32   ("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	loff_t len, vma_len;
135 	int ret;
136 	struct hstate *h = hstate_file(file);
137 
138 	/*
139 	 * vma address alignment (but not the pgoff alignment) has
140 	 * already been checked by prepare_hugepage_range.  If you add
141 	 * any error returns here, do so after setting VM_HUGETLB, so
142 	 * is_vm_hugetlb_page tests below unmap_region go the right
143 	 * way when do_mmap_pgoff unwinds (may be important on powerpc
144 	 * and ia64).
145 	 */
146 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
147 	vma->vm_ops = &hugetlb_vm_ops;
148 
149 	/*
150 	 * page based offset in vm_pgoff could be sufficiently large to
151 	 * overflow a loff_t when converted to byte offset.  This can
152 	 * only happen on architectures where sizeof(loff_t) ==
153 	 * sizeof(unsigned long).  So, only check in those instances.
154 	 */
155 	if (sizeof(unsigned long) == sizeof(loff_t)) {
156 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
157 			return -EINVAL;
158 	}
159 
160 	/* must be huge page aligned */
161 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
162 		return -EINVAL;
163 
164 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
165 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
166 	/* check for overflow */
167 	if (len < vma_len)
168 		return -EINVAL;
169 
170 	inode_lock(inode);
171 	file_accessed(file);
172 
173 	ret = -ENOMEM;
174 	if (hugetlb_reserve_pages(inode,
175 				vma->vm_pgoff >> huge_page_order(h),
176 				len >> huge_page_shift(h), vma,
177 				vma->vm_flags))
178 		goto out;
179 
180 	ret = 0;
181 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
182 		i_size_write(inode, len);
183 out:
184 	inode_unlock(inode);
185 
186 	return ret;
187 }
188 
189 /*
190  * Called under mmap_write_lock(mm).
191  */
192 
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 static unsigned long
195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
196 		unsigned long len, unsigned long pgoff, unsigned long flags)
197 {
198 	struct hstate *h = hstate_file(file);
199 	struct vm_unmapped_area_info info;
200 
201 	info.flags = 0;
202 	info.length = len;
203 	info.low_limit = current->mm->mmap_base;
204 	info.high_limit = TASK_SIZE;
205 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
206 	info.align_offset = 0;
207 	return vm_unmapped_area(&info);
208 }
209 
210 static unsigned long
211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
212 		unsigned long len, unsigned long pgoff, unsigned long flags)
213 {
214 	struct hstate *h = hstate_file(file);
215 	struct vm_unmapped_area_info info;
216 
217 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
218 	info.length = len;
219 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
220 	info.high_limit = current->mm->mmap_base;
221 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
222 	info.align_offset = 0;
223 	addr = vm_unmapped_area(&info);
224 
225 	/*
226 	 * A failed mmap() very likely causes application failure,
227 	 * so fall back to the bottom-up function here. This scenario
228 	 * can happen with large stack limits and large mmap()
229 	 * allocations.
230 	 */
231 	if (unlikely(offset_in_page(addr))) {
232 		VM_BUG_ON(addr != -ENOMEM);
233 		info.flags = 0;
234 		info.low_limit = current->mm->mmap_base;
235 		info.high_limit = TASK_SIZE;
236 		addr = vm_unmapped_area(&info);
237 	}
238 
239 	return addr;
240 }
241 
242 static unsigned long
243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
244 		unsigned long len, unsigned long pgoff, unsigned long flags)
245 {
246 	struct mm_struct *mm = current->mm;
247 	struct vm_area_struct *vma;
248 	struct hstate *h = hstate_file(file);
249 
250 	if (len & ~huge_page_mask(h))
251 		return -EINVAL;
252 	if (len > TASK_SIZE)
253 		return -ENOMEM;
254 
255 	if (flags & MAP_FIXED) {
256 		if (prepare_hugepage_range(file, addr, len))
257 			return -EINVAL;
258 		return addr;
259 	}
260 
261 	if (addr) {
262 		addr = ALIGN(addr, huge_page_size(h));
263 		vma = find_vma(mm, addr);
264 		if (TASK_SIZE - len >= addr &&
265 		    (!vma || addr + len <= vm_start_gap(vma)))
266 			return addr;
267 	}
268 
269 	/*
270 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
271 	 * If architectures have special needs, they should define their own
272 	 * version of hugetlb_get_unmapped_area.
273 	 */
274 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
275 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
276 				pgoff, flags);
277 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
278 			pgoff, flags);
279 }
280 #endif
281 
282 static size_t
283 hugetlbfs_read_actor(struct page *page, unsigned long offset,
284 			struct iov_iter *to, unsigned long size)
285 {
286 	size_t copied = 0;
287 	int i, chunksize;
288 
289 	/* Find which 4k chunk and offset with in that chunk */
290 	i = offset >> PAGE_SHIFT;
291 	offset = offset & ~PAGE_MASK;
292 
293 	while (size) {
294 		size_t n;
295 		chunksize = PAGE_SIZE;
296 		if (offset)
297 			chunksize -= offset;
298 		if (chunksize > size)
299 			chunksize = size;
300 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
301 		copied += n;
302 		if (n != chunksize)
303 			return copied;
304 		offset = 0;
305 		size -= chunksize;
306 		i++;
307 	}
308 	return copied;
309 }
310 
311 /*
312  * Support for read() - Find the page attached to f_mapping and copy out the
313  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
314  * since it has PAGE_SIZE assumptions.
315  */
316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
317 {
318 	struct file *file = iocb->ki_filp;
319 	struct hstate *h = hstate_file(file);
320 	struct address_space *mapping = file->f_mapping;
321 	struct inode *inode = mapping->host;
322 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
323 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
324 	unsigned long end_index;
325 	loff_t isize;
326 	ssize_t retval = 0;
327 
328 	while (iov_iter_count(to)) {
329 		struct page *page;
330 		size_t nr, copied;
331 
332 		/* nr is the maximum number of bytes to copy from this page */
333 		nr = huge_page_size(h);
334 		isize = i_size_read(inode);
335 		if (!isize)
336 			break;
337 		end_index = (isize - 1) >> huge_page_shift(h);
338 		if (index > end_index)
339 			break;
340 		if (index == end_index) {
341 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
342 			if (nr <= offset)
343 				break;
344 		}
345 		nr = nr - offset;
346 
347 		/* Find the page */
348 		page = find_lock_page(mapping, index);
349 		if (unlikely(page == NULL)) {
350 			/*
351 			 * We have a HOLE, zero out the user-buffer for the
352 			 * length of the hole or request.
353 			 */
354 			copied = iov_iter_zero(nr, to);
355 		} else {
356 			unlock_page(page);
357 
358 			/*
359 			 * We have the page, copy it to user space buffer.
360 			 */
361 			copied = hugetlbfs_read_actor(page, offset, to, nr);
362 			put_page(page);
363 		}
364 		offset += copied;
365 		retval += copied;
366 		if (copied != nr && iov_iter_count(to)) {
367 			if (!retval)
368 				retval = -EFAULT;
369 			break;
370 		}
371 		index += offset >> huge_page_shift(h);
372 		offset &= ~huge_page_mask(h);
373 	}
374 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
375 	return retval;
376 }
377 
378 static int hugetlbfs_write_begin(struct file *file,
379 			struct address_space *mapping,
380 			loff_t pos, unsigned len, unsigned flags,
381 			struct page **pagep, void **fsdata)
382 {
383 	return -EINVAL;
384 }
385 
386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
387 			loff_t pos, unsigned len, unsigned copied,
388 			struct page *page, void *fsdata)
389 {
390 	BUG();
391 	return -EINVAL;
392 }
393 
394 static void remove_huge_page(struct page *page)
395 {
396 	ClearPageDirty(page);
397 	ClearPageUptodate(page);
398 	delete_from_page_cache(page);
399 }
400 
401 static void
402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
403 {
404 	struct vm_area_struct *vma;
405 
406 	/*
407 	 * end == 0 indicates that the entire range after
408 	 * start should be unmapped.
409 	 */
410 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
411 		unsigned long v_offset;
412 		unsigned long v_end;
413 
414 		/*
415 		 * Can the expression below overflow on 32-bit arches?
416 		 * No, because the interval tree returns us only those vmas
417 		 * which overlap the truncated area starting at pgoff,
418 		 * and no vma on a 32-bit arch can span beyond the 4GB.
419 		 */
420 		if (vma->vm_pgoff < start)
421 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
422 		else
423 			v_offset = 0;
424 
425 		if (!end)
426 			v_end = vma->vm_end;
427 		else {
428 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
429 							+ vma->vm_start;
430 			if (v_end > vma->vm_end)
431 				v_end = vma->vm_end;
432 		}
433 
434 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
435 									NULL);
436 	}
437 }
438 
439 /*
440  * remove_inode_hugepages handles two distinct cases: truncation and hole
441  * punch.  There are subtle differences in operation for each case.
442  *
443  * truncation is indicated by end of range being LLONG_MAX
444  *	In this case, we first scan the range and release found pages.
445  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
446  *	maps and global counts.  Page faults can not race with truncation
447  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
448  *	page faults in the truncated range by checking i_size.  i_size is
449  *	modified while holding i_mmap_rwsem.
450  * hole punch is indicated if end is not LLONG_MAX
451  *	In the hole punch case we scan the range and release found pages.
452  *	Only when releasing a page is the associated region/reserv map
453  *	deleted.  The region/reserv map for ranges without associated
454  *	pages are not modified.  Page faults can race with hole punch.
455  *	This is indicated if we find a mapped page.
456  * Note: If the passed end of range value is beyond the end of file, but
457  * not LLONG_MAX this routine still performs a hole punch operation.
458  */
459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
460 				   loff_t lend)
461 {
462 	struct hstate *h = hstate_inode(inode);
463 	struct address_space *mapping = &inode->i_data;
464 	const pgoff_t start = lstart >> huge_page_shift(h);
465 	const pgoff_t end = lend >> huge_page_shift(h);
466 	struct vm_area_struct pseudo_vma;
467 	struct pagevec pvec;
468 	pgoff_t next, index;
469 	int i, freed = 0;
470 	bool truncate_op = (lend == LLONG_MAX);
471 
472 	vma_init(&pseudo_vma, current->mm);
473 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
474 	pagevec_init(&pvec);
475 	next = start;
476 	while (next < end) {
477 		/*
478 		 * When no more pages are found, we are done.
479 		 */
480 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
481 			break;
482 
483 		for (i = 0; i < pagevec_count(&pvec); ++i) {
484 			struct page *page = pvec.pages[i];
485 			u32 hash;
486 
487 			index = page->index;
488 			hash = hugetlb_fault_mutex_hash(mapping, index);
489 			if (!truncate_op) {
490 				/*
491 				 * Only need to hold the fault mutex in the
492 				 * hole punch case.  This prevents races with
493 				 * page faults.  Races are not possible in the
494 				 * case of truncation.
495 				 */
496 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
497 			}
498 
499 			/*
500 			 * If page is mapped, it was faulted in after being
501 			 * unmapped in caller.  Unmap (again) now after taking
502 			 * the fault mutex.  The mutex will prevent faults
503 			 * until we finish removing the page.
504 			 *
505 			 * This race can only happen in the hole punch case.
506 			 * Getting here in a truncate operation is a bug.
507 			 */
508 			if (unlikely(page_mapped(page))) {
509 				BUG_ON(truncate_op);
510 
511 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
512 				i_mmap_lock_write(mapping);
513 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
514 				hugetlb_vmdelete_list(&mapping->i_mmap,
515 					index * pages_per_huge_page(h),
516 					(index + 1) * pages_per_huge_page(h));
517 				i_mmap_unlock_write(mapping);
518 			}
519 
520 			lock_page(page);
521 			/*
522 			 * We must free the huge page and remove from page
523 			 * cache (remove_huge_page) BEFORE removing the
524 			 * region/reserve map (hugetlb_unreserve_pages).  In
525 			 * rare out of memory conditions, removal of the
526 			 * region/reserve map could fail. Correspondingly,
527 			 * the subpool and global reserve usage count can need
528 			 * to be adjusted.
529 			 */
530 			VM_BUG_ON(PagePrivate(page));
531 			remove_huge_page(page);
532 			freed++;
533 			if (!truncate_op) {
534 				if (unlikely(hugetlb_unreserve_pages(inode,
535 							index, index + 1, 1)))
536 					hugetlb_fix_reserve_counts(inode);
537 			}
538 
539 			unlock_page(page);
540 			if (!truncate_op)
541 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
542 		}
543 		huge_pagevec_release(&pvec);
544 		cond_resched();
545 	}
546 
547 	if (truncate_op)
548 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
549 }
550 
551 static void hugetlbfs_evict_inode(struct inode *inode)
552 {
553 	struct resv_map *resv_map;
554 
555 	remove_inode_hugepages(inode, 0, LLONG_MAX);
556 
557 	/*
558 	 * Get the resv_map from the address space embedded in the inode.
559 	 * This is the address space which points to any resv_map allocated
560 	 * at inode creation time.  If this is a device special inode,
561 	 * i_mapping may not point to the original address space.
562 	 */
563 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
564 	/* Only regular and link inodes have associated reserve maps */
565 	if (resv_map)
566 		resv_map_release(&resv_map->refs);
567 	clear_inode(inode);
568 }
569 
570 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
571 {
572 	pgoff_t pgoff;
573 	struct address_space *mapping = inode->i_mapping;
574 	struct hstate *h = hstate_inode(inode);
575 
576 	BUG_ON(offset & ~huge_page_mask(h));
577 	pgoff = offset >> PAGE_SHIFT;
578 
579 	i_mmap_lock_write(mapping);
580 	i_size_write(inode, offset);
581 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
582 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
583 	i_mmap_unlock_write(mapping);
584 	remove_inode_hugepages(inode, offset, LLONG_MAX);
585 	return 0;
586 }
587 
588 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
589 {
590 	struct hstate *h = hstate_inode(inode);
591 	loff_t hpage_size = huge_page_size(h);
592 	loff_t hole_start, hole_end;
593 
594 	/*
595 	 * For hole punch round up the beginning offset of the hole and
596 	 * round down the end.
597 	 */
598 	hole_start = round_up(offset, hpage_size);
599 	hole_end = round_down(offset + len, hpage_size);
600 
601 	if (hole_end > hole_start) {
602 		struct address_space *mapping = inode->i_mapping;
603 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
604 
605 		inode_lock(inode);
606 
607 		/* protected by i_mutex */
608 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
609 			inode_unlock(inode);
610 			return -EPERM;
611 		}
612 
613 		i_mmap_lock_write(mapping);
614 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
615 			hugetlb_vmdelete_list(&mapping->i_mmap,
616 						hole_start >> PAGE_SHIFT,
617 						hole_end  >> PAGE_SHIFT);
618 		i_mmap_unlock_write(mapping);
619 		remove_inode_hugepages(inode, hole_start, hole_end);
620 		inode_unlock(inode);
621 	}
622 
623 	return 0;
624 }
625 
626 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
627 				loff_t len)
628 {
629 	struct inode *inode = file_inode(file);
630 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
631 	struct address_space *mapping = inode->i_mapping;
632 	struct hstate *h = hstate_inode(inode);
633 	struct vm_area_struct pseudo_vma;
634 	struct mm_struct *mm = current->mm;
635 	loff_t hpage_size = huge_page_size(h);
636 	unsigned long hpage_shift = huge_page_shift(h);
637 	pgoff_t start, index, end;
638 	int error;
639 	u32 hash;
640 
641 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
642 		return -EOPNOTSUPP;
643 
644 	if (mode & FALLOC_FL_PUNCH_HOLE)
645 		return hugetlbfs_punch_hole(inode, offset, len);
646 
647 	/*
648 	 * Default preallocate case.
649 	 * For this range, start is rounded down and end is rounded up
650 	 * as well as being converted to page offsets.
651 	 */
652 	start = offset >> hpage_shift;
653 	end = (offset + len + hpage_size - 1) >> hpage_shift;
654 
655 	inode_lock(inode);
656 
657 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
658 	error = inode_newsize_ok(inode, offset + len);
659 	if (error)
660 		goto out;
661 
662 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
663 		error = -EPERM;
664 		goto out;
665 	}
666 
667 	/*
668 	 * Initialize a pseudo vma as this is required by the huge page
669 	 * allocation routines.  If NUMA is configured, use page index
670 	 * as input to create an allocation policy.
671 	 */
672 	vma_init(&pseudo_vma, mm);
673 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
674 	pseudo_vma.vm_file = file;
675 
676 	for (index = start; index < end; index++) {
677 		/*
678 		 * This is supposed to be the vaddr where the page is being
679 		 * faulted in, but we have no vaddr here.
680 		 */
681 		struct page *page;
682 		unsigned long addr;
683 		int avoid_reserve = 0;
684 
685 		cond_resched();
686 
687 		/*
688 		 * fallocate(2) manpage permits EINTR; we may have been
689 		 * interrupted because we are using up too much memory.
690 		 */
691 		if (signal_pending(current)) {
692 			error = -EINTR;
693 			break;
694 		}
695 
696 		/* Set numa allocation policy based on index */
697 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
698 
699 		/* addr is the offset within the file (zero based) */
700 		addr = index * hpage_size;
701 
702 		/*
703 		 * fault mutex taken here, protects against fault path
704 		 * and hole punch.  inode_lock previously taken protects
705 		 * against truncation.
706 		 */
707 		hash = hugetlb_fault_mutex_hash(mapping, index);
708 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
709 
710 		/* See if already present in mapping to avoid alloc/free */
711 		page = find_get_page(mapping, index);
712 		if (page) {
713 			put_page(page);
714 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
715 			hugetlb_drop_vma_policy(&pseudo_vma);
716 			continue;
717 		}
718 
719 		/* Allocate page and add to page cache */
720 		page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
721 		hugetlb_drop_vma_policy(&pseudo_vma);
722 		if (IS_ERR(page)) {
723 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
724 			error = PTR_ERR(page);
725 			goto out;
726 		}
727 		clear_huge_page(page, addr, pages_per_huge_page(h));
728 		__SetPageUptodate(page);
729 		error = huge_add_to_page_cache(page, mapping, index);
730 		if (unlikely(error)) {
731 			put_page(page);
732 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
733 			goto out;
734 		}
735 
736 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
737 
738 		/*
739 		 * unlock_page because locked by add_to_page_cache()
740 		 * page_put due to reference from alloc_huge_page()
741 		 */
742 		unlock_page(page);
743 		put_page(page);
744 	}
745 
746 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
747 		i_size_write(inode, offset + len);
748 	inode->i_ctime = current_time(inode);
749 out:
750 	inode_unlock(inode);
751 	return error;
752 }
753 
754 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
755 {
756 	struct inode *inode = d_inode(dentry);
757 	struct hstate *h = hstate_inode(inode);
758 	int error;
759 	unsigned int ia_valid = attr->ia_valid;
760 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
761 
762 	BUG_ON(!inode);
763 
764 	error = setattr_prepare(dentry, attr);
765 	if (error)
766 		return error;
767 
768 	if (ia_valid & ATTR_SIZE) {
769 		loff_t oldsize = inode->i_size;
770 		loff_t newsize = attr->ia_size;
771 
772 		if (newsize & ~huge_page_mask(h))
773 			return -EINVAL;
774 		/* protected by i_mutex */
775 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
776 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
777 			return -EPERM;
778 		error = hugetlb_vmtruncate(inode, newsize);
779 		if (error)
780 			return error;
781 	}
782 
783 	setattr_copy(inode, attr);
784 	mark_inode_dirty(inode);
785 	return 0;
786 }
787 
788 static struct inode *hugetlbfs_get_root(struct super_block *sb,
789 					struct hugetlbfs_fs_context *ctx)
790 {
791 	struct inode *inode;
792 
793 	inode = new_inode(sb);
794 	if (inode) {
795 		inode->i_ino = get_next_ino();
796 		inode->i_mode = S_IFDIR | ctx->mode;
797 		inode->i_uid = ctx->uid;
798 		inode->i_gid = ctx->gid;
799 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
800 		inode->i_op = &hugetlbfs_dir_inode_operations;
801 		inode->i_fop = &simple_dir_operations;
802 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
803 		inc_nlink(inode);
804 		lockdep_annotate_inode_mutex_key(inode);
805 	}
806 	return inode;
807 }
808 
809 /*
810  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
811  * be taken from reclaim -- unlike regular filesystems. This needs an
812  * annotation because huge_pmd_share() does an allocation under hugetlb's
813  * i_mmap_rwsem.
814  */
815 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
816 
817 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
818 					struct inode *dir,
819 					umode_t mode, dev_t dev)
820 {
821 	struct inode *inode;
822 	struct resv_map *resv_map = NULL;
823 
824 	/*
825 	 * Reserve maps are only needed for inodes that can have associated
826 	 * page allocations.
827 	 */
828 	if (S_ISREG(mode) || S_ISLNK(mode)) {
829 		resv_map = resv_map_alloc();
830 		if (!resv_map)
831 			return NULL;
832 	}
833 
834 	inode = new_inode(sb);
835 	if (inode) {
836 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
837 
838 		inode->i_ino = get_next_ino();
839 		inode_init_owner(inode, dir, mode);
840 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
841 				&hugetlbfs_i_mmap_rwsem_key);
842 		inode->i_mapping->a_ops = &hugetlbfs_aops;
843 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
844 		inode->i_mapping->private_data = resv_map;
845 		info->seals = F_SEAL_SEAL;
846 		switch (mode & S_IFMT) {
847 		default:
848 			init_special_inode(inode, mode, dev);
849 			break;
850 		case S_IFREG:
851 			inode->i_op = &hugetlbfs_inode_operations;
852 			inode->i_fop = &hugetlbfs_file_operations;
853 			break;
854 		case S_IFDIR:
855 			inode->i_op = &hugetlbfs_dir_inode_operations;
856 			inode->i_fop = &simple_dir_operations;
857 
858 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
859 			inc_nlink(inode);
860 			break;
861 		case S_IFLNK:
862 			inode->i_op = &page_symlink_inode_operations;
863 			inode_nohighmem(inode);
864 			break;
865 		}
866 		lockdep_annotate_inode_mutex_key(inode);
867 	} else {
868 		if (resv_map)
869 			kref_put(&resv_map->refs, resv_map_release);
870 	}
871 
872 	return inode;
873 }
874 
875 /*
876  * File creation. Allocate an inode, and we're done..
877  */
878 static int do_hugetlbfs_mknod(struct inode *dir,
879 			struct dentry *dentry,
880 			umode_t mode,
881 			dev_t dev,
882 			bool tmpfile)
883 {
884 	struct inode *inode;
885 	int error = -ENOSPC;
886 
887 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
888 	if (inode) {
889 		dir->i_ctime = dir->i_mtime = current_time(dir);
890 		if (tmpfile) {
891 			d_tmpfile(dentry, inode);
892 		} else {
893 			d_instantiate(dentry, inode);
894 			dget(dentry);/* Extra count - pin the dentry in core */
895 		}
896 		error = 0;
897 	}
898 	return error;
899 }
900 
901 static int hugetlbfs_mknod(struct inode *dir,
902 			struct dentry *dentry, umode_t mode, dev_t dev)
903 {
904 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
905 }
906 
907 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
908 {
909 	int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
910 	if (!retval)
911 		inc_nlink(dir);
912 	return retval;
913 }
914 
915 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
916 {
917 	return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
918 }
919 
920 static int hugetlbfs_tmpfile(struct inode *dir,
921 			struct dentry *dentry, umode_t mode)
922 {
923 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
924 }
925 
926 static int hugetlbfs_symlink(struct inode *dir,
927 			struct dentry *dentry, const char *symname)
928 {
929 	struct inode *inode;
930 	int error = -ENOSPC;
931 
932 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
933 	if (inode) {
934 		int l = strlen(symname)+1;
935 		error = page_symlink(inode, symname, l);
936 		if (!error) {
937 			d_instantiate(dentry, inode);
938 			dget(dentry);
939 		} else
940 			iput(inode);
941 	}
942 	dir->i_ctime = dir->i_mtime = current_time(dir);
943 
944 	return error;
945 }
946 
947 /*
948  * mark the head page dirty
949  */
950 static int hugetlbfs_set_page_dirty(struct page *page)
951 {
952 	struct page *head = compound_head(page);
953 
954 	SetPageDirty(head);
955 	return 0;
956 }
957 
958 static int hugetlbfs_migrate_page(struct address_space *mapping,
959 				struct page *newpage, struct page *page,
960 				enum migrate_mode mode)
961 {
962 	int rc;
963 
964 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
965 	if (rc != MIGRATEPAGE_SUCCESS)
966 		return rc;
967 
968 	/*
969 	 * page_private is subpool pointer in hugetlb pages.  Transfer to
970 	 * new page.  PagePrivate is not associated with page_private for
971 	 * hugetlb pages and can not be set here as only page_huge_active
972 	 * pages can be migrated.
973 	 */
974 	if (page_private(page)) {
975 		set_page_private(newpage, page_private(page));
976 		set_page_private(page, 0);
977 	}
978 
979 	if (mode != MIGRATE_SYNC_NO_COPY)
980 		migrate_page_copy(newpage, page);
981 	else
982 		migrate_page_states(newpage, page);
983 
984 	return MIGRATEPAGE_SUCCESS;
985 }
986 
987 static int hugetlbfs_error_remove_page(struct address_space *mapping,
988 				struct page *page)
989 {
990 	struct inode *inode = mapping->host;
991 	pgoff_t index = page->index;
992 
993 	remove_huge_page(page);
994 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
995 		hugetlb_fix_reserve_counts(inode);
996 
997 	return 0;
998 }
999 
1000 /*
1001  * Display the mount options in /proc/mounts.
1002  */
1003 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1004 {
1005 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1006 	struct hugepage_subpool *spool = sbinfo->spool;
1007 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1008 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1009 	char mod;
1010 
1011 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1012 		seq_printf(m, ",uid=%u",
1013 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1014 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1015 		seq_printf(m, ",gid=%u",
1016 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1017 	if (sbinfo->mode != 0755)
1018 		seq_printf(m, ",mode=%o", sbinfo->mode);
1019 	if (sbinfo->max_inodes != -1)
1020 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1021 
1022 	hpage_size /= 1024;
1023 	mod = 'K';
1024 	if (hpage_size >= 1024) {
1025 		hpage_size /= 1024;
1026 		mod = 'M';
1027 	}
1028 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1029 	if (spool) {
1030 		if (spool->max_hpages != -1)
1031 			seq_printf(m, ",size=%llu",
1032 				   (unsigned long long)spool->max_hpages << hpage_shift);
1033 		if (spool->min_hpages != -1)
1034 			seq_printf(m, ",min_size=%llu",
1035 				   (unsigned long long)spool->min_hpages << hpage_shift);
1036 	}
1037 	return 0;
1038 }
1039 
1040 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1041 {
1042 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1043 	struct hstate *h = hstate_inode(d_inode(dentry));
1044 
1045 	buf->f_type = HUGETLBFS_MAGIC;
1046 	buf->f_bsize = huge_page_size(h);
1047 	if (sbinfo) {
1048 		spin_lock(&sbinfo->stat_lock);
1049 		/* If no limits set, just report 0 for max/free/used
1050 		 * blocks, like simple_statfs() */
1051 		if (sbinfo->spool) {
1052 			long free_pages;
1053 
1054 			spin_lock(&sbinfo->spool->lock);
1055 			buf->f_blocks = sbinfo->spool->max_hpages;
1056 			free_pages = sbinfo->spool->max_hpages
1057 				- sbinfo->spool->used_hpages;
1058 			buf->f_bavail = buf->f_bfree = free_pages;
1059 			spin_unlock(&sbinfo->spool->lock);
1060 			buf->f_files = sbinfo->max_inodes;
1061 			buf->f_ffree = sbinfo->free_inodes;
1062 		}
1063 		spin_unlock(&sbinfo->stat_lock);
1064 	}
1065 	buf->f_namelen = NAME_MAX;
1066 	return 0;
1067 }
1068 
1069 static void hugetlbfs_put_super(struct super_block *sb)
1070 {
1071 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1072 
1073 	if (sbi) {
1074 		sb->s_fs_info = NULL;
1075 
1076 		if (sbi->spool)
1077 			hugepage_put_subpool(sbi->spool);
1078 
1079 		kfree(sbi);
1080 	}
1081 }
1082 
1083 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1084 {
1085 	if (sbinfo->free_inodes >= 0) {
1086 		spin_lock(&sbinfo->stat_lock);
1087 		if (unlikely(!sbinfo->free_inodes)) {
1088 			spin_unlock(&sbinfo->stat_lock);
1089 			return 0;
1090 		}
1091 		sbinfo->free_inodes--;
1092 		spin_unlock(&sbinfo->stat_lock);
1093 	}
1094 
1095 	return 1;
1096 }
1097 
1098 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1099 {
1100 	if (sbinfo->free_inodes >= 0) {
1101 		spin_lock(&sbinfo->stat_lock);
1102 		sbinfo->free_inodes++;
1103 		spin_unlock(&sbinfo->stat_lock);
1104 	}
1105 }
1106 
1107 
1108 static struct kmem_cache *hugetlbfs_inode_cachep;
1109 
1110 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1111 {
1112 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1113 	struct hugetlbfs_inode_info *p;
1114 
1115 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1116 		return NULL;
1117 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1118 	if (unlikely(!p)) {
1119 		hugetlbfs_inc_free_inodes(sbinfo);
1120 		return NULL;
1121 	}
1122 
1123 	/*
1124 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1125 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1126 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1127 	 * in case of a quick call to destroy.
1128 	 *
1129 	 * Note that the policy is initialized even if we are creating a
1130 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1131 	 */
1132 	mpol_shared_policy_init(&p->policy, NULL);
1133 
1134 	return &p->vfs_inode;
1135 }
1136 
1137 static void hugetlbfs_free_inode(struct inode *inode)
1138 {
1139 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1140 }
1141 
1142 static void hugetlbfs_destroy_inode(struct inode *inode)
1143 {
1144 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1145 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1146 }
1147 
1148 static const struct address_space_operations hugetlbfs_aops = {
1149 	.write_begin	= hugetlbfs_write_begin,
1150 	.write_end	= hugetlbfs_write_end,
1151 	.set_page_dirty	= hugetlbfs_set_page_dirty,
1152 	.migratepage    = hugetlbfs_migrate_page,
1153 	.error_remove_page	= hugetlbfs_error_remove_page,
1154 };
1155 
1156 
1157 static void init_once(void *foo)
1158 {
1159 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1160 
1161 	inode_init_once(&ei->vfs_inode);
1162 }
1163 
1164 const struct file_operations hugetlbfs_file_operations = {
1165 	.read_iter		= hugetlbfs_read_iter,
1166 	.mmap			= hugetlbfs_file_mmap,
1167 	.fsync			= noop_fsync,
1168 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1169 	.llseek			= default_llseek,
1170 	.fallocate		= hugetlbfs_fallocate,
1171 };
1172 
1173 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1174 	.create		= hugetlbfs_create,
1175 	.lookup		= simple_lookup,
1176 	.link		= simple_link,
1177 	.unlink		= simple_unlink,
1178 	.symlink	= hugetlbfs_symlink,
1179 	.mkdir		= hugetlbfs_mkdir,
1180 	.rmdir		= simple_rmdir,
1181 	.mknod		= hugetlbfs_mknod,
1182 	.rename		= simple_rename,
1183 	.setattr	= hugetlbfs_setattr,
1184 	.tmpfile	= hugetlbfs_tmpfile,
1185 };
1186 
1187 static const struct inode_operations hugetlbfs_inode_operations = {
1188 	.setattr	= hugetlbfs_setattr,
1189 };
1190 
1191 static const struct super_operations hugetlbfs_ops = {
1192 	.alloc_inode    = hugetlbfs_alloc_inode,
1193 	.free_inode     = hugetlbfs_free_inode,
1194 	.destroy_inode  = hugetlbfs_destroy_inode,
1195 	.evict_inode	= hugetlbfs_evict_inode,
1196 	.statfs		= hugetlbfs_statfs,
1197 	.put_super	= hugetlbfs_put_super,
1198 	.show_options	= hugetlbfs_show_options,
1199 };
1200 
1201 /*
1202  * Convert size option passed from command line to number of huge pages
1203  * in the pool specified by hstate.  Size option could be in bytes
1204  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1205  */
1206 static long
1207 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1208 			 enum hugetlbfs_size_type val_type)
1209 {
1210 	if (val_type == NO_SIZE)
1211 		return -1;
1212 
1213 	if (val_type == SIZE_PERCENT) {
1214 		size_opt <<= huge_page_shift(h);
1215 		size_opt *= h->max_huge_pages;
1216 		do_div(size_opt, 100);
1217 	}
1218 
1219 	size_opt >>= huge_page_shift(h);
1220 	return size_opt;
1221 }
1222 
1223 /*
1224  * Parse one mount parameter.
1225  */
1226 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1227 {
1228 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1229 	struct fs_parse_result result;
1230 	char *rest;
1231 	unsigned long ps;
1232 	int opt;
1233 
1234 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1235 	if (opt < 0)
1236 		return opt;
1237 
1238 	switch (opt) {
1239 	case Opt_uid:
1240 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1241 		if (!uid_valid(ctx->uid))
1242 			goto bad_val;
1243 		return 0;
1244 
1245 	case Opt_gid:
1246 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1247 		if (!gid_valid(ctx->gid))
1248 			goto bad_val;
1249 		return 0;
1250 
1251 	case Opt_mode:
1252 		ctx->mode = result.uint_32 & 01777U;
1253 		return 0;
1254 
1255 	case Opt_size:
1256 		/* memparse() will accept a K/M/G without a digit */
1257 		if (!isdigit(param->string[0]))
1258 			goto bad_val;
1259 		ctx->max_size_opt = memparse(param->string, &rest);
1260 		ctx->max_val_type = SIZE_STD;
1261 		if (*rest == '%')
1262 			ctx->max_val_type = SIZE_PERCENT;
1263 		return 0;
1264 
1265 	case Opt_nr_inodes:
1266 		/* memparse() will accept a K/M/G without a digit */
1267 		if (!isdigit(param->string[0]))
1268 			goto bad_val;
1269 		ctx->nr_inodes = memparse(param->string, &rest);
1270 		return 0;
1271 
1272 	case Opt_pagesize:
1273 		ps = memparse(param->string, &rest);
1274 		ctx->hstate = size_to_hstate(ps);
1275 		if (!ctx->hstate) {
1276 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1277 			return -EINVAL;
1278 		}
1279 		return 0;
1280 
1281 	case Opt_min_size:
1282 		/* memparse() will accept a K/M/G without a digit */
1283 		if (!isdigit(param->string[0]))
1284 			goto bad_val;
1285 		ctx->min_size_opt = memparse(param->string, &rest);
1286 		ctx->min_val_type = SIZE_STD;
1287 		if (*rest == '%')
1288 			ctx->min_val_type = SIZE_PERCENT;
1289 		return 0;
1290 
1291 	default:
1292 		return -EINVAL;
1293 	}
1294 
1295 bad_val:
1296 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1297 		      param->string, param->key);
1298 }
1299 
1300 /*
1301  * Validate the parsed options.
1302  */
1303 static int hugetlbfs_validate(struct fs_context *fc)
1304 {
1305 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1306 
1307 	/*
1308 	 * Use huge page pool size (in hstate) to convert the size
1309 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1310 	 */
1311 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1312 						   ctx->max_size_opt,
1313 						   ctx->max_val_type);
1314 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1315 						   ctx->min_size_opt,
1316 						   ctx->min_val_type);
1317 
1318 	/*
1319 	 * If max_size was specified, then min_size must be smaller
1320 	 */
1321 	if (ctx->max_val_type > NO_SIZE &&
1322 	    ctx->min_hpages > ctx->max_hpages) {
1323 		pr_err("Minimum size can not be greater than maximum size\n");
1324 		return -EINVAL;
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 static int
1331 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1332 {
1333 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1334 	struct hugetlbfs_sb_info *sbinfo;
1335 
1336 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1337 	if (!sbinfo)
1338 		return -ENOMEM;
1339 	sb->s_fs_info = sbinfo;
1340 	spin_lock_init(&sbinfo->stat_lock);
1341 	sbinfo->hstate		= ctx->hstate;
1342 	sbinfo->max_inodes	= ctx->nr_inodes;
1343 	sbinfo->free_inodes	= ctx->nr_inodes;
1344 	sbinfo->spool		= NULL;
1345 	sbinfo->uid		= ctx->uid;
1346 	sbinfo->gid		= ctx->gid;
1347 	sbinfo->mode		= ctx->mode;
1348 
1349 	/*
1350 	 * Allocate and initialize subpool if maximum or minimum size is
1351 	 * specified.  Any needed reservations (for minimim size) are taken
1352 	 * taken when the subpool is created.
1353 	 */
1354 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1355 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1356 						     ctx->max_hpages,
1357 						     ctx->min_hpages);
1358 		if (!sbinfo->spool)
1359 			goto out_free;
1360 	}
1361 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1362 	sb->s_blocksize = huge_page_size(ctx->hstate);
1363 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1364 	sb->s_magic = HUGETLBFS_MAGIC;
1365 	sb->s_op = &hugetlbfs_ops;
1366 	sb->s_time_gran = 1;
1367 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1368 	if (!sb->s_root)
1369 		goto out_free;
1370 	return 0;
1371 out_free:
1372 	kfree(sbinfo->spool);
1373 	kfree(sbinfo);
1374 	return -ENOMEM;
1375 }
1376 
1377 static int hugetlbfs_get_tree(struct fs_context *fc)
1378 {
1379 	int err = hugetlbfs_validate(fc);
1380 	if (err)
1381 		return err;
1382 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1383 }
1384 
1385 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1386 {
1387 	kfree(fc->fs_private);
1388 }
1389 
1390 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1391 	.free		= hugetlbfs_fs_context_free,
1392 	.parse_param	= hugetlbfs_parse_param,
1393 	.get_tree	= hugetlbfs_get_tree,
1394 };
1395 
1396 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1397 {
1398 	struct hugetlbfs_fs_context *ctx;
1399 
1400 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1401 	if (!ctx)
1402 		return -ENOMEM;
1403 
1404 	ctx->max_hpages	= -1; /* No limit on size by default */
1405 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1406 	ctx->uid	= current_fsuid();
1407 	ctx->gid	= current_fsgid();
1408 	ctx->mode	= 0755;
1409 	ctx->hstate	= &default_hstate;
1410 	ctx->min_hpages	= -1; /* No default minimum size */
1411 	ctx->max_val_type = NO_SIZE;
1412 	ctx->min_val_type = NO_SIZE;
1413 	fc->fs_private = ctx;
1414 	fc->ops	= &hugetlbfs_fs_context_ops;
1415 	return 0;
1416 }
1417 
1418 static struct file_system_type hugetlbfs_fs_type = {
1419 	.name			= "hugetlbfs",
1420 	.init_fs_context	= hugetlbfs_init_fs_context,
1421 	.parameters		= hugetlb_fs_parameters,
1422 	.kill_sb		= kill_litter_super,
1423 };
1424 
1425 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1426 
1427 static int can_do_hugetlb_shm(void)
1428 {
1429 	kgid_t shm_group;
1430 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1431 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1432 }
1433 
1434 static int get_hstate_idx(int page_size_log)
1435 {
1436 	struct hstate *h = hstate_sizelog(page_size_log);
1437 
1438 	if (!h)
1439 		return -1;
1440 	return h - hstates;
1441 }
1442 
1443 /*
1444  * Note that size should be aligned to proper hugepage size in caller side,
1445  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1446  */
1447 struct file *hugetlb_file_setup(const char *name, size_t size,
1448 				vm_flags_t acctflag, struct user_struct **user,
1449 				int creat_flags, int page_size_log)
1450 {
1451 	struct inode *inode;
1452 	struct vfsmount *mnt;
1453 	int hstate_idx;
1454 	struct file *file;
1455 
1456 	hstate_idx = get_hstate_idx(page_size_log);
1457 	if (hstate_idx < 0)
1458 		return ERR_PTR(-ENODEV);
1459 
1460 	*user = NULL;
1461 	mnt = hugetlbfs_vfsmount[hstate_idx];
1462 	if (!mnt)
1463 		return ERR_PTR(-ENOENT);
1464 
1465 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1466 		*user = current_user();
1467 		if (user_shm_lock(size, *user)) {
1468 			task_lock(current);
1469 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1470 				current->comm, current->pid);
1471 			task_unlock(current);
1472 		} else {
1473 			*user = NULL;
1474 			return ERR_PTR(-EPERM);
1475 		}
1476 	}
1477 
1478 	file = ERR_PTR(-ENOSPC);
1479 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1480 	if (!inode)
1481 		goto out;
1482 	if (creat_flags == HUGETLB_SHMFS_INODE)
1483 		inode->i_flags |= S_PRIVATE;
1484 
1485 	inode->i_size = size;
1486 	clear_nlink(inode);
1487 
1488 	if (hugetlb_reserve_pages(inode, 0,
1489 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1490 			acctflag))
1491 		file = ERR_PTR(-ENOMEM);
1492 	else
1493 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1494 					&hugetlbfs_file_operations);
1495 	if (!IS_ERR(file))
1496 		return file;
1497 
1498 	iput(inode);
1499 out:
1500 	if (*user) {
1501 		user_shm_unlock(size, *user);
1502 		*user = NULL;
1503 	}
1504 	return file;
1505 }
1506 
1507 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1508 {
1509 	struct fs_context *fc;
1510 	struct vfsmount *mnt;
1511 
1512 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1513 	if (IS_ERR(fc)) {
1514 		mnt = ERR_CAST(fc);
1515 	} else {
1516 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1517 		ctx->hstate = h;
1518 		mnt = fc_mount(fc);
1519 		put_fs_context(fc);
1520 	}
1521 	if (IS_ERR(mnt))
1522 		pr_err("Cannot mount internal hugetlbfs for page size %uK",
1523 		       1U << (h->order + PAGE_SHIFT - 10));
1524 	return mnt;
1525 }
1526 
1527 static int __init init_hugetlbfs_fs(void)
1528 {
1529 	struct vfsmount *mnt;
1530 	struct hstate *h;
1531 	int error;
1532 	int i;
1533 
1534 	if (!hugepages_supported()) {
1535 		pr_info("disabling because there are no supported hugepage sizes\n");
1536 		return -ENOTSUPP;
1537 	}
1538 
1539 	error = -ENOMEM;
1540 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1541 					sizeof(struct hugetlbfs_inode_info),
1542 					0, SLAB_ACCOUNT, init_once);
1543 	if (hugetlbfs_inode_cachep == NULL)
1544 		goto out;
1545 
1546 	error = register_filesystem(&hugetlbfs_fs_type);
1547 	if (error)
1548 		goto out_free;
1549 
1550 	/* default hstate mount is required */
1551 	mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1552 	if (IS_ERR(mnt)) {
1553 		error = PTR_ERR(mnt);
1554 		goto out_unreg;
1555 	}
1556 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1557 
1558 	/* other hstates are optional */
1559 	i = 0;
1560 	for_each_hstate(h) {
1561 		if (i == default_hstate_idx) {
1562 			i++;
1563 			continue;
1564 		}
1565 
1566 		mnt = mount_one_hugetlbfs(h);
1567 		if (IS_ERR(mnt))
1568 			hugetlbfs_vfsmount[i] = NULL;
1569 		else
1570 			hugetlbfs_vfsmount[i] = mnt;
1571 		i++;
1572 	}
1573 
1574 	return 0;
1575 
1576  out_unreg:
1577 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1578  out_free:
1579 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1580  out:
1581 	return error;
1582 }
1583 fs_initcall(init_hugetlbfs_fs)
1584