xref: /openbmc/linux/fs/gfs2/rgrp.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22 
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37 #include "dir.h"
38 
39 #define BFITNOENT ((u32)~0)
40 #define NO_BLOCK ((u64)~0)
41 
42 #if BITS_PER_LONG == 32
43 #define LBITMASK   (0x55555555UL)
44 #define LBITSKIP55 (0x55555555UL)
45 #define LBITSKIP00 (0x00000000UL)
46 #else
47 #define LBITMASK   (0x5555555555555555UL)
48 #define LBITSKIP55 (0x5555555555555555UL)
49 #define LBITSKIP00 (0x0000000000000000UL)
50 #endif
51 
52 /*
53  * These routines are used by the resource group routines (rgrp.c)
54  * to keep track of block allocation.  Each block is represented by two
55  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
56  *
57  * 0 = Free
58  * 1 = Used (not metadata)
59  * 2 = Unlinked (still in use) inode
60  * 3 = Used (metadata)
61  */
62 
63 struct gfs2_extent {
64 	struct gfs2_rbm rbm;
65 	u32 len;
66 };
67 
68 static const char valid_change[16] = {
69 	        /* current */
70 	/* n */ 0, 1, 1, 1,
71 	/* e */ 1, 0, 0, 0,
72 	/* w */ 0, 0, 0, 1,
73 	        1, 0, 0, 0
74 };
75 
76 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
77 			 const struct gfs2_inode *ip, bool nowrap);
78 
79 
80 /**
81  * gfs2_setbit - Set a bit in the bitmaps
82  * @rbm: The position of the bit to set
83  * @do_clone: Also set the clone bitmap, if it exists
84  * @new_state: the new state of the block
85  *
86  */
87 
88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89 			       unsigned char new_state)
90 {
91 	unsigned char *byte1, *byte2, *end, cur_state;
92 	struct gfs2_bitmap *bi = rbm_bi(rbm);
93 	unsigned int buflen = bi->bi_len;
94 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95 
96 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98 
99 	BUG_ON(byte1 >= end);
100 
101 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102 
103 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104 		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 			rbm->offset, cur_state, new_state);
106 		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108 		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 			bi->bi_offset, bi->bi_len);
110 		dump_stack();
111 		gfs2_consist_rgrpd(rbm->rgd);
112 		return;
113 	}
114 	*byte1 ^= (cur_state ^ new_state) << bit;
115 
116 	if (do_clone && bi->bi_clone) {
117 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119 		*byte2 ^= (cur_state ^ new_state) << bit;
120 	}
121 }
122 
123 /**
124  * gfs2_testbit - test a bit in the bitmaps
125  * @rbm: The bit to test
126  *
127  * Returns: The two bit block state of the requested bit
128  */
129 
130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
131 {
132 	struct gfs2_bitmap *bi = rbm_bi(rbm);
133 	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
134 	const u8 *byte;
135 	unsigned int bit;
136 
137 	byte = buffer + (rbm->offset / GFS2_NBBY);
138 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139 
140 	return (*byte >> bit) & GFS2_BIT_MASK;
141 }
142 
143 /**
144  * gfs2_bit_search
145  * @ptr: Pointer to bitmap data
146  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147  * @state: The state we are searching for
148  *
149  * We xor the bitmap data with a patter which is the bitwise opposite
150  * of what we are looking for, this gives rise to a pattern of ones
151  * wherever there is a match. Since we have two bits per entry, we
152  * take this pattern, shift it down by one place and then and it with
153  * the original. All the even bit positions (0,2,4, etc) then represent
154  * successful matches, so we mask with 0x55555..... to remove the unwanted
155  * odd bit positions.
156  *
157  * This allows searching of a whole u64 at once (32 blocks) with a
158  * single test (on 64 bit arches).
159  */
160 
161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162 {
163 	u64 tmp;
164 	static const u64 search[] = {
165 		[0] = 0xffffffffffffffffULL,
166 		[1] = 0xaaaaaaaaaaaaaaaaULL,
167 		[2] = 0x5555555555555555ULL,
168 		[3] = 0x0000000000000000ULL,
169 	};
170 	tmp = le64_to_cpu(*ptr) ^ search[state];
171 	tmp &= (tmp >> 1);
172 	tmp &= mask;
173 	return tmp;
174 }
175 
176 /**
177  * rs_cmp - multi-block reservation range compare
178  * @blk: absolute file system block number of the new reservation
179  * @len: number of blocks in the new reservation
180  * @rs: existing reservation to compare against
181  *
182  * returns: 1 if the block range is beyond the reach of the reservation
183  *         -1 if the block range is before the start of the reservation
184  *          0 if the block range overlaps with the reservation
185  */
186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187 {
188 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189 
190 	if (blk >= startblk + rs->rs_free)
191 		return 1;
192 	if (blk + len - 1 < startblk)
193 		return -1;
194 	return 0;
195 }
196 
197 /**
198  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199  *       a block in a given allocation state.
200  * @buf: the buffer that holds the bitmaps
201  * @len: the length (in bytes) of the buffer
202  * @goal: start search at this block's bit-pair (within @buffer)
203  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204  *
205  * Scope of @goal and returned block number is only within this bitmap buffer,
206  * not entire rgrp or filesystem.  @buffer will be offset from the actual
207  * beginning of a bitmap block buffer, skipping any header structures, but
208  * headers are always a multiple of 64 bits long so that the buffer is
209  * always aligned to a 64 bit boundary.
210  *
211  * The size of the buffer is in bytes, but is it assumed that it is
212  * always ok to read a complete multiple of 64 bits at the end
213  * of the block in case the end is no aligned to a natural boundary.
214  *
215  * Return: the block number (bitmap buffer scope) that was found
216  */
217 
218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 		       u32 goal, u8 state)
220 {
221 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 	u64 tmp;
225 	u64 mask = 0x5555555555555555ULL;
226 	u32 bit;
227 
228 	/* Mask off bits we don't care about at the start of the search */
229 	mask <<= spoint;
230 	tmp = gfs2_bit_search(ptr, mask, state);
231 	ptr++;
232 	while(tmp == 0 && ptr < end) {
233 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 		ptr++;
235 	}
236 	/* Mask off any bits which are more than len bytes from the start */
237 	if (ptr == end && (len & (sizeof(u64) - 1)))
238 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 	/* Didn't find anything, so return */
240 	if (tmp == 0)
241 		return BFITNOENT;
242 	ptr--;
243 	bit = __ffs64(tmp);
244 	bit /= 2;	/* two bits per entry in the bitmap */
245 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246 }
247 
248 /**
249  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250  * @rbm: The rbm with rgd already set correctly
251  * @block: The block number (filesystem relative)
252  *
253  * This sets the bi and offset members of an rbm based on a
254  * resource group and a filesystem relative block number. The
255  * resource group must be set in the rbm on entry, the bi and
256  * offset members will be set by this function.
257  *
258  * Returns: 0 on success, or an error code
259  */
260 
261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262 {
263 	u64 rblock = block - rbm->rgd->rd_data0;
264 
265 	if (WARN_ON_ONCE(rblock > UINT_MAX))
266 		return -EINVAL;
267 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
268 		return -E2BIG;
269 
270 	rbm->bii = 0;
271 	rbm->offset = (u32)(rblock);
272 	/* Check if the block is within the first block */
273 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
274 		return 0;
275 
276 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 	rbm->offset += (sizeof(struct gfs2_rgrp) -
278 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
279 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
281 	return 0;
282 }
283 
284 /**
285  * gfs2_rbm_incr - increment an rbm structure
286  * @rbm: The rbm with rgd already set correctly
287  *
288  * This function takes an existing rbm structure and increments it to the next
289  * viable block offset.
290  *
291  * Returns: If incrementing the offset would cause the rbm to go past the
292  *          end of the rgrp, true is returned, otherwise false.
293  *
294  */
295 
296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
297 {
298 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
299 		rbm->offset++;
300 		return false;
301 	}
302 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
303 		return true;
304 
305 	rbm->offset = 0;
306 	rbm->bii++;
307 	return false;
308 }
309 
310 /**
311  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312  * @rbm: Position to search (value/result)
313  * @n_unaligned: Number of unaligned blocks to check
314  * @len: Decremented for each block found (terminate on zero)
315  *
316  * Returns: true if a non-free block is encountered
317  */
318 
319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
320 {
321 	u32 n;
322 	u8 res;
323 
324 	for (n = 0; n < n_unaligned; n++) {
325 		res = gfs2_testbit(rbm);
326 		if (res != GFS2_BLKST_FREE)
327 			return true;
328 		(*len)--;
329 		if (*len == 0)
330 			return true;
331 		if (gfs2_rbm_incr(rbm))
332 			return true;
333 	}
334 
335 	return false;
336 }
337 
338 /**
339  * gfs2_free_extlen - Return extent length of free blocks
340  * @rrbm: Starting position
341  * @len: Max length to check
342  *
343  * Starting at the block specified by the rbm, see how many free blocks
344  * there are, not reading more than len blocks ahead. This can be done
345  * using memchr_inv when the blocks are byte aligned, but has to be done
346  * on a block by block basis in case of unaligned blocks. Also this
347  * function can cope with bitmap boundaries (although it must stop on
348  * a resource group boundary)
349  *
350  * Returns: Number of free blocks in the extent
351  */
352 
353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
354 {
355 	struct gfs2_rbm rbm = *rrbm;
356 	u32 n_unaligned = rbm.offset & 3;
357 	u32 size = len;
358 	u32 bytes;
359 	u32 chunk_size;
360 	u8 *ptr, *start, *end;
361 	u64 block;
362 	struct gfs2_bitmap *bi;
363 
364 	if (n_unaligned &&
365 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
366 		goto out;
367 
368 	n_unaligned = len & 3;
369 	/* Start is now byte aligned */
370 	while (len > 3) {
371 		bi = rbm_bi(&rbm);
372 		start = bi->bi_bh->b_data;
373 		if (bi->bi_clone)
374 			start = bi->bi_clone;
375 		start += bi->bi_offset;
376 		end = start + bi->bi_len;
377 		BUG_ON(rbm.offset & 3);
378 		start += (rbm.offset / GFS2_NBBY);
379 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
380 		ptr = memchr_inv(start, 0, bytes);
381 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
382 		chunk_size *= GFS2_NBBY;
383 		BUG_ON(len < chunk_size);
384 		len -= chunk_size;
385 		block = gfs2_rbm_to_block(&rbm);
386 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
387 			n_unaligned = 0;
388 			break;
389 		}
390 		if (ptr) {
391 			n_unaligned = 3;
392 			break;
393 		}
394 		n_unaligned = len & 3;
395 	}
396 
397 	/* Deal with any bits left over at the end */
398 	if (n_unaligned)
399 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
400 out:
401 	return size - len;
402 }
403 
404 /**
405  * gfs2_bitcount - count the number of bits in a certain state
406  * @rgd: the resource group descriptor
407  * @buffer: the buffer that holds the bitmaps
408  * @buflen: the length (in bytes) of the buffer
409  * @state: the state of the block we're looking for
410  *
411  * Returns: The number of bits
412  */
413 
414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
415 			 unsigned int buflen, u8 state)
416 {
417 	const u8 *byte = buffer;
418 	const u8 *end = buffer + buflen;
419 	const u8 state1 = state << 2;
420 	const u8 state2 = state << 4;
421 	const u8 state3 = state << 6;
422 	u32 count = 0;
423 
424 	for (; byte < end; byte++) {
425 		if (((*byte) & 0x03) == state)
426 			count++;
427 		if (((*byte) & 0x0C) == state1)
428 			count++;
429 		if (((*byte) & 0x30) == state2)
430 			count++;
431 		if (((*byte) & 0xC0) == state3)
432 			count++;
433 	}
434 
435 	return count;
436 }
437 
438 /**
439  * gfs2_rgrp_verify - Verify that a resource group is consistent
440  * @rgd: the rgrp
441  *
442  */
443 
444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
445 {
446 	struct gfs2_sbd *sdp = rgd->rd_sbd;
447 	struct gfs2_bitmap *bi = NULL;
448 	u32 length = rgd->rd_length;
449 	u32 count[4], tmp;
450 	int buf, x;
451 
452 	memset(count, 0, 4 * sizeof(u32));
453 
454 	/* Count # blocks in each of 4 possible allocation states */
455 	for (buf = 0; buf < length; buf++) {
456 		bi = rgd->rd_bits + buf;
457 		for (x = 0; x < 4; x++)
458 			count[x] += gfs2_bitcount(rgd,
459 						  bi->bi_bh->b_data +
460 						  bi->bi_offset,
461 						  bi->bi_len, x);
462 	}
463 
464 	if (count[0] != rgd->rd_free) {
465 		if (gfs2_consist_rgrpd(rgd))
466 			fs_err(sdp, "free data mismatch:  %u != %u\n",
467 			       count[0], rgd->rd_free);
468 		return;
469 	}
470 
471 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
472 	if (count[1] != tmp) {
473 		if (gfs2_consist_rgrpd(rgd))
474 			fs_err(sdp, "used data mismatch:  %u != %u\n",
475 			       count[1], tmp);
476 		return;
477 	}
478 
479 	if (count[2] + count[3] != rgd->rd_dinodes) {
480 		if (gfs2_consist_rgrpd(rgd))
481 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
482 			       count[2] + count[3], rgd->rd_dinodes);
483 		return;
484 	}
485 }
486 
487 /**
488  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
489  * @sdp: The GFS2 superblock
490  * @blk: The data block number
491  * @exact: True if this needs to be an exact match
492  *
493  * The @exact argument should be set to true by most callers. The exception
494  * is when we need to match blocks which are not represented by the rgrp
495  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
496  * there for alignment purposes. Another way of looking at it is that @exact
497  * matches only valid data/metadata blocks, but with @exact false, it will
498  * match any block within the extent of the rgrp.
499  *
500  * Returns: The resource group, or NULL if not found
501  */
502 
503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
504 {
505 	struct rb_node *n, *next;
506 	struct gfs2_rgrpd *cur;
507 
508 	spin_lock(&sdp->sd_rindex_spin);
509 	n = sdp->sd_rindex_tree.rb_node;
510 	while (n) {
511 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 		next = NULL;
513 		if (blk < cur->rd_addr)
514 			next = n->rb_left;
515 		else if (blk >= cur->rd_data0 + cur->rd_data)
516 			next = n->rb_right;
517 		if (next == NULL) {
518 			spin_unlock(&sdp->sd_rindex_spin);
519 			if (exact) {
520 				if (blk < cur->rd_addr)
521 					return NULL;
522 				if (blk >= cur->rd_data0 + cur->rd_data)
523 					return NULL;
524 			}
525 			return cur;
526 		}
527 		n = next;
528 	}
529 	spin_unlock(&sdp->sd_rindex_spin);
530 
531 	return NULL;
532 }
533 
534 /**
535  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536  * @sdp: The GFS2 superblock
537  *
538  * Returns: The first rgrp in the filesystem
539  */
540 
541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
542 {
543 	const struct rb_node *n;
544 	struct gfs2_rgrpd *rgd;
545 
546 	spin_lock(&sdp->sd_rindex_spin);
547 	n = rb_first(&sdp->sd_rindex_tree);
548 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
549 	spin_unlock(&sdp->sd_rindex_spin);
550 
551 	return rgd;
552 }
553 
554 /**
555  * gfs2_rgrpd_get_next - get the next RG
556  * @rgd: the resource group descriptor
557  *
558  * Returns: The next rgrp
559  */
560 
561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
562 {
563 	struct gfs2_sbd *sdp = rgd->rd_sbd;
564 	const struct rb_node *n;
565 
566 	spin_lock(&sdp->sd_rindex_spin);
567 	n = rb_next(&rgd->rd_node);
568 	if (n == NULL)
569 		n = rb_first(&sdp->sd_rindex_tree);
570 
571 	if (unlikely(&rgd->rd_node == n)) {
572 		spin_unlock(&sdp->sd_rindex_spin);
573 		return NULL;
574 	}
575 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
576 	spin_unlock(&sdp->sd_rindex_spin);
577 	return rgd;
578 }
579 
580 void check_and_update_goal(struct gfs2_inode *ip)
581 {
582 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
583 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
584 		ip->i_goal = ip->i_no_addr;
585 }
586 
587 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
588 {
589 	int x;
590 
591 	for (x = 0; x < rgd->rd_length; x++) {
592 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
593 		kfree(bi->bi_clone);
594 		bi->bi_clone = NULL;
595 	}
596 }
597 
598 /**
599  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
600  *                 plus a quota allocations data structure, if necessary
601  * @ip: the inode for this reservation
602  */
603 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
604 {
605 	return gfs2_qa_alloc(ip);
606 }
607 
608 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
609 {
610 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
611 		       (unsigned long long)rs->rs_inum,
612 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
613 		       rs->rs_rbm.offset, rs->rs_free);
614 }
615 
616 /**
617  * __rs_deltree - remove a multi-block reservation from the rgd tree
618  * @rs: The reservation to remove
619  *
620  */
621 static void __rs_deltree(struct gfs2_blkreserv *rs)
622 {
623 	struct gfs2_rgrpd *rgd;
624 
625 	if (!gfs2_rs_active(rs))
626 		return;
627 
628 	rgd = rs->rs_rbm.rgd;
629 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
630 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
631 	RB_CLEAR_NODE(&rs->rs_node);
632 
633 	if (rs->rs_free) {
634 		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
635 
636 		/* return reserved blocks to the rgrp */
637 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
638 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
639 		/* The rgrp extent failure point is likely not to increase;
640 		   it will only do so if the freed blocks are somehow
641 		   contiguous with a span of free blocks that follows. Still,
642 		   it will force the number to be recalculated later. */
643 		rgd->rd_extfail_pt += rs->rs_free;
644 		rs->rs_free = 0;
645 		clear_bit(GBF_FULL, &bi->bi_flags);
646 	}
647 }
648 
649 /**
650  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
651  * @rs: The reservation to remove
652  *
653  */
654 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
655 {
656 	struct gfs2_rgrpd *rgd;
657 
658 	rgd = rs->rs_rbm.rgd;
659 	if (rgd) {
660 		spin_lock(&rgd->rd_rsspin);
661 		__rs_deltree(rs);
662 		BUG_ON(rs->rs_free);
663 		spin_unlock(&rgd->rd_rsspin);
664 	}
665 }
666 
667 /**
668  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
669  * @ip: The inode for this reservation
670  * @wcount: The inode's write count, or NULL
671  *
672  */
673 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
674 {
675 	down_write(&ip->i_rw_mutex);
676 	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
677 		gfs2_rs_deltree(&ip->i_res);
678 	up_write(&ip->i_rw_mutex);
679 	gfs2_qa_delete(ip, wcount);
680 }
681 
682 /**
683  * return_all_reservations - return all reserved blocks back to the rgrp.
684  * @rgd: the rgrp that needs its space back
685  *
686  * We previously reserved a bunch of blocks for allocation. Now we need to
687  * give them back. This leave the reservation structures in tact, but removes
688  * all of their corresponding "no-fly zones".
689  */
690 static void return_all_reservations(struct gfs2_rgrpd *rgd)
691 {
692 	struct rb_node *n;
693 	struct gfs2_blkreserv *rs;
694 
695 	spin_lock(&rgd->rd_rsspin);
696 	while ((n = rb_first(&rgd->rd_rstree))) {
697 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
698 		__rs_deltree(rs);
699 	}
700 	spin_unlock(&rgd->rd_rsspin);
701 }
702 
703 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
704 {
705 	struct rb_node *n;
706 	struct gfs2_rgrpd *rgd;
707 	struct gfs2_glock *gl;
708 
709 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
710 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
711 		gl = rgd->rd_gl;
712 
713 		rb_erase(n, &sdp->sd_rindex_tree);
714 
715 		if (gl) {
716 			glock_clear_object(gl, rgd);
717 			gfs2_glock_put(gl);
718 		}
719 
720 		gfs2_free_clones(rgd);
721 		kfree(rgd->rd_bits);
722 		rgd->rd_bits = NULL;
723 		return_all_reservations(rgd);
724 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
725 	}
726 }
727 
728 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
729 {
730 	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
731 	pr_info("ri_length = %u\n", rgd->rd_length);
732 	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
733 	pr_info("ri_data = %u\n", rgd->rd_data);
734 	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
735 }
736 
737 /**
738  * gfs2_compute_bitstructs - Compute the bitmap sizes
739  * @rgd: The resource group descriptor
740  *
741  * Calculates bitmap descriptors, one for each block that contains bitmap data
742  *
743  * Returns: errno
744  */
745 
746 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
747 {
748 	struct gfs2_sbd *sdp = rgd->rd_sbd;
749 	struct gfs2_bitmap *bi;
750 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
751 	u32 bytes_left, bytes;
752 	int x;
753 
754 	if (!length)
755 		return -EINVAL;
756 
757 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
758 	if (!rgd->rd_bits)
759 		return -ENOMEM;
760 
761 	bytes_left = rgd->rd_bitbytes;
762 
763 	for (x = 0; x < length; x++) {
764 		bi = rgd->rd_bits + x;
765 
766 		bi->bi_flags = 0;
767 		/* small rgrp; bitmap stored completely in header block */
768 		if (length == 1) {
769 			bytes = bytes_left;
770 			bi->bi_offset = sizeof(struct gfs2_rgrp);
771 			bi->bi_start = 0;
772 			bi->bi_len = bytes;
773 			bi->bi_blocks = bytes * GFS2_NBBY;
774 		/* header block */
775 		} else if (x == 0) {
776 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
777 			bi->bi_offset = sizeof(struct gfs2_rgrp);
778 			bi->bi_start = 0;
779 			bi->bi_len = bytes;
780 			bi->bi_blocks = bytes * GFS2_NBBY;
781 		/* last block */
782 		} else if (x + 1 == length) {
783 			bytes = bytes_left;
784 			bi->bi_offset = sizeof(struct gfs2_meta_header);
785 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
786 			bi->bi_len = bytes;
787 			bi->bi_blocks = bytes * GFS2_NBBY;
788 		/* other blocks */
789 		} else {
790 			bytes = sdp->sd_sb.sb_bsize -
791 				sizeof(struct gfs2_meta_header);
792 			bi->bi_offset = sizeof(struct gfs2_meta_header);
793 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
794 			bi->bi_len = bytes;
795 			bi->bi_blocks = bytes * GFS2_NBBY;
796 		}
797 
798 		bytes_left -= bytes;
799 	}
800 
801 	if (bytes_left) {
802 		gfs2_consist_rgrpd(rgd);
803 		return -EIO;
804 	}
805 	bi = rgd->rd_bits + (length - 1);
806 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
807 		if (gfs2_consist_rgrpd(rgd)) {
808 			gfs2_rindex_print(rgd);
809 			fs_err(sdp, "start=%u len=%u offset=%u\n",
810 			       bi->bi_start, bi->bi_len, bi->bi_offset);
811 		}
812 		return -EIO;
813 	}
814 
815 	return 0;
816 }
817 
818 /**
819  * gfs2_ri_total - Total up the file system space, according to the rindex.
820  * @sdp: the filesystem
821  *
822  */
823 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
824 {
825 	u64 total_data = 0;
826 	struct inode *inode = sdp->sd_rindex;
827 	struct gfs2_inode *ip = GFS2_I(inode);
828 	char buf[sizeof(struct gfs2_rindex)];
829 	int error, rgrps;
830 
831 	for (rgrps = 0;; rgrps++) {
832 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
833 
834 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
835 			break;
836 		error = gfs2_internal_read(ip, buf, &pos,
837 					   sizeof(struct gfs2_rindex));
838 		if (error != sizeof(struct gfs2_rindex))
839 			break;
840 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
841 	}
842 	return total_data;
843 }
844 
845 static int rgd_insert(struct gfs2_rgrpd *rgd)
846 {
847 	struct gfs2_sbd *sdp = rgd->rd_sbd;
848 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
849 
850 	/* Figure out where to put new node */
851 	while (*newn) {
852 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
853 						  rd_node);
854 
855 		parent = *newn;
856 		if (rgd->rd_addr < cur->rd_addr)
857 			newn = &((*newn)->rb_left);
858 		else if (rgd->rd_addr > cur->rd_addr)
859 			newn = &((*newn)->rb_right);
860 		else
861 			return -EEXIST;
862 	}
863 
864 	rb_link_node(&rgd->rd_node, parent, newn);
865 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
866 	sdp->sd_rgrps++;
867 	return 0;
868 }
869 
870 /**
871  * read_rindex_entry - Pull in a new resource index entry from the disk
872  * @ip: Pointer to the rindex inode
873  *
874  * Returns: 0 on success, > 0 on EOF, error code otherwise
875  */
876 
877 static int read_rindex_entry(struct gfs2_inode *ip)
878 {
879 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
880 	const unsigned bsize = sdp->sd_sb.sb_bsize;
881 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
882 	struct gfs2_rindex buf;
883 	int error;
884 	struct gfs2_rgrpd *rgd;
885 
886 	if (pos >= i_size_read(&ip->i_inode))
887 		return 1;
888 
889 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
890 				   sizeof(struct gfs2_rindex));
891 
892 	if (error != sizeof(struct gfs2_rindex))
893 		return (error == 0) ? 1 : error;
894 
895 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
896 	error = -ENOMEM;
897 	if (!rgd)
898 		return error;
899 
900 	rgd->rd_sbd = sdp;
901 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
902 	rgd->rd_length = be32_to_cpu(buf.ri_length);
903 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
904 	rgd->rd_data = be32_to_cpu(buf.ri_data);
905 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
906 	spin_lock_init(&rgd->rd_rsspin);
907 
908 	error = compute_bitstructs(rgd);
909 	if (error)
910 		goto fail;
911 
912 	error = gfs2_glock_get(sdp, rgd->rd_addr,
913 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
914 	if (error)
915 		goto fail;
916 
917 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
918 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
919 	if (rgd->rd_data > sdp->sd_max_rg_data)
920 		sdp->sd_max_rg_data = rgd->rd_data;
921 	spin_lock(&sdp->sd_rindex_spin);
922 	error = rgd_insert(rgd);
923 	spin_unlock(&sdp->sd_rindex_spin);
924 	if (!error) {
925 		glock_set_object(rgd->rd_gl, rgd);
926 		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
927 		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
928 						    rgd->rd_length) * bsize) - 1;
929 		return 0;
930 	}
931 
932 	error = 0; /* someone else read in the rgrp; free it and ignore it */
933 	gfs2_glock_put(rgd->rd_gl);
934 
935 fail:
936 	kfree(rgd->rd_bits);
937 	rgd->rd_bits = NULL;
938 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
939 	return error;
940 }
941 
942 /**
943  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
944  * @sdp: the GFS2 superblock
945  *
946  * The purpose of this function is to select a subset of the resource groups
947  * and mark them as PREFERRED. We do it in such a way that each node prefers
948  * to use a unique set of rgrps to minimize glock contention.
949  */
950 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
951 {
952 	struct gfs2_rgrpd *rgd, *first;
953 	int i;
954 
955 	/* Skip an initial number of rgrps, based on this node's journal ID.
956 	   That should start each node out on its own set. */
957 	rgd = gfs2_rgrpd_get_first(sdp);
958 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
959 		rgd = gfs2_rgrpd_get_next(rgd);
960 	first = rgd;
961 
962 	do {
963 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
964 		for (i = 0; i < sdp->sd_journals; i++) {
965 			rgd = gfs2_rgrpd_get_next(rgd);
966 			if (!rgd || rgd == first)
967 				break;
968 		}
969 	} while (rgd && rgd != first);
970 }
971 
972 /**
973  * gfs2_ri_update - Pull in a new resource index from the disk
974  * @ip: pointer to the rindex inode
975  *
976  * Returns: 0 on successful update, error code otherwise
977  */
978 
979 static int gfs2_ri_update(struct gfs2_inode *ip)
980 {
981 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
982 	int error;
983 
984 	do {
985 		error = read_rindex_entry(ip);
986 	} while (error == 0);
987 
988 	if (error < 0)
989 		return error;
990 
991 	set_rgrp_preferences(sdp);
992 
993 	sdp->sd_rindex_uptodate = 1;
994 	return 0;
995 }
996 
997 /**
998  * gfs2_rindex_update - Update the rindex if required
999  * @sdp: The GFS2 superblock
1000  *
1001  * We grab a lock on the rindex inode to make sure that it doesn't
1002  * change whilst we are performing an operation. We keep this lock
1003  * for quite long periods of time compared to other locks. This
1004  * doesn't matter, since it is shared and it is very, very rarely
1005  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1006  *
1007  * This makes sure that we're using the latest copy of the resource index
1008  * special file, which might have been updated if someone expanded the
1009  * filesystem (via gfs2_grow utility), which adds new resource groups.
1010  *
1011  * Returns: 0 on succeess, error code otherwise
1012  */
1013 
1014 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1015 {
1016 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1017 	struct gfs2_glock *gl = ip->i_gl;
1018 	struct gfs2_holder ri_gh;
1019 	int error = 0;
1020 	int unlock_required = 0;
1021 
1022 	/* Read new copy from disk if we don't have the latest */
1023 	if (!sdp->sd_rindex_uptodate) {
1024 		if (!gfs2_glock_is_locked_by_me(gl)) {
1025 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1026 			if (error)
1027 				return error;
1028 			unlock_required = 1;
1029 		}
1030 		if (!sdp->sd_rindex_uptodate)
1031 			error = gfs2_ri_update(ip);
1032 		if (unlock_required)
1033 			gfs2_glock_dq_uninit(&ri_gh);
1034 	}
1035 
1036 	return error;
1037 }
1038 
1039 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1040 {
1041 	const struct gfs2_rgrp *str = buf;
1042 	u32 rg_flags;
1043 
1044 	rg_flags = be32_to_cpu(str->rg_flags);
1045 	rg_flags &= ~GFS2_RDF_MASK;
1046 	rgd->rd_flags &= GFS2_RDF_MASK;
1047 	rgd->rd_flags |= rg_flags;
1048 	rgd->rd_free = be32_to_cpu(str->rg_free);
1049 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1050 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1051 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1052 }
1053 
1054 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1055 {
1056 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1057 	struct gfs2_rgrp *str = buf;
1058 	u32 crc;
1059 
1060 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1061 	str->rg_free = cpu_to_be32(rgd->rd_free);
1062 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1063 	if (next == NULL)
1064 		str->rg_skip = 0;
1065 	else if (next->rd_addr > rgd->rd_addr)
1066 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1067 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1068 	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1069 	str->rg_data = cpu_to_be32(rgd->rd_data);
1070 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1071 	str->rg_crc = 0;
1072 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1073 	str->rg_crc = cpu_to_be32(crc);
1074 
1075 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1076 }
1077 
1078 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1079 {
1080 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1081 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1082 
1083 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1084 	    rgl->rl_dinodes != str->rg_dinodes ||
1085 	    rgl->rl_igeneration != str->rg_igeneration)
1086 		return 0;
1087 	return 1;
1088 }
1089 
1090 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1091 {
1092 	const struct gfs2_rgrp *str = buf;
1093 
1094 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1095 	rgl->rl_flags = str->rg_flags;
1096 	rgl->rl_free = str->rg_free;
1097 	rgl->rl_dinodes = str->rg_dinodes;
1098 	rgl->rl_igeneration = str->rg_igeneration;
1099 	rgl->__pad = 0UL;
1100 }
1101 
1102 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1103 {
1104 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1105 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1106 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1107 }
1108 
1109 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1110 {
1111 	struct gfs2_bitmap *bi;
1112 	const u32 length = rgd->rd_length;
1113 	const u8 *buffer = NULL;
1114 	u32 i, goal, count = 0;
1115 
1116 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1117 		goal = 0;
1118 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1119 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1120 		while (goal < bi->bi_len * GFS2_NBBY) {
1121 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1122 					   GFS2_BLKST_UNLINKED);
1123 			if (goal == BFITNOENT)
1124 				break;
1125 			count++;
1126 			goal++;
1127 		}
1128 	}
1129 
1130 	return count;
1131 }
1132 
1133 
1134 /**
1135  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1136  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1137  *
1138  * Read in all of a Resource Group's header and bitmap blocks.
1139  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1140  *
1141  * Returns: errno
1142  */
1143 
1144 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1145 {
1146 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1147 	struct gfs2_glock *gl = rgd->rd_gl;
1148 	unsigned int length = rgd->rd_length;
1149 	struct gfs2_bitmap *bi;
1150 	unsigned int x, y;
1151 	int error;
1152 
1153 	if (rgd->rd_bits[0].bi_bh != NULL)
1154 		return 0;
1155 
1156 	for (x = 0; x < length; x++) {
1157 		bi = rgd->rd_bits + x;
1158 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1159 		if (error)
1160 			goto fail;
1161 	}
1162 
1163 	for (y = length; y--;) {
1164 		bi = rgd->rd_bits + y;
1165 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1166 		if (error)
1167 			goto fail;
1168 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1169 					      GFS2_METATYPE_RG)) {
1170 			error = -EIO;
1171 			goto fail;
1172 		}
1173 	}
1174 
1175 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1176 		for (x = 0; x < length; x++)
1177 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1178 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1179 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1180 		rgd->rd_free_clone = rgd->rd_free;
1181 		/* max out the rgrp allocation failure point */
1182 		rgd->rd_extfail_pt = rgd->rd_free;
1183 	}
1184 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1185 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1186 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1187 				     rgd->rd_bits[0].bi_bh->b_data);
1188 	}
1189 	else if (sdp->sd_args.ar_rgrplvb) {
1190 		if (!gfs2_rgrp_lvb_valid(rgd)){
1191 			gfs2_consist_rgrpd(rgd);
1192 			error = -EIO;
1193 			goto fail;
1194 		}
1195 		if (rgd->rd_rgl->rl_unlinked == 0)
1196 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1197 	}
1198 	return 0;
1199 
1200 fail:
1201 	while (x--) {
1202 		bi = rgd->rd_bits + x;
1203 		brelse(bi->bi_bh);
1204 		bi->bi_bh = NULL;
1205 		gfs2_assert_warn(sdp, !bi->bi_clone);
1206 	}
1207 
1208 	return error;
1209 }
1210 
1211 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1212 {
1213 	u32 rl_flags;
1214 
1215 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1216 		return 0;
1217 
1218 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1219 		return gfs2_rgrp_bh_get(rgd);
1220 
1221 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1222 	rl_flags &= ~GFS2_RDF_MASK;
1223 	rgd->rd_flags &= GFS2_RDF_MASK;
1224 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1225 	if (rgd->rd_rgl->rl_unlinked == 0)
1226 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1227 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1228 	rgd->rd_free_clone = rgd->rd_free;
1229 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1230 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1231 	return 0;
1232 }
1233 
1234 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1235 {
1236 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1237 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1238 
1239 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1240 		return 0;
1241 	return gfs2_rgrp_bh_get(rgd);
1242 }
1243 
1244 /**
1245  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1246  * @rgd: The resource group
1247  *
1248  */
1249 
1250 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1251 {
1252 	int x, length = rgd->rd_length;
1253 
1254 	for (x = 0; x < length; x++) {
1255 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1256 		if (bi->bi_bh) {
1257 			brelse(bi->bi_bh);
1258 			bi->bi_bh = NULL;
1259 		}
1260 	}
1261 
1262 }
1263 
1264 /**
1265  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1266  * @gh: The glock holder for the resource group
1267  *
1268  */
1269 
1270 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1271 {
1272 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1273 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1274 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1275 
1276 	if (rgd && demote_requested)
1277 		gfs2_rgrp_brelse(rgd);
1278 }
1279 
1280 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1281 			     struct buffer_head *bh,
1282 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1283 {
1284 	struct super_block *sb = sdp->sd_vfs;
1285 	u64 blk;
1286 	sector_t start = 0;
1287 	sector_t nr_blks = 0;
1288 	int rv;
1289 	unsigned int x;
1290 	u32 trimmed = 0;
1291 	u8 diff;
1292 
1293 	for (x = 0; x < bi->bi_len; x++) {
1294 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1295 		clone += bi->bi_offset;
1296 		clone += x;
1297 		if (bh) {
1298 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1299 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1300 		} else {
1301 			diff = ~(*clone | (*clone >> 1));
1302 		}
1303 		diff &= 0x55;
1304 		if (diff == 0)
1305 			continue;
1306 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1307 		while(diff) {
1308 			if (diff & 1) {
1309 				if (nr_blks == 0)
1310 					goto start_new_extent;
1311 				if ((start + nr_blks) != blk) {
1312 					if (nr_blks >= minlen) {
1313 						rv = sb_issue_discard(sb,
1314 							start, nr_blks,
1315 							GFP_NOFS, 0);
1316 						if (rv)
1317 							goto fail;
1318 						trimmed += nr_blks;
1319 					}
1320 					nr_blks = 0;
1321 start_new_extent:
1322 					start = blk;
1323 				}
1324 				nr_blks++;
1325 			}
1326 			diff >>= 2;
1327 			blk++;
1328 		}
1329 	}
1330 	if (nr_blks >= minlen) {
1331 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1332 		if (rv)
1333 			goto fail;
1334 		trimmed += nr_blks;
1335 	}
1336 	if (ptrimmed)
1337 		*ptrimmed = trimmed;
1338 	return 0;
1339 
1340 fail:
1341 	if (sdp->sd_args.ar_discard)
1342 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1343 	sdp->sd_args.ar_discard = 0;
1344 	return -EIO;
1345 }
1346 
1347 /**
1348  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1349  * @filp: Any file on the filesystem
1350  * @argp: Pointer to the arguments (also used to pass result)
1351  *
1352  * Returns: 0 on success, otherwise error code
1353  */
1354 
1355 int gfs2_fitrim(struct file *filp, void __user *argp)
1356 {
1357 	struct inode *inode = file_inode(filp);
1358 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1359 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1360 	struct buffer_head *bh;
1361 	struct gfs2_rgrpd *rgd;
1362 	struct gfs2_rgrpd *rgd_end;
1363 	struct gfs2_holder gh;
1364 	struct fstrim_range r;
1365 	int ret = 0;
1366 	u64 amt;
1367 	u64 trimmed = 0;
1368 	u64 start, end, minlen;
1369 	unsigned int x;
1370 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1371 
1372 	if (!capable(CAP_SYS_ADMIN))
1373 		return -EPERM;
1374 
1375 	if (!blk_queue_discard(q))
1376 		return -EOPNOTSUPP;
1377 
1378 	if (copy_from_user(&r, argp, sizeof(r)))
1379 		return -EFAULT;
1380 
1381 	ret = gfs2_rindex_update(sdp);
1382 	if (ret)
1383 		return ret;
1384 
1385 	start = r.start >> bs_shift;
1386 	end = start + (r.len >> bs_shift);
1387 	minlen = max_t(u64, r.minlen,
1388 		       q->limits.discard_granularity) >> bs_shift;
1389 
1390 	if (end <= start || minlen > sdp->sd_max_rg_data)
1391 		return -EINVAL;
1392 
1393 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1394 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1395 
1396 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1397 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1398 		return -EINVAL; /* start is beyond the end of the fs */
1399 
1400 	while (1) {
1401 
1402 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1403 		if (ret)
1404 			goto out;
1405 
1406 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1407 			/* Trim each bitmap in the rgrp */
1408 			for (x = 0; x < rgd->rd_length; x++) {
1409 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1410 				ret = gfs2_rgrp_send_discards(sdp,
1411 						rgd->rd_data0, NULL, bi, minlen,
1412 						&amt);
1413 				if (ret) {
1414 					gfs2_glock_dq_uninit(&gh);
1415 					goto out;
1416 				}
1417 				trimmed += amt;
1418 			}
1419 
1420 			/* Mark rgrp as having been trimmed */
1421 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1422 			if (ret == 0) {
1423 				bh = rgd->rd_bits[0].bi_bh;
1424 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1425 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1426 				gfs2_rgrp_out(rgd, bh->b_data);
1427 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1428 				gfs2_trans_end(sdp);
1429 			}
1430 		}
1431 		gfs2_glock_dq_uninit(&gh);
1432 
1433 		if (rgd == rgd_end)
1434 			break;
1435 
1436 		rgd = gfs2_rgrpd_get_next(rgd);
1437 	}
1438 
1439 out:
1440 	r.len = trimmed << bs_shift;
1441 	if (copy_to_user(argp, &r, sizeof(r)))
1442 		return -EFAULT;
1443 
1444 	return ret;
1445 }
1446 
1447 /**
1448  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1449  * @ip: the inode structure
1450  *
1451  */
1452 static void rs_insert(struct gfs2_inode *ip)
1453 {
1454 	struct rb_node **newn, *parent = NULL;
1455 	int rc;
1456 	struct gfs2_blkreserv *rs = &ip->i_res;
1457 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1458 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1459 
1460 	BUG_ON(gfs2_rs_active(rs));
1461 
1462 	spin_lock(&rgd->rd_rsspin);
1463 	newn = &rgd->rd_rstree.rb_node;
1464 	while (*newn) {
1465 		struct gfs2_blkreserv *cur =
1466 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1467 
1468 		parent = *newn;
1469 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1470 		if (rc > 0)
1471 			newn = &((*newn)->rb_right);
1472 		else if (rc < 0)
1473 			newn = &((*newn)->rb_left);
1474 		else {
1475 			spin_unlock(&rgd->rd_rsspin);
1476 			WARN_ON(1);
1477 			return;
1478 		}
1479 	}
1480 
1481 	rb_link_node(&rs->rs_node, parent, newn);
1482 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1483 
1484 	/* Do our rgrp accounting for the reservation */
1485 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1486 	spin_unlock(&rgd->rd_rsspin);
1487 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1488 }
1489 
1490 /**
1491  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1492  * @rgd: the resource group descriptor
1493  * @ip: pointer to the inode for which we're reserving blocks
1494  * @ap: the allocation parameters
1495  *
1496  */
1497 
1498 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1499 			   const struct gfs2_alloc_parms *ap)
1500 {
1501 	struct gfs2_rbm rbm = { .rgd = rgd, };
1502 	u64 goal;
1503 	struct gfs2_blkreserv *rs = &ip->i_res;
1504 	u32 extlen;
1505 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1506 	int ret;
1507 	struct inode *inode = &ip->i_inode;
1508 
1509 	if (S_ISDIR(inode->i_mode))
1510 		extlen = 1;
1511 	else {
1512 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1513 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1514 	}
1515 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1516 		return;
1517 
1518 	/* Find bitmap block that contains bits for goal block */
1519 	if (rgrp_contains_block(rgd, ip->i_goal))
1520 		goal = ip->i_goal;
1521 	else
1522 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1523 
1524 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1525 		return;
1526 
1527 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1528 	if (ret == 0) {
1529 		rs->rs_rbm = rbm;
1530 		rs->rs_free = extlen;
1531 		rs->rs_inum = ip->i_no_addr;
1532 		rs_insert(ip);
1533 	} else {
1534 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1535 			rgd->rd_last_alloc = 0;
1536 	}
1537 }
1538 
1539 /**
1540  * gfs2_next_unreserved_block - Return next block that is not reserved
1541  * @rgd: The resource group
1542  * @block: The starting block
1543  * @length: The required length
1544  * @ip: Ignore any reservations for this inode
1545  *
1546  * If the block does not appear in any reservation, then return the
1547  * block number unchanged. If it does appear in the reservation, then
1548  * keep looking through the tree of reservations in order to find the
1549  * first block number which is not reserved.
1550  */
1551 
1552 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1553 				      u32 length,
1554 				      const struct gfs2_inode *ip)
1555 {
1556 	struct gfs2_blkreserv *rs;
1557 	struct rb_node *n;
1558 	int rc;
1559 
1560 	spin_lock(&rgd->rd_rsspin);
1561 	n = rgd->rd_rstree.rb_node;
1562 	while (n) {
1563 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1564 		rc = rs_cmp(block, length, rs);
1565 		if (rc < 0)
1566 			n = n->rb_left;
1567 		else if (rc > 0)
1568 			n = n->rb_right;
1569 		else
1570 			break;
1571 	}
1572 
1573 	if (n) {
1574 		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1575 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1576 			n = n->rb_right;
1577 			if (n == NULL)
1578 				break;
1579 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1580 		}
1581 	}
1582 
1583 	spin_unlock(&rgd->rd_rsspin);
1584 	return block;
1585 }
1586 
1587 /**
1588  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1589  * @rbm: The current position in the resource group
1590  * @ip: The inode for which we are searching for blocks
1591  * @minext: The minimum extent length
1592  * @maxext: A pointer to the maximum extent structure
1593  *
1594  * This checks the current position in the rgrp to see whether there is
1595  * a reservation covering this block. If not then this function is a
1596  * no-op. If there is, then the position is moved to the end of the
1597  * contiguous reservation(s) so that we are pointing at the first
1598  * non-reserved block.
1599  *
1600  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1601  */
1602 
1603 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1604 					     const struct gfs2_inode *ip,
1605 					     u32 minext,
1606 					     struct gfs2_extent *maxext)
1607 {
1608 	u64 block = gfs2_rbm_to_block(rbm);
1609 	u32 extlen = 1;
1610 	u64 nblock;
1611 	int ret;
1612 
1613 	/*
1614 	 * If we have a minimum extent length, then skip over any extent
1615 	 * which is less than the min extent length in size.
1616 	 */
1617 	if (minext) {
1618 		extlen = gfs2_free_extlen(rbm, minext);
1619 		if (extlen <= maxext->len)
1620 			goto fail;
1621 	}
1622 
1623 	/*
1624 	 * Check the extent which has been found against the reservations
1625 	 * and skip if parts of it are already reserved
1626 	 */
1627 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1628 	if (nblock == block) {
1629 		if (!minext || extlen >= minext)
1630 			return 0;
1631 
1632 		if (extlen > maxext->len) {
1633 			maxext->len = extlen;
1634 			maxext->rbm = *rbm;
1635 		}
1636 fail:
1637 		nblock = block + extlen;
1638 	}
1639 	ret = gfs2_rbm_from_block(rbm, nblock);
1640 	if (ret < 0)
1641 		return ret;
1642 	return 1;
1643 }
1644 
1645 /**
1646  * gfs2_rbm_find - Look for blocks of a particular state
1647  * @rbm: Value/result starting position and final position
1648  * @state: The state which we want to find
1649  * @minext: Pointer to the requested extent length (NULL for a single block)
1650  *          This is updated to be the actual reservation size.
1651  * @ip: If set, check for reservations
1652  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1653  *          around until we've reached the starting point.
1654  *
1655  * Side effects:
1656  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1657  *   has no free blocks in it.
1658  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1659  *   has come up short on a free block search.
1660  *
1661  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1662  */
1663 
1664 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1665 			 const struct gfs2_inode *ip, bool nowrap)
1666 {
1667 	struct buffer_head *bh;
1668 	int initial_bii;
1669 	u32 initial_offset;
1670 	int first_bii = rbm->bii;
1671 	u32 first_offset = rbm->offset;
1672 	u32 offset;
1673 	u8 *buffer;
1674 	int n = 0;
1675 	int iters = rbm->rgd->rd_length;
1676 	int ret;
1677 	struct gfs2_bitmap *bi;
1678 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1679 
1680 	/* If we are not starting at the beginning of a bitmap, then we
1681 	 * need to add one to the bitmap count to ensure that we search
1682 	 * the starting bitmap twice.
1683 	 */
1684 	if (rbm->offset != 0)
1685 		iters++;
1686 
1687 	while(1) {
1688 		bi = rbm_bi(rbm);
1689 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1690 		    (state == GFS2_BLKST_FREE))
1691 			goto next_bitmap;
1692 
1693 		bh = bi->bi_bh;
1694 		buffer = bh->b_data + bi->bi_offset;
1695 		WARN_ON(!buffer_uptodate(bh));
1696 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1697 			buffer = bi->bi_clone + bi->bi_offset;
1698 		initial_offset = rbm->offset;
1699 		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1700 		if (offset == BFITNOENT)
1701 			goto bitmap_full;
1702 		rbm->offset = offset;
1703 		if (ip == NULL)
1704 			return 0;
1705 
1706 		initial_bii = rbm->bii;
1707 		ret = gfs2_reservation_check_and_update(rbm, ip,
1708 							minext ? *minext : 0,
1709 							&maxext);
1710 		if (ret == 0)
1711 			return 0;
1712 		if (ret > 0) {
1713 			n += (rbm->bii - initial_bii);
1714 			goto next_iter;
1715 		}
1716 		if (ret == -E2BIG) {
1717 			rbm->bii = 0;
1718 			rbm->offset = 0;
1719 			n += (rbm->bii - initial_bii);
1720 			goto res_covered_end_of_rgrp;
1721 		}
1722 		return ret;
1723 
1724 bitmap_full:	/* Mark bitmap as full and fall through */
1725 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1726 			set_bit(GBF_FULL, &bi->bi_flags);
1727 
1728 next_bitmap:	/* Find next bitmap in the rgrp */
1729 		rbm->offset = 0;
1730 		rbm->bii++;
1731 		if (rbm->bii == rbm->rgd->rd_length)
1732 			rbm->bii = 0;
1733 res_covered_end_of_rgrp:
1734 		if ((rbm->bii == 0) && nowrap)
1735 			break;
1736 		n++;
1737 next_iter:
1738 		if (n >= iters)
1739 			break;
1740 	}
1741 
1742 	if (minext == NULL || state != GFS2_BLKST_FREE)
1743 		return -ENOSPC;
1744 
1745 	/* If the extent was too small, and it's smaller than the smallest
1746 	   to have failed before, remember for future reference that it's
1747 	   useless to search this rgrp again for this amount or more. */
1748 	if ((first_offset == 0) && (first_bii == 0) &&
1749 	    (*minext < rbm->rgd->rd_extfail_pt))
1750 		rbm->rgd->rd_extfail_pt = *minext;
1751 
1752 	/* If the maximum extent we found is big enough to fulfill the
1753 	   minimum requirements, use it anyway. */
1754 	if (maxext.len) {
1755 		*rbm = maxext.rbm;
1756 		*minext = maxext.len;
1757 		return 0;
1758 	}
1759 
1760 	return -ENOSPC;
1761 }
1762 
1763 /**
1764  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1765  * @rgd: The rgrp
1766  * @last_unlinked: block address of the last dinode we unlinked
1767  * @skip: block address we should explicitly not unlink
1768  *
1769  * Returns: 0 if no error
1770  *          The inode, if one has been found, in inode.
1771  */
1772 
1773 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1774 {
1775 	u64 block;
1776 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1777 	struct gfs2_glock *gl;
1778 	struct gfs2_inode *ip;
1779 	int error;
1780 	int found = 0;
1781 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1782 
1783 	while (1) {
1784 		down_write(&sdp->sd_log_flush_lock);
1785 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1786 				      true);
1787 		up_write(&sdp->sd_log_flush_lock);
1788 		if (error == -ENOSPC)
1789 			break;
1790 		if (WARN_ON_ONCE(error))
1791 			break;
1792 
1793 		block = gfs2_rbm_to_block(&rbm);
1794 		if (gfs2_rbm_from_block(&rbm, block + 1))
1795 			break;
1796 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1797 			continue;
1798 		if (block == skip)
1799 			continue;
1800 		*last_unlinked = block;
1801 
1802 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1803 		if (error)
1804 			continue;
1805 
1806 		/* If the inode is already in cache, we can ignore it here
1807 		 * because the existing inode disposal code will deal with
1808 		 * it when all refs have gone away. Accessing gl_object like
1809 		 * this is not safe in general. Here it is ok because we do
1810 		 * not dereference the pointer, and we only need an approx
1811 		 * answer to whether it is NULL or not.
1812 		 */
1813 		ip = gl->gl_object;
1814 
1815 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1816 			gfs2_glock_put(gl);
1817 		else
1818 			found++;
1819 
1820 		/* Limit reclaim to sensible number of tasks */
1821 		if (found > NR_CPUS)
1822 			return;
1823 	}
1824 
1825 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1826 	return;
1827 }
1828 
1829 /**
1830  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1831  * @rgd: The rgrp in question
1832  * @loops: An indication of how picky we can be (0=very, 1=less so)
1833  *
1834  * This function uses the recently added glock statistics in order to
1835  * figure out whether a parciular resource group is suffering from
1836  * contention from multiple nodes. This is done purely on the basis
1837  * of timings, since this is the only data we have to work with and
1838  * our aim here is to reject a resource group which is highly contended
1839  * but (very important) not to do this too often in order to ensure that
1840  * we do not land up introducing fragmentation by changing resource
1841  * groups when not actually required.
1842  *
1843  * The calculation is fairly simple, we want to know whether the SRTTB
1844  * (i.e. smoothed round trip time for blocking operations) to acquire
1845  * the lock for this rgrp's glock is significantly greater than the
1846  * time taken for resource groups on average. We introduce a margin in
1847  * the form of the variable @var which is computed as the sum of the two
1848  * respective variences, and multiplied by a factor depending on @loops
1849  * and whether we have a lot of data to base the decision on. This is
1850  * then tested against the square difference of the means in order to
1851  * decide whether the result is statistically significant or not.
1852  *
1853  * Returns: A boolean verdict on the congestion status
1854  */
1855 
1856 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1857 {
1858 	const struct gfs2_glock *gl = rgd->rd_gl;
1859 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1860 	struct gfs2_lkstats *st;
1861 	u64 r_dcount, l_dcount;
1862 	u64 l_srttb, a_srttb = 0;
1863 	s64 srttb_diff;
1864 	u64 sqr_diff;
1865 	u64 var;
1866 	int cpu, nonzero = 0;
1867 
1868 	preempt_disable();
1869 	for_each_present_cpu(cpu) {
1870 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1871 		if (st->stats[GFS2_LKS_SRTTB]) {
1872 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1873 			nonzero++;
1874 		}
1875 	}
1876 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1877 	if (nonzero)
1878 		do_div(a_srttb, nonzero);
1879 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1880 	var = st->stats[GFS2_LKS_SRTTVARB] +
1881 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1882 	preempt_enable();
1883 
1884 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1885 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1886 
1887 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1888 		return false;
1889 
1890 	srttb_diff = a_srttb - l_srttb;
1891 	sqr_diff = srttb_diff * srttb_diff;
1892 
1893 	var *= 2;
1894 	if (l_dcount < 8 || r_dcount < 8)
1895 		var *= 2;
1896 	if (loops == 1)
1897 		var *= 2;
1898 
1899 	return ((srttb_diff < 0) && (sqr_diff > var));
1900 }
1901 
1902 /**
1903  * gfs2_rgrp_used_recently
1904  * @rs: The block reservation with the rgrp to test
1905  * @msecs: The time limit in milliseconds
1906  *
1907  * Returns: True if the rgrp glock has been used within the time limit
1908  */
1909 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1910 				    u64 msecs)
1911 {
1912 	u64 tdiff;
1913 
1914 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1915                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1916 
1917 	return tdiff > (msecs * 1000 * 1000);
1918 }
1919 
1920 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1921 {
1922 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1923 	u32 skip;
1924 
1925 	get_random_bytes(&skip, sizeof(skip));
1926 	return skip % sdp->sd_rgrps;
1927 }
1928 
1929 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1930 {
1931 	struct gfs2_rgrpd *rgd = *pos;
1932 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1933 
1934 	rgd = gfs2_rgrpd_get_next(rgd);
1935 	if (rgd == NULL)
1936 		rgd = gfs2_rgrpd_get_first(sdp);
1937 	*pos = rgd;
1938 	if (rgd != begin) /* If we didn't wrap */
1939 		return true;
1940 	return false;
1941 }
1942 
1943 /**
1944  * fast_to_acquire - determine if a resource group will be fast to acquire
1945  *
1946  * If this is one of our preferred rgrps, it should be quicker to acquire,
1947  * because we tried to set ourselves up as dlm lock master.
1948  */
1949 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1950 {
1951 	struct gfs2_glock *gl = rgd->rd_gl;
1952 
1953 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1954 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1955 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1956 		return 1;
1957 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1958 		return 1;
1959 	return 0;
1960 }
1961 
1962 /**
1963  * gfs2_inplace_reserve - Reserve space in the filesystem
1964  * @ip: the inode to reserve space for
1965  * @ap: the allocation parameters
1966  *
1967  * We try our best to find an rgrp that has at least ap->target blocks
1968  * available. After a couple of passes (loops == 2), the prospects of finding
1969  * such an rgrp diminish. At this stage, we return the first rgrp that has
1970  * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1971  * the number of blocks available in the chosen rgrp.
1972  *
1973  * Returns: 0 on success,
1974  *          -ENOMEM if a suitable rgrp can't be found
1975  *          errno otherwise
1976  */
1977 
1978 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1979 {
1980 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1981 	struct gfs2_rgrpd *begin = NULL;
1982 	struct gfs2_blkreserv *rs = &ip->i_res;
1983 	int error = 0, rg_locked, flags = 0;
1984 	u64 last_unlinked = NO_BLOCK;
1985 	int loops = 0;
1986 	u32 skip = 0;
1987 
1988 	if (sdp->sd_args.ar_rgrplvb)
1989 		flags |= GL_SKIP;
1990 	if (gfs2_assert_warn(sdp, ap->target))
1991 		return -EINVAL;
1992 	if (gfs2_rs_active(rs)) {
1993 		begin = rs->rs_rbm.rgd;
1994 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1995 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1996 	} else {
1997 		check_and_update_goal(ip);
1998 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1999 	}
2000 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2001 		skip = gfs2_orlov_skip(ip);
2002 	if (rs->rs_rbm.rgd == NULL)
2003 		return -EBADSLT;
2004 
2005 	while (loops < 3) {
2006 		rg_locked = 1;
2007 
2008 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2009 			rg_locked = 0;
2010 			if (skip && skip--)
2011 				goto next_rgrp;
2012 			if (!gfs2_rs_active(rs)) {
2013 				if (loops == 0 &&
2014 				    !fast_to_acquire(rs->rs_rbm.rgd))
2015 					goto next_rgrp;
2016 				if ((loops < 2) &&
2017 				    gfs2_rgrp_used_recently(rs, 1000) &&
2018 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2019 					goto next_rgrp;
2020 			}
2021 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2022 						   LM_ST_EXCLUSIVE, flags,
2023 						   &rs->rs_rgd_gh);
2024 			if (unlikely(error))
2025 				return error;
2026 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2027 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2028 				goto skip_rgrp;
2029 			if (sdp->sd_args.ar_rgrplvb) {
2030 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2031 				if (unlikely(error)) {
2032 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2033 					return error;
2034 				}
2035 			}
2036 		}
2037 
2038 		/* Skip unuseable resource groups */
2039 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2040 						 GFS2_RDF_ERROR)) ||
2041 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2042 			goto skip_rgrp;
2043 
2044 		if (sdp->sd_args.ar_rgrplvb)
2045 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2046 
2047 		/* Get a reservation if we don't already have one */
2048 		if (!gfs2_rs_active(rs))
2049 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2050 
2051 		/* Skip rgrps when we can't get a reservation on first pass */
2052 		if (!gfs2_rs_active(rs) && (loops < 1))
2053 			goto check_rgrp;
2054 
2055 		/* If rgrp has enough free space, use it */
2056 		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2057 		    (loops == 2 && ap->min_target &&
2058 		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2059 			ip->i_rgd = rs->rs_rbm.rgd;
2060 			ap->allowed = ip->i_rgd->rd_free_clone;
2061 			return 0;
2062 		}
2063 check_rgrp:
2064 		/* Check for unlinked inodes which can be reclaimed */
2065 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2066 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2067 					ip->i_no_addr);
2068 skip_rgrp:
2069 		/* Drop reservation, if we couldn't use reserved rgrp */
2070 		if (gfs2_rs_active(rs))
2071 			gfs2_rs_deltree(rs);
2072 
2073 		/* Unlock rgrp if required */
2074 		if (!rg_locked)
2075 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2076 next_rgrp:
2077 		/* Find the next rgrp, and continue looking */
2078 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2079 			continue;
2080 		if (skip)
2081 			continue;
2082 
2083 		/* If we've scanned all the rgrps, but found no free blocks
2084 		 * then this checks for some less likely conditions before
2085 		 * trying again.
2086 		 */
2087 		loops++;
2088 		/* Check that fs hasn't grown if writing to rindex */
2089 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2090 			error = gfs2_ri_update(ip);
2091 			if (error)
2092 				return error;
2093 		}
2094 		/* Flushing the log may release space */
2095 		if (loops == 2)
2096 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2097 				       GFS2_LFC_INPLACE_RESERVE);
2098 	}
2099 
2100 	return -ENOSPC;
2101 }
2102 
2103 /**
2104  * gfs2_inplace_release - release an inplace reservation
2105  * @ip: the inode the reservation was taken out on
2106  *
2107  * Release a reservation made by gfs2_inplace_reserve().
2108  */
2109 
2110 void gfs2_inplace_release(struct gfs2_inode *ip)
2111 {
2112 	struct gfs2_blkreserv *rs = &ip->i_res;
2113 
2114 	if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2115 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2116 }
2117 
2118 /**
2119  * gfs2_get_block_type - Check a block in a RG is of given type
2120  * @rgd: the resource group holding the block
2121  * @block: the block number
2122  *
2123  * Returns: The block type (GFS2_BLKST_*)
2124  */
2125 
2126 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2127 {
2128 	struct gfs2_rbm rbm = { .rgd = rgd, };
2129 	int ret;
2130 
2131 	ret = gfs2_rbm_from_block(&rbm, block);
2132 	WARN_ON_ONCE(ret != 0);
2133 
2134 	return gfs2_testbit(&rbm);
2135 }
2136 
2137 
2138 /**
2139  * gfs2_alloc_extent - allocate an extent from a given bitmap
2140  * @rbm: the resource group information
2141  * @dinode: TRUE if the first block we allocate is for a dinode
2142  * @n: The extent length (value/result)
2143  *
2144  * Add the bitmap buffer to the transaction.
2145  * Set the found bits to @new_state to change block's allocation state.
2146  */
2147 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2148 			     unsigned int *n)
2149 {
2150 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2151 	const unsigned int elen = *n;
2152 	u64 block;
2153 	int ret;
2154 
2155 	*n = 1;
2156 	block = gfs2_rbm_to_block(rbm);
2157 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2158 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2159 	block++;
2160 	while (*n < elen) {
2161 		ret = gfs2_rbm_from_block(&pos, block);
2162 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2163 			break;
2164 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2165 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2166 		(*n)++;
2167 		block++;
2168 	}
2169 }
2170 
2171 /**
2172  * rgblk_free - Change alloc state of given block(s)
2173  * @sdp: the filesystem
2174  * @bstart: the start of a run of blocks to free
2175  * @blen: the length of the block run (all must lie within ONE RG!)
2176  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2177  *
2178  * Returns:  Resource group containing the block(s)
2179  */
2180 
2181 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2182 				     u32 blen, unsigned char new_state)
2183 {
2184 	struct gfs2_rbm rbm;
2185 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2186 
2187 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2188 	if (!rbm.rgd) {
2189 		if (gfs2_consist(sdp))
2190 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2191 		return NULL;
2192 	}
2193 
2194 	gfs2_rbm_from_block(&rbm, bstart);
2195 	while (blen--) {
2196 		bi = rbm_bi(&rbm);
2197 		if (bi != bi_prev) {
2198 			if (!bi->bi_clone) {
2199 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2200 						      GFP_NOFS | __GFP_NOFAIL);
2201 				memcpy(bi->bi_clone + bi->bi_offset,
2202 				       bi->bi_bh->b_data + bi->bi_offset,
2203 				       bi->bi_len);
2204 			}
2205 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2206 			bi_prev = bi;
2207 		}
2208 		gfs2_setbit(&rbm, false, new_state);
2209 		gfs2_rbm_incr(&rbm);
2210 	}
2211 
2212 	return rbm.rgd;
2213 }
2214 
2215 /**
2216  * gfs2_rgrp_dump - print out an rgrp
2217  * @seq: The iterator
2218  * @gl: The glock in question
2219  *
2220  */
2221 
2222 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2223 {
2224 	struct gfs2_rgrpd *rgd = gl->gl_object;
2225 	struct gfs2_blkreserv *trs;
2226 	const struct rb_node *n;
2227 
2228 	if (rgd == NULL)
2229 		return;
2230 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2231 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2232 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2233 		       rgd->rd_reserved, rgd->rd_extfail_pt);
2234 	spin_lock(&rgd->rd_rsspin);
2235 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2236 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2237 		dump_rs(seq, trs);
2238 	}
2239 	spin_unlock(&rgd->rd_rsspin);
2240 }
2241 
2242 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2243 {
2244 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2245 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2246 		(unsigned long long)rgd->rd_addr);
2247 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2248 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2249 	rgd->rd_flags |= GFS2_RDF_ERROR;
2250 }
2251 
2252 /**
2253  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2254  * @ip: The inode we have just allocated blocks for
2255  * @rbm: The start of the allocated blocks
2256  * @len: The extent length
2257  *
2258  * Adjusts a reservation after an allocation has taken place. If the
2259  * reservation does not match the allocation, or if it is now empty
2260  * then it is removed.
2261  */
2262 
2263 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2264 				    const struct gfs2_rbm *rbm, unsigned len)
2265 {
2266 	struct gfs2_blkreserv *rs = &ip->i_res;
2267 	struct gfs2_rgrpd *rgd = rbm->rgd;
2268 	unsigned rlen;
2269 	u64 block;
2270 	int ret;
2271 
2272 	spin_lock(&rgd->rd_rsspin);
2273 	if (gfs2_rs_active(rs)) {
2274 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2275 			block = gfs2_rbm_to_block(rbm);
2276 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2277 			rlen = min(rs->rs_free, len);
2278 			rs->rs_free -= rlen;
2279 			rgd->rd_reserved -= rlen;
2280 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2281 			if (rs->rs_free && !ret)
2282 				goto out;
2283 			/* We used up our block reservation, so we should
2284 			   reserve more blocks next time. */
2285 			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2286 		}
2287 		__rs_deltree(rs);
2288 	}
2289 out:
2290 	spin_unlock(&rgd->rd_rsspin);
2291 }
2292 
2293 /**
2294  * gfs2_set_alloc_start - Set starting point for block allocation
2295  * @rbm: The rbm which will be set to the required location
2296  * @ip: The gfs2 inode
2297  * @dinode: Flag to say if allocation includes a new inode
2298  *
2299  * This sets the starting point from the reservation if one is active
2300  * otherwise it falls back to guessing a start point based on the
2301  * inode's goal block or the last allocation point in the rgrp.
2302  */
2303 
2304 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2305 				 const struct gfs2_inode *ip, bool dinode)
2306 {
2307 	u64 goal;
2308 
2309 	if (gfs2_rs_active(&ip->i_res)) {
2310 		*rbm = ip->i_res.rs_rbm;
2311 		return;
2312 	}
2313 
2314 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2315 		goal = ip->i_goal;
2316 	else
2317 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2318 
2319 	gfs2_rbm_from_block(rbm, goal);
2320 }
2321 
2322 /**
2323  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2324  * @ip: the inode to allocate the block for
2325  * @bn: Used to return the starting block number
2326  * @nblocks: requested number of blocks/extent length (value/result)
2327  * @dinode: 1 if we're allocating a dinode block, else 0
2328  * @generation: the generation number of the inode
2329  *
2330  * Returns: 0 or error
2331  */
2332 
2333 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2334 		      bool dinode, u64 *generation)
2335 {
2336 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2337 	struct buffer_head *dibh;
2338 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2339 	unsigned int ndata;
2340 	u64 block; /* block, within the file system scope */
2341 	int error;
2342 
2343 	gfs2_set_alloc_start(&rbm, ip, dinode);
2344 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2345 
2346 	if (error == -ENOSPC) {
2347 		gfs2_set_alloc_start(&rbm, ip, dinode);
2348 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2349 	}
2350 
2351 	/* Since all blocks are reserved in advance, this shouldn't happen */
2352 	if (error) {
2353 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2354 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2355 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2356 			rbm.rgd->rd_extfail_pt);
2357 		goto rgrp_error;
2358 	}
2359 
2360 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2361 	block = gfs2_rbm_to_block(&rbm);
2362 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2363 	if (gfs2_rs_active(&ip->i_res))
2364 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2365 	ndata = *nblocks;
2366 	if (dinode)
2367 		ndata--;
2368 
2369 	if (!dinode) {
2370 		ip->i_goal = block + ndata - 1;
2371 		error = gfs2_meta_inode_buffer(ip, &dibh);
2372 		if (error == 0) {
2373 			struct gfs2_dinode *di =
2374 				(struct gfs2_dinode *)dibh->b_data;
2375 			gfs2_trans_add_meta(ip->i_gl, dibh);
2376 			di->di_goal_meta = di->di_goal_data =
2377 				cpu_to_be64(ip->i_goal);
2378 			brelse(dibh);
2379 		}
2380 	}
2381 	if (rbm.rgd->rd_free < *nblocks) {
2382 		pr_warn("nblocks=%u\n", *nblocks);
2383 		goto rgrp_error;
2384 	}
2385 
2386 	rbm.rgd->rd_free -= *nblocks;
2387 	if (dinode) {
2388 		rbm.rgd->rd_dinodes++;
2389 		*generation = rbm.rgd->rd_igeneration++;
2390 		if (*generation == 0)
2391 			*generation = rbm.rgd->rd_igeneration++;
2392 	}
2393 
2394 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2395 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2396 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2397 
2398 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2399 	if (dinode)
2400 		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2401 
2402 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2403 
2404 	rbm.rgd->rd_free_clone -= *nblocks;
2405 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2406 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2407 	*bn = block;
2408 	return 0;
2409 
2410 rgrp_error:
2411 	gfs2_rgrp_error(rbm.rgd);
2412 	return -EIO;
2413 }
2414 
2415 /**
2416  * __gfs2_free_blocks - free a contiguous run of block(s)
2417  * @ip: the inode these blocks are being freed from
2418  * @bstart: first block of a run of contiguous blocks
2419  * @blen: the length of the block run
2420  * @meta: 1 if the blocks represent metadata
2421  *
2422  */
2423 
2424 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2425 {
2426 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2427 	struct gfs2_rgrpd *rgd;
2428 
2429 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2430 	if (!rgd)
2431 		return;
2432 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2433 	rgd->rd_free += blen;
2434 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2435 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2436 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2437 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2438 
2439 	/* Directories keep their data in the metadata address space */
2440 	if (meta || ip->i_depth)
2441 		gfs2_meta_wipe(ip, bstart, blen);
2442 }
2443 
2444 /**
2445  * gfs2_free_meta - free a contiguous run of data block(s)
2446  * @ip: the inode these blocks are being freed from
2447  * @bstart: first block of a run of contiguous blocks
2448  * @blen: the length of the block run
2449  *
2450  */
2451 
2452 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2453 {
2454 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2455 
2456 	__gfs2_free_blocks(ip, bstart, blen, 1);
2457 	gfs2_statfs_change(sdp, 0, +blen, 0);
2458 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2459 }
2460 
2461 void gfs2_unlink_di(struct inode *inode)
2462 {
2463 	struct gfs2_inode *ip = GFS2_I(inode);
2464 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2465 	struct gfs2_rgrpd *rgd;
2466 	u64 blkno = ip->i_no_addr;
2467 
2468 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2469 	if (!rgd)
2470 		return;
2471 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2472 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2473 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2474 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2475 	update_rgrp_lvb_unlinked(rgd, 1);
2476 }
2477 
2478 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2479 {
2480 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2481 	struct gfs2_rgrpd *tmp_rgd;
2482 
2483 	tmp_rgd = rgblk_free(sdp, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2484 	if (!tmp_rgd)
2485 		return;
2486 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2487 
2488 	if (!rgd->rd_dinodes)
2489 		gfs2_consist_rgrpd(rgd);
2490 	rgd->rd_dinodes--;
2491 	rgd->rd_free++;
2492 
2493 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2494 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2495 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2496 	update_rgrp_lvb_unlinked(rgd, -1);
2497 
2498 	gfs2_statfs_change(sdp, 0, +1, -1);
2499 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2500 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2501 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2502 }
2503 
2504 /**
2505  * gfs2_check_blk_type - Check the type of a block
2506  * @sdp: The superblock
2507  * @no_addr: The block number to check
2508  * @type: The block type we are looking for
2509  *
2510  * Returns: 0 if the block type matches the expected type
2511  *          -ESTALE if it doesn't match
2512  *          or -ve errno if something went wrong while checking
2513  */
2514 
2515 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2516 {
2517 	struct gfs2_rgrpd *rgd;
2518 	struct gfs2_holder rgd_gh;
2519 	int error = -EINVAL;
2520 
2521 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2522 	if (!rgd)
2523 		goto fail;
2524 
2525 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2526 	if (error)
2527 		goto fail;
2528 
2529 	if (gfs2_get_block_type(rgd, no_addr) != type)
2530 		error = -ESTALE;
2531 
2532 	gfs2_glock_dq_uninit(&rgd_gh);
2533 fail:
2534 	return error;
2535 }
2536 
2537 /**
2538  * gfs2_rlist_add - add a RG to a list of RGs
2539  * @ip: the inode
2540  * @rlist: the list of resource groups
2541  * @block: the block
2542  *
2543  * Figure out what RG a block belongs to and add that RG to the list
2544  *
2545  * FIXME: Don't use NOFAIL
2546  *
2547  */
2548 
2549 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2550 		    u64 block)
2551 {
2552 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2553 	struct gfs2_rgrpd *rgd;
2554 	struct gfs2_rgrpd **tmp;
2555 	unsigned int new_space;
2556 	unsigned int x;
2557 
2558 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2559 		return;
2560 
2561 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2562 		rgd = ip->i_rgd;
2563 	else
2564 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2565 	if (!rgd) {
2566 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2567 		return;
2568 	}
2569 	ip->i_rgd = rgd;
2570 
2571 	for (x = 0; x < rlist->rl_rgrps; x++)
2572 		if (rlist->rl_rgd[x] == rgd)
2573 			return;
2574 
2575 	if (rlist->rl_rgrps == rlist->rl_space) {
2576 		new_space = rlist->rl_space + 10;
2577 
2578 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2579 			      GFP_NOFS | __GFP_NOFAIL);
2580 
2581 		if (rlist->rl_rgd) {
2582 			memcpy(tmp, rlist->rl_rgd,
2583 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2584 			kfree(rlist->rl_rgd);
2585 		}
2586 
2587 		rlist->rl_space = new_space;
2588 		rlist->rl_rgd = tmp;
2589 	}
2590 
2591 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2592 }
2593 
2594 /**
2595  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2596  *      and initialize an array of glock holders for them
2597  * @rlist: the list of resource groups
2598  * @state: the lock state to acquire the RG lock in
2599  *
2600  * FIXME: Don't use NOFAIL
2601  *
2602  */
2603 
2604 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2605 {
2606 	unsigned int x;
2607 
2608 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2609 				      sizeof(struct gfs2_holder),
2610 				      GFP_NOFS | __GFP_NOFAIL);
2611 	for (x = 0; x < rlist->rl_rgrps; x++)
2612 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2613 				state, 0,
2614 				&rlist->rl_ghs[x]);
2615 }
2616 
2617 /**
2618  * gfs2_rlist_free - free a resource group list
2619  * @rlist: the list of resource groups
2620  *
2621  */
2622 
2623 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2624 {
2625 	unsigned int x;
2626 
2627 	kfree(rlist->rl_rgd);
2628 
2629 	if (rlist->rl_ghs) {
2630 		for (x = 0; x < rlist->rl_rgrps; x++)
2631 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2632 		kfree(rlist->rl_ghs);
2633 		rlist->rl_ghs = NULL;
2634 	}
2635 }
2636 
2637