xref: /openbmc/linux/fs/hfs/super.c (revision b595076a)
1 /*
2  *  linux/fs/hfs/super.c
3  *
4  * Copyright (C) 1995-1997  Paul H. Hargrove
5  * (C) 2003 Ardis Technologies <roman@ardistech.com>
6  * This file may be distributed under the terms of the GNU General Public License.
7  *
8  * This file contains hfs_read_super(), some of the super_ops and
9  * init_hfs_fs() and exit_hfs_fs().  The remaining super_ops are in
10  * inode.c since they deal with inodes.
11  *
12  * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
13  */
14 
15 #include <linux/module.h>
16 #include <linux/blkdev.h>
17 #include <linux/mount.h>
18 #include <linux/init.h>
19 #include <linux/nls.h>
20 #include <linux/parser.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/vfs.h>
24 
25 #include "hfs_fs.h"
26 #include "btree.h"
27 
28 static struct kmem_cache *hfs_inode_cachep;
29 
30 MODULE_LICENSE("GPL");
31 
32 /*
33  * hfs_write_super()
34  *
35  * Description:
36  *   This function is called by the VFS only. When the filesystem
37  *   is mounted r/w it updates the MDB on disk.
38  * Input Variable(s):
39  *   struct super_block *sb: Pointer to the hfs superblock
40  * Output Variable(s):
41  *   NONE
42  * Returns:
43  *   void
44  * Preconditions:
45  *   'sb' points to a "valid" (struct super_block).
46  * Postconditions:
47  *   The MDB is marked 'unsuccessfully unmounted' by clearing bit 8 of drAtrb
48  *   (hfs_put_super() must set this flag!). Some MDB fields are updated
49  *   and the MDB buffer is written to disk by calling hfs_mdb_commit().
50  */
51 static void hfs_write_super(struct super_block *sb)
52 {
53 	lock_super(sb);
54 	sb->s_dirt = 0;
55 
56 	/* sync everything to the buffers */
57 	if (!(sb->s_flags & MS_RDONLY))
58 		hfs_mdb_commit(sb);
59 	unlock_super(sb);
60 }
61 
62 static int hfs_sync_fs(struct super_block *sb, int wait)
63 {
64 	lock_super(sb);
65 	hfs_mdb_commit(sb);
66 	sb->s_dirt = 0;
67 	unlock_super(sb);
68 
69 	return 0;
70 }
71 
72 /*
73  * hfs_put_super()
74  *
75  * This is the put_super() entry in the super_operations structure for
76  * HFS filesystems.  The purpose is to release the resources
77  * associated with the superblock sb.
78  */
79 static void hfs_put_super(struct super_block *sb)
80 {
81 	if (sb->s_dirt)
82 		hfs_write_super(sb);
83 	hfs_mdb_close(sb);
84 	/* release the MDB's resources */
85 	hfs_mdb_put(sb);
86 }
87 
88 /*
89  * hfs_statfs()
90  *
91  * This is the statfs() entry in the super_operations structure for
92  * HFS filesystems.  The purpose is to return various data about the
93  * filesystem.
94  *
95  * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
96  */
97 static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
98 {
99 	struct super_block *sb = dentry->d_sb;
100 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
101 
102 	buf->f_type = HFS_SUPER_MAGIC;
103 	buf->f_bsize = sb->s_blocksize;
104 	buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
105 	buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
106 	buf->f_bavail = buf->f_bfree;
107 	buf->f_files = HFS_SB(sb)->fs_ablocks;
108 	buf->f_ffree = HFS_SB(sb)->free_ablocks;
109 	buf->f_fsid.val[0] = (u32)id;
110 	buf->f_fsid.val[1] = (u32)(id >> 32);
111 	buf->f_namelen = HFS_NAMELEN;
112 
113 	return 0;
114 }
115 
116 static int hfs_remount(struct super_block *sb, int *flags, char *data)
117 {
118 	*flags |= MS_NODIRATIME;
119 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
120 		return 0;
121 	if (!(*flags & MS_RDONLY)) {
122 		if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
123 			printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
124 			       "running fsck.hfs is recommended.  leaving read-only.\n");
125 			sb->s_flags |= MS_RDONLY;
126 			*flags |= MS_RDONLY;
127 		} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
128 			printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
129 			sb->s_flags |= MS_RDONLY;
130 			*flags |= MS_RDONLY;
131 		}
132 	}
133 	return 0;
134 }
135 
136 static int hfs_show_options(struct seq_file *seq, struct vfsmount *mnt)
137 {
138 	struct hfs_sb_info *sbi = HFS_SB(mnt->mnt_sb);
139 
140 	if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
141 		seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
142 	if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
143 		seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
144 	seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid);
145 	if (sbi->s_file_umask != 0133)
146 		seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
147 	if (sbi->s_dir_umask != 0022)
148 		seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
149 	if (sbi->part >= 0)
150 		seq_printf(seq, ",part=%u", sbi->part);
151 	if (sbi->session >= 0)
152 		seq_printf(seq, ",session=%u", sbi->session);
153 	if (sbi->nls_disk)
154 		seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
155 	if (sbi->nls_io)
156 		seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
157 	if (sbi->s_quiet)
158 		seq_printf(seq, ",quiet");
159 	return 0;
160 }
161 
162 static struct inode *hfs_alloc_inode(struct super_block *sb)
163 {
164 	struct hfs_inode_info *i;
165 
166 	i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
167 	return i ? &i->vfs_inode : NULL;
168 }
169 
170 static void hfs_destroy_inode(struct inode *inode)
171 {
172 	kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
173 }
174 
175 static const struct super_operations hfs_super_operations = {
176 	.alloc_inode	= hfs_alloc_inode,
177 	.destroy_inode	= hfs_destroy_inode,
178 	.write_inode	= hfs_write_inode,
179 	.evict_inode	= hfs_evict_inode,
180 	.put_super	= hfs_put_super,
181 	.write_super	= hfs_write_super,
182 	.sync_fs	= hfs_sync_fs,
183 	.statfs		= hfs_statfs,
184 	.remount_fs     = hfs_remount,
185 	.show_options	= hfs_show_options,
186 };
187 
188 enum {
189 	opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
190 	opt_part, opt_session, opt_type, opt_creator, opt_quiet,
191 	opt_codepage, opt_iocharset,
192 	opt_err
193 };
194 
195 static const match_table_t tokens = {
196 	{ opt_uid, "uid=%u" },
197 	{ opt_gid, "gid=%u" },
198 	{ opt_umask, "umask=%o" },
199 	{ opt_file_umask, "file_umask=%o" },
200 	{ opt_dir_umask, "dir_umask=%o" },
201 	{ opt_part, "part=%u" },
202 	{ opt_session, "session=%u" },
203 	{ opt_type, "type=%s" },
204 	{ opt_creator, "creator=%s" },
205 	{ opt_quiet, "quiet" },
206 	{ opt_codepage, "codepage=%s" },
207 	{ opt_iocharset, "iocharset=%s" },
208 	{ opt_err, NULL }
209 };
210 
211 static inline int match_fourchar(substring_t *arg, u32 *result)
212 {
213 	if (arg->to - arg->from != 4)
214 		return -EINVAL;
215 	memcpy(result, arg->from, 4);
216 	return 0;
217 }
218 
219 /*
220  * parse_options()
221  *
222  * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
223  * This function is called by hfs_read_super() to parse the mount options.
224  */
225 static int parse_options(char *options, struct hfs_sb_info *hsb)
226 {
227 	char *p;
228 	substring_t args[MAX_OPT_ARGS];
229 	int tmp, token;
230 
231 	/* initialize the sb with defaults */
232 	hsb->s_uid = current_uid();
233 	hsb->s_gid = current_gid();
234 	hsb->s_file_umask = 0133;
235 	hsb->s_dir_umask = 0022;
236 	hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f);	/* == '????' */
237 	hsb->s_quiet = 0;
238 	hsb->part = -1;
239 	hsb->session = -1;
240 
241 	if (!options)
242 		return 1;
243 
244 	while ((p = strsep(&options, ",")) != NULL) {
245 		if (!*p)
246 			continue;
247 
248 		token = match_token(p, tokens, args);
249 		switch (token) {
250 		case opt_uid:
251 			if (match_int(&args[0], &tmp)) {
252 				printk(KERN_ERR "hfs: uid requires an argument\n");
253 				return 0;
254 			}
255 			hsb->s_uid = (uid_t)tmp;
256 			break;
257 		case opt_gid:
258 			if (match_int(&args[0], &tmp)) {
259 				printk(KERN_ERR "hfs: gid requires an argument\n");
260 				return 0;
261 			}
262 			hsb->s_gid = (gid_t)tmp;
263 			break;
264 		case opt_umask:
265 			if (match_octal(&args[0], &tmp)) {
266 				printk(KERN_ERR "hfs: umask requires a value\n");
267 				return 0;
268 			}
269 			hsb->s_file_umask = (umode_t)tmp;
270 			hsb->s_dir_umask = (umode_t)tmp;
271 			break;
272 		case opt_file_umask:
273 			if (match_octal(&args[0], &tmp)) {
274 				printk(KERN_ERR "hfs: file_umask requires a value\n");
275 				return 0;
276 			}
277 			hsb->s_file_umask = (umode_t)tmp;
278 			break;
279 		case opt_dir_umask:
280 			if (match_octal(&args[0], &tmp)) {
281 				printk(KERN_ERR "hfs: dir_umask requires a value\n");
282 				return 0;
283 			}
284 			hsb->s_dir_umask = (umode_t)tmp;
285 			break;
286 		case opt_part:
287 			if (match_int(&args[0], &hsb->part)) {
288 				printk(KERN_ERR "hfs: part requires an argument\n");
289 				return 0;
290 			}
291 			break;
292 		case opt_session:
293 			if (match_int(&args[0], &hsb->session)) {
294 				printk(KERN_ERR "hfs: session requires an argument\n");
295 				return 0;
296 			}
297 			break;
298 		case opt_type:
299 			if (match_fourchar(&args[0], &hsb->s_type)) {
300 				printk(KERN_ERR "hfs: type requires a 4 character value\n");
301 				return 0;
302 			}
303 			break;
304 		case opt_creator:
305 			if (match_fourchar(&args[0], &hsb->s_creator)) {
306 				printk(KERN_ERR "hfs: creator requires a 4 character value\n");
307 				return 0;
308 			}
309 			break;
310 		case opt_quiet:
311 			hsb->s_quiet = 1;
312 			break;
313 		case opt_codepage:
314 			if (hsb->nls_disk) {
315 				printk(KERN_ERR "hfs: unable to change codepage\n");
316 				return 0;
317 			}
318 			p = match_strdup(&args[0]);
319 			if (p)
320 				hsb->nls_disk = load_nls(p);
321 			if (!hsb->nls_disk) {
322 				printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
323 				kfree(p);
324 				return 0;
325 			}
326 			kfree(p);
327 			break;
328 		case opt_iocharset:
329 			if (hsb->nls_io) {
330 				printk(KERN_ERR "hfs: unable to change iocharset\n");
331 				return 0;
332 			}
333 			p = match_strdup(&args[0]);
334 			if (p)
335 				hsb->nls_io = load_nls(p);
336 			if (!hsb->nls_io) {
337 				printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
338 				kfree(p);
339 				return 0;
340 			}
341 			kfree(p);
342 			break;
343 		default:
344 			return 0;
345 		}
346 	}
347 
348 	if (hsb->nls_disk && !hsb->nls_io) {
349 		hsb->nls_io = load_nls_default();
350 		if (!hsb->nls_io) {
351 			printk(KERN_ERR "hfs: unable to load default iocharset\n");
352 			return 0;
353 		}
354 	}
355 	hsb->s_dir_umask &= 0777;
356 	hsb->s_file_umask &= 0577;
357 
358 	return 1;
359 }
360 
361 /*
362  * hfs_read_super()
363  *
364  * This is the function that is responsible for mounting an HFS
365  * filesystem.	It performs all the tasks necessary to get enough data
366  * from the disk to read the root inode.  This includes parsing the
367  * mount options, dealing with Macintosh partitions, reading the
368  * superblock and the allocation bitmap blocks, calling
369  * hfs_btree_init() to get the necessary data about the extents and
370  * catalog B-trees and, finally, reading the root inode into memory.
371  */
372 static int hfs_fill_super(struct super_block *sb, void *data, int silent)
373 {
374 	struct hfs_sb_info *sbi;
375 	struct hfs_find_data fd;
376 	hfs_cat_rec rec;
377 	struct inode *root_inode;
378 	int res;
379 
380 	sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
381 	if (!sbi)
382 		return -ENOMEM;
383 
384 	sb->s_fs_info = sbi;
385 
386 	res = -EINVAL;
387 	if (!parse_options((char *)data, sbi)) {
388 		printk(KERN_ERR "hfs: unable to parse mount options.\n");
389 		goto bail;
390 	}
391 
392 	sb->s_op = &hfs_super_operations;
393 	sb->s_flags |= MS_NODIRATIME;
394 	mutex_init(&sbi->bitmap_lock);
395 
396 	res = hfs_mdb_get(sb);
397 	if (res) {
398 		if (!silent)
399 			printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
400 				hfs_mdb_name(sb));
401 		res = -EINVAL;
402 		goto bail;
403 	}
404 
405 	/* try to get the root inode */
406 	hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
407 	res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
408 	if (!res) {
409 		if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
410 			res =  -EIO;
411 			goto bail;
412 		}
413 		hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
414 	}
415 	if (res) {
416 		hfs_find_exit(&fd);
417 		goto bail_no_root;
418 	}
419 	res = -EINVAL;
420 	root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
421 	hfs_find_exit(&fd);
422 	if (!root_inode)
423 		goto bail_no_root;
424 
425 	res = -ENOMEM;
426 	sb->s_root = d_alloc_root(root_inode);
427 	if (!sb->s_root)
428 		goto bail_iput;
429 
430 	sb->s_root->d_op = &hfs_dentry_operations;
431 
432 	/* everything's okay */
433 	return 0;
434 
435 bail_iput:
436 	iput(root_inode);
437 bail_no_root:
438 	printk(KERN_ERR "hfs: get root inode failed.\n");
439 bail:
440 	hfs_mdb_put(sb);
441 	return res;
442 }
443 
444 static struct dentry *hfs_mount(struct file_system_type *fs_type,
445 		      int flags, const char *dev_name, void *data)
446 {
447 	return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
448 }
449 
450 static struct file_system_type hfs_fs_type = {
451 	.owner		= THIS_MODULE,
452 	.name		= "hfs",
453 	.mount		= hfs_mount,
454 	.kill_sb	= kill_block_super,
455 	.fs_flags	= FS_REQUIRES_DEV,
456 };
457 
458 static void hfs_init_once(void *p)
459 {
460 	struct hfs_inode_info *i = p;
461 
462 	inode_init_once(&i->vfs_inode);
463 }
464 
465 static int __init init_hfs_fs(void)
466 {
467 	int err;
468 
469 	hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
470 		sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
471 		hfs_init_once);
472 	if (!hfs_inode_cachep)
473 		return -ENOMEM;
474 	err = register_filesystem(&hfs_fs_type);
475 	if (err)
476 		kmem_cache_destroy(hfs_inode_cachep);
477 	return err;
478 }
479 
480 static void __exit exit_hfs_fs(void)
481 {
482 	unregister_filesystem(&hfs_fs_type);
483 	kmem_cache_destroy(hfs_inode_cachep);
484 }
485 
486 module_init(init_hfs_fs)
487 module_exit(exit_hfs_fs)
488