1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48
49 struct hugetlbfs_fs_context {
50 struct hstate *hstate;
51 unsigned long long max_size_opt;
52 unsigned long long min_size_opt;
53 long max_hpages;
54 long nr_inodes;
55 long min_hpages;
56 enum hugetlbfs_size_type max_val_type;
57 enum hugetlbfs_size_type min_val_type;
58 kuid_t uid;
59 kgid_t gid;
60 umode_t mode;
61 };
62
63 int sysctl_hugetlb_shm_group;
64
65 enum hugetlb_param {
66 Opt_gid,
67 Opt_min_size,
68 Opt_mode,
69 Opt_nr_inodes,
70 Opt_pagesize,
71 Opt_size,
72 Opt_uid,
73 };
74
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 fsparam_u32 ("gid", Opt_gid),
77 fsparam_string("min_size", Opt_min_size),
78 fsparam_u32oct("mode", Opt_mode),
79 fsparam_string("nr_inodes", Opt_nr_inodes),
80 fsparam_string("pagesize", Opt_pagesize),
81 fsparam_string("size", Opt_size),
82 fsparam_u32 ("uid", Opt_uid),
83 {}
84 };
85
86 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 struct inode *inode, pgoff_t index)
89 {
90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 index);
92 }
93
hugetlb_drop_vma_policy(struct vm_area_struct * vma)94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 mpol_cond_put(vma->vm_policy);
97 }
98 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 struct inode *inode, pgoff_t index)
101 {
102 }
103
hugetlb_drop_vma_policy(struct vm_area_struct * vma)104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108
109 /*
110 * Mask used when checking the page offset value passed in via system
111 * calls. This value will be converted to a loff_t which is signed.
112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113 * value. The extra bit (- 1 in the shift value) is to take the sign
114 * bit into account.
115 */
116 #define PGOFF_LOFFT_MAX \
117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 struct inode *inode = file_inode(file);
122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 loff_t len, vma_len;
124 int ret;
125 struct hstate *h = hstate_file(file);
126 vm_flags_t vm_flags;
127
128 /*
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap unwinds (may be important on powerpc
134 * and ia64).
135 */
136 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
137 vma->vm_ops = &hugetlb_vm_ops;
138
139 ret = seal_check_future_write(info->seals, vma);
140 if (ret)
141 return ret;
142
143 /*
144 * page based offset in vm_pgoff could be sufficiently large to
145 * overflow a loff_t when converted to byte offset. This can
146 * only happen on architectures where sizeof(loff_t) ==
147 * sizeof(unsigned long). So, only check in those instances.
148 */
149 if (sizeof(unsigned long) == sizeof(loff_t)) {
150 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
151 return -EINVAL;
152 }
153
154 /* must be huge page aligned */
155 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
156 return -EINVAL;
157
158 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
159 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
160 /* check for overflow */
161 if (len < vma_len)
162 return -EINVAL;
163
164 inode_lock(inode);
165 file_accessed(file);
166
167 ret = -ENOMEM;
168
169 vm_flags = vma->vm_flags;
170 /*
171 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
172 * reserving here. Note: only for SHM hugetlbfs file, the inode
173 * flag S_PRIVATE is set.
174 */
175 if (inode->i_flags & S_PRIVATE)
176 vm_flags |= VM_NORESERVE;
177
178 if (!hugetlb_reserve_pages(inode,
179 vma->vm_pgoff >> huge_page_order(h),
180 len >> huge_page_shift(h), vma,
181 vm_flags))
182 goto out;
183
184 ret = 0;
185 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
186 i_size_write(inode, len);
187 out:
188 inode_unlock(inode);
189
190 return ret;
191 }
192
193 /*
194 * Called under mmap_write_lock(mm).
195 */
196
197 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)198 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
199 unsigned long len, unsigned long pgoff, unsigned long flags)
200 {
201 struct hstate *h = hstate_file(file);
202 struct vm_unmapped_area_info info;
203
204 info.flags = 0;
205 info.length = len;
206 info.low_limit = current->mm->mmap_base;
207 info.high_limit = arch_get_mmap_end(addr, len, flags);
208 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
209 info.align_offset = 0;
210 return vm_unmapped_area(&info);
211 }
212
213 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)214 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
215 unsigned long len, unsigned long pgoff, unsigned long flags)
216 {
217 struct hstate *h = hstate_file(file);
218 struct vm_unmapped_area_info info;
219
220 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
221 info.length = len;
222 info.low_limit = PAGE_SIZE;
223 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
224 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
225 info.align_offset = 0;
226 addr = vm_unmapped_area(&info);
227
228 /*
229 * A failed mmap() very likely causes application failure,
230 * so fall back to the bottom-up function here. This scenario
231 * can happen with large stack limits and large mmap()
232 * allocations.
233 */
234 if (unlikely(offset_in_page(addr))) {
235 VM_BUG_ON(addr != -ENOMEM);
236 info.flags = 0;
237 info.low_limit = current->mm->mmap_base;
238 info.high_limit = arch_get_mmap_end(addr, len, flags);
239 addr = vm_unmapped_area(&info);
240 }
241
242 return addr;
243 }
244
245 unsigned long
generic_hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)246 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
247 unsigned long len, unsigned long pgoff,
248 unsigned long flags)
249 {
250 struct mm_struct *mm = current->mm;
251 struct vm_area_struct *vma;
252 struct hstate *h = hstate_file(file);
253 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
254
255 if (len & ~huge_page_mask(h))
256 return -EINVAL;
257 if (len > TASK_SIZE)
258 return -ENOMEM;
259
260 if (flags & MAP_FIXED) {
261 if (prepare_hugepage_range(file, addr, len))
262 return -EINVAL;
263 return addr;
264 }
265
266 if (addr) {
267 addr = ALIGN(addr, huge_page_size(h));
268 vma = find_vma(mm, addr);
269 if (mmap_end - len >= addr &&
270 (!vma || addr + len <= vm_start_gap(vma)))
271 return addr;
272 }
273
274 /*
275 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 * If architectures have special needs, they should define their own
277 * version of hugetlb_get_unmapped_area.
278 */
279 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 return hugetlb_get_unmapped_area_topdown(file, addr, len,
281 pgoff, flags);
282 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
283 pgoff, flags);
284 }
285
286 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
287 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)288 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
289 unsigned long len, unsigned long pgoff,
290 unsigned long flags)
291 {
292 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
293 }
294 #endif
295
296 /*
297 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
298 * Returns the maximum number of bytes one can read without touching the 1st raw
299 * HWPOISON subpage.
300 *
301 * The implementation borrows the iteration logic from copy_page_to_iter*.
302 */
adjust_range_hwpoison(struct page * page,size_t offset,size_t bytes)303 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
304 {
305 size_t n = 0;
306 size_t res = 0;
307
308 /* First subpage to start the loop. */
309 page = nth_page(page, offset / PAGE_SIZE);
310 offset %= PAGE_SIZE;
311 while (1) {
312 if (is_raw_hwpoison_page_in_hugepage(page))
313 break;
314
315 /* Safe to read n bytes without touching HWPOISON subpage. */
316 n = min(bytes, (size_t)PAGE_SIZE - offset);
317 res += n;
318 bytes -= n;
319 if (!bytes || !n)
320 break;
321 offset += n;
322 if (offset == PAGE_SIZE) {
323 page = nth_page(page, 1);
324 offset = 0;
325 }
326 }
327
328 return res;
329 }
330
331 /*
332 * Support for read() - Find the page attached to f_mapping and copy out the
333 * data. This provides functionality similar to filemap_read().
334 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)335 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
336 {
337 struct file *file = iocb->ki_filp;
338 struct hstate *h = hstate_file(file);
339 struct address_space *mapping = file->f_mapping;
340 struct inode *inode = mapping->host;
341 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
342 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
343 unsigned long end_index;
344 loff_t isize;
345 ssize_t retval = 0;
346
347 while (iov_iter_count(to)) {
348 struct page *page;
349 size_t nr, copied, want;
350
351 /* nr is the maximum number of bytes to copy from this page */
352 nr = huge_page_size(h);
353 isize = i_size_read(inode);
354 if (!isize)
355 break;
356 end_index = (isize - 1) >> huge_page_shift(h);
357 if (index > end_index)
358 break;
359 if (index == end_index) {
360 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
361 if (nr <= offset)
362 break;
363 }
364 nr = nr - offset;
365
366 /* Find the page */
367 page = find_lock_page(mapping, index);
368 if (unlikely(page == NULL)) {
369 /*
370 * We have a HOLE, zero out the user-buffer for the
371 * length of the hole or request.
372 */
373 copied = iov_iter_zero(nr, to);
374 } else {
375 unlock_page(page);
376
377 if (!PageHWPoison(page))
378 want = nr;
379 else {
380 /*
381 * Adjust how many bytes safe to read without
382 * touching the 1st raw HWPOISON subpage after
383 * offset.
384 */
385 want = adjust_range_hwpoison(page, offset, nr);
386 if (want == 0) {
387 put_page(page);
388 retval = -EIO;
389 break;
390 }
391 }
392
393 /*
394 * We have the page, copy it to user space buffer.
395 */
396 copied = copy_page_to_iter(page, offset, want, to);
397 put_page(page);
398 }
399 offset += copied;
400 retval += copied;
401 if (copied != nr && iov_iter_count(to)) {
402 if (!retval)
403 retval = -EFAULT;
404 break;
405 }
406 index += offset >> huge_page_shift(h);
407 offset &= ~huge_page_mask(h);
408 }
409 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
410 return retval;
411 }
412
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)413 static int hugetlbfs_write_begin(struct file *file,
414 struct address_space *mapping,
415 loff_t pos, unsigned len,
416 struct page **pagep, void **fsdata)
417 {
418 return -EINVAL;
419 }
420
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)421 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
422 loff_t pos, unsigned len, unsigned copied,
423 struct page *page, void *fsdata)
424 {
425 BUG();
426 return -EINVAL;
427 }
428
hugetlb_delete_from_page_cache(struct folio * folio)429 static void hugetlb_delete_from_page_cache(struct folio *folio)
430 {
431 folio_clear_dirty(folio);
432 folio_clear_uptodate(folio);
433 filemap_remove_folio(folio);
434 }
435
436 /*
437 * Called with i_mmap_rwsem held for inode based vma maps. This makes
438 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
439 * mutex for the page in the mapping. So, we can not race with page being
440 * faulted into the vma.
441 */
hugetlb_vma_maps_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)442 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
443 unsigned long addr, struct page *page)
444 {
445 pte_t *ptep, pte;
446
447 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
448 if (!ptep)
449 return false;
450
451 pte = huge_ptep_get(ptep);
452 if (huge_pte_none(pte) || !pte_present(pte))
453 return false;
454
455 if (pte_page(pte) == page)
456 return true;
457
458 return false;
459 }
460
461 /*
462 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
463 * No, because the interval tree returns us only those vmas
464 * which overlap the truncated area starting at pgoff,
465 * and no vma on a 32-bit arch can span beyond the 4GB.
466 */
vma_offset_start(struct vm_area_struct * vma,pgoff_t start)467 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
468 {
469 unsigned long offset = 0;
470
471 if (vma->vm_pgoff < start)
472 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
473
474 return vma->vm_start + offset;
475 }
476
vma_offset_end(struct vm_area_struct * vma,pgoff_t end)477 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
478 {
479 unsigned long t_end;
480
481 if (!end)
482 return vma->vm_end;
483
484 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
485 if (t_end > vma->vm_end)
486 t_end = vma->vm_end;
487 return t_end;
488 }
489
490 /*
491 * Called with hugetlb fault mutex held. Therefore, no more mappings to
492 * this folio can be created while executing the routine.
493 */
hugetlb_unmap_file_folio(struct hstate * h,struct address_space * mapping,struct folio * folio,pgoff_t index)494 static void hugetlb_unmap_file_folio(struct hstate *h,
495 struct address_space *mapping,
496 struct folio *folio, pgoff_t index)
497 {
498 struct rb_root_cached *root = &mapping->i_mmap;
499 struct hugetlb_vma_lock *vma_lock;
500 struct page *page = &folio->page;
501 struct vm_area_struct *vma;
502 unsigned long v_start;
503 unsigned long v_end;
504 pgoff_t start, end;
505
506 start = index * pages_per_huge_page(h);
507 end = (index + 1) * pages_per_huge_page(h);
508
509 i_mmap_lock_write(mapping);
510 retry:
511 vma_lock = NULL;
512 vma_interval_tree_foreach(vma, root, start, end - 1) {
513 v_start = vma_offset_start(vma, start);
514 v_end = vma_offset_end(vma, end);
515
516 if (!hugetlb_vma_maps_page(vma, v_start, page))
517 continue;
518
519 if (!hugetlb_vma_trylock_write(vma)) {
520 vma_lock = vma->vm_private_data;
521 /*
522 * If we can not get vma lock, we need to drop
523 * immap_sema and take locks in order. First,
524 * take a ref on the vma_lock structure so that
525 * we can be guaranteed it will not go away when
526 * dropping immap_sema.
527 */
528 kref_get(&vma_lock->refs);
529 break;
530 }
531
532 unmap_hugepage_range(vma, v_start, v_end, NULL,
533 ZAP_FLAG_DROP_MARKER);
534 hugetlb_vma_unlock_write(vma);
535 }
536
537 i_mmap_unlock_write(mapping);
538
539 if (vma_lock) {
540 /*
541 * Wait on vma_lock. We know it is still valid as we have
542 * a reference. We must 'open code' vma locking as we do
543 * not know if vma_lock is still attached to vma.
544 */
545 down_write(&vma_lock->rw_sema);
546 i_mmap_lock_write(mapping);
547
548 vma = vma_lock->vma;
549 if (!vma) {
550 /*
551 * If lock is no longer attached to vma, then just
552 * unlock, drop our reference and retry looking for
553 * other vmas.
554 */
555 up_write(&vma_lock->rw_sema);
556 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
557 goto retry;
558 }
559
560 /*
561 * vma_lock is still attached to vma. Check to see if vma
562 * still maps page and if so, unmap.
563 */
564 v_start = vma_offset_start(vma, start);
565 v_end = vma_offset_end(vma, end);
566 if (hugetlb_vma_maps_page(vma, v_start, page))
567 unmap_hugepage_range(vma, v_start, v_end, NULL,
568 ZAP_FLAG_DROP_MARKER);
569
570 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
571 hugetlb_vma_unlock_write(vma);
572
573 goto retry;
574 }
575 }
576
577 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end,zap_flags_t zap_flags)578 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
579 zap_flags_t zap_flags)
580 {
581 struct vm_area_struct *vma;
582
583 /*
584 * end == 0 indicates that the entire range after start should be
585 * unmapped. Note, end is exclusive, whereas the interval tree takes
586 * an inclusive "last".
587 */
588 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
589 unsigned long v_start;
590 unsigned long v_end;
591
592 if (!hugetlb_vma_trylock_write(vma))
593 continue;
594
595 v_start = vma_offset_start(vma, start);
596 v_end = vma_offset_end(vma, end);
597
598 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
599
600 /*
601 * Note that vma lock only exists for shared/non-private
602 * vmas. Therefore, lock is not held when calling
603 * unmap_hugepage_range for private vmas.
604 */
605 hugetlb_vma_unlock_write(vma);
606 }
607 }
608
609 /*
610 * Called with hugetlb fault mutex held.
611 * Returns true if page was actually removed, false otherwise.
612 */
remove_inode_single_folio(struct hstate * h,struct inode * inode,struct address_space * mapping,struct folio * folio,pgoff_t index,bool truncate_op)613 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
614 struct address_space *mapping,
615 struct folio *folio, pgoff_t index,
616 bool truncate_op)
617 {
618 bool ret = false;
619
620 /*
621 * If folio is mapped, it was faulted in after being
622 * unmapped in caller. Unmap (again) while holding
623 * the fault mutex. The mutex will prevent faults
624 * until we finish removing the folio.
625 */
626 if (unlikely(folio_mapped(folio)))
627 hugetlb_unmap_file_folio(h, mapping, folio, index);
628
629 folio_lock(folio);
630 /*
631 * We must remove the folio from page cache before removing
632 * the region/ reserve map (hugetlb_unreserve_pages). In
633 * rare out of memory conditions, removal of the region/reserve
634 * map could fail. Correspondingly, the subpool and global
635 * reserve usage count can need to be adjusted.
636 */
637 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
638 hugetlb_delete_from_page_cache(folio);
639 ret = true;
640 if (!truncate_op) {
641 if (unlikely(hugetlb_unreserve_pages(inode, index,
642 index + 1, 1)))
643 hugetlb_fix_reserve_counts(inode);
644 }
645
646 folio_unlock(folio);
647 return ret;
648 }
649
650 /*
651 * remove_inode_hugepages handles two distinct cases: truncation and hole
652 * punch. There are subtle differences in operation for each case.
653 *
654 * truncation is indicated by end of range being LLONG_MAX
655 * In this case, we first scan the range and release found pages.
656 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
657 * maps and global counts. Page faults can race with truncation.
658 * During faults, hugetlb_no_page() checks i_size before page allocation,
659 * and again after obtaining page table lock. It will 'back out'
660 * allocations in the truncated range.
661 * hole punch is indicated if end is not LLONG_MAX
662 * In the hole punch case we scan the range and release found pages.
663 * Only when releasing a page is the associated region/reserve map
664 * deleted. The region/reserve map for ranges without associated
665 * pages are not modified. Page faults can race with hole punch.
666 * This is indicated if we find a mapped page.
667 * Note: If the passed end of range value is beyond the end of file, but
668 * not LLONG_MAX this routine still performs a hole punch operation.
669 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)670 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
671 loff_t lend)
672 {
673 struct hstate *h = hstate_inode(inode);
674 struct address_space *mapping = &inode->i_data;
675 const pgoff_t start = lstart >> huge_page_shift(h);
676 const pgoff_t end = lend >> huge_page_shift(h);
677 struct folio_batch fbatch;
678 pgoff_t next, index;
679 int i, freed = 0;
680 bool truncate_op = (lend == LLONG_MAX);
681
682 folio_batch_init(&fbatch);
683 next = start;
684 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
685 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
686 struct folio *folio = fbatch.folios[i];
687 u32 hash = 0;
688
689 index = folio->index;
690 hash = hugetlb_fault_mutex_hash(mapping, index);
691 mutex_lock(&hugetlb_fault_mutex_table[hash]);
692
693 /*
694 * Remove folio that was part of folio_batch.
695 */
696 if (remove_inode_single_folio(h, inode, mapping, folio,
697 index, truncate_op))
698 freed++;
699
700 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
701 }
702 folio_batch_release(&fbatch);
703 cond_resched();
704 }
705
706 if (truncate_op)
707 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
708 }
709
hugetlbfs_evict_inode(struct inode * inode)710 static void hugetlbfs_evict_inode(struct inode *inode)
711 {
712 struct resv_map *resv_map;
713
714 remove_inode_hugepages(inode, 0, LLONG_MAX);
715
716 /*
717 * Get the resv_map from the address space embedded in the inode.
718 * This is the address space which points to any resv_map allocated
719 * at inode creation time. If this is a device special inode,
720 * i_mapping may not point to the original address space.
721 */
722 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
723 /* Only regular and link inodes have associated reserve maps */
724 if (resv_map)
725 resv_map_release(&resv_map->refs);
726 clear_inode(inode);
727 }
728
hugetlb_vmtruncate(struct inode * inode,loff_t offset)729 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
730 {
731 pgoff_t pgoff;
732 struct address_space *mapping = inode->i_mapping;
733 struct hstate *h = hstate_inode(inode);
734
735 BUG_ON(offset & ~huge_page_mask(h));
736 pgoff = offset >> PAGE_SHIFT;
737
738 i_size_write(inode, offset);
739 i_mmap_lock_write(mapping);
740 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
741 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
742 ZAP_FLAG_DROP_MARKER);
743 i_mmap_unlock_write(mapping);
744 remove_inode_hugepages(inode, offset, LLONG_MAX);
745 }
746
hugetlbfs_zero_partial_page(struct hstate * h,struct address_space * mapping,loff_t start,loff_t end)747 static void hugetlbfs_zero_partial_page(struct hstate *h,
748 struct address_space *mapping,
749 loff_t start,
750 loff_t end)
751 {
752 pgoff_t idx = start >> huge_page_shift(h);
753 struct folio *folio;
754
755 folio = filemap_lock_folio(mapping, idx);
756 if (IS_ERR(folio))
757 return;
758
759 start = start & ~huge_page_mask(h);
760 end = end & ~huge_page_mask(h);
761 if (!end)
762 end = huge_page_size(h);
763
764 folio_zero_segment(folio, (size_t)start, (size_t)end);
765
766 folio_unlock(folio);
767 folio_put(folio);
768 }
769
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)770 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
771 {
772 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
773 struct address_space *mapping = inode->i_mapping;
774 struct hstate *h = hstate_inode(inode);
775 loff_t hpage_size = huge_page_size(h);
776 loff_t hole_start, hole_end;
777
778 /*
779 * hole_start and hole_end indicate the full pages within the hole.
780 */
781 hole_start = round_up(offset, hpage_size);
782 hole_end = round_down(offset + len, hpage_size);
783
784 inode_lock(inode);
785
786 /* protected by i_rwsem */
787 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
788 inode_unlock(inode);
789 return -EPERM;
790 }
791
792 i_mmap_lock_write(mapping);
793
794 /* If range starts before first full page, zero partial page. */
795 if (offset < hole_start)
796 hugetlbfs_zero_partial_page(h, mapping,
797 offset, min(offset + len, hole_start));
798
799 /* Unmap users of full pages in the hole. */
800 if (hole_end > hole_start) {
801 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
802 hugetlb_vmdelete_list(&mapping->i_mmap,
803 hole_start >> PAGE_SHIFT,
804 hole_end >> PAGE_SHIFT, 0);
805 }
806
807 /* If range extends beyond last full page, zero partial page. */
808 if ((offset + len) > hole_end && (offset + len) > hole_start)
809 hugetlbfs_zero_partial_page(h, mapping,
810 hole_end, offset + len);
811
812 i_mmap_unlock_write(mapping);
813
814 /* Remove full pages from the file. */
815 if (hole_end > hole_start)
816 remove_inode_hugepages(inode, hole_start, hole_end);
817
818 inode_unlock(inode);
819
820 return 0;
821 }
822
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)823 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
824 loff_t len)
825 {
826 struct inode *inode = file_inode(file);
827 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
828 struct address_space *mapping = inode->i_mapping;
829 struct hstate *h = hstate_inode(inode);
830 struct vm_area_struct pseudo_vma;
831 struct mm_struct *mm = current->mm;
832 loff_t hpage_size = huge_page_size(h);
833 unsigned long hpage_shift = huge_page_shift(h);
834 pgoff_t start, index, end;
835 int error;
836 u32 hash;
837
838 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
839 return -EOPNOTSUPP;
840
841 if (mode & FALLOC_FL_PUNCH_HOLE)
842 return hugetlbfs_punch_hole(inode, offset, len);
843
844 /*
845 * Default preallocate case.
846 * For this range, start is rounded down and end is rounded up
847 * as well as being converted to page offsets.
848 */
849 start = offset >> hpage_shift;
850 end = (offset + len + hpage_size - 1) >> hpage_shift;
851
852 inode_lock(inode);
853
854 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
855 error = inode_newsize_ok(inode, offset + len);
856 if (error)
857 goto out;
858
859 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
860 error = -EPERM;
861 goto out;
862 }
863
864 /*
865 * Initialize a pseudo vma as this is required by the huge page
866 * allocation routines. If NUMA is configured, use page index
867 * as input to create an allocation policy.
868 */
869 vma_init(&pseudo_vma, mm);
870 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
871 pseudo_vma.vm_file = file;
872
873 for (index = start; index < end; index++) {
874 /*
875 * This is supposed to be the vaddr where the page is being
876 * faulted in, but we have no vaddr here.
877 */
878 struct folio *folio;
879 unsigned long addr;
880
881 cond_resched();
882
883 /*
884 * fallocate(2) manpage permits EINTR; we may have been
885 * interrupted because we are using up too much memory.
886 */
887 if (signal_pending(current)) {
888 error = -EINTR;
889 break;
890 }
891
892 /* addr is the offset within the file (zero based) */
893 addr = index * hpage_size;
894
895 /* mutex taken here, fault path and hole punch */
896 hash = hugetlb_fault_mutex_hash(mapping, index);
897 mutex_lock(&hugetlb_fault_mutex_table[hash]);
898
899 /* See if already present in mapping to avoid alloc/free */
900 folio = filemap_get_folio(mapping, index);
901 if (!IS_ERR(folio)) {
902 folio_put(folio);
903 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
904 continue;
905 }
906
907 /*
908 * Allocate folio without setting the avoid_reserve argument.
909 * There certainly are no reserves associated with the
910 * pseudo_vma. However, there could be shared mappings with
911 * reserves for the file at the inode level. If we fallocate
912 * folios in these areas, we need to consume the reserves
913 * to keep reservation accounting consistent.
914 */
915 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
916 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
917 hugetlb_drop_vma_policy(&pseudo_vma);
918 if (IS_ERR(folio)) {
919 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
920 error = PTR_ERR(folio);
921 goto out;
922 }
923 clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
924 __folio_mark_uptodate(folio);
925 error = hugetlb_add_to_page_cache(folio, mapping, index);
926 if (unlikely(error)) {
927 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
928 folio_put(folio);
929 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
930 goto out;
931 }
932
933 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
934
935 folio_set_hugetlb_migratable(folio);
936 /*
937 * folio_unlock because locked by hugetlb_add_to_page_cache()
938 * folio_put() due to reference from alloc_hugetlb_folio()
939 */
940 folio_unlock(folio);
941 folio_put(folio);
942 }
943
944 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
945 i_size_write(inode, offset + len);
946 inode_set_ctime_current(inode);
947 out:
948 inode_unlock(inode);
949 return error;
950 }
951
hugetlbfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)952 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
953 struct dentry *dentry, struct iattr *attr)
954 {
955 struct inode *inode = d_inode(dentry);
956 struct hstate *h = hstate_inode(inode);
957 int error;
958 unsigned int ia_valid = attr->ia_valid;
959 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
960
961 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
962 if (error)
963 return error;
964
965 if (ia_valid & ATTR_SIZE) {
966 loff_t oldsize = inode->i_size;
967 loff_t newsize = attr->ia_size;
968
969 if (newsize & ~huge_page_mask(h))
970 return -EINVAL;
971 /* protected by i_rwsem */
972 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
973 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
974 return -EPERM;
975 hugetlb_vmtruncate(inode, newsize);
976 }
977
978 setattr_copy(&nop_mnt_idmap, inode, attr);
979 mark_inode_dirty(inode);
980 return 0;
981 }
982
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)983 static struct inode *hugetlbfs_get_root(struct super_block *sb,
984 struct hugetlbfs_fs_context *ctx)
985 {
986 struct inode *inode;
987
988 inode = new_inode(sb);
989 if (inode) {
990 inode->i_ino = get_next_ino();
991 inode->i_mode = S_IFDIR | ctx->mode;
992 inode->i_uid = ctx->uid;
993 inode->i_gid = ctx->gid;
994 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
995 inode->i_op = &hugetlbfs_dir_inode_operations;
996 inode->i_fop = &simple_dir_operations;
997 /* directory inodes start off with i_nlink == 2 (for "." entry) */
998 inc_nlink(inode);
999 lockdep_annotate_inode_mutex_key(inode);
1000 }
1001 return inode;
1002 }
1003
1004 /*
1005 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
1006 * be taken from reclaim -- unlike regular filesystems. This needs an
1007 * annotation because huge_pmd_share() does an allocation under hugetlb's
1008 * i_mmap_rwsem.
1009 */
1010 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
1011
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)1012 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
1013 struct inode *dir,
1014 umode_t mode, dev_t dev)
1015 {
1016 struct inode *inode;
1017 struct resv_map *resv_map = NULL;
1018
1019 /*
1020 * Reserve maps are only needed for inodes that can have associated
1021 * page allocations.
1022 */
1023 if (S_ISREG(mode) || S_ISLNK(mode)) {
1024 resv_map = resv_map_alloc();
1025 if (!resv_map)
1026 return NULL;
1027 }
1028
1029 inode = new_inode(sb);
1030 if (inode) {
1031 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1032
1033 inode->i_ino = get_next_ino();
1034 inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
1035 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1036 &hugetlbfs_i_mmap_rwsem_key);
1037 inode->i_mapping->a_ops = &hugetlbfs_aops;
1038 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1039 inode->i_mapping->private_data = resv_map;
1040 info->seals = F_SEAL_SEAL;
1041 switch (mode & S_IFMT) {
1042 default:
1043 init_special_inode(inode, mode, dev);
1044 break;
1045 case S_IFREG:
1046 inode->i_op = &hugetlbfs_inode_operations;
1047 inode->i_fop = &hugetlbfs_file_operations;
1048 break;
1049 case S_IFDIR:
1050 inode->i_op = &hugetlbfs_dir_inode_operations;
1051 inode->i_fop = &simple_dir_operations;
1052
1053 /* directory inodes start off with i_nlink == 2 (for "." entry) */
1054 inc_nlink(inode);
1055 break;
1056 case S_IFLNK:
1057 inode->i_op = &page_symlink_inode_operations;
1058 inode_nohighmem(inode);
1059 break;
1060 }
1061 lockdep_annotate_inode_mutex_key(inode);
1062 } else {
1063 if (resv_map)
1064 kref_put(&resv_map->refs, resv_map_release);
1065 }
1066
1067 return inode;
1068 }
1069
1070 /*
1071 * File creation. Allocate an inode, and we're done..
1072 */
hugetlbfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1073 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1074 struct dentry *dentry, umode_t mode, dev_t dev)
1075 {
1076 struct inode *inode;
1077
1078 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1079 if (!inode)
1080 return -ENOSPC;
1081 dir->i_mtime = inode_set_ctime_current(dir);
1082 d_instantiate(dentry, inode);
1083 dget(dentry);/* Extra count - pin the dentry in core */
1084 return 0;
1085 }
1086
hugetlbfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)1087 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1088 struct dentry *dentry, umode_t mode)
1089 {
1090 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
1091 mode | S_IFDIR, 0);
1092 if (!retval)
1093 inc_nlink(dir);
1094 return retval;
1095 }
1096
hugetlbfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1097 static int hugetlbfs_create(struct mnt_idmap *idmap,
1098 struct inode *dir, struct dentry *dentry,
1099 umode_t mode, bool excl)
1100 {
1101 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1102 }
1103
hugetlbfs_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)1104 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1105 struct inode *dir, struct file *file,
1106 umode_t mode)
1107 {
1108 struct inode *inode;
1109
1110 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1111 if (!inode)
1112 return -ENOSPC;
1113 dir->i_mtime = inode_set_ctime_current(dir);
1114 d_tmpfile(file, inode);
1115 return finish_open_simple(file, 0);
1116 }
1117
hugetlbfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)1118 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1119 struct inode *dir, struct dentry *dentry,
1120 const char *symname)
1121 {
1122 struct inode *inode;
1123 int error = -ENOSPC;
1124
1125 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1126 if (inode) {
1127 int l = strlen(symname)+1;
1128 error = page_symlink(inode, symname, l);
1129 if (!error) {
1130 d_instantiate(dentry, inode);
1131 dget(dentry);
1132 } else
1133 iput(inode);
1134 }
1135 dir->i_mtime = inode_set_ctime_current(dir);
1136
1137 return error;
1138 }
1139
1140 #ifdef CONFIG_MIGRATION
hugetlbfs_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)1141 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1142 struct folio *dst, struct folio *src,
1143 enum migrate_mode mode)
1144 {
1145 int rc;
1146
1147 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1148 if (rc != MIGRATEPAGE_SUCCESS)
1149 return rc;
1150
1151 if (hugetlb_folio_subpool(src)) {
1152 hugetlb_set_folio_subpool(dst,
1153 hugetlb_folio_subpool(src));
1154 hugetlb_set_folio_subpool(src, NULL);
1155 }
1156
1157 if (mode != MIGRATE_SYNC_NO_COPY)
1158 folio_migrate_copy(dst, src);
1159 else
1160 folio_migrate_flags(dst, src);
1161
1162 return MIGRATEPAGE_SUCCESS;
1163 }
1164 #else
1165 #define hugetlbfs_migrate_folio NULL
1166 #endif
1167
hugetlbfs_error_remove_page(struct address_space * mapping,struct page * page)1168 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1169 struct page *page)
1170 {
1171 return 0;
1172 }
1173
1174 /*
1175 * Display the mount options in /proc/mounts.
1176 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)1177 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1178 {
1179 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1180 struct hugepage_subpool *spool = sbinfo->spool;
1181 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1182 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1183 char mod;
1184
1185 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1186 seq_printf(m, ",uid=%u",
1187 from_kuid_munged(&init_user_ns, sbinfo->uid));
1188 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1189 seq_printf(m, ",gid=%u",
1190 from_kgid_munged(&init_user_ns, sbinfo->gid));
1191 if (sbinfo->mode != 0755)
1192 seq_printf(m, ",mode=%o", sbinfo->mode);
1193 if (sbinfo->max_inodes != -1)
1194 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1195
1196 hpage_size /= 1024;
1197 mod = 'K';
1198 if (hpage_size >= 1024) {
1199 hpage_size /= 1024;
1200 mod = 'M';
1201 }
1202 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1203 if (spool) {
1204 if (spool->max_hpages != -1)
1205 seq_printf(m, ",size=%llu",
1206 (unsigned long long)spool->max_hpages << hpage_shift);
1207 if (spool->min_hpages != -1)
1208 seq_printf(m, ",min_size=%llu",
1209 (unsigned long long)spool->min_hpages << hpage_shift);
1210 }
1211 return 0;
1212 }
1213
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1214 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1215 {
1216 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1217 struct hstate *h = hstate_inode(d_inode(dentry));
1218
1219 buf->f_type = HUGETLBFS_MAGIC;
1220 buf->f_bsize = huge_page_size(h);
1221 if (sbinfo) {
1222 spin_lock(&sbinfo->stat_lock);
1223 /* If no limits set, just report 0 or -1 for max/free/used
1224 * blocks, like simple_statfs() */
1225 if (sbinfo->spool) {
1226 long free_pages;
1227
1228 spin_lock_irq(&sbinfo->spool->lock);
1229 buf->f_blocks = sbinfo->spool->max_hpages;
1230 free_pages = sbinfo->spool->max_hpages
1231 - sbinfo->spool->used_hpages;
1232 buf->f_bavail = buf->f_bfree = free_pages;
1233 spin_unlock_irq(&sbinfo->spool->lock);
1234 buf->f_files = sbinfo->max_inodes;
1235 buf->f_ffree = sbinfo->free_inodes;
1236 }
1237 spin_unlock(&sbinfo->stat_lock);
1238 }
1239 buf->f_namelen = NAME_MAX;
1240 return 0;
1241 }
1242
hugetlbfs_put_super(struct super_block * sb)1243 static void hugetlbfs_put_super(struct super_block *sb)
1244 {
1245 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1246
1247 if (sbi) {
1248 sb->s_fs_info = NULL;
1249
1250 if (sbi->spool)
1251 hugepage_put_subpool(sbi->spool);
1252
1253 kfree(sbi);
1254 }
1255 }
1256
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1257 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1258 {
1259 if (sbinfo->free_inodes >= 0) {
1260 spin_lock(&sbinfo->stat_lock);
1261 if (unlikely(!sbinfo->free_inodes)) {
1262 spin_unlock(&sbinfo->stat_lock);
1263 return 0;
1264 }
1265 sbinfo->free_inodes--;
1266 spin_unlock(&sbinfo->stat_lock);
1267 }
1268
1269 return 1;
1270 }
1271
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1272 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1273 {
1274 if (sbinfo->free_inodes >= 0) {
1275 spin_lock(&sbinfo->stat_lock);
1276 sbinfo->free_inodes++;
1277 spin_unlock(&sbinfo->stat_lock);
1278 }
1279 }
1280
1281
1282 static struct kmem_cache *hugetlbfs_inode_cachep;
1283
hugetlbfs_alloc_inode(struct super_block * sb)1284 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1285 {
1286 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1287 struct hugetlbfs_inode_info *p;
1288
1289 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1290 return NULL;
1291 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1292 if (unlikely(!p)) {
1293 hugetlbfs_inc_free_inodes(sbinfo);
1294 return NULL;
1295 }
1296
1297 /*
1298 * Any time after allocation, hugetlbfs_destroy_inode can be called
1299 * for the inode. mpol_free_shared_policy is unconditionally called
1300 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1301 * in case of a quick call to destroy.
1302 *
1303 * Note that the policy is initialized even if we are creating a
1304 * private inode. This simplifies hugetlbfs_destroy_inode.
1305 */
1306 mpol_shared_policy_init(&p->policy, NULL);
1307
1308 return &p->vfs_inode;
1309 }
1310
hugetlbfs_free_inode(struct inode * inode)1311 static void hugetlbfs_free_inode(struct inode *inode)
1312 {
1313 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1314 }
1315
hugetlbfs_destroy_inode(struct inode * inode)1316 static void hugetlbfs_destroy_inode(struct inode *inode)
1317 {
1318 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1319 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1320 }
1321
1322 static const struct address_space_operations hugetlbfs_aops = {
1323 .write_begin = hugetlbfs_write_begin,
1324 .write_end = hugetlbfs_write_end,
1325 .dirty_folio = noop_dirty_folio,
1326 .migrate_folio = hugetlbfs_migrate_folio,
1327 .error_remove_page = hugetlbfs_error_remove_page,
1328 };
1329
1330
init_once(void * foo)1331 static void init_once(void *foo)
1332 {
1333 struct hugetlbfs_inode_info *ei = foo;
1334
1335 inode_init_once(&ei->vfs_inode);
1336 }
1337
1338 const struct file_operations hugetlbfs_file_operations = {
1339 .read_iter = hugetlbfs_read_iter,
1340 .mmap = hugetlbfs_file_mmap,
1341 .fsync = noop_fsync,
1342 .get_unmapped_area = hugetlb_get_unmapped_area,
1343 .llseek = default_llseek,
1344 .fallocate = hugetlbfs_fallocate,
1345 };
1346
1347 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1348 .create = hugetlbfs_create,
1349 .lookup = simple_lookup,
1350 .link = simple_link,
1351 .unlink = simple_unlink,
1352 .symlink = hugetlbfs_symlink,
1353 .mkdir = hugetlbfs_mkdir,
1354 .rmdir = simple_rmdir,
1355 .mknod = hugetlbfs_mknod,
1356 .rename = simple_rename,
1357 .setattr = hugetlbfs_setattr,
1358 .tmpfile = hugetlbfs_tmpfile,
1359 };
1360
1361 static const struct inode_operations hugetlbfs_inode_operations = {
1362 .setattr = hugetlbfs_setattr,
1363 };
1364
1365 static const struct super_operations hugetlbfs_ops = {
1366 .alloc_inode = hugetlbfs_alloc_inode,
1367 .free_inode = hugetlbfs_free_inode,
1368 .destroy_inode = hugetlbfs_destroy_inode,
1369 .evict_inode = hugetlbfs_evict_inode,
1370 .statfs = hugetlbfs_statfs,
1371 .put_super = hugetlbfs_put_super,
1372 .show_options = hugetlbfs_show_options,
1373 };
1374
1375 /*
1376 * Convert size option passed from command line to number of huge pages
1377 * in the pool specified by hstate. Size option could be in bytes
1378 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1379 */
1380 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1381 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1382 enum hugetlbfs_size_type val_type)
1383 {
1384 if (val_type == NO_SIZE)
1385 return -1;
1386
1387 if (val_type == SIZE_PERCENT) {
1388 size_opt <<= huge_page_shift(h);
1389 size_opt *= h->max_huge_pages;
1390 do_div(size_opt, 100);
1391 }
1392
1393 size_opt >>= huge_page_shift(h);
1394 return size_opt;
1395 }
1396
1397 /*
1398 * Parse one mount parameter.
1399 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1400 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1401 {
1402 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1403 struct fs_parse_result result;
1404 struct hstate *h;
1405 char *rest;
1406 unsigned long ps;
1407 int opt;
1408
1409 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1410 if (opt < 0)
1411 return opt;
1412
1413 switch (opt) {
1414 case Opt_uid:
1415 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1416 if (!uid_valid(ctx->uid))
1417 goto bad_val;
1418 return 0;
1419
1420 case Opt_gid:
1421 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1422 if (!gid_valid(ctx->gid))
1423 goto bad_val;
1424 return 0;
1425
1426 case Opt_mode:
1427 ctx->mode = result.uint_32 & 01777U;
1428 return 0;
1429
1430 case Opt_size:
1431 /* memparse() will accept a K/M/G without a digit */
1432 if (!param->string || !isdigit(param->string[0]))
1433 goto bad_val;
1434 ctx->max_size_opt = memparse(param->string, &rest);
1435 ctx->max_val_type = SIZE_STD;
1436 if (*rest == '%')
1437 ctx->max_val_type = SIZE_PERCENT;
1438 return 0;
1439
1440 case Opt_nr_inodes:
1441 /* memparse() will accept a K/M/G without a digit */
1442 if (!param->string || !isdigit(param->string[0]))
1443 goto bad_val;
1444 ctx->nr_inodes = memparse(param->string, &rest);
1445 return 0;
1446
1447 case Opt_pagesize:
1448 ps = memparse(param->string, &rest);
1449 h = size_to_hstate(ps);
1450 if (!h) {
1451 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1452 return -EINVAL;
1453 }
1454 ctx->hstate = h;
1455 return 0;
1456
1457 case Opt_min_size:
1458 /* memparse() will accept a K/M/G without a digit */
1459 if (!param->string || !isdigit(param->string[0]))
1460 goto bad_val;
1461 ctx->min_size_opt = memparse(param->string, &rest);
1462 ctx->min_val_type = SIZE_STD;
1463 if (*rest == '%')
1464 ctx->min_val_type = SIZE_PERCENT;
1465 return 0;
1466
1467 default:
1468 return -EINVAL;
1469 }
1470
1471 bad_val:
1472 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1473 param->string, param->key);
1474 }
1475
1476 /*
1477 * Validate the parsed options.
1478 */
hugetlbfs_validate(struct fs_context * fc)1479 static int hugetlbfs_validate(struct fs_context *fc)
1480 {
1481 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1482
1483 /*
1484 * Use huge page pool size (in hstate) to convert the size
1485 * options to number of huge pages. If NO_SIZE, -1 is returned.
1486 */
1487 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1488 ctx->max_size_opt,
1489 ctx->max_val_type);
1490 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1491 ctx->min_size_opt,
1492 ctx->min_val_type);
1493
1494 /*
1495 * If max_size was specified, then min_size must be smaller
1496 */
1497 if (ctx->max_val_type > NO_SIZE &&
1498 ctx->min_hpages > ctx->max_hpages) {
1499 pr_err("Minimum size can not be greater than maximum size\n");
1500 return -EINVAL;
1501 }
1502
1503 return 0;
1504 }
1505
1506 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1507 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1508 {
1509 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1510 struct hugetlbfs_sb_info *sbinfo;
1511
1512 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1513 if (!sbinfo)
1514 return -ENOMEM;
1515 sb->s_fs_info = sbinfo;
1516 spin_lock_init(&sbinfo->stat_lock);
1517 sbinfo->hstate = ctx->hstate;
1518 sbinfo->max_inodes = ctx->nr_inodes;
1519 sbinfo->free_inodes = ctx->nr_inodes;
1520 sbinfo->spool = NULL;
1521 sbinfo->uid = ctx->uid;
1522 sbinfo->gid = ctx->gid;
1523 sbinfo->mode = ctx->mode;
1524
1525 /*
1526 * Allocate and initialize subpool if maximum or minimum size is
1527 * specified. Any needed reservations (for minimum size) are taken
1528 * when the subpool is created.
1529 */
1530 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1531 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1532 ctx->max_hpages,
1533 ctx->min_hpages);
1534 if (!sbinfo->spool)
1535 goto out_free;
1536 }
1537 sb->s_maxbytes = MAX_LFS_FILESIZE;
1538 sb->s_blocksize = huge_page_size(ctx->hstate);
1539 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1540 sb->s_magic = HUGETLBFS_MAGIC;
1541 sb->s_op = &hugetlbfs_ops;
1542 sb->s_time_gran = 1;
1543
1544 /*
1545 * Due to the special and limited functionality of hugetlbfs, it does
1546 * not work well as a stacking filesystem.
1547 */
1548 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1549 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1550 if (!sb->s_root)
1551 goto out_free;
1552 return 0;
1553 out_free:
1554 kfree(sbinfo->spool);
1555 kfree(sbinfo);
1556 return -ENOMEM;
1557 }
1558
hugetlbfs_get_tree(struct fs_context * fc)1559 static int hugetlbfs_get_tree(struct fs_context *fc)
1560 {
1561 int err = hugetlbfs_validate(fc);
1562 if (err)
1563 return err;
1564 return get_tree_nodev(fc, hugetlbfs_fill_super);
1565 }
1566
hugetlbfs_fs_context_free(struct fs_context * fc)1567 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1568 {
1569 kfree(fc->fs_private);
1570 }
1571
1572 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1573 .free = hugetlbfs_fs_context_free,
1574 .parse_param = hugetlbfs_parse_param,
1575 .get_tree = hugetlbfs_get_tree,
1576 };
1577
hugetlbfs_init_fs_context(struct fs_context * fc)1578 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1579 {
1580 struct hugetlbfs_fs_context *ctx;
1581
1582 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1583 if (!ctx)
1584 return -ENOMEM;
1585
1586 ctx->max_hpages = -1; /* No limit on size by default */
1587 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1588 ctx->uid = current_fsuid();
1589 ctx->gid = current_fsgid();
1590 ctx->mode = 0755;
1591 ctx->hstate = &default_hstate;
1592 ctx->min_hpages = -1; /* No default minimum size */
1593 ctx->max_val_type = NO_SIZE;
1594 ctx->min_val_type = NO_SIZE;
1595 fc->fs_private = ctx;
1596 fc->ops = &hugetlbfs_fs_context_ops;
1597 return 0;
1598 }
1599
1600 static struct file_system_type hugetlbfs_fs_type = {
1601 .name = "hugetlbfs",
1602 .init_fs_context = hugetlbfs_init_fs_context,
1603 .parameters = hugetlb_fs_parameters,
1604 .kill_sb = kill_litter_super,
1605 };
1606
1607 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1608
can_do_hugetlb_shm(void)1609 static int can_do_hugetlb_shm(void)
1610 {
1611 kgid_t shm_group;
1612 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1613 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1614 }
1615
get_hstate_idx(int page_size_log)1616 static int get_hstate_idx(int page_size_log)
1617 {
1618 struct hstate *h = hstate_sizelog(page_size_log);
1619
1620 if (!h)
1621 return -1;
1622 return hstate_index(h);
1623 }
1624
1625 /*
1626 * Note that size should be aligned to proper hugepage size in caller side,
1627 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1628 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)1629 struct file *hugetlb_file_setup(const char *name, size_t size,
1630 vm_flags_t acctflag, int creat_flags,
1631 int page_size_log)
1632 {
1633 struct inode *inode;
1634 struct vfsmount *mnt;
1635 int hstate_idx;
1636 struct file *file;
1637
1638 hstate_idx = get_hstate_idx(page_size_log);
1639 if (hstate_idx < 0)
1640 return ERR_PTR(-ENODEV);
1641
1642 mnt = hugetlbfs_vfsmount[hstate_idx];
1643 if (!mnt)
1644 return ERR_PTR(-ENOENT);
1645
1646 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1647 struct ucounts *ucounts = current_ucounts();
1648
1649 if (user_shm_lock(size, ucounts)) {
1650 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1651 current->comm, current->pid);
1652 user_shm_unlock(size, ucounts);
1653 }
1654 return ERR_PTR(-EPERM);
1655 }
1656
1657 file = ERR_PTR(-ENOSPC);
1658 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1659 if (!inode)
1660 goto out;
1661 if (creat_flags == HUGETLB_SHMFS_INODE)
1662 inode->i_flags |= S_PRIVATE;
1663
1664 inode->i_size = size;
1665 clear_nlink(inode);
1666
1667 if (!hugetlb_reserve_pages(inode, 0,
1668 size >> huge_page_shift(hstate_inode(inode)), NULL,
1669 acctflag))
1670 file = ERR_PTR(-ENOMEM);
1671 else
1672 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1673 &hugetlbfs_file_operations);
1674 if (!IS_ERR(file))
1675 return file;
1676
1677 iput(inode);
1678 out:
1679 return file;
1680 }
1681
mount_one_hugetlbfs(struct hstate * h)1682 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1683 {
1684 struct fs_context *fc;
1685 struct vfsmount *mnt;
1686
1687 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1688 if (IS_ERR(fc)) {
1689 mnt = ERR_CAST(fc);
1690 } else {
1691 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1692 ctx->hstate = h;
1693 mnt = fc_mount(fc);
1694 put_fs_context(fc);
1695 }
1696 if (IS_ERR(mnt))
1697 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1698 huge_page_size(h) / SZ_1K);
1699 return mnt;
1700 }
1701
init_hugetlbfs_fs(void)1702 static int __init init_hugetlbfs_fs(void)
1703 {
1704 struct vfsmount *mnt;
1705 struct hstate *h;
1706 int error;
1707 int i;
1708
1709 if (!hugepages_supported()) {
1710 pr_info("disabling because there are no supported hugepage sizes\n");
1711 return -ENOTSUPP;
1712 }
1713
1714 error = -ENOMEM;
1715 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1716 sizeof(struct hugetlbfs_inode_info),
1717 0, SLAB_ACCOUNT, init_once);
1718 if (hugetlbfs_inode_cachep == NULL)
1719 goto out;
1720
1721 error = register_filesystem(&hugetlbfs_fs_type);
1722 if (error)
1723 goto out_free;
1724
1725 /* default hstate mount is required */
1726 mnt = mount_one_hugetlbfs(&default_hstate);
1727 if (IS_ERR(mnt)) {
1728 error = PTR_ERR(mnt);
1729 goto out_unreg;
1730 }
1731 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1732
1733 /* other hstates are optional */
1734 i = 0;
1735 for_each_hstate(h) {
1736 if (i == default_hstate_idx) {
1737 i++;
1738 continue;
1739 }
1740
1741 mnt = mount_one_hugetlbfs(h);
1742 if (IS_ERR(mnt))
1743 hugetlbfs_vfsmount[i] = NULL;
1744 else
1745 hugetlbfs_vfsmount[i] = mnt;
1746 i++;
1747 }
1748
1749 return 0;
1750
1751 out_unreg:
1752 (void)unregister_filesystem(&hugetlbfs_fs_type);
1753 out_free:
1754 kmem_cache_destroy(hugetlbfs_inode_cachep);
1755 out:
1756 return error;
1757 }
1758 fs_initcall(init_hugetlbfs_fs)
1759