1 /* 2 * linux/fs/hfs/bnode.c 3 * 4 * Copyright (C) 2001 5 * Brad Boyer (flar@allandria.com) 6 * (C) 2003 Ardis Technologies <roman@ardistech.com> 7 * 8 * Handle basic btree node operations 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/swap.h> 13 14 #include "btree.h" 15 16 void hfs_bnode_read(struct hfs_bnode *node, void *buf, 17 int off, int len) 18 { 19 struct page *page; 20 21 off += node->page_offset; 22 page = node->page[0]; 23 24 memcpy(buf, kmap(page) + off, len); 25 kunmap(page); 26 } 27 28 u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off) 29 { 30 __be16 data; 31 // optimize later... 32 hfs_bnode_read(node, &data, off, 2); 33 return be16_to_cpu(data); 34 } 35 36 u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off) 37 { 38 u8 data; 39 // optimize later... 40 hfs_bnode_read(node, &data, off, 1); 41 return data; 42 } 43 44 void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off) 45 { 46 struct hfs_btree *tree; 47 int key_len; 48 49 tree = node->tree; 50 if (node->type == HFS_NODE_LEAF || 51 tree->attributes & HFS_TREE_VARIDXKEYS) 52 key_len = hfs_bnode_read_u8(node, off) + 1; 53 else 54 key_len = tree->max_key_len + 1; 55 56 hfs_bnode_read(node, key, off, key_len); 57 } 58 59 void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len) 60 { 61 struct page *page; 62 63 off += node->page_offset; 64 page = node->page[0]; 65 66 memcpy(kmap(page) + off, buf, len); 67 kunmap(page); 68 set_page_dirty(page); 69 } 70 71 void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data) 72 { 73 __be16 v = cpu_to_be16(data); 74 // optimize later... 75 hfs_bnode_write(node, &v, off, 2); 76 } 77 78 void hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data) 79 { 80 // optimize later... 81 hfs_bnode_write(node, &data, off, 1); 82 } 83 84 void hfs_bnode_clear(struct hfs_bnode *node, int off, int len) 85 { 86 struct page *page; 87 88 off += node->page_offset; 89 page = node->page[0]; 90 91 memset(kmap(page) + off, 0, len); 92 kunmap(page); 93 set_page_dirty(page); 94 } 95 96 void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst, 97 struct hfs_bnode *src_node, int src, int len) 98 { 99 struct hfs_btree *tree; 100 struct page *src_page, *dst_page; 101 102 dprint(DBG_BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len); 103 if (!len) 104 return; 105 tree = src_node->tree; 106 src += src_node->page_offset; 107 dst += dst_node->page_offset; 108 src_page = src_node->page[0]; 109 dst_page = dst_node->page[0]; 110 111 memcpy(kmap(dst_page) + dst, kmap(src_page) + src, len); 112 kunmap(src_page); 113 kunmap(dst_page); 114 set_page_dirty(dst_page); 115 } 116 117 void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len) 118 { 119 struct page *page; 120 void *ptr; 121 122 dprint(DBG_BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len); 123 if (!len) 124 return; 125 src += node->page_offset; 126 dst += node->page_offset; 127 page = node->page[0]; 128 ptr = kmap(page); 129 memmove(ptr + dst, ptr + src, len); 130 kunmap(page); 131 set_page_dirty(page); 132 } 133 134 void hfs_bnode_dump(struct hfs_bnode *node) 135 { 136 struct hfs_bnode_desc desc; 137 __be32 cnid; 138 int i, off, key_off; 139 140 dprint(DBG_BNODE_MOD, "bnode: %d\n", node->this); 141 hfs_bnode_read(node, &desc, 0, sizeof(desc)); 142 dprint(DBG_BNODE_MOD, "%d, %d, %d, %d, %d\n", 143 be32_to_cpu(desc.next), be32_to_cpu(desc.prev), 144 desc.type, desc.height, be16_to_cpu(desc.num_recs)); 145 146 off = node->tree->node_size - 2; 147 for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) { 148 key_off = hfs_bnode_read_u16(node, off); 149 dprint(DBG_BNODE_MOD, " %d", key_off); 150 if (i && node->type == HFS_NODE_INDEX) { 151 int tmp; 152 153 if (node->tree->attributes & HFS_TREE_VARIDXKEYS) 154 tmp = (hfs_bnode_read_u8(node, key_off) | 1) + 1; 155 else 156 tmp = node->tree->max_key_len + 1; 157 dprint(DBG_BNODE_MOD, " (%d,%d", tmp, hfs_bnode_read_u8(node, key_off)); 158 hfs_bnode_read(node, &cnid, key_off + tmp, 4); 159 dprint(DBG_BNODE_MOD, ",%d)", be32_to_cpu(cnid)); 160 } else if (i && node->type == HFS_NODE_LEAF) { 161 int tmp; 162 163 tmp = hfs_bnode_read_u8(node, key_off); 164 dprint(DBG_BNODE_MOD, " (%d)", tmp); 165 } 166 } 167 dprint(DBG_BNODE_MOD, "\n"); 168 } 169 170 void hfs_bnode_unlink(struct hfs_bnode *node) 171 { 172 struct hfs_btree *tree; 173 struct hfs_bnode *tmp; 174 __be32 cnid; 175 176 tree = node->tree; 177 if (node->prev) { 178 tmp = hfs_bnode_find(tree, node->prev); 179 if (IS_ERR(tmp)) 180 return; 181 tmp->next = node->next; 182 cnid = cpu_to_be32(tmp->next); 183 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4); 184 hfs_bnode_put(tmp); 185 } else if (node->type == HFS_NODE_LEAF) 186 tree->leaf_head = node->next; 187 188 if (node->next) { 189 tmp = hfs_bnode_find(tree, node->next); 190 if (IS_ERR(tmp)) 191 return; 192 tmp->prev = node->prev; 193 cnid = cpu_to_be32(tmp->prev); 194 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4); 195 hfs_bnode_put(tmp); 196 } else if (node->type == HFS_NODE_LEAF) 197 tree->leaf_tail = node->prev; 198 199 // move down? 200 if (!node->prev && !node->next) { 201 printk(KERN_DEBUG "hfs_btree_del_level\n"); 202 } 203 if (!node->parent) { 204 tree->root = 0; 205 tree->depth = 0; 206 } 207 set_bit(HFS_BNODE_DELETED, &node->flags); 208 } 209 210 static inline int hfs_bnode_hash(u32 num) 211 { 212 num = (num >> 16) + num; 213 num += num >> 8; 214 return num & (NODE_HASH_SIZE - 1); 215 } 216 217 struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid) 218 { 219 struct hfs_bnode *node; 220 221 if (cnid >= tree->node_count) { 222 printk(KERN_ERR "hfs: request for non-existent node %d in B*Tree\n", cnid); 223 return NULL; 224 } 225 226 for (node = tree->node_hash[hfs_bnode_hash(cnid)]; 227 node; node = node->next_hash) { 228 if (node->this == cnid) { 229 return node; 230 } 231 } 232 return NULL; 233 } 234 235 static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid) 236 { 237 struct super_block *sb; 238 struct hfs_bnode *node, *node2; 239 struct address_space *mapping; 240 struct page *page; 241 int size, block, i, hash; 242 loff_t off; 243 244 if (cnid >= tree->node_count) { 245 printk(KERN_ERR "hfs: request for non-existent node %d in B*Tree\n", cnid); 246 return NULL; 247 } 248 249 sb = tree->inode->i_sb; 250 size = sizeof(struct hfs_bnode) + tree->pages_per_bnode * 251 sizeof(struct page *); 252 node = kzalloc(size, GFP_KERNEL); 253 if (!node) 254 return NULL; 255 node->tree = tree; 256 node->this = cnid; 257 set_bit(HFS_BNODE_NEW, &node->flags); 258 atomic_set(&node->refcnt, 1); 259 dprint(DBG_BNODE_REFS, "new_node(%d:%d): 1\n", 260 node->tree->cnid, node->this); 261 init_waitqueue_head(&node->lock_wq); 262 spin_lock(&tree->hash_lock); 263 node2 = hfs_bnode_findhash(tree, cnid); 264 if (!node2) { 265 hash = hfs_bnode_hash(cnid); 266 node->next_hash = tree->node_hash[hash]; 267 tree->node_hash[hash] = node; 268 tree->node_hash_cnt++; 269 } else { 270 spin_unlock(&tree->hash_lock); 271 kfree(node); 272 wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); 273 return node2; 274 } 275 spin_unlock(&tree->hash_lock); 276 277 mapping = tree->inode->i_mapping; 278 off = (loff_t)cnid * tree->node_size; 279 block = off >> PAGE_CACHE_SHIFT; 280 node->page_offset = off & ~PAGE_CACHE_MASK; 281 for (i = 0; i < tree->pages_per_bnode; i++) { 282 page = read_mapping_page(mapping, block++, NULL); 283 if (IS_ERR(page)) 284 goto fail; 285 if (PageError(page)) { 286 page_cache_release(page); 287 goto fail; 288 } 289 page_cache_release(page); 290 node->page[i] = page; 291 } 292 293 return node; 294 fail: 295 set_bit(HFS_BNODE_ERROR, &node->flags); 296 return node; 297 } 298 299 void hfs_bnode_unhash(struct hfs_bnode *node) 300 { 301 struct hfs_bnode **p; 302 303 dprint(DBG_BNODE_REFS, "remove_node(%d:%d): %d\n", 304 node->tree->cnid, node->this, atomic_read(&node->refcnt)); 305 for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)]; 306 *p && *p != node; p = &(*p)->next_hash) 307 ; 308 BUG_ON(!*p); 309 *p = node->next_hash; 310 node->tree->node_hash_cnt--; 311 } 312 313 /* Load a particular node out of a tree */ 314 struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num) 315 { 316 struct hfs_bnode *node; 317 struct hfs_bnode_desc *desc; 318 int i, rec_off, off, next_off; 319 int entry_size, key_size; 320 321 spin_lock(&tree->hash_lock); 322 node = hfs_bnode_findhash(tree, num); 323 if (node) { 324 hfs_bnode_get(node); 325 spin_unlock(&tree->hash_lock); 326 wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags)); 327 if (test_bit(HFS_BNODE_ERROR, &node->flags)) 328 goto node_error; 329 return node; 330 } 331 spin_unlock(&tree->hash_lock); 332 node = __hfs_bnode_create(tree, num); 333 if (!node) 334 return ERR_PTR(-ENOMEM); 335 if (test_bit(HFS_BNODE_ERROR, &node->flags)) 336 goto node_error; 337 if (!test_bit(HFS_BNODE_NEW, &node->flags)) 338 return node; 339 340 desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset); 341 node->prev = be32_to_cpu(desc->prev); 342 node->next = be32_to_cpu(desc->next); 343 node->num_recs = be16_to_cpu(desc->num_recs); 344 node->type = desc->type; 345 node->height = desc->height; 346 kunmap(node->page[0]); 347 348 switch (node->type) { 349 case HFS_NODE_HEADER: 350 case HFS_NODE_MAP: 351 if (node->height != 0) 352 goto node_error; 353 break; 354 case HFS_NODE_LEAF: 355 if (node->height != 1) 356 goto node_error; 357 break; 358 case HFS_NODE_INDEX: 359 if (node->height <= 1 || node->height > tree->depth) 360 goto node_error; 361 break; 362 default: 363 goto node_error; 364 } 365 366 rec_off = tree->node_size - 2; 367 off = hfs_bnode_read_u16(node, rec_off); 368 if (off != sizeof(struct hfs_bnode_desc)) 369 goto node_error; 370 for (i = 1; i <= node->num_recs; off = next_off, i++) { 371 rec_off -= 2; 372 next_off = hfs_bnode_read_u16(node, rec_off); 373 if (next_off <= off || 374 next_off > tree->node_size || 375 next_off & 1) 376 goto node_error; 377 entry_size = next_off - off; 378 if (node->type != HFS_NODE_INDEX && 379 node->type != HFS_NODE_LEAF) 380 continue; 381 key_size = hfs_bnode_read_u8(node, off) + 1; 382 if (key_size >= entry_size /*|| key_size & 1*/) 383 goto node_error; 384 } 385 clear_bit(HFS_BNODE_NEW, &node->flags); 386 wake_up(&node->lock_wq); 387 return node; 388 389 node_error: 390 set_bit(HFS_BNODE_ERROR, &node->flags); 391 clear_bit(HFS_BNODE_NEW, &node->flags); 392 wake_up(&node->lock_wq); 393 hfs_bnode_put(node); 394 return ERR_PTR(-EIO); 395 } 396 397 void hfs_bnode_free(struct hfs_bnode *node) 398 { 399 //int i; 400 401 //for (i = 0; i < node->tree->pages_per_bnode; i++) 402 // if (node->page[i]) 403 // page_cache_release(node->page[i]); 404 kfree(node); 405 } 406 407 struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num) 408 { 409 struct hfs_bnode *node; 410 struct page **pagep; 411 int i; 412 413 spin_lock(&tree->hash_lock); 414 node = hfs_bnode_findhash(tree, num); 415 spin_unlock(&tree->hash_lock); 416 BUG_ON(node); 417 node = __hfs_bnode_create(tree, num); 418 if (!node) 419 return ERR_PTR(-ENOMEM); 420 if (test_bit(HFS_BNODE_ERROR, &node->flags)) { 421 hfs_bnode_put(node); 422 return ERR_PTR(-EIO); 423 } 424 425 pagep = node->page; 426 memset(kmap(*pagep) + node->page_offset, 0, 427 min((int)PAGE_CACHE_SIZE, (int)tree->node_size)); 428 set_page_dirty(*pagep); 429 kunmap(*pagep); 430 for (i = 1; i < tree->pages_per_bnode; i++) { 431 memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE); 432 set_page_dirty(*pagep); 433 kunmap(*pagep); 434 } 435 clear_bit(HFS_BNODE_NEW, &node->flags); 436 wake_up(&node->lock_wq); 437 438 return node; 439 } 440 441 void hfs_bnode_get(struct hfs_bnode *node) 442 { 443 if (node) { 444 atomic_inc(&node->refcnt); 445 dprint(DBG_BNODE_REFS, "get_node(%d:%d): %d\n", 446 node->tree->cnid, node->this, atomic_read(&node->refcnt)); 447 } 448 } 449 450 /* Dispose of resources used by a node */ 451 void hfs_bnode_put(struct hfs_bnode *node) 452 { 453 if (node) { 454 struct hfs_btree *tree = node->tree; 455 int i; 456 457 dprint(DBG_BNODE_REFS, "put_node(%d:%d): %d\n", 458 node->tree->cnid, node->this, atomic_read(&node->refcnt)); 459 BUG_ON(!atomic_read(&node->refcnt)); 460 if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock)) 461 return; 462 for (i = 0; i < tree->pages_per_bnode; i++) { 463 if (!node->page[i]) 464 continue; 465 mark_page_accessed(node->page[i]); 466 } 467 468 if (test_bit(HFS_BNODE_DELETED, &node->flags)) { 469 hfs_bnode_unhash(node); 470 spin_unlock(&tree->hash_lock); 471 hfs_bmap_free(node); 472 hfs_bnode_free(node); 473 return; 474 } 475 spin_unlock(&tree->hash_lock); 476 } 477 } 478