xref: /openbmc/linux/fs/hfs/btree.c (revision 6a108a14)
1 /*
2  *  linux/fs/hfs/btree.c
3  *
4  * Copyright (C) 2001
5  * Brad Boyer (flar@allandria.com)
6  * (C) 2003 Ardis Technologies <roman@ardistech.com>
7  *
8  * Handle opening/closing btree
9  */
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/log2.h>
14 
15 #include "btree.h"
16 
17 /* Get a reference to a B*Tree and do some initial checks */
18 struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id, btree_keycmp keycmp)
19 {
20 	struct hfs_btree *tree;
21 	struct hfs_btree_header_rec *head;
22 	struct address_space *mapping;
23 	struct page *page;
24 	unsigned int size;
25 
26 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
27 	if (!tree)
28 		return NULL;
29 
30 	mutex_init(&tree->tree_lock);
31 	spin_lock_init(&tree->hash_lock);
32 	/* Set the correct compare function */
33 	tree->sb = sb;
34 	tree->cnid = id;
35 	tree->keycmp = keycmp;
36 
37 	tree->inode = iget_locked(sb, id);
38 	if (!tree->inode)
39 		goto free_tree;
40 	BUG_ON(!(tree->inode->i_state & I_NEW));
41 	{
42 	struct hfs_mdb *mdb = HFS_SB(sb)->mdb;
43 	HFS_I(tree->inode)->flags = 0;
44 	mutex_init(&HFS_I(tree->inode)->extents_lock);
45 	switch (id) {
46 	case HFS_EXT_CNID:
47 		hfs_inode_read_fork(tree->inode, mdb->drXTExtRec, mdb->drXTFlSize,
48 				    mdb->drXTFlSize, be32_to_cpu(mdb->drXTClpSiz));
49 		tree->inode->i_mapping->a_ops = &hfs_btree_aops;
50 		break;
51 	case HFS_CAT_CNID:
52 		hfs_inode_read_fork(tree->inode, mdb->drCTExtRec, mdb->drCTFlSize,
53 				    mdb->drCTFlSize, be32_to_cpu(mdb->drCTClpSiz));
54 		tree->inode->i_mapping->a_ops = &hfs_btree_aops;
55 		break;
56 	default:
57 		BUG();
58 	}
59 	}
60 	unlock_new_inode(tree->inode);
61 
62 	if (!HFS_I(tree->inode)->first_blocks) {
63 		printk(KERN_ERR "hfs: invalid btree extent records (0 size).\n");
64 		goto free_inode;
65 	}
66 
67 	mapping = tree->inode->i_mapping;
68 	page = read_mapping_page(mapping, 0, NULL);
69 	if (IS_ERR(page))
70 		goto free_inode;
71 
72 	/* Load the header */
73 	head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
74 	tree->root = be32_to_cpu(head->root);
75 	tree->leaf_count = be32_to_cpu(head->leaf_count);
76 	tree->leaf_head = be32_to_cpu(head->leaf_head);
77 	tree->leaf_tail = be32_to_cpu(head->leaf_tail);
78 	tree->node_count = be32_to_cpu(head->node_count);
79 	tree->free_nodes = be32_to_cpu(head->free_nodes);
80 	tree->attributes = be32_to_cpu(head->attributes);
81 	tree->node_size = be16_to_cpu(head->node_size);
82 	tree->max_key_len = be16_to_cpu(head->max_key_len);
83 	tree->depth = be16_to_cpu(head->depth);
84 
85 	size = tree->node_size;
86 	if (!is_power_of_2(size))
87 		goto fail_page;
88 	if (!tree->node_count)
89 		goto fail_page;
90 	switch (id) {
91 	case HFS_EXT_CNID:
92 		if (tree->max_key_len != HFS_MAX_EXT_KEYLEN) {
93 			printk(KERN_ERR "hfs: invalid extent max_key_len %d\n",
94 				tree->max_key_len);
95 			goto fail_page;
96 		}
97 		break;
98 	case HFS_CAT_CNID:
99 		if (tree->max_key_len != HFS_MAX_CAT_KEYLEN) {
100 			printk(KERN_ERR "hfs: invalid catalog max_key_len %d\n",
101 				tree->max_key_len);
102 			goto fail_page;
103 		}
104 		break;
105 	default:
106 		BUG();
107 	}
108 
109 	tree->node_size_shift = ffs(size) - 1;
110 	tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
111 
112 	kunmap(page);
113 	page_cache_release(page);
114 	return tree;
115 
116 fail_page:
117 	page_cache_release(page);
118 free_inode:
119 	tree->inode->i_mapping->a_ops = &hfs_aops;
120 	iput(tree->inode);
121 free_tree:
122 	kfree(tree);
123 	return NULL;
124 }
125 
126 /* Release resources used by a btree */
127 void hfs_btree_close(struct hfs_btree *tree)
128 {
129 	struct hfs_bnode *node;
130 	int i;
131 
132 	if (!tree)
133 		return;
134 
135 	for (i = 0; i < NODE_HASH_SIZE; i++) {
136 		while ((node = tree->node_hash[i])) {
137 			tree->node_hash[i] = node->next_hash;
138 			if (atomic_read(&node->refcnt))
139 				printk(KERN_ERR "hfs: node %d:%d still has %d user(s)!\n",
140 					node->tree->cnid, node->this, atomic_read(&node->refcnt));
141 			hfs_bnode_free(node);
142 			tree->node_hash_cnt--;
143 		}
144 	}
145 	iput(tree->inode);
146 	kfree(tree);
147 }
148 
149 void hfs_btree_write(struct hfs_btree *tree)
150 {
151 	struct hfs_btree_header_rec *head;
152 	struct hfs_bnode *node;
153 	struct page *page;
154 
155 	node = hfs_bnode_find(tree, 0);
156 	if (IS_ERR(node))
157 		/* panic? */
158 		return;
159 	/* Load the header */
160 	page = node->page[0];
161 	head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
162 
163 	head->root = cpu_to_be32(tree->root);
164 	head->leaf_count = cpu_to_be32(tree->leaf_count);
165 	head->leaf_head = cpu_to_be32(tree->leaf_head);
166 	head->leaf_tail = cpu_to_be32(tree->leaf_tail);
167 	head->node_count = cpu_to_be32(tree->node_count);
168 	head->free_nodes = cpu_to_be32(tree->free_nodes);
169 	head->attributes = cpu_to_be32(tree->attributes);
170 	head->depth = cpu_to_be16(tree->depth);
171 
172 	kunmap(page);
173 	set_page_dirty(page);
174 	hfs_bnode_put(node);
175 }
176 
177 static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
178 {
179 	struct hfs_btree *tree = prev->tree;
180 	struct hfs_bnode *node;
181 	struct hfs_bnode_desc desc;
182 	__be32 cnid;
183 
184 	node = hfs_bnode_create(tree, idx);
185 	if (IS_ERR(node))
186 		return node;
187 
188 	if (!tree->free_nodes)
189 		panic("FIXME!!!");
190 	tree->free_nodes--;
191 	prev->next = idx;
192 	cnid = cpu_to_be32(idx);
193 	hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
194 
195 	node->type = HFS_NODE_MAP;
196 	node->num_recs = 1;
197 	hfs_bnode_clear(node, 0, tree->node_size);
198 	desc.next = 0;
199 	desc.prev = 0;
200 	desc.type = HFS_NODE_MAP;
201 	desc.height = 0;
202 	desc.num_recs = cpu_to_be16(1);
203 	desc.reserved = 0;
204 	hfs_bnode_write(node, &desc, 0, sizeof(desc));
205 	hfs_bnode_write_u16(node, 14, 0x8000);
206 	hfs_bnode_write_u16(node, tree->node_size - 2, 14);
207 	hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
208 
209 	return node;
210 }
211 
212 struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
213 {
214 	struct hfs_bnode *node, *next_node;
215 	struct page **pagep;
216 	u32 nidx, idx;
217 	unsigned off;
218 	u16 off16;
219 	u16 len;
220 	u8 *data, byte, m;
221 	int i;
222 
223 	while (!tree->free_nodes) {
224 		struct inode *inode = tree->inode;
225 		u32 count;
226 		int res;
227 
228 		res = hfs_extend_file(inode);
229 		if (res)
230 			return ERR_PTR(res);
231 		HFS_I(inode)->phys_size = inode->i_size =
232 				(loff_t)HFS_I(inode)->alloc_blocks *
233 				HFS_SB(tree->sb)->alloc_blksz;
234 		HFS_I(inode)->fs_blocks = inode->i_size >>
235 					  tree->sb->s_blocksize_bits;
236 		inode_set_bytes(inode, inode->i_size);
237 		count = inode->i_size >> tree->node_size_shift;
238 		tree->free_nodes = count - tree->node_count;
239 		tree->node_count = count;
240 	}
241 
242 	nidx = 0;
243 	node = hfs_bnode_find(tree, nidx);
244 	if (IS_ERR(node))
245 		return node;
246 	len = hfs_brec_lenoff(node, 2, &off16);
247 	off = off16;
248 
249 	off += node->page_offset;
250 	pagep = node->page + (off >> PAGE_CACHE_SHIFT);
251 	data = kmap(*pagep);
252 	off &= ~PAGE_CACHE_MASK;
253 	idx = 0;
254 
255 	for (;;) {
256 		while (len) {
257 			byte = data[off];
258 			if (byte != 0xff) {
259 				for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
260 					if (!(byte & m)) {
261 						idx += i;
262 						data[off] |= m;
263 						set_page_dirty(*pagep);
264 						kunmap(*pagep);
265 						tree->free_nodes--;
266 						mark_inode_dirty(tree->inode);
267 						hfs_bnode_put(node);
268 						return hfs_bnode_create(tree, idx);
269 					}
270 				}
271 			}
272 			if (++off >= PAGE_CACHE_SIZE) {
273 				kunmap(*pagep);
274 				data = kmap(*++pagep);
275 				off = 0;
276 			}
277 			idx += 8;
278 			len--;
279 		}
280 		kunmap(*pagep);
281 		nidx = node->next;
282 		if (!nidx) {
283 			printk(KERN_DEBUG "hfs: create new bmap node...\n");
284 			next_node = hfs_bmap_new_bmap(node, idx);
285 		} else
286 			next_node = hfs_bnode_find(tree, nidx);
287 		hfs_bnode_put(node);
288 		if (IS_ERR(next_node))
289 			return next_node;
290 		node = next_node;
291 
292 		len = hfs_brec_lenoff(node, 0, &off16);
293 		off = off16;
294 		off += node->page_offset;
295 		pagep = node->page + (off >> PAGE_CACHE_SHIFT);
296 		data = kmap(*pagep);
297 		off &= ~PAGE_CACHE_MASK;
298 	}
299 }
300 
301 void hfs_bmap_free(struct hfs_bnode *node)
302 {
303 	struct hfs_btree *tree;
304 	struct page *page;
305 	u16 off, len;
306 	u32 nidx;
307 	u8 *data, byte, m;
308 
309 	dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
310 	tree = node->tree;
311 	nidx = node->this;
312 	node = hfs_bnode_find(tree, 0);
313 	if (IS_ERR(node))
314 		return;
315 	len = hfs_brec_lenoff(node, 2, &off);
316 	while (nidx >= len * 8) {
317 		u32 i;
318 
319 		nidx -= len * 8;
320 		i = node->next;
321 		hfs_bnode_put(node);
322 		if (!i) {
323 			/* panic */;
324 			printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
325 			return;
326 		}
327 		node = hfs_bnode_find(tree, i);
328 		if (IS_ERR(node))
329 			return;
330 		if (node->type != HFS_NODE_MAP) {
331 			/* panic */;
332 			printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
333 			hfs_bnode_put(node);
334 			return;
335 		}
336 		len = hfs_brec_lenoff(node, 0, &off);
337 	}
338 	off += node->page_offset + nidx / 8;
339 	page = node->page[off >> PAGE_CACHE_SHIFT];
340 	data = kmap(page);
341 	off &= ~PAGE_CACHE_MASK;
342 	m = 1 << (~nidx & 7);
343 	byte = data[off];
344 	if (!(byte & m)) {
345 		printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
346 		kunmap(page);
347 		hfs_bnode_put(node);
348 		return;
349 	}
350 	data[off] = byte & ~m;
351 	set_page_dirty(page);
352 	kunmap(page);
353 	hfs_bnode_put(node);
354 	tree->free_nodes++;
355 	mark_inode_dirty(tree->inode);
356 }
357