1 /* 2 * linux/fs/hfs/super.c 3 * 4 * Copyright (C) 1995-1997 Paul H. Hargrove 5 * (C) 2003 Ardis Technologies <roman@ardistech.com> 6 * This file may be distributed under the terms of the GNU General Public License. 7 * 8 * This file contains hfs_read_super(), some of the super_ops and 9 * init_hfs_fs() and exit_hfs_fs(). The remaining super_ops are in 10 * inode.c since they deal with inodes. 11 * 12 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds 13 */ 14 15 #include <linux/module.h> 16 #include <linux/blkdev.h> 17 #include <linux/backing-dev.h> 18 #include <linux/mount.h> 19 #include <linux/init.h> 20 #include <linux/nls.h> 21 #include <linux/parser.h> 22 #include <linux/seq_file.h> 23 #include <linux/slab.h> 24 #include <linux/vfs.h> 25 26 #include "hfs_fs.h" 27 #include "btree.h" 28 29 static struct kmem_cache *hfs_inode_cachep; 30 31 MODULE_LICENSE("GPL"); 32 33 static int hfs_sync_fs(struct super_block *sb, int wait) 34 { 35 hfs_mdb_commit(sb); 36 return 0; 37 } 38 39 /* 40 * hfs_put_super() 41 * 42 * This is the put_super() entry in the super_operations structure for 43 * HFS filesystems. The purpose is to release the resources 44 * associated with the superblock sb. 45 */ 46 static void hfs_put_super(struct super_block *sb) 47 { 48 cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work); 49 hfs_mdb_close(sb); 50 /* release the MDB's resources */ 51 hfs_mdb_put(sb); 52 } 53 54 static void flush_mdb(struct work_struct *work) 55 { 56 struct hfs_sb_info *sbi; 57 struct super_block *sb; 58 59 sbi = container_of(work, struct hfs_sb_info, mdb_work.work); 60 sb = sbi->sb; 61 62 spin_lock(&sbi->work_lock); 63 sbi->work_queued = 0; 64 spin_unlock(&sbi->work_lock); 65 66 hfs_mdb_commit(sb); 67 } 68 69 void hfs_mark_mdb_dirty(struct super_block *sb) 70 { 71 struct hfs_sb_info *sbi = HFS_SB(sb); 72 unsigned long delay; 73 74 if (sb_rdonly(sb)) 75 return; 76 77 spin_lock(&sbi->work_lock); 78 if (!sbi->work_queued) { 79 delay = msecs_to_jiffies(dirty_writeback_interval * 10); 80 queue_delayed_work(system_long_wq, &sbi->mdb_work, delay); 81 sbi->work_queued = 1; 82 } 83 spin_unlock(&sbi->work_lock); 84 } 85 86 /* 87 * hfs_statfs() 88 * 89 * This is the statfs() entry in the super_operations structure for 90 * HFS filesystems. The purpose is to return various data about the 91 * filesystem. 92 * 93 * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks. 94 */ 95 static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf) 96 { 97 struct super_block *sb = dentry->d_sb; 98 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 99 100 buf->f_type = HFS_SUPER_MAGIC; 101 buf->f_bsize = sb->s_blocksize; 102 buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div; 103 buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div; 104 buf->f_bavail = buf->f_bfree; 105 buf->f_files = HFS_SB(sb)->fs_ablocks; 106 buf->f_ffree = HFS_SB(sb)->free_ablocks; 107 buf->f_fsid.val[0] = (u32)id; 108 buf->f_fsid.val[1] = (u32)(id >> 32); 109 buf->f_namelen = HFS_NAMELEN; 110 111 return 0; 112 } 113 114 static int hfs_remount(struct super_block *sb, int *flags, char *data) 115 { 116 sync_filesystem(sb); 117 *flags |= SB_NODIRATIME; 118 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 119 return 0; 120 if (!(*flags & SB_RDONLY)) { 121 if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) { 122 pr_warn("filesystem was not cleanly unmounted, running fsck.hfs is recommended. leaving read-only.\n"); 123 sb->s_flags |= SB_RDONLY; 124 *flags |= SB_RDONLY; 125 } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) { 126 pr_warn("filesystem is marked locked, leaving read-only.\n"); 127 sb->s_flags |= SB_RDONLY; 128 *flags |= SB_RDONLY; 129 } 130 } 131 return 0; 132 } 133 134 static int hfs_show_options(struct seq_file *seq, struct dentry *root) 135 { 136 struct hfs_sb_info *sbi = HFS_SB(root->d_sb); 137 138 if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f)) 139 seq_show_option_n(seq, "creator", (char *)&sbi->s_creator, 4); 140 if (sbi->s_type != cpu_to_be32(0x3f3f3f3f)) 141 seq_show_option_n(seq, "type", (char *)&sbi->s_type, 4); 142 seq_printf(seq, ",uid=%u,gid=%u", 143 from_kuid_munged(&init_user_ns, sbi->s_uid), 144 from_kgid_munged(&init_user_ns, sbi->s_gid)); 145 if (sbi->s_file_umask != 0133) 146 seq_printf(seq, ",file_umask=%o", sbi->s_file_umask); 147 if (sbi->s_dir_umask != 0022) 148 seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask); 149 if (sbi->part >= 0) 150 seq_printf(seq, ",part=%u", sbi->part); 151 if (sbi->session >= 0) 152 seq_printf(seq, ",session=%u", sbi->session); 153 if (sbi->nls_disk) 154 seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset); 155 if (sbi->nls_io) 156 seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset); 157 if (sbi->s_quiet) 158 seq_printf(seq, ",quiet"); 159 return 0; 160 } 161 162 static struct inode *hfs_alloc_inode(struct super_block *sb) 163 { 164 struct hfs_inode_info *i; 165 166 i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL); 167 return i ? &i->vfs_inode : NULL; 168 } 169 170 static void hfs_free_inode(struct inode *inode) 171 { 172 kmem_cache_free(hfs_inode_cachep, HFS_I(inode)); 173 } 174 175 static const struct super_operations hfs_super_operations = { 176 .alloc_inode = hfs_alloc_inode, 177 .free_inode = hfs_free_inode, 178 .write_inode = hfs_write_inode, 179 .evict_inode = hfs_evict_inode, 180 .put_super = hfs_put_super, 181 .sync_fs = hfs_sync_fs, 182 .statfs = hfs_statfs, 183 .remount_fs = hfs_remount, 184 .show_options = hfs_show_options, 185 }; 186 187 enum { 188 opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask, 189 opt_part, opt_session, opt_type, opt_creator, opt_quiet, 190 opt_codepage, opt_iocharset, 191 opt_err 192 }; 193 194 static const match_table_t tokens = { 195 { opt_uid, "uid=%u" }, 196 { opt_gid, "gid=%u" }, 197 { opt_umask, "umask=%o" }, 198 { opt_file_umask, "file_umask=%o" }, 199 { opt_dir_umask, "dir_umask=%o" }, 200 { opt_part, "part=%u" }, 201 { opt_session, "session=%u" }, 202 { opt_type, "type=%s" }, 203 { opt_creator, "creator=%s" }, 204 { opt_quiet, "quiet" }, 205 { opt_codepage, "codepage=%s" }, 206 { opt_iocharset, "iocharset=%s" }, 207 { opt_err, NULL } 208 }; 209 210 static inline int match_fourchar(substring_t *arg, u32 *result) 211 { 212 if (arg->to - arg->from != 4) 213 return -EINVAL; 214 memcpy(result, arg->from, 4); 215 return 0; 216 } 217 218 /* 219 * parse_options() 220 * 221 * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger 222 * This function is called by hfs_read_super() to parse the mount options. 223 */ 224 static int parse_options(char *options, struct hfs_sb_info *hsb) 225 { 226 char *p; 227 substring_t args[MAX_OPT_ARGS]; 228 int tmp, token; 229 230 /* initialize the sb with defaults */ 231 hsb->s_uid = current_uid(); 232 hsb->s_gid = current_gid(); 233 hsb->s_file_umask = 0133; 234 hsb->s_dir_umask = 0022; 235 hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */ 236 hsb->s_quiet = 0; 237 hsb->part = -1; 238 hsb->session = -1; 239 240 if (!options) 241 return 1; 242 243 while ((p = strsep(&options, ",")) != NULL) { 244 if (!*p) 245 continue; 246 247 token = match_token(p, tokens, args); 248 switch (token) { 249 case opt_uid: 250 if (match_int(&args[0], &tmp)) { 251 pr_err("uid requires an argument\n"); 252 return 0; 253 } 254 hsb->s_uid = make_kuid(current_user_ns(), (uid_t)tmp); 255 if (!uid_valid(hsb->s_uid)) { 256 pr_err("invalid uid %d\n", tmp); 257 return 0; 258 } 259 break; 260 case opt_gid: 261 if (match_int(&args[0], &tmp)) { 262 pr_err("gid requires an argument\n"); 263 return 0; 264 } 265 hsb->s_gid = make_kgid(current_user_ns(), (gid_t)tmp); 266 if (!gid_valid(hsb->s_gid)) { 267 pr_err("invalid gid %d\n", tmp); 268 return 0; 269 } 270 break; 271 case opt_umask: 272 if (match_octal(&args[0], &tmp)) { 273 pr_err("umask requires a value\n"); 274 return 0; 275 } 276 hsb->s_file_umask = (umode_t)tmp; 277 hsb->s_dir_umask = (umode_t)tmp; 278 break; 279 case opt_file_umask: 280 if (match_octal(&args[0], &tmp)) { 281 pr_err("file_umask requires a value\n"); 282 return 0; 283 } 284 hsb->s_file_umask = (umode_t)tmp; 285 break; 286 case opt_dir_umask: 287 if (match_octal(&args[0], &tmp)) { 288 pr_err("dir_umask requires a value\n"); 289 return 0; 290 } 291 hsb->s_dir_umask = (umode_t)tmp; 292 break; 293 case opt_part: 294 if (match_int(&args[0], &hsb->part)) { 295 pr_err("part requires an argument\n"); 296 return 0; 297 } 298 break; 299 case opt_session: 300 if (match_int(&args[0], &hsb->session)) { 301 pr_err("session requires an argument\n"); 302 return 0; 303 } 304 break; 305 case opt_type: 306 if (match_fourchar(&args[0], &hsb->s_type)) { 307 pr_err("type requires a 4 character value\n"); 308 return 0; 309 } 310 break; 311 case opt_creator: 312 if (match_fourchar(&args[0], &hsb->s_creator)) { 313 pr_err("creator requires a 4 character value\n"); 314 return 0; 315 } 316 break; 317 case opt_quiet: 318 hsb->s_quiet = 1; 319 break; 320 case opt_codepage: 321 if (hsb->nls_disk) { 322 pr_err("unable to change codepage\n"); 323 return 0; 324 } 325 p = match_strdup(&args[0]); 326 if (p) 327 hsb->nls_disk = load_nls(p); 328 if (!hsb->nls_disk) { 329 pr_err("unable to load codepage \"%s\"\n", p); 330 kfree(p); 331 return 0; 332 } 333 kfree(p); 334 break; 335 case opt_iocharset: 336 if (hsb->nls_io) { 337 pr_err("unable to change iocharset\n"); 338 return 0; 339 } 340 p = match_strdup(&args[0]); 341 if (p) 342 hsb->nls_io = load_nls(p); 343 if (!hsb->nls_io) { 344 pr_err("unable to load iocharset \"%s\"\n", p); 345 kfree(p); 346 return 0; 347 } 348 kfree(p); 349 break; 350 default: 351 return 0; 352 } 353 } 354 355 if (hsb->nls_disk && !hsb->nls_io) { 356 hsb->nls_io = load_nls_default(); 357 if (!hsb->nls_io) { 358 pr_err("unable to load default iocharset\n"); 359 return 0; 360 } 361 } 362 hsb->s_dir_umask &= 0777; 363 hsb->s_file_umask &= 0577; 364 365 return 1; 366 } 367 368 /* 369 * hfs_read_super() 370 * 371 * This is the function that is responsible for mounting an HFS 372 * filesystem. It performs all the tasks necessary to get enough data 373 * from the disk to read the root inode. This includes parsing the 374 * mount options, dealing with Macintosh partitions, reading the 375 * superblock and the allocation bitmap blocks, calling 376 * hfs_btree_init() to get the necessary data about the extents and 377 * catalog B-trees and, finally, reading the root inode into memory. 378 */ 379 static int hfs_fill_super(struct super_block *sb, void *data, int silent) 380 { 381 struct hfs_sb_info *sbi; 382 struct hfs_find_data fd; 383 hfs_cat_rec rec; 384 struct inode *root_inode; 385 int res; 386 387 sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL); 388 if (!sbi) 389 return -ENOMEM; 390 391 sbi->sb = sb; 392 sb->s_fs_info = sbi; 393 spin_lock_init(&sbi->work_lock); 394 INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb); 395 396 res = -EINVAL; 397 if (!parse_options((char *)data, sbi)) { 398 pr_err("unable to parse mount options\n"); 399 goto bail; 400 } 401 402 sb->s_op = &hfs_super_operations; 403 sb->s_xattr = hfs_xattr_handlers; 404 sb->s_flags |= SB_NODIRATIME; 405 mutex_init(&sbi->bitmap_lock); 406 407 res = hfs_mdb_get(sb); 408 if (res) { 409 if (!silent) 410 pr_warn("can't find a HFS filesystem on dev %s\n", 411 hfs_mdb_name(sb)); 412 res = -EINVAL; 413 goto bail; 414 } 415 416 /* try to get the root inode */ 417 res = hfs_find_init(HFS_SB(sb)->cat_tree, &fd); 418 if (res) 419 goto bail_no_root; 420 res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd); 421 if (!res) { 422 if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) { 423 res = -EIO; 424 goto bail; 425 } 426 hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength); 427 } 428 if (res) { 429 hfs_find_exit(&fd); 430 goto bail_no_root; 431 } 432 res = -EINVAL; 433 root_inode = hfs_iget(sb, &fd.search_key->cat, &rec); 434 hfs_find_exit(&fd); 435 if (!root_inode) 436 goto bail_no_root; 437 438 sb->s_d_op = &hfs_dentry_operations; 439 res = -ENOMEM; 440 sb->s_root = d_make_root(root_inode); 441 if (!sb->s_root) 442 goto bail_no_root; 443 444 /* everything's okay */ 445 return 0; 446 447 bail_no_root: 448 pr_err("get root inode failed\n"); 449 bail: 450 hfs_mdb_put(sb); 451 return res; 452 } 453 454 static struct dentry *hfs_mount(struct file_system_type *fs_type, 455 int flags, const char *dev_name, void *data) 456 { 457 return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super); 458 } 459 460 static struct file_system_type hfs_fs_type = { 461 .owner = THIS_MODULE, 462 .name = "hfs", 463 .mount = hfs_mount, 464 .kill_sb = kill_block_super, 465 .fs_flags = FS_REQUIRES_DEV, 466 }; 467 MODULE_ALIAS_FS("hfs"); 468 469 static void hfs_init_once(void *p) 470 { 471 struct hfs_inode_info *i = p; 472 473 inode_init_once(&i->vfs_inode); 474 } 475 476 static int __init init_hfs_fs(void) 477 { 478 int err; 479 480 hfs_inode_cachep = kmem_cache_create("hfs_inode_cache", 481 sizeof(struct hfs_inode_info), 0, 482 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, hfs_init_once); 483 if (!hfs_inode_cachep) 484 return -ENOMEM; 485 err = register_filesystem(&hfs_fs_type); 486 if (err) 487 kmem_cache_destroy(hfs_inode_cachep); 488 return err; 489 } 490 491 static void __exit exit_hfs_fs(void) 492 { 493 unregister_filesystem(&hfs_fs_type); 494 495 /* 496 * Make sure all delayed rcu free inodes are flushed before we 497 * destroy cache. 498 */ 499 rcu_barrier(); 500 kmem_cache_destroy(hfs_inode_cachep); 501 } 502 503 module_init(init_hfs_fs) 504 module_exit(exit_hfs_fs) 505