xref: /openbmc/linux/fs/hfs/dir.c (revision f03b8ad8)
1 /*
2  *  linux/fs/hfs/dir.c
3  *
4  * Copyright (C) 1995-1997  Paul H. Hargrove
5  * (C) 2003 Ardis Technologies <roman@ardistech.com>
6  * This file may be distributed under the terms of the GNU General Public License.
7  *
8  * This file contains directory-related functions independent of which
9  * scheme is being used to represent forks.
10  *
11  * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
12  */
13 
14 #include "hfs_fs.h"
15 #include "btree.h"
16 
17 /*
18  * hfs_lookup()
19  */
20 static struct dentry *hfs_lookup(struct inode *dir, struct dentry *dentry,
21 				 unsigned int flags)
22 {
23 	hfs_cat_rec rec;
24 	struct hfs_find_data fd;
25 	struct inode *inode = NULL;
26 	int res;
27 
28 	res = hfs_find_init(HFS_SB(dir->i_sb)->cat_tree, &fd);
29 	if (res)
30 		return ERR_PTR(res);
31 	hfs_cat_build_key(dir->i_sb, fd.search_key, dir->i_ino, &dentry->d_name);
32 	res = hfs_brec_read(&fd, &rec, sizeof(rec));
33 	if (res) {
34 		hfs_find_exit(&fd);
35 		if (res == -ENOENT) {
36 			/* No such entry */
37 			inode = NULL;
38 			goto done;
39 		}
40 		return ERR_PTR(res);
41 	}
42 	inode = hfs_iget(dir->i_sb, &fd.search_key->cat, &rec);
43 	hfs_find_exit(&fd);
44 	if (!inode)
45 		return ERR_PTR(-EACCES);
46 done:
47 	d_add(dentry, inode);
48 	return NULL;
49 }
50 
51 /*
52  * hfs_readdir
53  */
54 static int hfs_readdir(struct file *file, struct dir_context *ctx)
55 {
56 	struct inode *inode = file_inode(file);
57 	struct super_block *sb = inode->i_sb;
58 	int len, err;
59 	char strbuf[HFS_MAX_NAMELEN];
60 	union hfs_cat_rec entry;
61 	struct hfs_find_data fd;
62 	struct hfs_readdir_data *rd;
63 	u16 type;
64 
65 	if (ctx->pos >= inode->i_size)
66 		return 0;
67 
68 	err = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
69 	if (err)
70 		return err;
71 	hfs_cat_build_key(sb, fd.search_key, inode->i_ino, NULL);
72 	err = hfs_brec_find(&fd);
73 	if (err)
74 		goto out;
75 
76 	if (ctx->pos == 0) {
77 		/* This is completely artificial... */
78 		if (!dir_emit_dot(file, ctx))
79 			goto out;
80 		ctx->pos = 1;
81 	}
82 	if (ctx->pos == 1) {
83 		if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) {
84 			err = -EIO;
85 			goto out;
86 		}
87 
88 		hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, fd.entrylength);
89 		if (entry.type != HFS_CDR_THD) {
90 			pr_err("bad catalog folder thread\n");
91 			err = -EIO;
92 			goto out;
93 		}
94 		//if (fd.entrylength < HFS_MIN_THREAD_SZ) {
95 		//	pr_err("truncated catalog thread\n");
96 		//	err = -EIO;
97 		//	goto out;
98 		//}
99 		if (!dir_emit(ctx, "..", 2,
100 			    be32_to_cpu(entry.thread.ParID), DT_DIR))
101 			goto out;
102 		ctx->pos = 2;
103 	}
104 	if (ctx->pos >= inode->i_size)
105 		goto out;
106 	err = hfs_brec_goto(&fd, ctx->pos - 1);
107 	if (err)
108 		goto out;
109 
110 	for (;;) {
111 		if (be32_to_cpu(fd.key->cat.ParID) != inode->i_ino) {
112 			pr_err("walked past end of dir\n");
113 			err = -EIO;
114 			goto out;
115 		}
116 
117 		if (fd.entrylength > sizeof(entry) || fd.entrylength < 0) {
118 			err = -EIO;
119 			goto out;
120 		}
121 
122 		hfs_bnode_read(fd.bnode, &entry, fd.entryoffset, fd.entrylength);
123 		type = entry.type;
124 		len = hfs_mac2asc(sb, strbuf, &fd.key->cat.CName);
125 		if (type == HFS_CDR_DIR) {
126 			if (fd.entrylength < sizeof(struct hfs_cat_dir)) {
127 				pr_err("small dir entry\n");
128 				err = -EIO;
129 				goto out;
130 			}
131 			if (!dir_emit(ctx, strbuf, len,
132 				    be32_to_cpu(entry.dir.DirID), DT_DIR))
133 				break;
134 		} else if (type == HFS_CDR_FIL) {
135 			if (fd.entrylength < sizeof(struct hfs_cat_file)) {
136 				pr_err("small file entry\n");
137 				err = -EIO;
138 				goto out;
139 			}
140 			if (!dir_emit(ctx, strbuf, len,
141 				    be32_to_cpu(entry.file.FlNum), DT_REG))
142 				break;
143 		} else {
144 			pr_err("bad catalog entry type %d\n", type);
145 			err = -EIO;
146 			goto out;
147 		}
148 		ctx->pos++;
149 		if (ctx->pos >= inode->i_size)
150 			goto out;
151 		err = hfs_brec_goto(&fd, 1);
152 		if (err)
153 			goto out;
154 	}
155 	rd = file->private_data;
156 	if (!rd) {
157 		rd = kmalloc(sizeof(struct hfs_readdir_data), GFP_KERNEL);
158 		if (!rd) {
159 			err = -ENOMEM;
160 			goto out;
161 		}
162 		file->private_data = rd;
163 		rd->file = file;
164 		spin_lock(&HFS_I(inode)->open_dir_lock);
165 		list_add(&rd->list, &HFS_I(inode)->open_dir_list);
166 		spin_unlock(&HFS_I(inode)->open_dir_lock);
167 	}
168 	/*
169 	 * Can be done after the list insertion; exclusion with
170 	 * hfs_delete_cat() is provided by directory lock.
171 	 */
172 	memcpy(&rd->key, &fd.key, sizeof(struct hfs_cat_key));
173 out:
174 	hfs_find_exit(&fd);
175 	return err;
176 }
177 
178 static int hfs_dir_release(struct inode *inode, struct file *file)
179 {
180 	struct hfs_readdir_data *rd = file->private_data;
181 	if (rd) {
182 		spin_lock(&HFS_I(inode)->open_dir_lock);
183 		list_del(&rd->list);
184 		spin_unlock(&HFS_I(inode)->open_dir_lock);
185 		kfree(rd);
186 	}
187 	return 0;
188 }
189 
190 /*
191  * hfs_create()
192  *
193  * This is the create() entry in the inode_operations structure for
194  * regular HFS directories.  The purpose is to create a new file in
195  * a directory and return a corresponding inode, given the inode for
196  * the directory and the name (and its length) of the new file.
197  */
198 static int hfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
199 		      bool excl)
200 {
201 	struct inode *inode;
202 	int res;
203 
204 	inode = hfs_new_inode(dir, &dentry->d_name, mode);
205 	if (!inode)
206 		return -ENOMEM;
207 
208 	res = hfs_cat_create(inode->i_ino, dir, &dentry->d_name, inode);
209 	if (res) {
210 		clear_nlink(inode);
211 		hfs_delete_inode(inode);
212 		iput(inode);
213 		return res;
214 	}
215 	d_instantiate(dentry, inode);
216 	mark_inode_dirty(inode);
217 	return 0;
218 }
219 
220 /*
221  * hfs_mkdir()
222  *
223  * This is the mkdir() entry in the inode_operations structure for
224  * regular HFS directories.  The purpose is to create a new directory
225  * in a directory, given the inode for the parent directory and the
226  * name (and its length) of the new directory.
227  */
228 static int hfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
229 {
230 	struct inode *inode;
231 	int res;
232 
233 	inode = hfs_new_inode(dir, &dentry->d_name, S_IFDIR | mode);
234 	if (!inode)
235 		return -ENOMEM;
236 
237 	res = hfs_cat_create(inode->i_ino, dir, &dentry->d_name, inode);
238 	if (res) {
239 		clear_nlink(inode);
240 		hfs_delete_inode(inode);
241 		iput(inode);
242 		return res;
243 	}
244 	d_instantiate(dentry, inode);
245 	mark_inode_dirty(inode);
246 	return 0;
247 }
248 
249 /*
250  * hfs_remove()
251  *
252  * This serves as both unlink() and rmdir() in the inode_operations
253  * structure for regular HFS directories.  The purpose is to delete
254  * an existing child, given the inode for the parent directory and
255  * the name (and its length) of the existing directory.
256  *
257  * HFS does not have hardlinks, so both rmdir and unlink set the
258  * link count to 0.  The only difference is the emptiness check.
259  */
260 static int hfs_remove(struct inode *dir, struct dentry *dentry)
261 {
262 	struct inode *inode = d_inode(dentry);
263 	int res;
264 
265 	if (S_ISDIR(inode->i_mode) && inode->i_size != 2)
266 		return -ENOTEMPTY;
267 	res = hfs_cat_delete(inode->i_ino, dir, &dentry->d_name);
268 	if (res)
269 		return res;
270 	clear_nlink(inode);
271 	inode->i_ctime = CURRENT_TIME_SEC;
272 	hfs_delete_inode(inode);
273 	mark_inode_dirty(inode);
274 	return 0;
275 }
276 
277 /*
278  * hfs_rename()
279  *
280  * This is the rename() entry in the inode_operations structure for
281  * regular HFS directories.  The purpose is to rename an existing
282  * file or directory, given the inode for the current directory and
283  * the name (and its length) of the existing file/directory and the
284  * inode for the new directory and the name (and its length) of the
285  * new file/directory.
286  * XXX: how do you handle must_be dir?
287  */
288 static int hfs_rename(struct inode *old_dir, struct dentry *old_dentry,
289 		      struct inode *new_dir, struct dentry *new_dentry,
290 		      unsigned int flags)
291 {
292 	int res;
293 
294 	if (flags & ~RENAME_NOREPLACE)
295 		return -EINVAL;
296 
297 	/* Unlink destination if it already exists */
298 	if (d_really_is_positive(new_dentry)) {
299 		res = hfs_remove(new_dir, new_dentry);
300 		if (res)
301 			return res;
302 	}
303 
304 	res = hfs_cat_move(d_inode(old_dentry)->i_ino,
305 			   old_dir, &old_dentry->d_name,
306 			   new_dir, &new_dentry->d_name);
307 	if (!res)
308 		hfs_cat_build_key(old_dir->i_sb,
309 				  (btree_key *)&HFS_I(d_inode(old_dentry))->cat_key,
310 				  new_dir->i_ino, &new_dentry->d_name);
311 	return res;
312 }
313 
314 const struct file_operations hfs_dir_operations = {
315 	.read		= generic_read_dir,
316 	.iterate_shared	= hfs_readdir,
317 	.llseek		= generic_file_llseek,
318 	.release	= hfs_dir_release,
319 };
320 
321 const struct inode_operations hfs_dir_inode_operations = {
322 	.create		= hfs_create,
323 	.lookup		= hfs_lookup,
324 	.unlink		= hfs_remove,
325 	.mkdir		= hfs_mkdir,
326 	.rmdir		= hfs_remove,
327 	.rename2	= hfs_rename,
328 	.setattr	= hfs_inode_setattr,
329 };
330