xref: /openbmc/linux/fs/hfs/super.c (revision 95e9fd10)
1 /*
2  *  linux/fs/hfs/super.c
3  *
4  * Copyright (C) 1995-1997  Paul H. Hargrove
5  * (C) 2003 Ardis Technologies <roman@ardistech.com>
6  * This file may be distributed under the terms of the GNU General Public License.
7  *
8  * This file contains hfs_read_super(), some of the super_ops and
9  * init_hfs_fs() and exit_hfs_fs().  The remaining super_ops are in
10  * inode.c since they deal with inodes.
11  *
12  * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
13  */
14 
15 #include <linux/module.h>
16 #include <linux/blkdev.h>
17 #include <linux/mount.h>
18 #include <linux/init.h>
19 #include <linux/nls.h>
20 #include <linux/parser.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/vfs.h>
24 
25 #include "hfs_fs.h"
26 #include "btree.h"
27 
28 static struct kmem_cache *hfs_inode_cachep;
29 
30 MODULE_LICENSE("GPL");
31 
32 static int hfs_sync_fs(struct super_block *sb, int wait)
33 {
34 	hfs_mdb_commit(sb);
35 	return 0;
36 }
37 
38 /*
39  * hfs_put_super()
40  *
41  * This is the put_super() entry in the super_operations structure for
42  * HFS filesystems.  The purpose is to release the resources
43  * associated with the superblock sb.
44  */
45 static void hfs_put_super(struct super_block *sb)
46 {
47 	cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work);
48 	hfs_mdb_close(sb);
49 	/* release the MDB's resources */
50 	hfs_mdb_put(sb);
51 }
52 
53 static void flush_mdb(struct work_struct *work)
54 {
55 	struct hfs_sb_info *sbi;
56 	struct super_block *sb;
57 
58 	sbi = container_of(work, struct hfs_sb_info, mdb_work.work);
59 	sb = sbi->sb;
60 
61 	spin_lock(&sbi->work_lock);
62 	sbi->work_queued = 0;
63 	spin_unlock(&sbi->work_lock);
64 
65 	hfs_mdb_commit(sb);
66 }
67 
68 void hfs_mark_mdb_dirty(struct super_block *sb)
69 {
70 	struct hfs_sb_info *sbi = HFS_SB(sb);
71 	unsigned long delay;
72 
73 	if (sb->s_flags & MS_RDONLY)
74 		return;
75 
76 	spin_lock(&sbi->work_lock);
77 	if (!sbi->work_queued) {
78 		delay = msecs_to_jiffies(dirty_writeback_interval * 10);
79 		queue_delayed_work(system_long_wq, &sbi->mdb_work, delay);
80 		sbi->work_queued = 1;
81 	}
82 	spin_unlock(&sbi->work_lock);
83 }
84 
85 /*
86  * hfs_statfs()
87  *
88  * This is the statfs() entry in the super_operations structure for
89  * HFS filesystems.  The purpose is to return various data about the
90  * filesystem.
91  *
92  * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
93  */
94 static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
95 {
96 	struct super_block *sb = dentry->d_sb;
97 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
98 
99 	buf->f_type = HFS_SUPER_MAGIC;
100 	buf->f_bsize = sb->s_blocksize;
101 	buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
102 	buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
103 	buf->f_bavail = buf->f_bfree;
104 	buf->f_files = HFS_SB(sb)->fs_ablocks;
105 	buf->f_ffree = HFS_SB(sb)->free_ablocks;
106 	buf->f_fsid.val[0] = (u32)id;
107 	buf->f_fsid.val[1] = (u32)(id >> 32);
108 	buf->f_namelen = HFS_NAMELEN;
109 
110 	return 0;
111 }
112 
113 static int hfs_remount(struct super_block *sb, int *flags, char *data)
114 {
115 	*flags |= MS_NODIRATIME;
116 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
117 		return 0;
118 	if (!(*flags & MS_RDONLY)) {
119 		if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
120 			printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
121 			       "running fsck.hfs is recommended.  leaving read-only.\n");
122 			sb->s_flags |= MS_RDONLY;
123 			*flags |= MS_RDONLY;
124 		} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
125 			printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
126 			sb->s_flags |= MS_RDONLY;
127 			*flags |= MS_RDONLY;
128 		}
129 	}
130 	return 0;
131 }
132 
133 static int hfs_show_options(struct seq_file *seq, struct dentry *root)
134 {
135 	struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
136 
137 	if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
138 		seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
139 	if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
140 		seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
141 	seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid);
142 	if (sbi->s_file_umask != 0133)
143 		seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
144 	if (sbi->s_dir_umask != 0022)
145 		seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
146 	if (sbi->part >= 0)
147 		seq_printf(seq, ",part=%u", sbi->part);
148 	if (sbi->session >= 0)
149 		seq_printf(seq, ",session=%u", sbi->session);
150 	if (sbi->nls_disk)
151 		seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
152 	if (sbi->nls_io)
153 		seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
154 	if (sbi->s_quiet)
155 		seq_printf(seq, ",quiet");
156 	return 0;
157 }
158 
159 static struct inode *hfs_alloc_inode(struct super_block *sb)
160 {
161 	struct hfs_inode_info *i;
162 
163 	i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
164 	return i ? &i->vfs_inode : NULL;
165 }
166 
167 static void hfs_i_callback(struct rcu_head *head)
168 {
169 	struct inode *inode = container_of(head, struct inode, i_rcu);
170 	kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
171 }
172 
173 static void hfs_destroy_inode(struct inode *inode)
174 {
175 	call_rcu(&inode->i_rcu, hfs_i_callback);
176 }
177 
178 static const struct super_operations hfs_super_operations = {
179 	.alloc_inode	= hfs_alloc_inode,
180 	.destroy_inode	= hfs_destroy_inode,
181 	.write_inode	= hfs_write_inode,
182 	.evict_inode	= hfs_evict_inode,
183 	.put_super	= hfs_put_super,
184 	.sync_fs	= hfs_sync_fs,
185 	.statfs		= hfs_statfs,
186 	.remount_fs     = hfs_remount,
187 	.show_options	= hfs_show_options,
188 };
189 
190 enum {
191 	opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
192 	opt_part, opt_session, opt_type, opt_creator, opt_quiet,
193 	opt_codepage, opt_iocharset,
194 	opt_err
195 };
196 
197 static const match_table_t tokens = {
198 	{ opt_uid, "uid=%u" },
199 	{ opt_gid, "gid=%u" },
200 	{ opt_umask, "umask=%o" },
201 	{ opt_file_umask, "file_umask=%o" },
202 	{ opt_dir_umask, "dir_umask=%o" },
203 	{ opt_part, "part=%u" },
204 	{ opt_session, "session=%u" },
205 	{ opt_type, "type=%s" },
206 	{ opt_creator, "creator=%s" },
207 	{ opt_quiet, "quiet" },
208 	{ opt_codepage, "codepage=%s" },
209 	{ opt_iocharset, "iocharset=%s" },
210 	{ opt_err, NULL }
211 };
212 
213 static inline int match_fourchar(substring_t *arg, u32 *result)
214 {
215 	if (arg->to - arg->from != 4)
216 		return -EINVAL;
217 	memcpy(result, arg->from, 4);
218 	return 0;
219 }
220 
221 /*
222  * parse_options()
223  *
224  * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
225  * This function is called by hfs_read_super() to parse the mount options.
226  */
227 static int parse_options(char *options, struct hfs_sb_info *hsb)
228 {
229 	char *p;
230 	substring_t args[MAX_OPT_ARGS];
231 	int tmp, token;
232 
233 	/* initialize the sb with defaults */
234 	hsb->s_uid = current_uid();
235 	hsb->s_gid = current_gid();
236 	hsb->s_file_umask = 0133;
237 	hsb->s_dir_umask = 0022;
238 	hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f);	/* == '????' */
239 	hsb->s_quiet = 0;
240 	hsb->part = -1;
241 	hsb->session = -1;
242 
243 	if (!options)
244 		return 1;
245 
246 	while ((p = strsep(&options, ",")) != NULL) {
247 		if (!*p)
248 			continue;
249 
250 		token = match_token(p, tokens, args);
251 		switch (token) {
252 		case opt_uid:
253 			if (match_int(&args[0], &tmp)) {
254 				printk(KERN_ERR "hfs: uid requires an argument\n");
255 				return 0;
256 			}
257 			hsb->s_uid = (uid_t)tmp;
258 			break;
259 		case opt_gid:
260 			if (match_int(&args[0], &tmp)) {
261 				printk(KERN_ERR "hfs: gid requires an argument\n");
262 				return 0;
263 			}
264 			hsb->s_gid = (gid_t)tmp;
265 			break;
266 		case opt_umask:
267 			if (match_octal(&args[0], &tmp)) {
268 				printk(KERN_ERR "hfs: umask requires a value\n");
269 				return 0;
270 			}
271 			hsb->s_file_umask = (umode_t)tmp;
272 			hsb->s_dir_umask = (umode_t)tmp;
273 			break;
274 		case opt_file_umask:
275 			if (match_octal(&args[0], &tmp)) {
276 				printk(KERN_ERR "hfs: file_umask requires a value\n");
277 				return 0;
278 			}
279 			hsb->s_file_umask = (umode_t)tmp;
280 			break;
281 		case opt_dir_umask:
282 			if (match_octal(&args[0], &tmp)) {
283 				printk(KERN_ERR "hfs: dir_umask requires a value\n");
284 				return 0;
285 			}
286 			hsb->s_dir_umask = (umode_t)tmp;
287 			break;
288 		case opt_part:
289 			if (match_int(&args[0], &hsb->part)) {
290 				printk(KERN_ERR "hfs: part requires an argument\n");
291 				return 0;
292 			}
293 			break;
294 		case opt_session:
295 			if (match_int(&args[0], &hsb->session)) {
296 				printk(KERN_ERR "hfs: session requires an argument\n");
297 				return 0;
298 			}
299 			break;
300 		case opt_type:
301 			if (match_fourchar(&args[0], &hsb->s_type)) {
302 				printk(KERN_ERR "hfs: type requires a 4 character value\n");
303 				return 0;
304 			}
305 			break;
306 		case opt_creator:
307 			if (match_fourchar(&args[0], &hsb->s_creator)) {
308 				printk(KERN_ERR "hfs: creator requires a 4 character value\n");
309 				return 0;
310 			}
311 			break;
312 		case opt_quiet:
313 			hsb->s_quiet = 1;
314 			break;
315 		case opt_codepage:
316 			if (hsb->nls_disk) {
317 				printk(KERN_ERR "hfs: unable to change codepage\n");
318 				return 0;
319 			}
320 			p = match_strdup(&args[0]);
321 			if (p)
322 				hsb->nls_disk = load_nls(p);
323 			if (!hsb->nls_disk) {
324 				printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
325 				kfree(p);
326 				return 0;
327 			}
328 			kfree(p);
329 			break;
330 		case opt_iocharset:
331 			if (hsb->nls_io) {
332 				printk(KERN_ERR "hfs: unable to change iocharset\n");
333 				return 0;
334 			}
335 			p = match_strdup(&args[0]);
336 			if (p)
337 				hsb->nls_io = load_nls(p);
338 			if (!hsb->nls_io) {
339 				printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
340 				kfree(p);
341 				return 0;
342 			}
343 			kfree(p);
344 			break;
345 		default:
346 			return 0;
347 		}
348 	}
349 
350 	if (hsb->nls_disk && !hsb->nls_io) {
351 		hsb->nls_io = load_nls_default();
352 		if (!hsb->nls_io) {
353 			printk(KERN_ERR "hfs: unable to load default iocharset\n");
354 			return 0;
355 		}
356 	}
357 	hsb->s_dir_umask &= 0777;
358 	hsb->s_file_umask &= 0577;
359 
360 	return 1;
361 }
362 
363 /*
364  * hfs_read_super()
365  *
366  * This is the function that is responsible for mounting an HFS
367  * filesystem.	It performs all the tasks necessary to get enough data
368  * from the disk to read the root inode.  This includes parsing the
369  * mount options, dealing with Macintosh partitions, reading the
370  * superblock and the allocation bitmap blocks, calling
371  * hfs_btree_init() to get the necessary data about the extents and
372  * catalog B-trees and, finally, reading the root inode into memory.
373  */
374 static int hfs_fill_super(struct super_block *sb, void *data, int silent)
375 {
376 	struct hfs_sb_info *sbi;
377 	struct hfs_find_data fd;
378 	hfs_cat_rec rec;
379 	struct inode *root_inode;
380 	int res;
381 
382 	sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
383 	if (!sbi)
384 		return -ENOMEM;
385 
386 	sbi->sb = sb;
387 	sb->s_fs_info = sbi;
388 	spin_lock_init(&sbi->work_lock);
389 	INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb);
390 
391 	res = -EINVAL;
392 	if (!parse_options((char *)data, sbi)) {
393 		printk(KERN_ERR "hfs: unable to parse mount options.\n");
394 		goto bail;
395 	}
396 
397 	sb->s_op = &hfs_super_operations;
398 	sb->s_flags |= MS_NODIRATIME;
399 	mutex_init(&sbi->bitmap_lock);
400 
401 	res = hfs_mdb_get(sb);
402 	if (res) {
403 		if (!silent)
404 			printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
405 				hfs_mdb_name(sb));
406 		res = -EINVAL;
407 		goto bail;
408 	}
409 
410 	/* try to get the root inode */
411 	hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
412 	res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
413 	if (!res) {
414 		if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
415 			res =  -EIO;
416 			goto bail;
417 		}
418 		hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
419 	}
420 	if (res) {
421 		hfs_find_exit(&fd);
422 		goto bail_no_root;
423 	}
424 	res = -EINVAL;
425 	root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
426 	hfs_find_exit(&fd);
427 	if (!root_inode)
428 		goto bail_no_root;
429 
430 	sb->s_d_op = &hfs_dentry_operations;
431 	res = -ENOMEM;
432 	sb->s_root = d_make_root(root_inode);
433 	if (!sb->s_root)
434 		goto bail_no_root;
435 
436 	/* everything's okay */
437 	return 0;
438 
439 bail_no_root:
440 	printk(KERN_ERR "hfs: get root inode failed.\n");
441 bail:
442 	hfs_mdb_put(sb);
443 	return res;
444 }
445 
446 static struct dentry *hfs_mount(struct file_system_type *fs_type,
447 		      int flags, const char *dev_name, void *data)
448 {
449 	return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
450 }
451 
452 static struct file_system_type hfs_fs_type = {
453 	.owner		= THIS_MODULE,
454 	.name		= "hfs",
455 	.mount		= hfs_mount,
456 	.kill_sb	= kill_block_super,
457 	.fs_flags	= FS_REQUIRES_DEV,
458 };
459 
460 static void hfs_init_once(void *p)
461 {
462 	struct hfs_inode_info *i = p;
463 
464 	inode_init_once(&i->vfs_inode);
465 }
466 
467 static int __init init_hfs_fs(void)
468 {
469 	int err;
470 
471 	hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
472 		sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
473 		hfs_init_once);
474 	if (!hfs_inode_cachep)
475 		return -ENOMEM;
476 	err = register_filesystem(&hfs_fs_type);
477 	if (err)
478 		kmem_cache_destroy(hfs_inode_cachep);
479 	return err;
480 }
481 
482 static void __exit exit_hfs_fs(void)
483 {
484 	unregister_filesystem(&hfs_fs_type);
485 	kmem_cache_destroy(hfs_inode_cachep);
486 }
487 
488 module_init(init_hfs_fs)
489 module_exit(exit_hfs_fs)
490