1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/slab.h> 10 #include <linux/spinlock.h> 11 #include <linux/completion.h> 12 #include <linux/buffer_head.h> 13 #include <linux/fs.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/prefetch.h> 16 #include <linux/blkdev.h> 17 #include <linux/rbtree.h> 18 #include <linux/random.h> 19 20 #include "gfs2.h" 21 #include "incore.h" 22 #include "glock.h" 23 #include "glops.h" 24 #include "lops.h" 25 #include "meta_io.h" 26 #include "quota.h" 27 #include "rgrp.h" 28 #include "super.h" 29 #include "trans.h" 30 #include "util.h" 31 #include "log.h" 32 #include "inode.h" 33 #include "trace_gfs2.h" 34 #include "dir.h" 35 36 #define BFITNOENT ((u32)~0) 37 #define NO_BLOCK ((u64)~0) 38 39 /* 40 * These routines are used by the resource group routines (rgrp.c) 41 * to keep track of block allocation. Each block is represented by two 42 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 43 * 44 * 0 = Free 45 * 1 = Used (not metadata) 46 * 2 = Unlinked (still in use) inode 47 * 3 = Used (metadata) 48 */ 49 50 struct gfs2_extent { 51 struct gfs2_rbm rbm; 52 u32 len; 53 }; 54 55 static const char valid_change[16] = { 56 /* current */ 57 /* n */ 0, 1, 1, 1, 58 /* e */ 1, 0, 0, 0, 59 /* w */ 0, 0, 0, 1, 60 1, 0, 0, 0 61 }; 62 63 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 64 const struct gfs2_inode *ip, bool nowrap); 65 66 67 /** 68 * gfs2_setbit - Set a bit in the bitmaps 69 * @rbm: The position of the bit to set 70 * @do_clone: Also set the clone bitmap, if it exists 71 * @new_state: the new state of the block 72 * 73 */ 74 75 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 76 unsigned char new_state) 77 { 78 unsigned char *byte1, *byte2, *end, cur_state; 79 struct gfs2_bitmap *bi = rbm_bi(rbm); 80 unsigned int buflen = bi->bi_bytes; 81 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 82 83 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 84 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 85 86 BUG_ON(byte1 >= end); 87 88 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 89 90 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 91 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; 92 93 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", 94 rbm->offset, cur_state, new_state); 95 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", 96 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start, 97 (unsigned long long)bi->bi_bh->b_blocknr); 98 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", 99 bi->bi_offset, bi->bi_bytes, 100 (unsigned long long)gfs2_rbm_to_block(rbm)); 101 dump_stack(); 102 gfs2_consist_rgrpd(rbm->rgd); 103 return; 104 } 105 *byte1 ^= (cur_state ^ new_state) << bit; 106 107 if (do_clone && bi->bi_clone) { 108 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 109 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 110 *byte2 ^= (cur_state ^ new_state) << bit; 111 } 112 } 113 114 /** 115 * gfs2_testbit - test a bit in the bitmaps 116 * @rbm: The bit to test 117 * @use_clone: If true, test the clone bitmap, not the official bitmap. 118 * 119 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, 120 * not the "real" bitmaps, to avoid allocating recently freed blocks. 121 * 122 * Returns: The two bit block state of the requested bit 123 */ 124 125 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) 126 { 127 struct gfs2_bitmap *bi = rbm_bi(rbm); 128 const u8 *buffer; 129 const u8 *byte; 130 unsigned int bit; 131 132 if (use_clone && bi->bi_clone) 133 buffer = bi->bi_clone; 134 else 135 buffer = bi->bi_bh->b_data; 136 buffer += bi->bi_offset; 137 byte = buffer + (rbm->offset / GFS2_NBBY); 138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 139 140 return (*byte >> bit) & GFS2_BIT_MASK; 141 } 142 143 /** 144 * gfs2_bit_search 145 * @ptr: Pointer to bitmap data 146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 147 * @state: The state we are searching for 148 * 149 * We xor the bitmap data with a patter which is the bitwise opposite 150 * of what we are looking for, this gives rise to a pattern of ones 151 * wherever there is a match. Since we have two bits per entry, we 152 * take this pattern, shift it down by one place and then and it with 153 * the original. All the even bit positions (0,2,4, etc) then represent 154 * successful matches, so we mask with 0x55555..... to remove the unwanted 155 * odd bit positions. 156 * 157 * This allows searching of a whole u64 at once (32 blocks) with a 158 * single test (on 64 bit arches). 159 */ 160 161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 162 { 163 u64 tmp; 164 static const u64 search[] = { 165 [0] = 0xffffffffffffffffULL, 166 [1] = 0xaaaaaaaaaaaaaaaaULL, 167 [2] = 0x5555555555555555ULL, 168 [3] = 0x0000000000000000ULL, 169 }; 170 tmp = le64_to_cpu(*ptr) ^ search[state]; 171 tmp &= (tmp >> 1); 172 tmp &= mask; 173 return tmp; 174 } 175 176 /** 177 * rs_cmp - multi-block reservation range compare 178 * @blk: absolute file system block number of the new reservation 179 * @len: number of blocks in the new reservation 180 * @rs: existing reservation to compare against 181 * 182 * returns: 1 if the block range is beyond the reach of the reservation 183 * -1 if the block range is before the start of the reservation 184 * 0 if the block range overlaps with the reservation 185 */ 186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 187 { 188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 189 190 if (blk >= startblk + rs->rs_free) 191 return 1; 192 if (blk + len - 1 < startblk) 193 return -1; 194 return 0; 195 } 196 197 /** 198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 199 * a block in a given allocation state. 200 * @buf: the buffer that holds the bitmaps 201 * @len: the length (in bytes) of the buffer 202 * @goal: start search at this block's bit-pair (within @buffer) 203 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 204 * 205 * Scope of @goal and returned block number is only within this bitmap buffer, 206 * not entire rgrp or filesystem. @buffer will be offset from the actual 207 * beginning of a bitmap block buffer, skipping any header structures, but 208 * headers are always a multiple of 64 bits long so that the buffer is 209 * always aligned to a 64 bit boundary. 210 * 211 * The size of the buffer is in bytes, but is it assumed that it is 212 * always ok to read a complete multiple of 64 bits at the end 213 * of the block in case the end is no aligned to a natural boundary. 214 * 215 * Return: the block number (bitmap buffer scope) that was found 216 */ 217 218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 219 u32 goal, u8 state) 220 { 221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 224 u64 tmp; 225 u64 mask = 0x5555555555555555ULL; 226 u32 bit; 227 228 /* Mask off bits we don't care about at the start of the search */ 229 mask <<= spoint; 230 tmp = gfs2_bit_search(ptr, mask, state); 231 ptr++; 232 while(tmp == 0 && ptr < end) { 233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 234 ptr++; 235 } 236 /* Mask off any bits which are more than len bytes from the start */ 237 if (ptr == end && (len & (sizeof(u64) - 1))) 238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 239 /* Didn't find anything, so return */ 240 if (tmp == 0) 241 return BFITNOENT; 242 ptr--; 243 bit = __ffs64(tmp); 244 bit /= 2; /* two bits per entry in the bitmap */ 245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 246 } 247 248 /** 249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 250 * @rbm: The rbm with rgd already set correctly 251 * @block: The block number (filesystem relative) 252 * 253 * This sets the bi and offset members of an rbm based on a 254 * resource group and a filesystem relative block number. The 255 * resource group must be set in the rbm on entry, the bi and 256 * offset members will be set by this function. 257 * 258 * Returns: 0 on success, or an error code 259 */ 260 261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 262 { 263 if (!rgrp_contains_block(rbm->rgd, block)) 264 return -E2BIG; 265 rbm->bii = 0; 266 rbm->offset = block - rbm->rgd->rd_data0; 267 /* Check if the block is within the first block */ 268 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 269 return 0; 270 271 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 272 rbm->offset += (sizeof(struct gfs2_rgrp) - 273 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 274 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 275 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 276 return 0; 277 } 278 279 /** 280 * gfs2_rbm_incr - increment an rbm structure 281 * @rbm: The rbm with rgd already set correctly 282 * 283 * This function takes an existing rbm structure and increments it to the next 284 * viable block offset. 285 * 286 * Returns: If incrementing the offset would cause the rbm to go past the 287 * end of the rgrp, true is returned, otherwise false. 288 * 289 */ 290 291 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 292 { 293 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 294 rbm->offset++; 295 return false; 296 } 297 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 298 return true; 299 300 rbm->offset = 0; 301 rbm->bii++; 302 return false; 303 } 304 305 /** 306 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 307 * @rbm: Position to search (value/result) 308 * @n_unaligned: Number of unaligned blocks to check 309 * @len: Decremented for each block found (terminate on zero) 310 * 311 * Returns: true if a non-free block is encountered 312 */ 313 314 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 315 { 316 u32 n; 317 u8 res; 318 319 for (n = 0; n < n_unaligned; n++) { 320 res = gfs2_testbit(rbm, true); 321 if (res != GFS2_BLKST_FREE) 322 return true; 323 (*len)--; 324 if (*len == 0) 325 return true; 326 if (gfs2_rbm_incr(rbm)) 327 return true; 328 } 329 330 return false; 331 } 332 333 /** 334 * gfs2_free_extlen - Return extent length of free blocks 335 * @rrbm: Starting position 336 * @len: Max length to check 337 * 338 * Starting at the block specified by the rbm, see how many free blocks 339 * there are, not reading more than len blocks ahead. This can be done 340 * using memchr_inv when the blocks are byte aligned, but has to be done 341 * on a block by block basis in case of unaligned blocks. Also this 342 * function can cope with bitmap boundaries (although it must stop on 343 * a resource group boundary) 344 * 345 * Returns: Number of free blocks in the extent 346 */ 347 348 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 349 { 350 struct gfs2_rbm rbm = *rrbm; 351 u32 n_unaligned = rbm.offset & 3; 352 u32 size = len; 353 u32 bytes; 354 u32 chunk_size; 355 u8 *ptr, *start, *end; 356 u64 block; 357 struct gfs2_bitmap *bi; 358 359 if (n_unaligned && 360 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 361 goto out; 362 363 n_unaligned = len & 3; 364 /* Start is now byte aligned */ 365 while (len > 3) { 366 bi = rbm_bi(&rbm); 367 start = bi->bi_bh->b_data; 368 if (bi->bi_clone) 369 start = bi->bi_clone; 370 start += bi->bi_offset; 371 end = start + bi->bi_bytes; 372 BUG_ON(rbm.offset & 3); 373 start += (rbm.offset / GFS2_NBBY); 374 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 375 ptr = memchr_inv(start, 0, bytes); 376 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 377 chunk_size *= GFS2_NBBY; 378 BUG_ON(len < chunk_size); 379 len -= chunk_size; 380 block = gfs2_rbm_to_block(&rbm); 381 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 382 n_unaligned = 0; 383 break; 384 } 385 if (ptr) { 386 n_unaligned = 3; 387 break; 388 } 389 n_unaligned = len & 3; 390 } 391 392 /* Deal with any bits left over at the end */ 393 if (n_unaligned) 394 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 395 out: 396 return size - len; 397 } 398 399 /** 400 * gfs2_bitcount - count the number of bits in a certain state 401 * @rgd: the resource group descriptor 402 * @buffer: the buffer that holds the bitmaps 403 * @buflen: the length (in bytes) of the buffer 404 * @state: the state of the block we're looking for 405 * 406 * Returns: The number of bits 407 */ 408 409 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 410 unsigned int buflen, u8 state) 411 { 412 const u8 *byte = buffer; 413 const u8 *end = buffer + buflen; 414 const u8 state1 = state << 2; 415 const u8 state2 = state << 4; 416 const u8 state3 = state << 6; 417 u32 count = 0; 418 419 for (; byte < end; byte++) { 420 if (((*byte) & 0x03) == state) 421 count++; 422 if (((*byte) & 0x0C) == state1) 423 count++; 424 if (((*byte) & 0x30) == state2) 425 count++; 426 if (((*byte) & 0xC0) == state3) 427 count++; 428 } 429 430 return count; 431 } 432 433 /** 434 * gfs2_rgrp_verify - Verify that a resource group is consistent 435 * @rgd: the rgrp 436 * 437 */ 438 439 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 440 { 441 struct gfs2_sbd *sdp = rgd->rd_sbd; 442 struct gfs2_bitmap *bi = NULL; 443 u32 length = rgd->rd_length; 444 u32 count[4], tmp; 445 int buf, x; 446 447 memset(count, 0, 4 * sizeof(u32)); 448 449 /* Count # blocks in each of 4 possible allocation states */ 450 for (buf = 0; buf < length; buf++) { 451 bi = rgd->rd_bits + buf; 452 for (x = 0; x < 4; x++) 453 count[x] += gfs2_bitcount(rgd, 454 bi->bi_bh->b_data + 455 bi->bi_offset, 456 bi->bi_bytes, x); 457 } 458 459 if (count[0] != rgd->rd_free) { 460 gfs2_lm(sdp, "free data mismatch: %u != %u\n", 461 count[0], rgd->rd_free); 462 gfs2_consist_rgrpd(rgd); 463 return; 464 } 465 466 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 467 if (count[1] != tmp) { 468 gfs2_lm(sdp, "used data mismatch: %u != %u\n", 469 count[1], tmp); 470 gfs2_consist_rgrpd(rgd); 471 return; 472 } 473 474 if (count[2] + count[3] != rgd->rd_dinodes) { 475 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n", 476 count[2] + count[3], rgd->rd_dinodes); 477 gfs2_consist_rgrpd(rgd); 478 return; 479 } 480 } 481 482 /** 483 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 484 * @sdp: The GFS2 superblock 485 * @blk: The data block number 486 * @exact: True if this needs to be an exact match 487 * 488 * The @exact argument should be set to true by most callers. The exception 489 * is when we need to match blocks which are not represented by the rgrp 490 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are 491 * there for alignment purposes. Another way of looking at it is that @exact 492 * matches only valid data/metadata blocks, but with @exact false, it will 493 * match any block within the extent of the rgrp. 494 * 495 * Returns: The resource group, or NULL if not found 496 */ 497 498 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 499 { 500 struct rb_node *n, *next; 501 struct gfs2_rgrpd *cur; 502 503 spin_lock(&sdp->sd_rindex_spin); 504 n = sdp->sd_rindex_tree.rb_node; 505 while (n) { 506 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 507 next = NULL; 508 if (blk < cur->rd_addr) 509 next = n->rb_left; 510 else if (blk >= cur->rd_data0 + cur->rd_data) 511 next = n->rb_right; 512 if (next == NULL) { 513 spin_unlock(&sdp->sd_rindex_spin); 514 if (exact) { 515 if (blk < cur->rd_addr) 516 return NULL; 517 if (blk >= cur->rd_data0 + cur->rd_data) 518 return NULL; 519 } 520 return cur; 521 } 522 n = next; 523 } 524 spin_unlock(&sdp->sd_rindex_spin); 525 526 return NULL; 527 } 528 529 /** 530 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 531 * @sdp: The GFS2 superblock 532 * 533 * Returns: The first rgrp in the filesystem 534 */ 535 536 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 537 { 538 const struct rb_node *n; 539 struct gfs2_rgrpd *rgd; 540 541 spin_lock(&sdp->sd_rindex_spin); 542 n = rb_first(&sdp->sd_rindex_tree); 543 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 544 spin_unlock(&sdp->sd_rindex_spin); 545 546 return rgd; 547 } 548 549 /** 550 * gfs2_rgrpd_get_next - get the next RG 551 * @rgd: the resource group descriptor 552 * 553 * Returns: The next rgrp 554 */ 555 556 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 557 { 558 struct gfs2_sbd *sdp = rgd->rd_sbd; 559 const struct rb_node *n; 560 561 spin_lock(&sdp->sd_rindex_spin); 562 n = rb_next(&rgd->rd_node); 563 if (n == NULL) 564 n = rb_first(&sdp->sd_rindex_tree); 565 566 if (unlikely(&rgd->rd_node == n)) { 567 spin_unlock(&sdp->sd_rindex_spin); 568 return NULL; 569 } 570 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 571 spin_unlock(&sdp->sd_rindex_spin); 572 return rgd; 573 } 574 575 void check_and_update_goal(struct gfs2_inode *ip) 576 { 577 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 578 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 579 ip->i_goal = ip->i_no_addr; 580 } 581 582 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 583 { 584 int x; 585 586 for (x = 0; x < rgd->rd_length; x++) { 587 struct gfs2_bitmap *bi = rgd->rd_bits + x; 588 kfree(bi->bi_clone); 589 bi->bi_clone = NULL; 590 } 591 } 592 593 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, 594 const char *fs_id_buf) 595 { 596 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); 597 598 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf, 599 (unsigned long long)ip->i_no_addr, 600 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 601 rs->rs_rbm.offset, rs->rs_free); 602 } 603 604 /** 605 * __rs_deltree - remove a multi-block reservation from the rgd tree 606 * @rs: The reservation to remove 607 * 608 */ 609 static void __rs_deltree(struct gfs2_blkreserv *rs) 610 { 611 struct gfs2_rgrpd *rgd; 612 613 if (!gfs2_rs_active(rs)) 614 return; 615 616 rgd = rs->rs_rbm.rgd; 617 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 618 rb_erase(&rs->rs_node, &rgd->rd_rstree); 619 RB_CLEAR_NODE(&rs->rs_node); 620 621 if (rs->rs_free) { 622 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) + 623 rs->rs_free - 1; 624 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, }; 625 struct gfs2_bitmap *start, *last; 626 627 /* return reserved blocks to the rgrp */ 628 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 629 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 630 /* The rgrp extent failure point is likely not to increase; 631 it will only do so if the freed blocks are somehow 632 contiguous with a span of free blocks that follows. Still, 633 it will force the number to be recalculated later. */ 634 rgd->rd_extfail_pt += rs->rs_free; 635 rs->rs_free = 0; 636 if (gfs2_rbm_from_block(&last_rbm, last_block)) 637 return; 638 start = rbm_bi(&rs->rs_rbm); 639 last = rbm_bi(&last_rbm); 640 do 641 clear_bit(GBF_FULL, &start->bi_flags); 642 while (start++ != last); 643 } 644 } 645 646 /** 647 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 648 * @rs: The reservation to remove 649 * 650 */ 651 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 652 { 653 struct gfs2_rgrpd *rgd; 654 655 rgd = rs->rs_rbm.rgd; 656 if (rgd) { 657 spin_lock(&rgd->rd_rsspin); 658 __rs_deltree(rs); 659 BUG_ON(rs->rs_free); 660 spin_unlock(&rgd->rd_rsspin); 661 } 662 } 663 664 /** 665 * gfs2_rs_delete - delete a multi-block reservation 666 * @ip: The inode for this reservation 667 * @wcount: The inode's write count, or NULL 668 * 669 */ 670 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount) 671 { 672 down_write(&ip->i_rw_mutex); 673 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 674 gfs2_rs_deltree(&ip->i_res); 675 up_write(&ip->i_rw_mutex); 676 } 677 678 /** 679 * return_all_reservations - return all reserved blocks back to the rgrp. 680 * @rgd: the rgrp that needs its space back 681 * 682 * We previously reserved a bunch of blocks for allocation. Now we need to 683 * give them back. This leave the reservation structures in tact, but removes 684 * all of their corresponding "no-fly zones". 685 */ 686 static void return_all_reservations(struct gfs2_rgrpd *rgd) 687 { 688 struct rb_node *n; 689 struct gfs2_blkreserv *rs; 690 691 spin_lock(&rgd->rd_rsspin); 692 while ((n = rb_first(&rgd->rd_rstree))) { 693 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 694 __rs_deltree(rs); 695 } 696 spin_unlock(&rgd->rd_rsspin); 697 } 698 699 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 700 { 701 struct rb_node *n; 702 struct gfs2_rgrpd *rgd; 703 struct gfs2_glock *gl; 704 705 while ((n = rb_first(&sdp->sd_rindex_tree))) { 706 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 707 gl = rgd->rd_gl; 708 709 rb_erase(n, &sdp->sd_rindex_tree); 710 711 if (gl) { 712 if (gl->gl_state != LM_ST_UNLOCKED) { 713 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 714 flush_delayed_work(&gl->gl_work); 715 } 716 gfs2_rgrp_brelse(rgd); 717 glock_clear_object(gl, rgd); 718 gfs2_glock_put(gl); 719 } 720 721 gfs2_free_clones(rgd); 722 kfree(rgd->rd_bits); 723 rgd->rd_bits = NULL; 724 return_all_reservations(rgd); 725 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 726 } 727 } 728 729 /** 730 * gfs2_compute_bitstructs - Compute the bitmap sizes 731 * @rgd: The resource group descriptor 732 * 733 * Calculates bitmap descriptors, one for each block that contains bitmap data 734 * 735 * Returns: errno 736 */ 737 738 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 739 { 740 struct gfs2_sbd *sdp = rgd->rd_sbd; 741 struct gfs2_bitmap *bi; 742 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 743 u32 bytes_left, bytes; 744 int x; 745 746 if (!length) 747 return -EINVAL; 748 749 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 750 if (!rgd->rd_bits) 751 return -ENOMEM; 752 753 bytes_left = rgd->rd_bitbytes; 754 755 for (x = 0; x < length; x++) { 756 bi = rgd->rd_bits + x; 757 758 bi->bi_flags = 0; 759 /* small rgrp; bitmap stored completely in header block */ 760 if (length == 1) { 761 bytes = bytes_left; 762 bi->bi_offset = sizeof(struct gfs2_rgrp); 763 bi->bi_start = 0; 764 bi->bi_bytes = bytes; 765 bi->bi_blocks = bytes * GFS2_NBBY; 766 /* header block */ 767 } else if (x == 0) { 768 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 769 bi->bi_offset = sizeof(struct gfs2_rgrp); 770 bi->bi_start = 0; 771 bi->bi_bytes = bytes; 772 bi->bi_blocks = bytes * GFS2_NBBY; 773 /* last block */ 774 } else if (x + 1 == length) { 775 bytes = bytes_left; 776 bi->bi_offset = sizeof(struct gfs2_meta_header); 777 bi->bi_start = rgd->rd_bitbytes - bytes_left; 778 bi->bi_bytes = bytes; 779 bi->bi_blocks = bytes * GFS2_NBBY; 780 /* other blocks */ 781 } else { 782 bytes = sdp->sd_sb.sb_bsize - 783 sizeof(struct gfs2_meta_header); 784 bi->bi_offset = sizeof(struct gfs2_meta_header); 785 bi->bi_start = rgd->rd_bitbytes - bytes_left; 786 bi->bi_bytes = bytes; 787 bi->bi_blocks = bytes * GFS2_NBBY; 788 } 789 790 bytes_left -= bytes; 791 } 792 793 if (bytes_left) { 794 gfs2_consist_rgrpd(rgd); 795 return -EIO; 796 } 797 bi = rgd->rd_bits + (length - 1); 798 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { 799 gfs2_lm(sdp, 800 "ri_addr = %llu\n" 801 "ri_length = %u\n" 802 "ri_data0 = %llu\n" 803 "ri_data = %u\n" 804 "ri_bitbytes = %u\n" 805 "start=%u len=%u offset=%u\n", 806 (unsigned long long)rgd->rd_addr, 807 rgd->rd_length, 808 (unsigned long long)rgd->rd_data0, 809 rgd->rd_data, 810 rgd->rd_bitbytes, 811 bi->bi_start, bi->bi_bytes, bi->bi_offset); 812 gfs2_consist_rgrpd(rgd); 813 return -EIO; 814 } 815 816 return 0; 817 } 818 819 /** 820 * gfs2_ri_total - Total up the file system space, according to the rindex. 821 * @sdp: the filesystem 822 * 823 */ 824 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 825 { 826 u64 total_data = 0; 827 struct inode *inode = sdp->sd_rindex; 828 struct gfs2_inode *ip = GFS2_I(inode); 829 char buf[sizeof(struct gfs2_rindex)]; 830 int error, rgrps; 831 832 for (rgrps = 0;; rgrps++) { 833 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 834 835 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 836 break; 837 error = gfs2_internal_read(ip, buf, &pos, 838 sizeof(struct gfs2_rindex)); 839 if (error != sizeof(struct gfs2_rindex)) 840 break; 841 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 842 } 843 return total_data; 844 } 845 846 static int rgd_insert(struct gfs2_rgrpd *rgd) 847 { 848 struct gfs2_sbd *sdp = rgd->rd_sbd; 849 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 850 851 /* Figure out where to put new node */ 852 while (*newn) { 853 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 854 rd_node); 855 856 parent = *newn; 857 if (rgd->rd_addr < cur->rd_addr) 858 newn = &((*newn)->rb_left); 859 else if (rgd->rd_addr > cur->rd_addr) 860 newn = &((*newn)->rb_right); 861 else 862 return -EEXIST; 863 } 864 865 rb_link_node(&rgd->rd_node, parent, newn); 866 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 867 sdp->sd_rgrps++; 868 return 0; 869 } 870 871 /** 872 * read_rindex_entry - Pull in a new resource index entry from the disk 873 * @ip: Pointer to the rindex inode 874 * 875 * Returns: 0 on success, > 0 on EOF, error code otherwise 876 */ 877 878 static int read_rindex_entry(struct gfs2_inode *ip) 879 { 880 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 881 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 882 struct gfs2_rindex buf; 883 int error; 884 struct gfs2_rgrpd *rgd; 885 886 if (pos >= i_size_read(&ip->i_inode)) 887 return 1; 888 889 error = gfs2_internal_read(ip, (char *)&buf, &pos, 890 sizeof(struct gfs2_rindex)); 891 892 if (error != sizeof(struct gfs2_rindex)) 893 return (error == 0) ? 1 : error; 894 895 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 896 error = -ENOMEM; 897 if (!rgd) 898 return error; 899 900 rgd->rd_sbd = sdp; 901 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 902 rgd->rd_length = be32_to_cpu(buf.ri_length); 903 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 904 rgd->rd_data = be32_to_cpu(buf.ri_data); 905 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 906 spin_lock_init(&rgd->rd_rsspin); 907 908 error = compute_bitstructs(rgd); 909 if (error) 910 goto fail; 911 912 error = gfs2_glock_get(sdp, rgd->rd_addr, 913 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 914 if (error) 915 goto fail; 916 917 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 918 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 919 if (rgd->rd_data > sdp->sd_max_rg_data) 920 sdp->sd_max_rg_data = rgd->rd_data; 921 spin_lock(&sdp->sd_rindex_spin); 922 error = rgd_insert(rgd); 923 spin_unlock(&sdp->sd_rindex_spin); 924 if (!error) { 925 glock_set_object(rgd->rd_gl, rgd); 926 return 0; 927 } 928 929 error = 0; /* someone else read in the rgrp; free it and ignore it */ 930 gfs2_glock_put(rgd->rd_gl); 931 932 fail: 933 kfree(rgd->rd_bits); 934 rgd->rd_bits = NULL; 935 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 936 return error; 937 } 938 939 /** 940 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 941 * @sdp: the GFS2 superblock 942 * 943 * The purpose of this function is to select a subset of the resource groups 944 * and mark them as PREFERRED. We do it in such a way that each node prefers 945 * to use a unique set of rgrps to minimize glock contention. 946 */ 947 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 948 { 949 struct gfs2_rgrpd *rgd, *first; 950 int i; 951 952 /* Skip an initial number of rgrps, based on this node's journal ID. 953 That should start each node out on its own set. */ 954 rgd = gfs2_rgrpd_get_first(sdp); 955 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 956 rgd = gfs2_rgrpd_get_next(rgd); 957 first = rgd; 958 959 do { 960 rgd->rd_flags |= GFS2_RDF_PREFERRED; 961 for (i = 0; i < sdp->sd_journals; i++) { 962 rgd = gfs2_rgrpd_get_next(rgd); 963 if (!rgd || rgd == first) 964 break; 965 } 966 } while (rgd && rgd != first); 967 } 968 969 /** 970 * gfs2_ri_update - Pull in a new resource index from the disk 971 * @ip: pointer to the rindex inode 972 * 973 * Returns: 0 on successful update, error code otherwise 974 */ 975 976 static int gfs2_ri_update(struct gfs2_inode *ip) 977 { 978 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 979 int error; 980 981 do { 982 error = read_rindex_entry(ip); 983 } while (error == 0); 984 985 if (error < 0) 986 return error; 987 988 set_rgrp_preferences(sdp); 989 990 sdp->sd_rindex_uptodate = 1; 991 return 0; 992 } 993 994 /** 995 * gfs2_rindex_update - Update the rindex if required 996 * @sdp: The GFS2 superblock 997 * 998 * We grab a lock on the rindex inode to make sure that it doesn't 999 * change whilst we are performing an operation. We keep this lock 1000 * for quite long periods of time compared to other locks. This 1001 * doesn't matter, since it is shared and it is very, very rarely 1002 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 1003 * 1004 * This makes sure that we're using the latest copy of the resource index 1005 * special file, which might have been updated if someone expanded the 1006 * filesystem (via gfs2_grow utility), which adds new resource groups. 1007 * 1008 * Returns: 0 on succeess, error code otherwise 1009 */ 1010 1011 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1012 { 1013 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1014 struct gfs2_glock *gl = ip->i_gl; 1015 struct gfs2_holder ri_gh; 1016 int error = 0; 1017 int unlock_required = 0; 1018 1019 /* Read new copy from disk if we don't have the latest */ 1020 if (!sdp->sd_rindex_uptodate) { 1021 if (!gfs2_glock_is_locked_by_me(gl)) { 1022 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1023 if (error) 1024 return error; 1025 unlock_required = 1; 1026 } 1027 if (!sdp->sd_rindex_uptodate) 1028 error = gfs2_ri_update(ip); 1029 if (unlock_required) 1030 gfs2_glock_dq_uninit(&ri_gh); 1031 } 1032 1033 return error; 1034 } 1035 1036 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1037 { 1038 const struct gfs2_rgrp *str = buf; 1039 u32 rg_flags; 1040 1041 rg_flags = be32_to_cpu(str->rg_flags); 1042 rg_flags &= ~GFS2_RDF_MASK; 1043 rgd->rd_flags &= GFS2_RDF_MASK; 1044 rgd->rd_flags |= rg_flags; 1045 rgd->rd_free = be32_to_cpu(str->rg_free); 1046 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1047 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1048 /* rd_data0, rd_data and rd_bitbytes already set from rindex */ 1049 } 1050 1051 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1052 { 1053 const struct gfs2_rgrp *str = buf; 1054 1055 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1056 rgl->rl_flags = str->rg_flags; 1057 rgl->rl_free = str->rg_free; 1058 rgl->rl_dinodes = str->rg_dinodes; 1059 rgl->rl_igeneration = str->rg_igeneration; 1060 rgl->__pad = 0UL; 1061 } 1062 1063 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1064 { 1065 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); 1066 struct gfs2_rgrp *str = buf; 1067 u32 crc; 1068 1069 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1070 str->rg_free = cpu_to_be32(rgd->rd_free); 1071 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1072 if (next == NULL) 1073 str->rg_skip = 0; 1074 else if (next->rd_addr > rgd->rd_addr) 1075 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); 1076 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1077 str->rg_data0 = cpu_to_be64(rgd->rd_data0); 1078 str->rg_data = cpu_to_be32(rgd->rd_data); 1079 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); 1080 str->rg_crc = 0; 1081 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); 1082 str->rg_crc = cpu_to_be32(crc); 1083 1084 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1085 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); 1086 } 1087 1088 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1089 { 1090 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1091 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1092 struct gfs2_sbd *sdp = rgd->rd_sbd; 1093 int valid = 1; 1094 1095 if (rgl->rl_flags != str->rg_flags) { 1096 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", 1097 (unsigned long long)rgd->rd_addr, 1098 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); 1099 valid = 0; 1100 } 1101 if (rgl->rl_free != str->rg_free) { 1102 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", 1103 (unsigned long long)rgd->rd_addr, 1104 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); 1105 valid = 0; 1106 } 1107 if (rgl->rl_dinodes != str->rg_dinodes) { 1108 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", 1109 (unsigned long long)rgd->rd_addr, 1110 be32_to_cpu(rgl->rl_dinodes), 1111 be32_to_cpu(str->rg_dinodes)); 1112 valid = 0; 1113 } 1114 if (rgl->rl_igeneration != str->rg_igeneration) { 1115 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", 1116 (unsigned long long)rgd->rd_addr, 1117 (unsigned long long)be64_to_cpu(rgl->rl_igeneration), 1118 (unsigned long long)be64_to_cpu(str->rg_igeneration)); 1119 valid = 0; 1120 } 1121 return valid; 1122 } 1123 1124 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1125 { 1126 struct gfs2_bitmap *bi; 1127 const u32 length = rgd->rd_length; 1128 const u8 *buffer = NULL; 1129 u32 i, goal, count = 0; 1130 1131 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1132 goal = 0; 1133 buffer = bi->bi_bh->b_data + bi->bi_offset; 1134 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1135 while (goal < bi->bi_blocks) { 1136 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, 1137 GFS2_BLKST_UNLINKED); 1138 if (goal == BFITNOENT) 1139 break; 1140 count++; 1141 goal++; 1142 } 1143 } 1144 1145 return count; 1146 } 1147 1148 1149 /** 1150 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1151 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1152 * 1153 * Read in all of a Resource Group's header and bitmap blocks. 1154 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. 1155 * 1156 * Returns: errno 1157 */ 1158 1159 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1160 { 1161 struct gfs2_sbd *sdp = rgd->rd_sbd; 1162 struct gfs2_glock *gl = rgd->rd_gl; 1163 unsigned int length = rgd->rd_length; 1164 struct gfs2_bitmap *bi; 1165 unsigned int x, y; 1166 int error; 1167 1168 if (rgd->rd_bits[0].bi_bh != NULL) 1169 return 0; 1170 1171 for (x = 0; x < length; x++) { 1172 bi = rgd->rd_bits + x; 1173 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1174 if (error) 1175 goto fail; 1176 } 1177 1178 for (y = length; y--;) { 1179 bi = rgd->rd_bits + y; 1180 error = gfs2_meta_wait(sdp, bi->bi_bh); 1181 if (error) 1182 goto fail; 1183 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1184 GFS2_METATYPE_RG)) { 1185 error = -EIO; 1186 goto fail; 1187 } 1188 } 1189 1190 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1191 for (x = 0; x < length; x++) 1192 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1193 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1194 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1195 rgd->rd_free_clone = rgd->rd_free; 1196 /* max out the rgrp allocation failure point */ 1197 rgd->rd_extfail_pt = rgd->rd_free; 1198 } 1199 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1200 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1201 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1202 rgd->rd_bits[0].bi_bh->b_data); 1203 } 1204 else if (sdp->sd_args.ar_rgrplvb) { 1205 if (!gfs2_rgrp_lvb_valid(rgd)){ 1206 gfs2_consist_rgrpd(rgd); 1207 error = -EIO; 1208 goto fail; 1209 } 1210 if (rgd->rd_rgl->rl_unlinked == 0) 1211 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1212 } 1213 return 0; 1214 1215 fail: 1216 while (x--) { 1217 bi = rgd->rd_bits + x; 1218 brelse(bi->bi_bh); 1219 bi->bi_bh = NULL; 1220 gfs2_assert_warn(sdp, !bi->bi_clone); 1221 } 1222 1223 return error; 1224 } 1225 1226 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1227 { 1228 u32 rl_flags; 1229 1230 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1231 return 0; 1232 1233 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1234 return gfs2_rgrp_bh_get(rgd); 1235 1236 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1237 rl_flags &= ~GFS2_RDF_MASK; 1238 rgd->rd_flags &= GFS2_RDF_MASK; 1239 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); 1240 if (rgd->rd_rgl->rl_unlinked == 0) 1241 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1242 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1243 rgd->rd_free_clone = rgd->rd_free; 1244 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1245 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1246 return 0; 1247 } 1248 1249 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1250 { 1251 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1252 struct gfs2_sbd *sdp = rgd->rd_sbd; 1253 1254 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1255 return 0; 1256 return gfs2_rgrp_bh_get(rgd); 1257 } 1258 1259 /** 1260 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1261 * @rgd: The resource group 1262 * 1263 */ 1264 1265 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1266 { 1267 int x, length = rgd->rd_length; 1268 1269 for (x = 0; x < length; x++) { 1270 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1271 if (bi->bi_bh) { 1272 brelse(bi->bi_bh); 1273 bi->bi_bh = NULL; 1274 } 1275 } 1276 } 1277 1278 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1279 struct buffer_head *bh, 1280 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1281 { 1282 struct super_block *sb = sdp->sd_vfs; 1283 u64 blk; 1284 sector_t start = 0; 1285 sector_t nr_blks = 0; 1286 int rv; 1287 unsigned int x; 1288 u32 trimmed = 0; 1289 u8 diff; 1290 1291 for (x = 0; x < bi->bi_bytes; x++) { 1292 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1293 clone += bi->bi_offset; 1294 clone += x; 1295 if (bh) { 1296 const u8 *orig = bh->b_data + bi->bi_offset + x; 1297 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1298 } else { 1299 diff = ~(*clone | (*clone >> 1)); 1300 } 1301 diff &= 0x55; 1302 if (diff == 0) 1303 continue; 1304 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1305 while(diff) { 1306 if (diff & 1) { 1307 if (nr_blks == 0) 1308 goto start_new_extent; 1309 if ((start + nr_blks) != blk) { 1310 if (nr_blks >= minlen) { 1311 rv = sb_issue_discard(sb, 1312 start, nr_blks, 1313 GFP_NOFS, 0); 1314 if (rv) 1315 goto fail; 1316 trimmed += nr_blks; 1317 } 1318 nr_blks = 0; 1319 start_new_extent: 1320 start = blk; 1321 } 1322 nr_blks++; 1323 } 1324 diff >>= 2; 1325 blk++; 1326 } 1327 } 1328 if (nr_blks >= minlen) { 1329 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1330 if (rv) 1331 goto fail; 1332 trimmed += nr_blks; 1333 } 1334 if (ptrimmed) 1335 *ptrimmed = trimmed; 1336 return 0; 1337 1338 fail: 1339 if (sdp->sd_args.ar_discard) 1340 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); 1341 sdp->sd_args.ar_discard = 0; 1342 return -EIO; 1343 } 1344 1345 /** 1346 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1347 * @filp: Any file on the filesystem 1348 * @argp: Pointer to the arguments (also used to pass result) 1349 * 1350 * Returns: 0 on success, otherwise error code 1351 */ 1352 1353 int gfs2_fitrim(struct file *filp, void __user *argp) 1354 { 1355 struct inode *inode = file_inode(filp); 1356 struct gfs2_sbd *sdp = GFS2_SB(inode); 1357 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1358 struct buffer_head *bh; 1359 struct gfs2_rgrpd *rgd; 1360 struct gfs2_rgrpd *rgd_end; 1361 struct gfs2_holder gh; 1362 struct fstrim_range r; 1363 int ret = 0; 1364 u64 amt; 1365 u64 trimmed = 0; 1366 u64 start, end, minlen; 1367 unsigned int x; 1368 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1369 1370 if (!capable(CAP_SYS_ADMIN)) 1371 return -EPERM; 1372 1373 if (!blk_queue_discard(q)) 1374 return -EOPNOTSUPP; 1375 1376 if (copy_from_user(&r, argp, sizeof(r))) 1377 return -EFAULT; 1378 1379 ret = gfs2_rindex_update(sdp); 1380 if (ret) 1381 return ret; 1382 1383 start = r.start >> bs_shift; 1384 end = start + (r.len >> bs_shift); 1385 minlen = max_t(u64, r.minlen, 1386 q->limits.discard_granularity) >> bs_shift; 1387 1388 if (end <= start || minlen > sdp->sd_max_rg_data) 1389 return -EINVAL; 1390 1391 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1392 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1393 1394 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1395 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1396 return -EINVAL; /* start is beyond the end of the fs */ 1397 1398 while (1) { 1399 1400 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1401 if (ret) 1402 goto out; 1403 1404 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1405 /* Trim each bitmap in the rgrp */ 1406 for (x = 0; x < rgd->rd_length; x++) { 1407 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1408 ret = gfs2_rgrp_send_discards(sdp, 1409 rgd->rd_data0, NULL, bi, minlen, 1410 &amt); 1411 if (ret) { 1412 gfs2_glock_dq_uninit(&gh); 1413 goto out; 1414 } 1415 trimmed += amt; 1416 } 1417 1418 /* Mark rgrp as having been trimmed */ 1419 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1420 if (ret == 0) { 1421 bh = rgd->rd_bits[0].bi_bh; 1422 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1423 gfs2_trans_add_meta(rgd->rd_gl, bh); 1424 gfs2_rgrp_out(rgd, bh->b_data); 1425 gfs2_trans_end(sdp); 1426 } 1427 } 1428 gfs2_glock_dq_uninit(&gh); 1429 1430 if (rgd == rgd_end) 1431 break; 1432 1433 rgd = gfs2_rgrpd_get_next(rgd); 1434 } 1435 1436 out: 1437 r.len = trimmed << bs_shift; 1438 if (copy_to_user(argp, &r, sizeof(r))) 1439 return -EFAULT; 1440 1441 return ret; 1442 } 1443 1444 /** 1445 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1446 * @ip: the inode structure 1447 * 1448 */ 1449 static void rs_insert(struct gfs2_inode *ip) 1450 { 1451 struct rb_node **newn, *parent = NULL; 1452 int rc; 1453 struct gfs2_blkreserv *rs = &ip->i_res; 1454 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1455 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1456 1457 BUG_ON(gfs2_rs_active(rs)); 1458 1459 spin_lock(&rgd->rd_rsspin); 1460 newn = &rgd->rd_rstree.rb_node; 1461 while (*newn) { 1462 struct gfs2_blkreserv *cur = 1463 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1464 1465 parent = *newn; 1466 rc = rs_cmp(fsblock, rs->rs_free, cur); 1467 if (rc > 0) 1468 newn = &((*newn)->rb_right); 1469 else if (rc < 0) 1470 newn = &((*newn)->rb_left); 1471 else { 1472 spin_unlock(&rgd->rd_rsspin); 1473 WARN_ON(1); 1474 return; 1475 } 1476 } 1477 1478 rb_link_node(&rs->rs_node, parent, newn); 1479 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1480 1481 /* Do our rgrp accounting for the reservation */ 1482 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1483 spin_unlock(&rgd->rd_rsspin); 1484 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1485 } 1486 1487 /** 1488 * rgd_free - return the number of free blocks we can allocate. 1489 * @rgd: the resource group 1490 * 1491 * This function returns the number of free blocks for an rgrp. 1492 * That's the clone-free blocks (blocks that are free, not including those 1493 * still being used for unlinked files that haven't been deleted.) 1494 * 1495 * It also subtracts any blocks reserved by someone else, but does not 1496 * include free blocks that are still part of our current reservation, 1497 * because obviously we can (and will) allocate them. 1498 */ 1499 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) 1500 { 1501 u32 tot_reserved, tot_free; 1502 1503 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free)) 1504 return 0; 1505 tot_reserved = rgd->rd_reserved - rs->rs_free; 1506 1507 if (rgd->rd_free_clone < tot_reserved) 1508 tot_reserved = 0; 1509 1510 tot_free = rgd->rd_free_clone - tot_reserved; 1511 1512 return tot_free; 1513 } 1514 1515 /** 1516 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1517 * @rgd: the resource group descriptor 1518 * @ip: pointer to the inode for which we're reserving blocks 1519 * @ap: the allocation parameters 1520 * 1521 */ 1522 1523 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1524 const struct gfs2_alloc_parms *ap) 1525 { 1526 struct gfs2_rbm rbm = { .rgd = rgd, }; 1527 u64 goal; 1528 struct gfs2_blkreserv *rs = &ip->i_res; 1529 u32 extlen; 1530 u32 free_blocks = rgd_free(rgd, rs); 1531 int ret; 1532 struct inode *inode = &ip->i_inode; 1533 1534 if (S_ISDIR(inode->i_mode)) 1535 extlen = 1; 1536 else { 1537 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); 1538 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); 1539 } 1540 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1541 return; 1542 1543 /* Find bitmap block that contains bits for goal block */ 1544 if (rgrp_contains_block(rgd, ip->i_goal)) 1545 goal = ip->i_goal; 1546 else 1547 goal = rgd->rd_last_alloc + rgd->rd_data0; 1548 1549 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1550 return; 1551 1552 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1553 if (ret == 0) { 1554 rs->rs_rbm = rbm; 1555 rs->rs_free = extlen; 1556 rs_insert(ip); 1557 } else { 1558 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1559 rgd->rd_last_alloc = 0; 1560 } 1561 } 1562 1563 /** 1564 * gfs2_next_unreserved_block - Return next block that is not reserved 1565 * @rgd: The resource group 1566 * @block: The starting block 1567 * @length: The required length 1568 * @ip: Ignore any reservations for this inode 1569 * 1570 * If the block does not appear in any reservation, then return the 1571 * block number unchanged. If it does appear in the reservation, then 1572 * keep looking through the tree of reservations in order to find the 1573 * first block number which is not reserved. 1574 */ 1575 1576 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1577 u32 length, 1578 const struct gfs2_inode *ip) 1579 { 1580 struct gfs2_blkreserv *rs; 1581 struct rb_node *n; 1582 int rc; 1583 1584 spin_lock(&rgd->rd_rsspin); 1585 n = rgd->rd_rstree.rb_node; 1586 while (n) { 1587 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1588 rc = rs_cmp(block, length, rs); 1589 if (rc < 0) 1590 n = n->rb_left; 1591 else if (rc > 0) 1592 n = n->rb_right; 1593 else 1594 break; 1595 } 1596 1597 if (n) { 1598 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1599 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1600 n = n->rb_right; 1601 if (n == NULL) 1602 break; 1603 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1604 } 1605 } 1606 1607 spin_unlock(&rgd->rd_rsspin); 1608 return block; 1609 } 1610 1611 /** 1612 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1613 * @rbm: The current position in the resource group 1614 * @ip: The inode for which we are searching for blocks 1615 * @minext: The minimum extent length 1616 * @maxext: A pointer to the maximum extent structure 1617 * 1618 * This checks the current position in the rgrp to see whether there is 1619 * a reservation covering this block. If not then this function is a 1620 * no-op. If there is, then the position is moved to the end of the 1621 * contiguous reservation(s) so that we are pointing at the first 1622 * non-reserved block. 1623 * 1624 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1625 */ 1626 1627 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1628 const struct gfs2_inode *ip, 1629 u32 minext, 1630 struct gfs2_extent *maxext) 1631 { 1632 u64 block = gfs2_rbm_to_block(rbm); 1633 u32 extlen = 1; 1634 u64 nblock; 1635 int ret; 1636 1637 /* 1638 * If we have a minimum extent length, then skip over any extent 1639 * which is less than the min extent length in size. 1640 */ 1641 if (minext) { 1642 extlen = gfs2_free_extlen(rbm, minext); 1643 if (extlen <= maxext->len) 1644 goto fail; 1645 } 1646 1647 /* 1648 * Check the extent which has been found against the reservations 1649 * and skip if parts of it are already reserved 1650 */ 1651 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1652 if (nblock == block) { 1653 if (!minext || extlen >= minext) 1654 return 0; 1655 1656 if (extlen > maxext->len) { 1657 maxext->len = extlen; 1658 maxext->rbm = *rbm; 1659 } 1660 fail: 1661 nblock = block + extlen; 1662 } 1663 ret = gfs2_rbm_from_block(rbm, nblock); 1664 if (ret < 0) 1665 return ret; 1666 return 1; 1667 } 1668 1669 /** 1670 * gfs2_rbm_find - Look for blocks of a particular state 1671 * @rbm: Value/result starting position and final position 1672 * @state: The state which we want to find 1673 * @minext: Pointer to the requested extent length (NULL for a single block) 1674 * This is updated to be the actual reservation size. 1675 * @ip: If set, check for reservations 1676 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1677 * around until we've reached the starting point. 1678 * 1679 * Side effects: 1680 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1681 * has no free blocks in it. 1682 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1683 * has come up short on a free block search. 1684 * 1685 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1686 */ 1687 1688 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1689 const struct gfs2_inode *ip, bool nowrap) 1690 { 1691 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; 1692 struct buffer_head *bh; 1693 int last_bii; 1694 u32 offset; 1695 u8 *buffer; 1696 bool wrapped = false; 1697 int ret; 1698 struct gfs2_bitmap *bi; 1699 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1700 1701 /* 1702 * Determine the last bitmap to search. If we're not starting at the 1703 * beginning of a bitmap, we need to search that bitmap twice to scan 1704 * the entire resource group. 1705 */ 1706 last_bii = rbm->bii - (rbm->offset == 0); 1707 1708 while(1) { 1709 bi = rbm_bi(rbm); 1710 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) && 1711 test_bit(GBF_FULL, &bi->bi_flags) && 1712 (state == GFS2_BLKST_FREE)) 1713 goto next_bitmap; 1714 1715 bh = bi->bi_bh; 1716 buffer = bh->b_data + bi->bi_offset; 1717 WARN_ON(!buffer_uptodate(bh)); 1718 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1719 buffer = bi->bi_clone + bi->bi_offset; 1720 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); 1721 if (offset == BFITNOENT) { 1722 if (state == GFS2_BLKST_FREE && rbm->offset == 0) 1723 set_bit(GBF_FULL, &bi->bi_flags); 1724 goto next_bitmap; 1725 } 1726 rbm->offset = offset; 1727 if (ip == NULL) 1728 return 0; 1729 1730 ret = gfs2_reservation_check_and_update(rbm, ip, 1731 minext ? *minext : 0, 1732 &maxext); 1733 if (ret == 0) 1734 return 0; 1735 if (ret > 0) 1736 goto next_iter; 1737 if (ret == -E2BIG) { 1738 rbm->bii = 0; 1739 rbm->offset = 0; 1740 goto res_covered_end_of_rgrp; 1741 } 1742 return ret; 1743 1744 next_bitmap: /* Find next bitmap in the rgrp */ 1745 rbm->offset = 0; 1746 rbm->bii++; 1747 if (rbm->bii == rbm->rgd->rd_length) 1748 rbm->bii = 0; 1749 res_covered_end_of_rgrp: 1750 if (rbm->bii == 0) { 1751 if (wrapped) 1752 break; 1753 wrapped = true; 1754 if (nowrap) 1755 break; 1756 } 1757 next_iter: 1758 /* Have we scanned the entire resource group? */ 1759 if (wrapped && rbm->bii > last_bii) 1760 break; 1761 } 1762 1763 if (minext == NULL || state != GFS2_BLKST_FREE) 1764 return -ENOSPC; 1765 1766 /* If the extent was too small, and it's smaller than the smallest 1767 to have failed before, remember for future reference that it's 1768 useless to search this rgrp again for this amount or more. */ 1769 if (wrapped && (scan_from_start || rbm->bii > last_bii) && 1770 *minext < rbm->rgd->rd_extfail_pt) 1771 rbm->rgd->rd_extfail_pt = *minext; 1772 1773 /* If the maximum extent we found is big enough to fulfill the 1774 minimum requirements, use it anyway. */ 1775 if (maxext.len) { 1776 *rbm = maxext.rbm; 1777 *minext = maxext.len; 1778 return 0; 1779 } 1780 1781 return -ENOSPC; 1782 } 1783 1784 /** 1785 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1786 * @rgd: The rgrp 1787 * @last_unlinked: block address of the last dinode we unlinked 1788 * @skip: block address we should explicitly not unlink 1789 * 1790 * Returns: 0 if no error 1791 * The inode, if one has been found, in inode. 1792 */ 1793 1794 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1795 { 1796 u64 block; 1797 struct gfs2_sbd *sdp = rgd->rd_sbd; 1798 struct gfs2_glock *gl; 1799 struct gfs2_inode *ip; 1800 int error; 1801 int found = 0; 1802 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1803 1804 while (1) { 1805 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1806 true); 1807 if (error == -ENOSPC) 1808 break; 1809 if (WARN_ON_ONCE(error)) 1810 break; 1811 1812 block = gfs2_rbm_to_block(&rbm); 1813 if (gfs2_rbm_from_block(&rbm, block + 1)) 1814 break; 1815 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1816 continue; 1817 if (block == skip) 1818 continue; 1819 *last_unlinked = block; 1820 1821 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1822 if (error) 1823 continue; 1824 1825 /* If the inode is already in cache, we can ignore it here 1826 * because the existing inode disposal code will deal with 1827 * it when all refs have gone away. Accessing gl_object like 1828 * this is not safe in general. Here it is ok because we do 1829 * not dereference the pointer, and we only need an approx 1830 * answer to whether it is NULL or not. 1831 */ 1832 ip = gl->gl_object; 1833 1834 if (ip || !gfs2_queue_delete_work(gl, 0)) 1835 gfs2_glock_put(gl); 1836 else 1837 found++; 1838 1839 /* Limit reclaim to sensible number of tasks */ 1840 if (found > NR_CPUS) 1841 return; 1842 } 1843 1844 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1845 return; 1846 } 1847 1848 /** 1849 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1850 * @rgd: The rgrp in question 1851 * @loops: An indication of how picky we can be (0=very, 1=less so) 1852 * 1853 * This function uses the recently added glock statistics in order to 1854 * figure out whether a parciular resource group is suffering from 1855 * contention from multiple nodes. This is done purely on the basis 1856 * of timings, since this is the only data we have to work with and 1857 * our aim here is to reject a resource group which is highly contended 1858 * but (very important) not to do this too often in order to ensure that 1859 * we do not land up introducing fragmentation by changing resource 1860 * groups when not actually required. 1861 * 1862 * The calculation is fairly simple, we want to know whether the SRTTB 1863 * (i.e. smoothed round trip time for blocking operations) to acquire 1864 * the lock for this rgrp's glock is significantly greater than the 1865 * time taken for resource groups on average. We introduce a margin in 1866 * the form of the variable @var which is computed as the sum of the two 1867 * respective variences, and multiplied by a factor depending on @loops 1868 * and whether we have a lot of data to base the decision on. This is 1869 * then tested against the square difference of the means in order to 1870 * decide whether the result is statistically significant or not. 1871 * 1872 * Returns: A boolean verdict on the congestion status 1873 */ 1874 1875 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1876 { 1877 const struct gfs2_glock *gl = rgd->rd_gl; 1878 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1879 struct gfs2_lkstats *st; 1880 u64 r_dcount, l_dcount; 1881 u64 l_srttb, a_srttb = 0; 1882 s64 srttb_diff; 1883 u64 sqr_diff; 1884 u64 var; 1885 int cpu, nonzero = 0; 1886 1887 preempt_disable(); 1888 for_each_present_cpu(cpu) { 1889 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1890 if (st->stats[GFS2_LKS_SRTTB]) { 1891 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1892 nonzero++; 1893 } 1894 } 1895 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1896 if (nonzero) 1897 do_div(a_srttb, nonzero); 1898 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1899 var = st->stats[GFS2_LKS_SRTTVARB] + 1900 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1901 preempt_enable(); 1902 1903 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1904 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1905 1906 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1907 return false; 1908 1909 srttb_diff = a_srttb - l_srttb; 1910 sqr_diff = srttb_diff * srttb_diff; 1911 1912 var *= 2; 1913 if (l_dcount < 8 || r_dcount < 8) 1914 var *= 2; 1915 if (loops == 1) 1916 var *= 2; 1917 1918 return ((srttb_diff < 0) && (sqr_diff > var)); 1919 } 1920 1921 /** 1922 * gfs2_rgrp_used_recently 1923 * @rs: The block reservation with the rgrp to test 1924 * @msecs: The time limit in milliseconds 1925 * 1926 * Returns: True if the rgrp glock has been used within the time limit 1927 */ 1928 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1929 u64 msecs) 1930 { 1931 u64 tdiff; 1932 1933 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1934 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1935 1936 return tdiff > (msecs * 1000 * 1000); 1937 } 1938 1939 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1940 { 1941 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1942 u32 skip; 1943 1944 get_random_bytes(&skip, sizeof(skip)); 1945 return skip % sdp->sd_rgrps; 1946 } 1947 1948 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1949 { 1950 struct gfs2_rgrpd *rgd = *pos; 1951 struct gfs2_sbd *sdp = rgd->rd_sbd; 1952 1953 rgd = gfs2_rgrpd_get_next(rgd); 1954 if (rgd == NULL) 1955 rgd = gfs2_rgrpd_get_first(sdp); 1956 *pos = rgd; 1957 if (rgd != begin) /* If we didn't wrap */ 1958 return true; 1959 return false; 1960 } 1961 1962 /** 1963 * fast_to_acquire - determine if a resource group will be fast to acquire 1964 * 1965 * If this is one of our preferred rgrps, it should be quicker to acquire, 1966 * because we tried to set ourselves up as dlm lock master. 1967 */ 1968 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1969 { 1970 struct gfs2_glock *gl = rgd->rd_gl; 1971 1972 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1973 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1974 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1975 return 1; 1976 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1977 return 1; 1978 return 0; 1979 } 1980 1981 /** 1982 * gfs2_inplace_reserve - Reserve space in the filesystem 1983 * @ip: the inode to reserve space for 1984 * @ap: the allocation parameters 1985 * 1986 * We try our best to find an rgrp that has at least ap->target blocks 1987 * available. After a couple of passes (loops == 2), the prospects of finding 1988 * such an rgrp diminish. At this stage, we return the first rgrp that has 1989 * at least ap->min_target blocks available. Either way, we set ap->allowed to 1990 * the number of blocks available in the chosen rgrp. 1991 * 1992 * Returns: 0 on success, 1993 * -ENOMEM if a suitable rgrp can't be found 1994 * errno otherwise 1995 */ 1996 1997 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 1998 { 1999 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2000 struct gfs2_rgrpd *begin = NULL; 2001 struct gfs2_blkreserv *rs = &ip->i_res; 2002 int error = 0, rg_locked, flags = 0; 2003 u64 last_unlinked = NO_BLOCK; 2004 int loops = 0; 2005 u32 free_blocks, skip = 0; 2006 2007 if (sdp->sd_args.ar_rgrplvb) 2008 flags |= GL_SKIP; 2009 if (gfs2_assert_warn(sdp, ap->target)) 2010 return -EINVAL; 2011 if (gfs2_rs_active(rs)) { 2012 begin = rs->rs_rbm.rgd; 2013 } else if (rs->rs_rbm.rgd && 2014 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) { 2015 begin = rs->rs_rbm.rgd; 2016 } else { 2017 check_and_update_goal(ip); 2018 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 2019 } 2020 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 2021 skip = gfs2_orlov_skip(ip); 2022 if (rs->rs_rbm.rgd == NULL) 2023 return -EBADSLT; 2024 2025 while (loops < 3) { 2026 rg_locked = 1; 2027 2028 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 2029 rg_locked = 0; 2030 if (skip && skip--) 2031 goto next_rgrp; 2032 if (!gfs2_rs_active(rs)) { 2033 if (loops == 0 && 2034 !fast_to_acquire(rs->rs_rbm.rgd)) 2035 goto next_rgrp; 2036 if ((loops < 2) && 2037 gfs2_rgrp_used_recently(rs, 1000) && 2038 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2039 goto next_rgrp; 2040 } 2041 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2042 LM_ST_EXCLUSIVE, flags, 2043 &ip->i_rgd_gh); 2044 if (unlikely(error)) 2045 return error; 2046 if (!gfs2_rs_active(rs) && (loops < 2) && 2047 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2048 goto skip_rgrp; 2049 if (sdp->sd_args.ar_rgrplvb) { 2050 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2051 if (unlikely(error)) { 2052 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2053 return error; 2054 } 2055 } 2056 } 2057 2058 /* Skip unusable resource groups */ 2059 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2060 GFS2_RDF_ERROR)) || 2061 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2062 goto skip_rgrp; 2063 2064 if (sdp->sd_args.ar_rgrplvb) 2065 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2066 2067 /* Get a reservation if we don't already have one */ 2068 if (!gfs2_rs_active(rs)) 2069 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2070 2071 /* Skip rgrps when we can't get a reservation on first pass */ 2072 if (!gfs2_rs_active(rs) && (loops < 1)) 2073 goto check_rgrp; 2074 2075 /* If rgrp has enough free space, use it */ 2076 free_blocks = rgd_free(rs->rs_rbm.rgd, rs); 2077 if (free_blocks >= ap->target || 2078 (loops == 2 && ap->min_target && 2079 free_blocks >= ap->min_target)) { 2080 ap->allowed = free_blocks; 2081 return 0; 2082 } 2083 check_rgrp: 2084 /* Check for unlinked inodes which can be reclaimed */ 2085 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2086 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2087 ip->i_no_addr); 2088 skip_rgrp: 2089 /* Drop reservation, if we couldn't use reserved rgrp */ 2090 if (gfs2_rs_active(rs)) 2091 gfs2_rs_deltree(rs); 2092 2093 /* Unlock rgrp if required */ 2094 if (!rg_locked) 2095 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2096 next_rgrp: 2097 /* Find the next rgrp, and continue looking */ 2098 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2099 continue; 2100 if (skip) 2101 continue; 2102 2103 /* If we've scanned all the rgrps, but found no free blocks 2104 * then this checks for some less likely conditions before 2105 * trying again. 2106 */ 2107 loops++; 2108 /* Check that fs hasn't grown if writing to rindex */ 2109 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2110 error = gfs2_ri_update(ip); 2111 if (error) 2112 return error; 2113 } 2114 /* Flushing the log may release space */ 2115 if (loops == 2) 2116 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | 2117 GFS2_LFC_INPLACE_RESERVE); 2118 } 2119 2120 return -ENOSPC; 2121 } 2122 2123 /** 2124 * gfs2_inplace_release - release an inplace reservation 2125 * @ip: the inode the reservation was taken out on 2126 * 2127 * Release a reservation made by gfs2_inplace_reserve(). 2128 */ 2129 2130 void gfs2_inplace_release(struct gfs2_inode *ip) 2131 { 2132 if (gfs2_holder_initialized(&ip->i_rgd_gh)) 2133 gfs2_glock_dq_uninit(&ip->i_rgd_gh); 2134 } 2135 2136 /** 2137 * gfs2_alloc_extent - allocate an extent from a given bitmap 2138 * @rbm: the resource group information 2139 * @dinode: TRUE if the first block we allocate is for a dinode 2140 * @n: The extent length (value/result) 2141 * 2142 * Add the bitmap buffer to the transaction. 2143 * Set the found bits to @new_state to change block's allocation state. 2144 */ 2145 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2146 unsigned int *n) 2147 { 2148 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2149 const unsigned int elen = *n; 2150 u64 block; 2151 int ret; 2152 2153 *n = 1; 2154 block = gfs2_rbm_to_block(rbm); 2155 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2156 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2157 block++; 2158 while (*n < elen) { 2159 ret = gfs2_rbm_from_block(&pos, block); 2160 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) 2161 break; 2162 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2163 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2164 (*n)++; 2165 block++; 2166 } 2167 } 2168 2169 /** 2170 * rgblk_free - Change alloc state of given block(s) 2171 * @sdp: the filesystem 2172 * @rgd: the resource group the blocks are in 2173 * @bstart: the start of a run of blocks to free 2174 * @blen: the length of the block run (all must lie within ONE RG!) 2175 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2176 */ 2177 2178 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, 2179 u64 bstart, u32 blen, unsigned char new_state) 2180 { 2181 struct gfs2_rbm rbm; 2182 struct gfs2_bitmap *bi, *bi_prev = NULL; 2183 2184 rbm.rgd = rgd; 2185 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) 2186 return; 2187 while (blen--) { 2188 bi = rbm_bi(&rbm); 2189 if (bi != bi_prev) { 2190 if (!bi->bi_clone) { 2191 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2192 GFP_NOFS | __GFP_NOFAIL); 2193 memcpy(bi->bi_clone + bi->bi_offset, 2194 bi->bi_bh->b_data + bi->bi_offset, 2195 bi->bi_bytes); 2196 } 2197 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2198 bi_prev = bi; 2199 } 2200 gfs2_setbit(&rbm, false, new_state); 2201 gfs2_rbm_incr(&rbm); 2202 } 2203 } 2204 2205 /** 2206 * gfs2_rgrp_dump - print out an rgrp 2207 * @seq: The iterator 2208 * @rgd: The rgrp in question 2209 * @fs_id_buf: pointer to file system id (if requested) 2210 * 2211 */ 2212 2213 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd, 2214 const char *fs_id_buf) 2215 { 2216 struct gfs2_blkreserv *trs; 2217 const struct rb_node *n; 2218 2219 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2220 fs_id_buf, 2221 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2222 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2223 rgd->rd_reserved, rgd->rd_extfail_pt); 2224 if (rgd->rd_sbd->sd_args.ar_rgrplvb) { 2225 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 2226 2227 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf, 2228 be32_to_cpu(rgl->rl_flags), 2229 be32_to_cpu(rgl->rl_free), 2230 be32_to_cpu(rgl->rl_dinodes)); 2231 } 2232 spin_lock(&rgd->rd_rsspin); 2233 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2234 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2235 dump_rs(seq, trs, fs_id_buf); 2236 } 2237 spin_unlock(&rgd->rd_rsspin); 2238 } 2239 2240 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2241 { 2242 struct gfs2_sbd *sdp = rgd->rd_sbd; 2243 char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; 2244 2245 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2246 (unsigned long long)rgd->rd_addr); 2247 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2248 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); 2249 gfs2_rgrp_dump(NULL, rgd, fs_id_buf); 2250 rgd->rd_flags |= GFS2_RDF_ERROR; 2251 } 2252 2253 /** 2254 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2255 * @ip: The inode we have just allocated blocks for 2256 * @rbm: The start of the allocated blocks 2257 * @len: The extent length 2258 * 2259 * Adjusts a reservation after an allocation has taken place. If the 2260 * reservation does not match the allocation, or if it is now empty 2261 * then it is removed. 2262 */ 2263 2264 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2265 const struct gfs2_rbm *rbm, unsigned len) 2266 { 2267 struct gfs2_blkreserv *rs = &ip->i_res; 2268 struct gfs2_rgrpd *rgd = rbm->rgd; 2269 unsigned rlen; 2270 u64 block; 2271 int ret; 2272 2273 spin_lock(&rgd->rd_rsspin); 2274 if (gfs2_rs_active(rs)) { 2275 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2276 block = gfs2_rbm_to_block(rbm); 2277 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2278 rlen = min(rs->rs_free, len); 2279 rs->rs_free -= rlen; 2280 rgd->rd_reserved -= rlen; 2281 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2282 if (rs->rs_free && !ret) 2283 goto out; 2284 /* We used up our block reservation, so we should 2285 reserve more blocks next time. */ 2286 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); 2287 } 2288 __rs_deltree(rs); 2289 } 2290 out: 2291 spin_unlock(&rgd->rd_rsspin); 2292 } 2293 2294 /** 2295 * gfs2_set_alloc_start - Set starting point for block allocation 2296 * @rbm: The rbm which will be set to the required location 2297 * @ip: The gfs2 inode 2298 * @dinode: Flag to say if allocation includes a new inode 2299 * 2300 * This sets the starting point from the reservation if one is active 2301 * otherwise it falls back to guessing a start point based on the 2302 * inode's goal block or the last allocation point in the rgrp. 2303 */ 2304 2305 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2306 const struct gfs2_inode *ip, bool dinode) 2307 { 2308 u64 goal; 2309 2310 if (gfs2_rs_active(&ip->i_res)) { 2311 *rbm = ip->i_res.rs_rbm; 2312 return; 2313 } 2314 2315 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2316 goal = ip->i_goal; 2317 else 2318 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2319 2320 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { 2321 rbm->bii = 0; 2322 rbm->offset = 0; 2323 } 2324 } 2325 2326 /** 2327 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2328 * @ip: the inode to allocate the block for 2329 * @bn: Used to return the starting block number 2330 * @nblocks: requested number of blocks/extent length (value/result) 2331 * @dinode: 1 if we're allocating a dinode block, else 0 2332 * @generation: the generation number of the inode 2333 * 2334 * Returns: 0 or error 2335 */ 2336 2337 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2338 bool dinode, u64 *generation) 2339 { 2340 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2341 struct buffer_head *dibh; 2342 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, }; 2343 unsigned int ndata; 2344 u64 block; /* block, within the file system scope */ 2345 int error; 2346 2347 gfs2_set_alloc_start(&rbm, ip, dinode); 2348 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2349 2350 if (error == -ENOSPC) { 2351 gfs2_set_alloc_start(&rbm, ip, dinode); 2352 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2353 } 2354 2355 /* Since all blocks are reserved in advance, this shouldn't happen */ 2356 if (error) { 2357 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2358 (unsigned long long)ip->i_no_addr, error, *nblocks, 2359 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2360 rbm.rgd->rd_extfail_pt); 2361 goto rgrp_error; 2362 } 2363 2364 gfs2_alloc_extent(&rbm, dinode, nblocks); 2365 block = gfs2_rbm_to_block(&rbm); 2366 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2367 if (gfs2_rs_active(&ip->i_res)) 2368 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2369 ndata = *nblocks; 2370 if (dinode) 2371 ndata--; 2372 2373 if (!dinode) { 2374 ip->i_goal = block + ndata - 1; 2375 error = gfs2_meta_inode_buffer(ip, &dibh); 2376 if (error == 0) { 2377 struct gfs2_dinode *di = 2378 (struct gfs2_dinode *)dibh->b_data; 2379 gfs2_trans_add_meta(ip->i_gl, dibh); 2380 di->di_goal_meta = di->di_goal_data = 2381 cpu_to_be64(ip->i_goal); 2382 brelse(dibh); 2383 } 2384 } 2385 if (rbm.rgd->rd_free < *nblocks) { 2386 fs_warn(sdp, "nblocks=%u\n", *nblocks); 2387 goto rgrp_error; 2388 } 2389 2390 rbm.rgd->rd_free -= *nblocks; 2391 if (dinode) { 2392 rbm.rgd->rd_dinodes++; 2393 *generation = rbm.rgd->rd_igeneration++; 2394 if (*generation == 0) 2395 *generation = rbm.rgd->rd_igeneration++; 2396 } 2397 2398 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2399 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2400 2401 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2402 if (dinode) 2403 gfs2_trans_remove_revoke(sdp, block, *nblocks); 2404 2405 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2406 2407 rbm.rgd->rd_free_clone -= *nblocks; 2408 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2409 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2410 *bn = block; 2411 return 0; 2412 2413 rgrp_error: 2414 gfs2_rgrp_error(rbm.rgd); 2415 return -EIO; 2416 } 2417 2418 /** 2419 * __gfs2_free_blocks - free a contiguous run of block(s) 2420 * @ip: the inode these blocks are being freed from 2421 * @rgd: the resource group the blocks are in 2422 * @bstart: first block of a run of contiguous blocks 2423 * @blen: the length of the block run 2424 * @meta: 1 if the blocks represent metadata 2425 * 2426 */ 2427 2428 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2429 u64 bstart, u32 blen, int meta) 2430 { 2431 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2432 2433 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); 2434 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2435 rgd->rd_free += blen; 2436 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2437 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2438 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2439 2440 /* Directories keep their data in the metadata address space */ 2441 if (meta || ip->i_depth || gfs2_is_jdata(ip)) 2442 gfs2_journal_wipe(ip, bstart, blen); 2443 } 2444 2445 /** 2446 * gfs2_free_meta - free a contiguous run of data block(s) 2447 * @ip: the inode these blocks are being freed from 2448 * @rgd: the resource group the blocks are in 2449 * @bstart: first block of a run of contiguous blocks 2450 * @blen: the length of the block run 2451 * 2452 */ 2453 2454 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, 2455 u64 bstart, u32 blen) 2456 { 2457 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2458 2459 __gfs2_free_blocks(ip, rgd, bstart, blen, 1); 2460 gfs2_statfs_change(sdp, 0, +blen, 0); 2461 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2462 } 2463 2464 void gfs2_unlink_di(struct inode *inode) 2465 { 2466 struct gfs2_inode *ip = GFS2_I(inode); 2467 struct gfs2_sbd *sdp = GFS2_SB(inode); 2468 struct gfs2_rgrpd *rgd; 2469 u64 blkno = ip->i_no_addr; 2470 2471 rgd = gfs2_blk2rgrpd(sdp, blkno, true); 2472 if (!rgd) 2473 return; 2474 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2475 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2476 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2477 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2478 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); 2479 } 2480 2481 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2482 { 2483 struct gfs2_sbd *sdp = rgd->rd_sbd; 2484 2485 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2486 if (!rgd->rd_dinodes) 2487 gfs2_consist_rgrpd(rgd); 2488 rgd->rd_dinodes--; 2489 rgd->rd_free++; 2490 2491 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2492 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2493 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); 2494 2495 gfs2_statfs_change(sdp, 0, +1, -1); 2496 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2497 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2498 gfs2_journal_wipe(ip, ip->i_no_addr, 1); 2499 } 2500 2501 /** 2502 * gfs2_check_blk_type - Check the type of a block 2503 * @sdp: The superblock 2504 * @no_addr: The block number to check 2505 * @type: The block type we are looking for 2506 * 2507 * Returns: 0 if the block type matches the expected type 2508 * -ESTALE if it doesn't match 2509 * or -ve errno if something went wrong while checking 2510 */ 2511 2512 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2513 { 2514 struct gfs2_rgrpd *rgd; 2515 struct gfs2_holder rgd_gh; 2516 struct gfs2_rbm rbm; 2517 int error = -EINVAL; 2518 2519 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2520 if (!rgd) 2521 goto fail; 2522 2523 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2524 if (error) 2525 goto fail; 2526 2527 rbm.rgd = rgd; 2528 error = gfs2_rbm_from_block(&rbm, no_addr); 2529 if (WARN_ON_ONCE(error)) 2530 goto fail; 2531 2532 if (gfs2_testbit(&rbm, false) != type) 2533 error = -ESTALE; 2534 2535 gfs2_glock_dq_uninit(&rgd_gh); 2536 fail: 2537 return error; 2538 } 2539 2540 /** 2541 * gfs2_rlist_add - add a RG to a list of RGs 2542 * @ip: the inode 2543 * @rlist: the list of resource groups 2544 * @block: the block 2545 * 2546 * Figure out what RG a block belongs to and add that RG to the list 2547 * 2548 * FIXME: Don't use NOFAIL 2549 * 2550 */ 2551 2552 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2553 u64 block) 2554 { 2555 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2556 struct gfs2_rgrpd *rgd; 2557 struct gfs2_rgrpd **tmp; 2558 unsigned int new_space; 2559 unsigned int x; 2560 2561 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2562 return; 2563 2564 /* 2565 * The resource group last accessed is kept in the last position. 2566 */ 2567 2568 if (rlist->rl_rgrps) { 2569 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; 2570 if (rgrp_contains_block(rgd, block)) 2571 return; 2572 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2573 } else { 2574 rgd = ip->i_res.rs_rbm.rgd; 2575 if (!rgd || !rgrp_contains_block(rgd, block)) 2576 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2577 } 2578 2579 if (!rgd) { 2580 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", 2581 (unsigned long long)block); 2582 return; 2583 } 2584 2585 for (x = 0; x < rlist->rl_rgrps; x++) { 2586 if (rlist->rl_rgd[x] == rgd) { 2587 swap(rlist->rl_rgd[x], 2588 rlist->rl_rgd[rlist->rl_rgrps - 1]); 2589 return; 2590 } 2591 } 2592 2593 if (rlist->rl_rgrps == rlist->rl_space) { 2594 new_space = rlist->rl_space + 10; 2595 2596 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2597 GFP_NOFS | __GFP_NOFAIL); 2598 2599 if (rlist->rl_rgd) { 2600 memcpy(tmp, rlist->rl_rgd, 2601 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2602 kfree(rlist->rl_rgd); 2603 } 2604 2605 rlist->rl_space = new_space; 2606 rlist->rl_rgd = tmp; 2607 } 2608 2609 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2610 } 2611 2612 /** 2613 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2614 * and initialize an array of glock holders for them 2615 * @rlist: the list of resource groups 2616 * 2617 * FIXME: Don't use NOFAIL 2618 * 2619 */ 2620 2621 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) 2622 { 2623 unsigned int x; 2624 2625 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, 2626 sizeof(struct gfs2_holder), 2627 GFP_NOFS | __GFP_NOFAIL); 2628 for (x = 0; x < rlist->rl_rgrps; x++) 2629 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2630 LM_ST_EXCLUSIVE, 0, 2631 &rlist->rl_ghs[x]); 2632 } 2633 2634 /** 2635 * gfs2_rlist_free - free a resource group list 2636 * @rlist: the list of resource groups 2637 * 2638 */ 2639 2640 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2641 { 2642 unsigned int x; 2643 2644 kfree(rlist->rl_rgd); 2645 2646 if (rlist->rl_ghs) { 2647 for (x = 0; x < rlist->rl_rgrps; x++) 2648 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2649 kfree(rlist->rl_ghs); 2650 rlist->rl_ghs = NULL; 2651 } 2652 } 2653 2654