xref: /openbmc/linux/fs/hfs/btree.c (revision 643d1f7f)
1 /*
2  *  linux/fs/hfs/btree.c
3  *
4  * Copyright (C) 2001
5  * Brad Boyer (flar@allandria.com)
6  * (C) 2003 Ardis Technologies <roman@ardistech.com>
7  *
8  * Handle opening/closing btree
9  */
10 
11 #include <linux/pagemap.h>
12 #include <linux/log2.h>
13 
14 #include "btree.h"
15 
16 /* Get a reference to a B*Tree and do some initial checks */
17 struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id, btree_keycmp keycmp)
18 {
19 	struct hfs_btree *tree;
20 	struct hfs_btree_header_rec *head;
21 	struct address_space *mapping;
22 	struct page *page;
23 	unsigned int size;
24 
25 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
26 	if (!tree)
27 		return NULL;
28 
29 	init_MUTEX(&tree->tree_lock);
30 	spin_lock_init(&tree->hash_lock);
31 	/* Set the correct compare function */
32 	tree->sb = sb;
33 	tree->cnid = id;
34 	tree->keycmp = keycmp;
35 
36 	tree->inode = iget_locked(sb, id);
37 	if (!tree->inode)
38 		goto free_tree;
39 	BUG_ON(!(tree->inode->i_state & I_NEW));
40 	{
41 	struct hfs_mdb *mdb = HFS_SB(sb)->mdb;
42 	HFS_I(tree->inode)->flags = 0;
43 	init_MUTEX(&HFS_I(tree->inode)->extents_lock);
44 	switch (id) {
45 	case HFS_EXT_CNID:
46 		hfs_inode_read_fork(tree->inode, mdb->drXTExtRec, mdb->drXTFlSize,
47 				    mdb->drXTFlSize, be32_to_cpu(mdb->drXTClpSiz));
48 		tree->inode->i_mapping->a_ops = &hfs_btree_aops;
49 		break;
50 	case HFS_CAT_CNID:
51 		hfs_inode_read_fork(tree->inode, mdb->drCTExtRec, mdb->drCTFlSize,
52 				    mdb->drCTFlSize, be32_to_cpu(mdb->drCTClpSiz));
53 		tree->inode->i_mapping->a_ops = &hfs_btree_aops;
54 		break;
55 	default:
56 		BUG();
57 	}
58 	}
59 	unlock_new_inode(tree->inode);
60 
61 	mapping = tree->inode->i_mapping;
62 	page = read_mapping_page(mapping, 0, NULL);
63 	if (IS_ERR(page))
64 		goto free_inode;
65 
66 	/* Load the header */
67 	head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
68 	tree->root = be32_to_cpu(head->root);
69 	tree->leaf_count = be32_to_cpu(head->leaf_count);
70 	tree->leaf_head = be32_to_cpu(head->leaf_head);
71 	tree->leaf_tail = be32_to_cpu(head->leaf_tail);
72 	tree->node_count = be32_to_cpu(head->node_count);
73 	tree->free_nodes = be32_to_cpu(head->free_nodes);
74 	tree->attributes = be32_to_cpu(head->attributes);
75 	tree->node_size = be16_to_cpu(head->node_size);
76 	tree->max_key_len = be16_to_cpu(head->max_key_len);
77 	tree->depth = be16_to_cpu(head->depth);
78 
79 	size = tree->node_size;
80 	if (!is_power_of_2(size))
81 		goto fail_page;
82 	if (!tree->node_count)
83 		goto fail_page;
84 	if ((id == HFS_EXT_CNID) && (tree->max_key_len != HFS_MAX_EXT_KEYLEN)) {
85 		printk(KERN_ERR "hfs: invalid extent max_key_len %d\n",
86 			tree->max_key_len);
87 		goto fail_page;
88 	}
89 	if ((id == HFS_CAT_CNID) && (tree->max_key_len != HFS_MAX_CAT_KEYLEN)) {
90 		printk(KERN_ERR "hfs: invalid catalog max_key_len %d\n",
91 			tree->max_key_len);
92 		goto fail_page;
93 	}
94 
95 	tree->node_size_shift = ffs(size) - 1;
96 	tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
97 
98 	kunmap(page);
99 	page_cache_release(page);
100 	return tree;
101 
102 fail_page:
103 	page_cache_release(page);
104 free_inode:
105 	tree->inode->i_mapping->a_ops = &hfs_aops;
106 	iput(tree->inode);
107 free_tree:
108 	kfree(tree);
109 	return NULL;
110 }
111 
112 /* Release resources used by a btree */
113 void hfs_btree_close(struct hfs_btree *tree)
114 {
115 	struct hfs_bnode *node;
116 	int i;
117 
118 	if (!tree)
119 		return;
120 
121 	for (i = 0; i < NODE_HASH_SIZE; i++) {
122 		while ((node = tree->node_hash[i])) {
123 			tree->node_hash[i] = node->next_hash;
124 			if (atomic_read(&node->refcnt))
125 				printk(KERN_ERR "hfs: node %d:%d still has %d user(s)!\n",
126 					node->tree->cnid, node->this, atomic_read(&node->refcnt));
127 			hfs_bnode_free(node);
128 			tree->node_hash_cnt--;
129 		}
130 	}
131 	iput(tree->inode);
132 	kfree(tree);
133 }
134 
135 void hfs_btree_write(struct hfs_btree *tree)
136 {
137 	struct hfs_btree_header_rec *head;
138 	struct hfs_bnode *node;
139 	struct page *page;
140 
141 	node = hfs_bnode_find(tree, 0);
142 	if (IS_ERR(node))
143 		/* panic? */
144 		return;
145 	/* Load the header */
146 	page = node->page[0];
147 	head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
148 
149 	head->root = cpu_to_be32(tree->root);
150 	head->leaf_count = cpu_to_be32(tree->leaf_count);
151 	head->leaf_head = cpu_to_be32(tree->leaf_head);
152 	head->leaf_tail = cpu_to_be32(tree->leaf_tail);
153 	head->node_count = cpu_to_be32(tree->node_count);
154 	head->free_nodes = cpu_to_be32(tree->free_nodes);
155 	head->attributes = cpu_to_be32(tree->attributes);
156 	head->depth = cpu_to_be16(tree->depth);
157 
158 	kunmap(page);
159 	set_page_dirty(page);
160 	hfs_bnode_put(node);
161 }
162 
163 static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
164 {
165 	struct hfs_btree *tree = prev->tree;
166 	struct hfs_bnode *node;
167 	struct hfs_bnode_desc desc;
168 	__be32 cnid;
169 
170 	node = hfs_bnode_create(tree, idx);
171 	if (IS_ERR(node))
172 		return node;
173 
174 	if (!tree->free_nodes)
175 		panic("FIXME!!!");
176 	tree->free_nodes--;
177 	prev->next = idx;
178 	cnid = cpu_to_be32(idx);
179 	hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
180 
181 	node->type = HFS_NODE_MAP;
182 	node->num_recs = 1;
183 	hfs_bnode_clear(node, 0, tree->node_size);
184 	desc.next = 0;
185 	desc.prev = 0;
186 	desc.type = HFS_NODE_MAP;
187 	desc.height = 0;
188 	desc.num_recs = cpu_to_be16(1);
189 	desc.reserved = 0;
190 	hfs_bnode_write(node, &desc, 0, sizeof(desc));
191 	hfs_bnode_write_u16(node, 14, 0x8000);
192 	hfs_bnode_write_u16(node, tree->node_size - 2, 14);
193 	hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
194 
195 	return node;
196 }
197 
198 struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
199 {
200 	struct hfs_bnode *node, *next_node;
201 	struct page **pagep;
202 	u32 nidx, idx;
203 	u16 off, len;
204 	u8 *data, byte, m;
205 	int i;
206 
207 	while (!tree->free_nodes) {
208 		struct inode *inode = tree->inode;
209 		u32 count;
210 		int res;
211 
212 		res = hfs_extend_file(inode);
213 		if (res)
214 			return ERR_PTR(res);
215 		HFS_I(inode)->phys_size = inode->i_size =
216 				(loff_t)HFS_I(inode)->alloc_blocks *
217 				HFS_SB(tree->sb)->alloc_blksz;
218 		HFS_I(inode)->fs_blocks = inode->i_size >>
219 					  tree->sb->s_blocksize_bits;
220 		inode_set_bytes(inode, inode->i_size);
221 		count = inode->i_size >> tree->node_size_shift;
222 		tree->free_nodes = count - tree->node_count;
223 		tree->node_count = count;
224 	}
225 
226 	nidx = 0;
227 	node = hfs_bnode_find(tree, nidx);
228 	if (IS_ERR(node))
229 		return node;
230 	len = hfs_brec_lenoff(node, 2, &off);
231 
232 	off += node->page_offset;
233 	pagep = node->page + (off >> PAGE_CACHE_SHIFT);
234 	data = kmap(*pagep);
235 	off &= ~PAGE_CACHE_MASK;
236 	idx = 0;
237 
238 	for (;;) {
239 		while (len) {
240 			byte = data[off];
241 			if (byte != 0xff) {
242 				for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
243 					if (!(byte & m)) {
244 						idx += i;
245 						data[off] |= m;
246 						set_page_dirty(*pagep);
247 						kunmap(*pagep);
248 						tree->free_nodes--;
249 						mark_inode_dirty(tree->inode);
250 						hfs_bnode_put(node);
251 						return hfs_bnode_create(tree, idx);
252 					}
253 				}
254 			}
255 			if (++off >= PAGE_CACHE_SIZE) {
256 				kunmap(*pagep);
257 				data = kmap(*++pagep);
258 				off = 0;
259 			}
260 			idx += 8;
261 			len--;
262 		}
263 		kunmap(*pagep);
264 		nidx = node->next;
265 		if (!nidx) {
266 			printk(KERN_DEBUG "hfs: create new bmap node...\n");
267 			next_node = hfs_bmap_new_bmap(node, idx);
268 		} else
269 			next_node = hfs_bnode_find(tree, nidx);
270 		hfs_bnode_put(node);
271 		if (IS_ERR(next_node))
272 			return next_node;
273 		node = next_node;
274 
275 		len = hfs_brec_lenoff(node, 0, &off);
276 		off += node->page_offset;
277 		pagep = node->page + (off >> PAGE_CACHE_SHIFT);
278 		data = kmap(*pagep);
279 		off &= ~PAGE_CACHE_MASK;
280 	}
281 }
282 
283 void hfs_bmap_free(struct hfs_bnode *node)
284 {
285 	struct hfs_btree *tree;
286 	struct page *page;
287 	u16 off, len;
288 	u32 nidx;
289 	u8 *data, byte, m;
290 
291 	dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
292 	tree = node->tree;
293 	nidx = node->this;
294 	node = hfs_bnode_find(tree, 0);
295 	if (IS_ERR(node))
296 		return;
297 	len = hfs_brec_lenoff(node, 2, &off);
298 	while (nidx >= len * 8) {
299 		u32 i;
300 
301 		nidx -= len * 8;
302 		i = node->next;
303 		hfs_bnode_put(node);
304 		if (!i) {
305 			/* panic */;
306 			printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
307 			return;
308 		}
309 		node = hfs_bnode_find(tree, i);
310 		if (IS_ERR(node))
311 			return;
312 		if (node->type != HFS_NODE_MAP) {
313 			/* panic */;
314 			printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
315 			hfs_bnode_put(node);
316 			return;
317 		}
318 		len = hfs_brec_lenoff(node, 0, &off);
319 	}
320 	off += node->page_offset + nidx / 8;
321 	page = node->page[off >> PAGE_CACHE_SHIFT];
322 	data = kmap(page);
323 	off &= ~PAGE_CACHE_MASK;
324 	m = 1 << (~nidx & 7);
325 	byte = data[off];
326 	if (!(byte & m)) {
327 		printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
328 		kunmap(page);
329 		hfs_bnode_put(node);
330 		return;
331 	}
332 	data[off] = byte & ~m;
333 	set_page_dirty(page);
334 	kunmap(page);
335 	hfs_bnode_put(node);
336 	tree->free_nodes++;
337 	mark_inode_dirty(tree->inode);
338 }
339