1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/hfs/bnode.c 4 * 5 * Copyright (C) 2001 6 * Brad Boyer (flar@allandria.com) 7 * (C) 2003 Ardis Technologies <roman@ardistech.com> 8 * 9 * Handle basic btree node operations 10 */ 11 12 #include <linux/pagemap.h> 13 #include <linux/slab.h> 14 #include <linux/swap.h> 15 16 #include "btree.h" 17 18 void hfs_bnode_read(struct hfs_bnode *node, void *buf, 19 int off, int len) 20 { 21 struct page *page; 22 23 off += node->page_offset; 24 page = node->page[0]; 25 26 memcpy(buf, kmap(page) + off, len); 27 kunmap(page); 28 } 29 30 u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off) 31 { 32 __be16 data; 33 // optimize later... 34 hfs_bnode_read(node, &data, off, 2); 35 return be16_to_cpu(data); 36 } 37 38 u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off) 39 { 40 u8 data; 41 // optimize later... 42 hfs_bnode_read(node, &data, off, 1); 43 return data; 44 } 45 46 void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off) 47 { 48 struct hfs_btree *tree; 49 int key_len; 50 51 tree = node->tree; 52 if (node->type == HFS_NODE_LEAF || 53 tree->attributes & HFS_TREE_VARIDXKEYS) 54 key_len = hfs_bnode_read_u8(node, off) + 1; 55 else 56 key_len = tree->max_key_len + 1; 57 58 hfs_bnode_read(node, key, off, key_len); 59 } 60 61 void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len) 62 { 63 struct page *page; 64 65 off += node->page_offset; 66 page = node->page[0]; 67 68 memcpy(kmap(page) + off, buf, len); 69 kunmap(page); 70 set_page_dirty(page); 71 } 72 73 void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data) 74 { 75 __be16 v = cpu_to_be16(data); 76 // optimize later... 77 hfs_bnode_write(node, &v, off, 2); 78 } 79 80 void hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data) 81 { 82 // optimize later... 83 hfs_bnode_write(node, &data, off, 1); 84 } 85 86 void hfs_bnode_clear(struct hfs_bnode *node, int off, int len) 87 { 88 struct page *page; 89 90 off += node->page_offset; 91 page = node->page[0]; 92 93 memset(kmap(page) + off, 0, len); 94 kunmap(page); 95 set_page_dirty(page); 96 } 97 98 void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst, 99 struct hfs_bnode *src_node, int src, int len) 100 { 101 struct hfs_btree *tree; 102 struct page *src_page, *dst_page; 103 104 hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len); 105 if (!len) 106 return; 107 tree = src_node->tree; 108 src += src_node->page_offset; 109 dst += dst_node->page_offset; 110 src_page = src_node->page[0]; 111 dst_page = dst_node->page[0]; 112 113 memcpy(kmap(dst_page) + dst, kmap(src_page) + src, len); 114 kunmap(src_page); 115 kunmap(dst_page); 116 set_page_dirty(dst_page); 117 } 118 119 void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len) 120 { 121 struct page *page; 122 void *ptr; 123 124 hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len); 125 if (!len) 126 return; 127 src += node->page_offset; 128 dst += node->page_offset; 129 page = node->page[0]; 130 ptr = kmap(page); 131 memmove(ptr + dst, ptr + src, len); 132 kunmap(page); 133 set_page_dirty(page); 134 } 135 136 void hfs_bnode_dump(struct hfs_bnode *node) 137 { 138 struct hfs_bnode_desc desc; 139 __be32 cnid; 140 int i, off, key_off; 141 142 hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this); 143 hfs_bnode_read(node, &desc, 0, sizeof(desc)); 144 hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n", 145 be32_to_cpu(desc.next), be32_to_cpu(desc.prev), 146 desc.type, desc.height, be16_to_cpu(desc.num_recs)); 147 148 off = node->tree->node_size - 2; 149 for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) { 150 key_off = hfs_bnode_read_u16(node, off); 151 hfs_dbg_cont(BNODE_MOD, " %d", key_off); 152 if (i && node->type == HFS_NODE_INDEX) { 153 int tmp; 154 155 if (node->tree->attributes & HFS_TREE_VARIDXKEYS) 156 tmp = (hfs_bnode_read_u8(node, key_off) | 1) + 1; 157 else 158 tmp = node->tree->max_key_len + 1; 159 hfs_dbg_cont(BNODE_MOD, " (%d,%d", 160 tmp, hfs_bnode_read_u8(node, key_off)); 161 hfs_bnode_read(node, &cnid, key_off + tmp, 4); 162 hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid)); 163 } else if (i && node->type == HFS_NODE_LEAF) { 164 int tmp; 165 166 tmp = hfs_bnode_read_u8(node, key_off); 167 hfs_dbg_cont(BNODE_MOD, " (%d)", tmp); 168 } 169 } 170 hfs_dbg_cont(BNODE_MOD, "\n"); 171 } 172 173 void hfs_bnode_unlink(struct hfs_bnode *node) 174 { 175 struct hfs_btree *tree; 176 struct hfs_bnode *tmp; 177 __be32 cnid; 178 179 tree = node->tree; 180 if (node->prev) { 181 tmp = hfs_bnode_find(tree, node->prev); 182 if (IS_ERR(tmp)) 183 return; 184 tmp->next = node->next; 185 cnid = cpu_to_be32(tmp->next); 186 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4); 187 hfs_bnode_put(tmp); 188 } else if (node->type == HFS_NODE_LEAF) 189 tree->leaf_head = node->next; 190 191 if (node->next) { 192 tmp = hfs_bnode_find(tree, node->next); 193 if (IS_ERR(tmp)) 194 return; 195 tmp->prev = node->prev; 196 cnid = cpu_to_be32(tmp->prev); 197 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4); 198 hfs_bnode_put(tmp); 199 } else if (node->type == HFS_NODE_LEAF) 200 tree->leaf_tail = node->prev; 201 202 // move down? 203 if (!node->prev && !node->next) { 204 printk(KERN_DEBUG "hfs_btree_del_level\n"); 205 } 206 if (!node->parent) { 207 tree->root = 0; 208 tree->depth = 0; 209 } 210 set_bit(HFS_BNODE_DELETED, &node->flags); 211 } 212 213 static inline int hfs_bnode_hash(u32 num) 214 { 215 num = (num >> 16) + num; 216 num += num >> 8; 217 return num & (NODE_HASH_SIZE - 1); 218 } 219 220 struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid) 221 { 222 struct hfs_bnode *node; 223 224 if (cnid >= tree->node_count) { 225 pr_err("request for non-existent node %d in B*Tree\n", cnid); 226 return NULL; 227 } 228 229 for (node = tree->node_hash[hfs_bnode_hash(cnid)]; 230 node; node = node->next_hash) { 231 if (node->this == cnid) { 232 return node; 233 } 234 } 235 return NULL; 236 } 237 238 static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid) 239 { 240 struct super_block *sb; 241 struct hfs_bnode *node, *node2; 242 struct address_space *mapping; 243 struct page *page; 244 int size, block, i, hash; 245 loff_t off; 246 247 if (cnid >= tree->node_count) { 248 pr_err("request for non-existent node %d in B*Tree\n", cnid); 249 return NULL; 250 } 251 252 sb = tree->inode->i_sb; 253 size = sizeof(struct hfs_bnode) + tree->pages_per_bnode * 254 sizeof(struct page *); 255 node = kzalloc(size, GFP_KERNEL); 256 if (!node) 257 return NULL; 258 node->tree = tree; 259 node->this = cnid; 260 set_bit(HFS_BNODE_NEW, &node->flags); 261 atomic_set(&node->refcnt, 1); 262 hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n", 263 node->tree->cnid, node->this); 264 init_waitqueue_head(&node->lock_wq); 265 spin_lock(&tree->hash_lock); 266 node2 = hfs_bnode_findhash(tree, cnid); 267 if (!node2) { 268 hash = hfs_bnode_hash(cnid); 269 node->next_hash = tree->node_hash[hash]; 270 tree->node_hash[hash] = node; 271 tree->node_hash_cnt++; 272 } else { 273 spin_unlock(&tree->hash_lock); 274 kfree(node); 275 wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); 276 return node2; 277 } 278 spin_unlock(&tree->hash_lock); 279 280 mapping = tree->inode->i_mapping; 281 off = (loff_t)cnid * tree->node_size; 282 block = off >> PAGE_SHIFT; 283 node->page_offset = off & ~PAGE_MASK; 284 for (i = 0; i < tree->pages_per_bnode; i++) { 285 page = read_mapping_page(mapping, block++, NULL); 286 if (IS_ERR(page)) 287 goto fail; 288 if (PageError(page)) { 289 put_page(page); 290 goto fail; 291 } 292 node->page[i] = page; 293 } 294 295 return node; 296 fail: 297 set_bit(HFS_BNODE_ERROR, &node->flags); 298 return node; 299 } 300 301 void hfs_bnode_unhash(struct hfs_bnode *node) 302 { 303 struct hfs_bnode **p; 304 305 hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n", 306 node->tree->cnid, node->this, atomic_read(&node->refcnt)); 307 for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)]; 308 *p && *p != node; p = &(*p)->next_hash) 309 ; 310 BUG_ON(!*p); 311 *p = node->next_hash; 312 node->tree->node_hash_cnt--; 313 } 314 315 /* Load a particular node out of a tree */ 316 struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num) 317 { 318 struct hfs_bnode *node; 319 struct hfs_bnode_desc *desc; 320 int i, rec_off, off, next_off; 321 int entry_size, key_size; 322 323 spin_lock(&tree->hash_lock); 324 node = hfs_bnode_findhash(tree, num); 325 if (node) { 326 hfs_bnode_get(node); 327 spin_unlock(&tree->hash_lock); 328 wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags)); 329 if (test_bit(HFS_BNODE_ERROR, &node->flags)) 330 goto node_error; 331 return node; 332 } 333 spin_unlock(&tree->hash_lock); 334 node = __hfs_bnode_create(tree, num); 335 if (!node) 336 return ERR_PTR(-ENOMEM); 337 if (test_bit(HFS_BNODE_ERROR, &node->flags)) 338 goto node_error; 339 if (!test_bit(HFS_BNODE_NEW, &node->flags)) 340 return node; 341 342 desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset); 343 node->prev = be32_to_cpu(desc->prev); 344 node->next = be32_to_cpu(desc->next); 345 node->num_recs = be16_to_cpu(desc->num_recs); 346 node->type = desc->type; 347 node->height = desc->height; 348 kunmap(node->page[0]); 349 350 switch (node->type) { 351 case HFS_NODE_HEADER: 352 case HFS_NODE_MAP: 353 if (node->height != 0) 354 goto node_error; 355 break; 356 case HFS_NODE_LEAF: 357 if (node->height != 1) 358 goto node_error; 359 break; 360 case HFS_NODE_INDEX: 361 if (node->height <= 1 || node->height > tree->depth) 362 goto node_error; 363 break; 364 default: 365 goto node_error; 366 } 367 368 rec_off = tree->node_size - 2; 369 off = hfs_bnode_read_u16(node, rec_off); 370 if (off != sizeof(struct hfs_bnode_desc)) 371 goto node_error; 372 for (i = 1; i <= node->num_recs; off = next_off, i++) { 373 rec_off -= 2; 374 next_off = hfs_bnode_read_u16(node, rec_off); 375 if (next_off <= off || 376 next_off > tree->node_size || 377 next_off & 1) 378 goto node_error; 379 entry_size = next_off - off; 380 if (node->type != HFS_NODE_INDEX && 381 node->type != HFS_NODE_LEAF) 382 continue; 383 key_size = hfs_bnode_read_u8(node, off) + 1; 384 if (key_size >= entry_size /*|| key_size & 1*/) 385 goto node_error; 386 } 387 clear_bit(HFS_BNODE_NEW, &node->flags); 388 wake_up(&node->lock_wq); 389 return node; 390 391 node_error: 392 set_bit(HFS_BNODE_ERROR, &node->flags); 393 clear_bit(HFS_BNODE_NEW, &node->flags); 394 wake_up(&node->lock_wq); 395 hfs_bnode_put(node); 396 return ERR_PTR(-EIO); 397 } 398 399 void hfs_bnode_free(struct hfs_bnode *node) 400 { 401 int i; 402 403 for (i = 0; i < node->tree->pages_per_bnode; i++) 404 if (node->page[i]) 405 put_page(node->page[i]); 406 kfree(node); 407 } 408 409 struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num) 410 { 411 struct hfs_bnode *node; 412 struct page **pagep; 413 int i; 414 415 spin_lock(&tree->hash_lock); 416 node = hfs_bnode_findhash(tree, num); 417 spin_unlock(&tree->hash_lock); 418 if (node) { 419 pr_crit("new node %u already hashed?\n", num); 420 WARN_ON(1); 421 return node; 422 } 423 node = __hfs_bnode_create(tree, num); 424 if (!node) 425 return ERR_PTR(-ENOMEM); 426 if (test_bit(HFS_BNODE_ERROR, &node->flags)) { 427 hfs_bnode_put(node); 428 return ERR_PTR(-EIO); 429 } 430 431 pagep = node->page; 432 memset(kmap(*pagep) + node->page_offset, 0, 433 min((int)PAGE_SIZE, (int)tree->node_size)); 434 set_page_dirty(*pagep); 435 kunmap(*pagep); 436 for (i = 1; i < tree->pages_per_bnode; i++) { 437 memset(kmap(*++pagep), 0, PAGE_SIZE); 438 set_page_dirty(*pagep); 439 kunmap(*pagep); 440 } 441 clear_bit(HFS_BNODE_NEW, &node->flags); 442 wake_up(&node->lock_wq); 443 444 return node; 445 } 446 447 void hfs_bnode_get(struct hfs_bnode *node) 448 { 449 if (node) { 450 atomic_inc(&node->refcnt); 451 hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n", 452 node->tree->cnid, node->this, 453 atomic_read(&node->refcnt)); 454 } 455 } 456 457 /* Dispose of resources used by a node */ 458 void hfs_bnode_put(struct hfs_bnode *node) 459 { 460 if (node) { 461 struct hfs_btree *tree = node->tree; 462 int i; 463 464 hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n", 465 node->tree->cnid, node->this, 466 atomic_read(&node->refcnt)); 467 BUG_ON(!atomic_read(&node->refcnt)); 468 if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock)) 469 return; 470 for (i = 0; i < tree->pages_per_bnode; i++) { 471 if (!node->page[i]) 472 continue; 473 mark_page_accessed(node->page[i]); 474 } 475 476 if (test_bit(HFS_BNODE_DELETED, &node->flags)) { 477 hfs_bnode_unhash(node); 478 spin_unlock(&tree->hash_lock); 479 hfs_bmap_free(node); 480 hfs_bnode_free(node); 481 return; 482 } 483 spin_unlock(&tree->hash_lock); 484 } 485 } 486