1 /* 2 * linux/fs/hfs/bnode.c 3 * 4 * Copyright (C) 2001 5 * Brad Boyer (flar@allandria.com) 6 * (C) 2003 Ardis Technologies <roman@ardistech.com> 7 * 8 * Handle basic btree node operations 9 */ 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/swap.h> 14 15 #include "btree.h" 16 17 void hfs_bnode_read(struct hfs_bnode *node, void *buf, 18 int off, int len) 19 { 20 struct page *page; 21 22 off += node->page_offset; 23 page = node->page[0]; 24 25 memcpy(buf, kmap(page) + off, len); 26 kunmap(page); 27 } 28 29 u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off) 30 { 31 __be16 data; 32 // optimize later... 33 hfs_bnode_read(node, &data, off, 2); 34 return be16_to_cpu(data); 35 } 36 37 u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off) 38 { 39 u8 data; 40 // optimize later... 41 hfs_bnode_read(node, &data, off, 1); 42 return data; 43 } 44 45 void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off) 46 { 47 struct hfs_btree *tree; 48 int key_len; 49 50 tree = node->tree; 51 if (node->type == HFS_NODE_LEAF || 52 tree->attributes & HFS_TREE_VARIDXKEYS) 53 key_len = hfs_bnode_read_u8(node, off) + 1; 54 else 55 key_len = tree->max_key_len + 1; 56 57 hfs_bnode_read(node, key, off, key_len); 58 } 59 60 void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len) 61 { 62 struct page *page; 63 64 off += node->page_offset; 65 page = node->page[0]; 66 67 memcpy(kmap(page) + off, buf, len); 68 kunmap(page); 69 set_page_dirty(page); 70 } 71 72 void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data) 73 { 74 __be16 v = cpu_to_be16(data); 75 // optimize later... 76 hfs_bnode_write(node, &v, off, 2); 77 } 78 79 void hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data) 80 { 81 // optimize later... 82 hfs_bnode_write(node, &data, off, 1); 83 } 84 85 void hfs_bnode_clear(struct hfs_bnode *node, int off, int len) 86 { 87 struct page *page; 88 89 off += node->page_offset; 90 page = node->page[0]; 91 92 memset(kmap(page) + off, 0, len); 93 kunmap(page); 94 set_page_dirty(page); 95 } 96 97 void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst, 98 struct hfs_bnode *src_node, int src, int len) 99 { 100 struct hfs_btree *tree; 101 struct page *src_page, *dst_page; 102 103 hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len); 104 if (!len) 105 return; 106 tree = src_node->tree; 107 src += src_node->page_offset; 108 dst += dst_node->page_offset; 109 src_page = src_node->page[0]; 110 dst_page = dst_node->page[0]; 111 112 memcpy(kmap(dst_page) + dst, kmap(src_page) + src, len); 113 kunmap(src_page); 114 kunmap(dst_page); 115 set_page_dirty(dst_page); 116 } 117 118 void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len) 119 { 120 struct page *page; 121 void *ptr; 122 123 hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len); 124 if (!len) 125 return; 126 src += node->page_offset; 127 dst += node->page_offset; 128 page = node->page[0]; 129 ptr = kmap(page); 130 memmove(ptr + dst, ptr + src, len); 131 kunmap(page); 132 set_page_dirty(page); 133 } 134 135 void hfs_bnode_dump(struct hfs_bnode *node) 136 { 137 struct hfs_bnode_desc desc; 138 __be32 cnid; 139 int i, off, key_off; 140 141 hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this); 142 hfs_bnode_read(node, &desc, 0, sizeof(desc)); 143 hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n", 144 be32_to_cpu(desc.next), be32_to_cpu(desc.prev), 145 desc.type, desc.height, be16_to_cpu(desc.num_recs)); 146 147 off = node->tree->node_size - 2; 148 for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) { 149 key_off = hfs_bnode_read_u16(node, off); 150 hfs_dbg_cont(BNODE_MOD, " %d", key_off); 151 if (i && node->type == HFS_NODE_INDEX) { 152 int tmp; 153 154 if (node->tree->attributes & HFS_TREE_VARIDXKEYS) 155 tmp = (hfs_bnode_read_u8(node, key_off) | 1) + 1; 156 else 157 tmp = node->tree->max_key_len + 1; 158 hfs_dbg_cont(BNODE_MOD, " (%d,%d", 159 tmp, hfs_bnode_read_u8(node, key_off)); 160 hfs_bnode_read(node, &cnid, key_off + tmp, 4); 161 hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid)); 162 } else if (i && node->type == HFS_NODE_LEAF) { 163 int tmp; 164 165 tmp = hfs_bnode_read_u8(node, key_off); 166 hfs_dbg_cont(BNODE_MOD, " (%d)", tmp); 167 } 168 } 169 hfs_dbg_cont(BNODE_MOD, "\n"); 170 } 171 172 void hfs_bnode_unlink(struct hfs_bnode *node) 173 { 174 struct hfs_btree *tree; 175 struct hfs_bnode *tmp; 176 __be32 cnid; 177 178 tree = node->tree; 179 if (node->prev) { 180 tmp = hfs_bnode_find(tree, node->prev); 181 if (IS_ERR(tmp)) 182 return; 183 tmp->next = node->next; 184 cnid = cpu_to_be32(tmp->next); 185 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4); 186 hfs_bnode_put(tmp); 187 } else if (node->type == HFS_NODE_LEAF) 188 tree->leaf_head = node->next; 189 190 if (node->next) { 191 tmp = hfs_bnode_find(tree, node->next); 192 if (IS_ERR(tmp)) 193 return; 194 tmp->prev = node->prev; 195 cnid = cpu_to_be32(tmp->prev); 196 hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4); 197 hfs_bnode_put(tmp); 198 } else if (node->type == HFS_NODE_LEAF) 199 tree->leaf_tail = node->prev; 200 201 // move down? 202 if (!node->prev && !node->next) { 203 printk(KERN_DEBUG "hfs_btree_del_level\n"); 204 } 205 if (!node->parent) { 206 tree->root = 0; 207 tree->depth = 0; 208 } 209 set_bit(HFS_BNODE_DELETED, &node->flags); 210 } 211 212 static inline int hfs_bnode_hash(u32 num) 213 { 214 num = (num >> 16) + num; 215 num += num >> 8; 216 return num & (NODE_HASH_SIZE - 1); 217 } 218 219 struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid) 220 { 221 struct hfs_bnode *node; 222 223 if (cnid >= tree->node_count) { 224 pr_err("request for non-existent node %d in B*Tree\n", cnid); 225 return NULL; 226 } 227 228 for (node = tree->node_hash[hfs_bnode_hash(cnid)]; 229 node; node = node->next_hash) { 230 if (node->this == cnid) { 231 return node; 232 } 233 } 234 return NULL; 235 } 236 237 static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid) 238 { 239 struct super_block *sb; 240 struct hfs_bnode *node, *node2; 241 struct address_space *mapping; 242 struct page *page; 243 int size, block, i, hash; 244 loff_t off; 245 246 if (cnid >= tree->node_count) { 247 pr_err("request for non-existent node %d in B*Tree\n", cnid); 248 return NULL; 249 } 250 251 sb = tree->inode->i_sb; 252 size = sizeof(struct hfs_bnode) + tree->pages_per_bnode * 253 sizeof(struct page *); 254 node = kzalloc(size, GFP_KERNEL); 255 if (!node) 256 return NULL; 257 node->tree = tree; 258 node->this = cnid; 259 set_bit(HFS_BNODE_NEW, &node->flags); 260 atomic_set(&node->refcnt, 1); 261 hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n", 262 node->tree->cnid, node->this); 263 init_waitqueue_head(&node->lock_wq); 264 spin_lock(&tree->hash_lock); 265 node2 = hfs_bnode_findhash(tree, cnid); 266 if (!node2) { 267 hash = hfs_bnode_hash(cnid); 268 node->next_hash = tree->node_hash[hash]; 269 tree->node_hash[hash] = node; 270 tree->node_hash_cnt++; 271 } else { 272 spin_unlock(&tree->hash_lock); 273 kfree(node); 274 wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); 275 return node2; 276 } 277 spin_unlock(&tree->hash_lock); 278 279 mapping = tree->inode->i_mapping; 280 off = (loff_t)cnid * tree->node_size; 281 block = off >> PAGE_CACHE_SHIFT; 282 node->page_offset = off & ~PAGE_CACHE_MASK; 283 for (i = 0; i < tree->pages_per_bnode; i++) { 284 page = read_mapping_page(mapping, block++, NULL); 285 if (IS_ERR(page)) 286 goto fail; 287 if (PageError(page)) { 288 page_cache_release(page); 289 goto fail; 290 } 291 node->page[i] = page; 292 } 293 294 return node; 295 fail: 296 set_bit(HFS_BNODE_ERROR, &node->flags); 297 return node; 298 } 299 300 void hfs_bnode_unhash(struct hfs_bnode *node) 301 { 302 struct hfs_bnode **p; 303 304 hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n", 305 node->tree->cnid, node->this, atomic_read(&node->refcnt)); 306 for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)]; 307 *p && *p != node; p = &(*p)->next_hash) 308 ; 309 BUG_ON(!*p); 310 *p = node->next_hash; 311 node->tree->node_hash_cnt--; 312 } 313 314 /* Load a particular node out of a tree */ 315 struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num) 316 { 317 struct hfs_bnode *node; 318 struct hfs_bnode_desc *desc; 319 int i, rec_off, off, next_off; 320 int entry_size, key_size; 321 322 spin_lock(&tree->hash_lock); 323 node = hfs_bnode_findhash(tree, num); 324 if (node) { 325 hfs_bnode_get(node); 326 spin_unlock(&tree->hash_lock); 327 wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags)); 328 if (test_bit(HFS_BNODE_ERROR, &node->flags)) 329 goto node_error; 330 return node; 331 } 332 spin_unlock(&tree->hash_lock); 333 node = __hfs_bnode_create(tree, num); 334 if (!node) 335 return ERR_PTR(-ENOMEM); 336 if (test_bit(HFS_BNODE_ERROR, &node->flags)) 337 goto node_error; 338 if (!test_bit(HFS_BNODE_NEW, &node->flags)) 339 return node; 340 341 desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset); 342 node->prev = be32_to_cpu(desc->prev); 343 node->next = be32_to_cpu(desc->next); 344 node->num_recs = be16_to_cpu(desc->num_recs); 345 node->type = desc->type; 346 node->height = desc->height; 347 kunmap(node->page[0]); 348 349 switch (node->type) { 350 case HFS_NODE_HEADER: 351 case HFS_NODE_MAP: 352 if (node->height != 0) 353 goto node_error; 354 break; 355 case HFS_NODE_LEAF: 356 if (node->height != 1) 357 goto node_error; 358 break; 359 case HFS_NODE_INDEX: 360 if (node->height <= 1 || node->height > tree->depth) 361 goto node_error; 362 break; 363 default: 364 goto node_error; 365 } 366 367 rec_off = tree->node_size - 2; 368 off = hfs_bnode_read_u16(node, rec_off); 369 if (off != sizeof(struct hfs_bnode_desc)) 370 goto node_error; 371 for (i = 1; i <= node->num_recs; off = next_off, i++) { 372 rec_off -= 2; 373 next_off = hfs_bnode_read_u16(node, rec_off); 374 if (next_off <= off || 375 next_off > tree->node_size || 376 next_off & 1) 377 goto node_error; 378 entry_size = next_off - off; 379 if (node->type != HFS_NODE_INDEX && 380 node->type != HFS_NODE_LEAF) 381 continue; 382 key_size = hfs_bnode_read_u8(node, off) + 1; 383 if (key_size >= entry_size /*|| key_size & 1*/) 384 goto node_error; 385 } 386 clear_bit(HFS_BNODE_NEW, &node->flags); 387 wake_up(&node->lock_wq); 388 return node; 389 390 node_error: 391 set_bit(HFS_BNODE_ERROR, &node->flags); 392 clear_bit(HFS_BNODE_NEW, &node->flags); 393 wake_up(&node->lock_wq); 394 hfs_bnode_put(node); 395 return ERR_PTR(-EIO); 396 } 397 398 void hfs_bnode_free(struct hfs_bnode *node) 399 { 400 int i; 401 402 for (i = 0; i < node->tree->pages_per_bnode; i++) 403 if (node->page[i]) 404 page_cache_release(node->page[i]); 405 kfree(node); 406 } 407 408 struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num) 409 { 410 struct hfs_bnode *node; 411 struct page **pagep; 412 int i; 413 414 spin_lock(&tree->hash_lock); 415 node = hfs_bnode_findhash(tree, num); 416 spin_unlock(&tree->hash_lock); 417 if (node) { 418 pr_crit("new node %u already hashed?\n", num); 419 WARN_ON(1); 420 return node; 421 } 422 node = __hfs_bnode_create(tree, num); 423 if (!node) 424 return ERR_PTR(-ENOMEM); 425 if (test_bit(HFS_BNODE_ERROR, &node->flags)) { 426 hfs_bnode_put(node); 427 return ERR_PTR(-EIO); 428 } 429 430 pagep = node->page; 431 memset(kmap(*pagep) + node->page_offset, 0, 432 min((int)PAGE_CACHE_SIZE, (int)tree->node_size)); 433 set_page_dirty(*pagep); 434 kunmap(*pagep); 435 for (i = 1; i < tree->pages_per_bnode; i++) { 436 memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE); 437 set_page_dirty(*pagep); 438 kunmap(*pagep); 439 } 440 clear_bit(HFS_BNODE_NEW, &node->flags); 441 wake_up(&node->lock_wq); 442 443 return node; 444 } 445 446 void hfs_bnode_get(struct hfs_bnode *node) 447 { 448 if (node) { 449 atomic_inc(&node->refcnt); 450 hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n", 451 node->tree->cnid, node->this, 452 atomic_read(&node->refcnt)); 453 } 454 } 455 456 /* Dispose of resources used by a node */ 457 void hfs_bnode_put(struct hfs_bnode *node) 458 { 459 if (node) { 460 struct hfs_btree *tree = node->tree; 461 int i; 462 463 hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n", 464 node->tree->cnid, node->this, 465 atomic_read(&node->refcnt)); 466 BUG_ON(!atomic_read(&node->refcnt)); 467 if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock)) 468 return; 469 for (i = 0; i < tree->pages_per_bnode; i++) { 470 if (!node->page[i]) 471 continue; 472 mark_page_accessed(node->page[i]); 473 } 474 475 if (test_bit(HFS_BNODE_DELETED, &node->flags)) { 476 hfs_bnode_unhash(node); 477 spin_unlock(&tree->hash_lock); 478 hfs_bmap_free(node); 479 hfs_bnode_free(node); 480 return; 481 } 482 spin_unlock(&tree->hash_lock); 483 } 484 } 485