xref: /openbmc/linux/fs/hfs/super.c (revision d5532ee7)
1 /*
2  *  linux/fs/hfs/super.c
3  *
4  * Copyright (C) 1995-1997  Paul H. Hargrove
5  * (C) 2003 Ardis Technologies <roman@ardistech.com>
6  * This file may be distributed under the terms of the GNU General Public License.
7  *
8  * This file contains hfs_read_super(), some of the super_ops and
9  * init_hfs_fs() and exit_hfs_fs().  The remaining super_ops are in
10  * inode.c since they deal with inodes.
11  *
12  * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
13  */
14 
15 #include <linux/module.h>
16 #include <linux/blkdev.h>
17 #include <linux/mount.h>
18 #include <linux/init.h>
19 #include <linux/nls.h>
20 #include <linux/parser.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/smp_lock.h>
24 #include <linux/vfs.h>
25 
26 #include "hfs_fs.h"
27 #include "btree.h"
28 
29 static struct kmem_cache *hfs_inode_cachep;
30 
31 MODULE_LICENSE("GPL");
32 
33 /*
34  * hfs_write_super()
35  *
36  * Description:
37  *   This function is called by the VFS only. When the filesystem
38  *   is mounted r/w it updates the MDB on disk.
39  * Input Variable(s):
40  *   struct super_block *sb: Pointer to the hfs superblock
41  * Output Variable(s):
42  *   NONE
43  * Returns:
44  *   void
45  * Preconditions:
46  *   'sb' points to a "valid" (struct super_block).
47  * Postconditions:
48  *   The MDB is marked 'unsuccessfully unmounted' by clearing bit 8 of drAtrb
49  *   (hfs_put_super() must set this flag!). Some MDB fields are updated
50  *   and the MDB buffer is written to disk by calling hfs_mdb_commit().
51  */
52 static void hfs_write_super(struct super_block *sb)
53 {
54 	lock_super(sb);
55 	sb->s_dirt = 0;
56 
57 	/* sync everything to the buffers */
58 	if (!(sb->s_flags & MS_RDONLY))
59 		hfs_mdb_commit(sb);
60 	unlock_super(sb);
61 }
62 
63 static int hfs_sync_fs(struct super_block *sb, int wait)
64 {
65 	lock_super(sb);
66 	hfs_mdb_commit(sb);
67 	sb->s_dirt = 0;
68 	unlock_super(sb);
69 
70 	return 0;
71 }
72 
73 /*
74  * hfs_put_super()
75  *
76  * This is the put_super() entry in the super_operations structure for
77  * HFS filesystems.  The purpose is to release the resources
78  * associated with the superblock sb.
79  */
80 static void hfs_put_super(struct super_block *sb)
81 {
82 	lock_kernel();
83 
84 	if (sb->s_dirt)
85 		hfs_write_super(sb);
86 	hfs_mdb_close(sb);
87 	/* release the MDB's resources */
88 	hfs_mdb_put(sb);
89 
90 	unlock_kernel();
91 }
92 
93 /*
94  * hfs_statfs()
95  *
96  * This is the statfs() entry in the super_operations structure for
97  * HFS filesystems.  The purpose is to return various data about the
98  * filesystem.
99  *
100  * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
101  */
102 static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
103 {
104 	struct super_block *sb = dentry->d_sb;
105 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
106 
107 	buf->f_type = HFS_SUPER_MAGIC;
108 	buf->f_bsize = sb->s_blocksize;
109 	buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
110 	buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
111 	buf->f_bavail = buf->f_bfree;
112 	buf->f_files = HFS_SB(sb)->fs_ablocks;
113 	buf->f_ffree = HFS_SB(sb)->free_ablocks;
114 	buf->f_fsid.val[0] = (u32)id;
115 	buf->f_fsid.val[1] = (u32)(id >> 32);
116 	buf->f_namelen = HFS_NAMELEN;
117 
118 	return 0;
119 }
120 
121 static int hfs_remount(struct super_block *sb, int *flags, char *data)
122 {
123 	*flags |= MS_NODIRATIME;
124 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
125 		return 0;
126 	if (!(*flags & MS_RDONLY)) {
127 		if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
128 			printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
129 			       "running fsck.hfs is recommended.  leaving read-only.\n");
130 			sb->s_flags |= MS_RDONLY;
131 			*flags |= MS_RDONLY;
132 		} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
133 			printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
134 			sb->s_flags |= MS_RDONLY;
135 			*flags |= MS_RDONLY;
136 		}
137 	}
138 	return 0;
139 }
140 
141 static int hfs_show_options(struct seq_file *seq, struct vfsmount *mnt)
142 {
143 	struct hfs_sb_info *sbi = HFS_SB(mnt->mnt_sb);
144 
145 	if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
146 		seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
147 	if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
148 		seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
149 	seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid);
150 	if (sbi->s_file_umask != 0133)
151 		seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
152 	if (sbi->s_dir_umask != 0022)
153 		seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
154 	if (sbi->part >= 0)
155 		seq_printf(seq, ",part=%u", sbi->part);
156 	if (sbi->session >= 0)
157 		seq_printf(seq, ",session=%u", sbi->session);
158 	if (sbi->nls_disk)
159 		seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
160 	if (sbi->nls_io)
161 		seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
162 	if (sbi->s_quiet)
163 		seq_printf(seq, ",quiet");
164 	return 0;
165 }
166 
167 static struct inode *hfs_alloc_inode(struct super_block *sb)
168 {
169 	struct hfs_inode_info *i;
170 
171 	i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
172 	return i ? &i->vfs_inode : NULL;
173 }
174 
175 static void hfs_destroy_inode(struct inode *inode)
176 {
177 	kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
178 }
179 
180 static const struct super_operations hfs_super_operations = {
181 	.alloc_inode	= hfs_alloc_inode,
182 	.destroy_inode	= hfs_destroy_inode,
183 	.write_inode	= hfs_write_inode,
184 	.evict_inode	= hfs_evict_inode,
185 	.put_super	= hfs_put_super,
186 	.write_super	= hfs_write_super,
187 	.sync_fs	= hfs_sync_fs,
188 	.statfs		= hfs_statfs,
189 	.remount_fs     = hfs_remount,
190 	.show_options	= hfs_show_options,
191 };
192 
193 enum {
194 	opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
195 	opt_part, opt_session, opt_type, opt_creator, opt_quiet,
196 	opt_codepage, opt_iocharset,
197 	opt_err
198 };
199 
200 static const match_table_t tokens = {
201 	{ opt_uid, "uid=%u" },
202 	{ opt_gid, "gid=%u" },
203 	{ opt_umask, "umask=%o" },
204 	{ opt_file_umask, "file_umask=%o" },
205 	{ opt_dir_umask, "dir_umask=%o" },
206 	{ opt_part, "part=%u" },
207 	{ opt_session, "session=%u" },
208 	{ opt_type, "type=%s" },
209 	{ opt_creator, "creator=%s" },
210 	{ opt_quiet, "quiet" },
211 	{ opt_codepage, "codepage=%s" },
212 	{ opt_iocharset, "iocharset=%s" },
213 	{ opt_err, NULL }
214 };
215 
216 static inline int match_fourchar(substring_t *arg, u32 *result)
217 {
218 	if (arg->to - arg->from != 4)
219 		return -EINVAL;
220 	memcpy(result, arg->from, 4);
221 	return 0;
222 }
223 
224 /*
225  * parse_options()
226  *
227  * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
228  * This function is called by hfs_read_super() to parse the mount options.
229  */
230 static int parse_options(char *options, struct hfs_sb_info *hsb)
231 {
232 	char *p;
233 	substring_t args[MAX_OPT_ARGS];
234 	int tmp, token;
235 
236 	/* initialize the sb with defaults */
237 	hsb->s_uid = current_uid();
238 	hsb->s_gid = current_gid();
239 	hsb->s_file_umask = 0133;
240 	hsb->s_dir_umask = 0022;
241 	hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f);	/* == '????' */
242 	hsb->s_quiet = 0;
243 	hsb->part = -1;
244 	hsb->session = -1;
245 
246 	if (!options)
247 		return 1;
248 
249 	while ((p = strsep(&options, ",")) != NULL) {
250 		if (!*p)
251 			continue;
252 
253 		token = match_token(p, tokens, args);
254 		switch (token) {
255 		case opt_uid:
256 			if (match_int(&args[0], &tmp)) {
257 				printk(KERN_ERR "hfs: uid requires an argument\n");
258 				return 0;
259 			}
260 			hsb->s_uid = (uid_t)tmp;
261 			break;
262 		case opt_gid:
263 			if (match_int(&args[0], &tmp)) {
264 				printk(KERN_ERR "hfs: gid requires an argument\n");
265 				return 0;
266 			}
267 			hsb->s_gid = (gid_t)tmp;
268 			break;
269 		case opt_umask:
270 			if (match_octal(&args[0], &tmp)) {
271 				printk(KERN_ERR "hfs: umask requires a value\n");
272 				return 0;
273 			}
274 			hsb->s_file_umask = (umode_t)tmp;
275 			hsb->s_dir_umask = (umode_t)tmp;
276 			break;
277 		case opt_file_umask:
278 			if (match_octal(&args[0], &tmp)) {
279 				printk(KERN_ERR "hfs: file_umask requires a value\n");
280 				return 0;
281 			}
282 			hsb->s_file_umask = (umode_t)tmp;
283 			break;
284 		case opt_dir_umask:
285 			if (match_octal(&args[0], &tmp)) {
286 				printk(KERN_ERR "hfs: dir_umask requires a value\n");
287 				return 0;
288 			}
289 			hsb->s_dir_umask = (umode_t)tmp;
290 			break;
291 		case opt_part:
292 			if (match_int(&args[0], &hsb->part)) {
293 				printk(KERN_ERR "hfs: part requires an argument\n");
294 				return 0;
295 			}
296 			break;
297 		case opt_session:
298 			if (match_int(&args[0], &hsb->session)) {
299 				printk(KERN_ERR "hfs: session requires an argument\n");
300 				return 0;
301 			}
302 			break;
303 		case opt_type:
304 			if (match_fourchar(&args[0], &hsb->s_type)) {
305 				printk(KERN_ERR "hfs: type requires a 4 character value\n");
306 				return 0;
307 			}
308 			break;
309 		case opt_creator:
310 			if (match_fourchar(&args[0], &hsb->s_creator)) {
311 				printk(KERN_ERR "hfs: creator requires a 4 character value\n");
312 				return 0;
313 			}
314 			break;
315 		case opt_quiet:
316 			hsb->s_quiet = 1;
317 			break;
318 		case opt_codepage:
319 			if (hsb->nls_disk) {
320 				printk(KERN_ERR "hfs: unable to change codepage\n");
321 				return 0;
322 			}
323 			p = match_strdup(&args[0]);
324 			if (p)
325 				hsb->nls_disk = load_nls(p);
326 			if (!hsb->nls_disk) {
327 				printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
328 				kfree(p);
329 				return 0;
330 			}
331 			kfree(p);
332 			break;
333 		case opt_iocharset:
334 			if (hsb->nls_io) {
335 				printk(KERN_ERR "hfs: unable to change iocharset\n");
336 				return 0;
337 			}
338 			p = match_strdup(&args[0]);
339 			if (p)
340 				hsb->nls_io = load_nls(p);
341 			if (!hsb->nls_io) {
342 				printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
343 				kfree(p);
344 				return 0;
345 			}
346 			kfree(p);
347 			break;
348 		default:
349 			return 0;
350 		}
351 	}
352 
353 	if (hsb->nls_disk && !hsb->nls_io) {
354 		hsb->nls_io = load_nls_default();
355 		if (!hsb->nls_io) {
356 			printk(KERN_ERR "hfs: unable to load default iocharset\n");
357 			return 0;
358 		}
359 	}
360 	hsb->s_dir_umask &= 0777;
361 	hsb->s_file_umask &= 0577;
362 
363 	return 1;
364 }
365 
366 /*
367  * hfs_read_super()
368  *
369  * This is the function that is responsible for mounting an HFS
370  * filesystem.	It performs all the tasks necessary to get enough data
371  * from the disk to read the root inode.  This includes parsing the
372  * mount options, dealing with Macintosh partitions, reading the
373  * superblock and the allocation bitmap blocks, calling
374  * hfs_btree_init() to get the necessary data about the extents and
375  * catalog B-trees and, finally, reading the root inode into memory.
376  */
377 static int hfs_fill_super(struct super_block *sb, void *data, int silent)
378 {
379 	struct hfs_sb_info *sbi;
380 	struct hfs_find_data fd;
381 	hfs_cat_rec rec;
382 	struct inode *root_inode;
383 	int res;
384 
385 	sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
386 	if (!sbi)
387 		return -ENOMEM;
388 	sb->s_fs_info = sbi;
389 	INIT_HLIST_HEAD(&sbi->rsrc_inodes);
390 
391 	res = -EINVAL;
392 	if (!parse_options((char *)data, sbi)) {
393 		printk(KERN_ERR "hfs: unable to parse mount options.\n");
394 		goto bail;
395 	}
396 
397 	sb->s_op = &hfs_super_operations;
398 	sb->s_flags |= MS_NODIRATIME;
399 	mutex_init(&sbi->bitmap_lock);
400 
401 	res = hfs_mdb_get(sb);
402 	if (res) {
403 		if (!silent)
404 			printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
405 				hfs_mdb_name(sb));
406 		res = -EINVAL;
407 		goto bail;
408 	}
409 
410 	/* try to get the root inode */
411 	hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
412 	res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
413 	if (!res) {
414 		if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
415 			res =  -EIO;
416 			goto bail;
417 		}
418 		hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
419 	}
420 	if (res) {
421 		hfs_find_exit(&fd);
422 		goto bail_no_root;
423 	}
424 	res = -EINVAL;
425 	root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
426 	hfs_find_exit(&fd);
427 	if (!root_inode)
428 		goto bail_no_root;
429 
430 	res = -ENOMEM;
431 	sb->s_root = d_alloc_root(root_inode);
432 	if (!sb->s_root)
433 		goto bail_iput;
434 
435 	sb->s_root->d_op = &hfs_dentry_operations;
436 
437 	/* everything's okay */
438 	return 0;
439 
440 bail_iput:
441 	iput(root_inode);
442 bail_no_root:
443 	printk(KERN_ERR "hfs: get root inode failed.\n");
444 bail:
445 	hfs_mdb_put(sb);
446 	return res;
447 }
448 
449 static int hfs_get_sb(struct file_system_type *fs_type,
450 		      int flags, const char *dev_name, void *data,
451 		      struct vfsmount *mnt)
452 {
453 	return get_sb_bdev(fs_type, flags, dev_name, data, hfs_fill_super, mnt);
454 }
455 
456 static struct file_system_type hfs_fs_type = {
457 	.owner		= THIS_MODULE,
458 	.name		= "hfs",
459 	.get_sb		= hfs_get_sb,
460 	.kill_sb	= kill_block_super,
461 	.fs_flags	= FS_REQUIRES_DEV,
462 };
463 
464 static void hfs_init_once(void *p)
465 {
466 	struct hfs_inode_info *i = p;
467 
468 	inode_init_once(&i->vfs_inode);
469 }
470 
471 static int __init init_hfs_fs(void)
472 {
473 	int err;
474 
475 	hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
476 		sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
477 		hfs_init_once);
478 	if (!hfs_inode_cachep)
479 		return -ENOMEM;
480 	err = register_filesystem(&hfs_fs_type);
481 	if (err)
482 		kmem_cache_destroy(hfs_inode_cachep);
483 	return err;
484 }
485 
486 static void __exit exit_hfs_fs(void)
487 {
488 	unregister_filesystem(&hfs_fs_type);
489 	kmem_cache_destroy(hfs_inode_cachep);
490 }
491 
492 module_init(init_hfs_fs)
493 module_exit(exit_hfs_fs)
494