xref: /openbmc/linux/fs/gfs2/rgrp.c (revision e23feb16)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20 
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 #if BITS_PER_LONG == 32
40 #define LBITMASK   (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK   (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48 
49 /*
50  * These routines are used by the resource group routines (rgrp.c)
51  * to keep track of block allocation.  Each block is represented by two
52  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53  *
54  * 0 = Free
55  * 1 = Used (not metadata)
56  * 2 = Unlinked (still in use) inode
57  * 3 = Used (metadata)
58  */
59 
60 static const char valid_change[16] = {
61 	        /* current */
62 	/* n */ 0, 1, 1, 1,
63 	/* e */ 1, 0, 0, 0,
64 	/* w */ 0, 0, 0, 1,
65 	        1, 0, 0, 0
66 };
67 
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69                          const struct gfs2_inode *ip, bool nowrap);
70 
71 
72 /**
73  * gfs2_setbit - Set a bit in the bitmaps
74  * @rbm: The position of the bit to set
75  * @do_clone: Also set the clone bitmap, if it exists
76  * @new_state: the new state of the block
77  *
78  */
79 
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 			       unsigned char new_state)
82 {
83 	unsigned char *byte1, *byte2, *end, cur_state;
84 	unsigned int buflen = rbm->bi->bi_len;
85 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
86 
87 	byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
88 	end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
89 
90 	BUG_ON(byte1 >= end);
91 
92 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
93 
94 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
95 		printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
96 		       "new_state=%d\n", rbm->offset, cur_state, new_state);
97 		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
98 		       (unsigned long long)rbm->rgd->rd_addr,
99 		       rbm->bi->bi_start);
100 		printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 		       rbm->bi->bi_offset, rbm->bi->bi_len);
102 		dump_stack();
103 		gfs2_consist_rgrpd(rbm->rgd);
104 		return;
105 	}
106 	*byte1 ^= (cur_state ^ new_state) << bit;
107 
108 	if (do_clone && rbm->bi->bi_clone) {
109 		byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 		*byte2 ^= (cur_state ^ new_state) << bit;
112 	}
113 }
114 
115 /**
116  * gfs2_testbit - test a bit in the bitmaps
117  * @rbm: The bit to test
118  *
119  * Returns: The two bit block state of the requested bit
120  */
121 
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 	const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
125 	const u8 *byte;
126 	unsigned int bit;
127 
128 	byte = buffer + (rbm->offset / GFS2_NBBY);
129 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
130 
131 	return (*byte >> bit) & GFS2_BIT_MASK;
132 }
133 
134 /**
135  * gfs2_bit_search
136  * @ptr: Pointer to bitmap data
137  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
138  * @state: The state we are searching for
139  *
140  * We xor the bitmap data with a patter which is the bitwise opposite
141  * of what we are looking for, this gives rise to a pattern of ones
142  * wherever there is a match. Since we have two bits per entry, we
143  * take this pattern, shift it down by one place and then and it with
144  * the original. All the even bit positions (0,2,4, etc) then represent
145  * successful matches, so we mask with 0x55555..... to remove the unwanted
146  * odd bit positions.
147  *
148  * This allows searching of a whole u64 at once (32 blocks) with a
149  * single test (on 64 bit arches).
150  */
151 
152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
153 {
154 	u64 tmp;
155 	static const u64 search[] = {
156 		[0] = 0xffffffffffffffffULL,
157 		[1] = 0xaaaaaaaaaaaaaaaaULL,
158 		[2] = 0x5555555555555555ULL,
159 		[3] = 0x0000000000000000ULL,
160 	};
161 	tmp = le64_to_cpu(*ptr) ^ search[state];
162 	tmp &= (tmp >> 1);
163 	tmp &= mask;
164 	return tmp;
165 }
166 
167 /**
168  * rs_cmp - multi-block reservation range compare
169  * @blk: absolute file system block number of the new reservation
170  * @len: number of blocks in the new reservation
171  * @rs: existing reservation to compare against
172  *
173  * returns: 1 if the block range is beyond the reach of the reservation
174  *         -1 if the block range is before the start of the reservation
175  *          0 if the block range overlaps with the reservation
176  */
177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
178 {
179 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
180 
181 	if (blk >= startblk + rs->rs_free)
182 		return 1;
183 	if (blk + len - 1 < startblk)
184 		return -1;
185 	return 0;
186 }
187 
188 /**
189  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
190  *       a block in a given allocation state.
191  * @buf: the buffer that holds the bitmaps
192  * @len: the length (in bytes) of the buffer
193  * @goal: start search at this block's bit-pair (within @buffer)
194  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
195  *
196  * Scope of @goal and returned block number is only within this bitmap buffer,
197  * not entire rgrp or filesystem.  @buffer will be offset from the actual
198  * beginning of a bitmap block buffer, skipping any header structures, but
199  * headers are always a multiple of 64 bits long so that the buffer is
200  * always aligned to a 64 bit boundary.
201  *
202  * The size of the buffer is in bytes, but is it assumed that it is
203  * always ok to read a complete multiple of 64 bits at the end
204  * of the block in case the end is no aligned to a natural boundary.
205  *
206  * Return: the block number (bitmap buffer scope) that was found
207  */
208 
209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
210 		       u32 goal, u8 state)
211 {
212 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
213 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
214 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
215 	u64 tmp;
216 	u64 mask = 0x5555555555555555ULL;
217 	u32 bit;
218 
219 	/* Mask off bits we don't care about at the start of the search */
220 	mask <<= spoint;
221 	tmp = gfs2_bit_search(ptr, mask, state);
222 	ptr++;
223 	while(tmp == 0 && ptr < end) {
224 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
225 		ptr++;
226 	}
227 	/* Mask off any bits which are more than len bytes from the start */
228 	if (ptr == end && (len & (sizeof(u64) - 1)))
229 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
230 	/* Didn't find anything, so return */
231 	if (tmp == 0)
232 		return BFITNOENT;
233 	ptr--;
234 	bit = __ffs64(tmp);
235 	bit /= 2;	/* two bits per entry in the bitmap */
236 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
237 }
238 
239 /**
240  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
241  * @rbm: The rbm with rgd already set correctly
242  * @block: The block number (filesystem relative)
243  *
244  * This sets the bi and offset members of an rbm based on a
245  * resource group and a filesystem relative block number. The
246  * resource group must be set in the rbm on entry, the bi and
247  * offset members will be set by this function.
248  *
249  * Returns: 0 on success, or an error code
250  */
251 
252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
253 {
254 	u64 rblock = block - rbm->rgd->rd_data0;
255 	u32 x;
256 
257 	if (WARN_ON_ONCE(rblock > UINT_MAX))
258 		return -EINVAL;
259 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 		return -E2BIG;
261 
262 	rbm->bi = rbm->rgd->rd_bits;
263 	rbm->offset = (u32)(rblock);
264 	/* Check if the block is within the first block */
265 	if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
266 		return 0;
267 
268 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 	rbm->offset += (sizeof(struct gfs2_rgrp) -
270 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 	x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 	rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 	rbm->bi += x;
274 	return 0;
275 }
276 
277 /**
278  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
279  * @rbm: Position to search (value/result)
280  * @n_unaligned: Number of unaligned blocks to check
281  * @len: Decremented for each block found (terminate on zero)
282  *
283  * Returns: true if a non-free block is encountered
284  */
285 
286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
287 {
288 	u64 block;
289 	u32 n;
290 	u8 res;
291 
292 	for (n = 0; n < n_unaligned; n++) {
293 		res = gfs2_testbit(rbm);
294 		if (res != GFS2_BLKST_FREE)
295 			return true;
296 		(*len)--;
297 		if (*len == 0)
298 			return true;
299 		block = gfs2_rbm_to_block(rbm);
300 		if (gfs2_rbm_from_block(rbm, block + 1))
301 			return true;
302 	}
303 
304 	return false;
305 }
306 
307 /**
308  * gfs2_free_extlen - Return extent length of free blocks
309  * @rbm: Starting position
310  * @len: Max length to check
311  *
312  * Starting at the block specified by the rbm, see how many free blocks
313  * there are, not reading more than len blocks ahead. This can be done
314  * using memchr_inv when the blocks are byte aligned, but has to be done
315  * on a block by block basis in case of unaligned blocks. Also this
316  * function can cope with bitmap boundaries (although it must stop on
317  * a resource group boundary)
318  *
319  * Returns: Number of free blocks in the extent
320  */
321 
322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
323 {
324 	struct gfs2_rbm rbm = *rrbm;
325 	u32 n_unaligned = rbm.offset & 3;
326 	u32 size = len;
327 	u32 bytes;
328 	u32 chunk_size;
329 	u8 *ptr, *start, *end;
330 	u64 block;
331 
332 	if (n_unaligned &&
333 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
334 		goto out;
335 
336 	n_unaligned = len & 3;
337 	/* Start is now byte aligned */
338 	while (len > 3) {
339 		start = rbm.bi->bi_bh->b_data;
340 		if (rbm.bi->bi_clone)
341 			start = rbm.bi->bi_clone;
342 		end = start + rbm.bi->bi_bh->b_size;
343 		start += rbm.bi->bi_offset;
344 		BUG_ON(rbm.offset & 3);
345 		start += (rbm.offset / GFS2_NBBY);
346 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
347 		ptr = memchr_inv(start, 0, bytes);
348 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
349 		chunk_size *= GFS2_NBBY;
350 		BUG_ON(len < chunk_size);
351 		len -= chunk_size;
352 		block = gfs2_rbm_to_block(&rbm);
353 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
354 			n_unaligned = 0;
355 			break;
356 		}
357 		if (ptr) {
358 			n_unaligned = 3;
359 			break;
360 		}
361 		n_unaligned = len & 3;
362 	}
363 
364 	/* Deal with any bits left over at the end */
365 	if (n_unaligned)
366 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
367 out:
368 	return size - len;
369 }
370 
371 /**
372  * gfs2_bitcount - count the number of bits in a certain state
373  * @rgd: the resource group descriptor
374  * @buffer: the buffer that holds the bitmaps
375  * @buflen: the length (in bytes) of the buffer
376  * @state: the state of the block we're looking for
377  *
378  * Returns: The number of bits
379  */
380 
381 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
382 			 unsigned int buflen, u8 state)
383 {
384 	const u8 *byte = buffer;
385 	const u8 *end = buffer + buflen;
386 	const u8 state1 = state << 2;
387 	const u8 state2 = state << 4;
388 	const u8 state3 = state << 6;
389 	u32 count = 0;
390 
391 	for (; byte < end; byte++) {
392 		if (((*byte) & 0x03) == state)
393 			count++;
394 		if (((*byte) & 0x0C) == state1)
395 			count++;
396 		if (((*byte) & 0x30) == state2)
397 			count++;
398 		if (((*byte) & 0xC0) == state3)
399 			count++;
400 	}
401 
402 	return count;
403 }
404 
405 /**
406  * gfs2_rgrp_verify - Verify that a resource group is consistent
407  * @rgd: the rgrp
408  *
409  */
410 
411 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
412 {
413 	struct gfs2_sbd *sdp = rgd->rd_sbd;
414 	struct gfs2_bitmap *bi = NULL;
415 	u32 length = rgd->rd_length;
416 	u32 count[4], tmp;
417 	int buf, x;
418 
419 	memset(count, 0, 4 * sizeof(u32));
420 
421 	/* Count # blocks in each of 4 possible allocation states */
422 	for (buf = 0; buf < length; buf++) {
423 		bi = rgd->rd_bits + buf;
424 		for (x = 0; x < 4; x++)
425 			count[x] += gfs2_bitcount(rgd,
426 						  bi->bi_bh->b_data +
427 						  bi->bi_offset,
428 						  bi->bi_len, x);
429 	}
430 
431 	if (count[0] != rgd->rd_free) {
432 		if (gfs2_consist_rgrpd(rgd))
433 			fs_err(sdp, "free data mismatch:  %u != %u\n",
434 			       count[0], rgd->rd_free);
435 		return;
436 	}
437 
438 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
439 	if (count[1] != tmp) {
440 		if (gfs2_consist_rgrpd(rgd))
441 			fs_err(sdp, "used data mismatch:  %u != %u\n",
442 			       count[1], tmp);
443 		return;
444 	}
445 
446 	if (count[2] + count[3] != rgd->rd_dinodes) {
447 		if (gfs2_consist_rgrpd(rgd))
448 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
449 			       count[2] + count[3], rgd->rd_dinodes);
450 		return;
451 	}
452 }
453 
454 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
455 {
456 	u64 first = rgd->rd_data0;
457 	u64 last = first + rgd->rd_data;
458 	return first <= block && block < last;
459 }
460 
461 /**
462  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
463  * @sdp: The GFS2 superblock
464  * @blk: The data block number
465  * @exact: True if this needs to be an exact match
466  *
467  * Returns: The resource group, or NULL if not found
468  */
469 
470 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
471 {
472 	struct rb_node *n, *next;
473 	struct gfs2_rgrpd *cur;
474 
475 	spin_lock(&sdp->sd_rindex_spin);
476 	n = sdp->sd_rindex_tree.rb_node;
477 	while (n) {
478 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
479 		next = NULL;
480 		if (blk < cur->rd_addr)
481 			next = n->rb_left;
482 		else if (blk >= cur->rd_data0 + cur->rd_data)
483 			next = n->rb_right;
484 		if (next == NULL) {
485 			spin_unlock(&sdp->sd_rindex_spin);
486 			if (exact) {
487 				if (blk < cur->rd_addr)
488 					return NULL;
489 				if (blk >= cur->rd_data0 + cur->rd_data)
490 					return NULL;
491 			}
492 			return cur;
493 		}
494 		n = next;
495 	}
496 	spin_unlock(&sdp->sd_rindex_spin);
497 
498 	return NULL;
499 }
500 
501 /**
502  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
503  * @sdp: The GFS2 superblock
504  *
505  * Returns: The first rgrp in the filesystem
506  */
507 
508 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
509 {
510 	const struct rb_node *n;
511 	struct gfs2_rgrpd *rgd;
512 
513 	spin_lock(&sdp->sd_rindex_spin);
514 	n = rb_first(&sdp->sd_rindex_tree);
515 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
516 	spin_unlock(&sdp->sd_rindex_spin);
517 
518 	return rgd;
519 }
520 
521 /**
522  * gfs2_rgrpd_get_next - get the next RG
523  * @rgd: the resource group descriptor
524  *
525  * Returns: The next rgrp
526  */
527 
528 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
529 {
530 	struct gfs2_sbd *sdp = rgd->rd_sbd;
531 	const struct rb_node *n;
532 
533 	spin_lock(&sdp->sd_rindex_spin);
534 	n = rb_next(&rgd->rd_node);
535 	if (n == NULL)
536 		n = rb_first(&sdp->sd_rindex_tree);
537 
538 	if (unlikely(&rgd->rd_node == n)) {
539 		spin_unlock(&sdp->sd_rindex_spin);
540 		return NULL;
541 	}
542 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
543 	spin_unlock(&sdp->sd_rindex_spin);
544 	return rgd;
545 }
546 
547 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
548 {
549 	int x;
550 
551 	for (x = 0; x < rgd->rd_length; x++) {
552 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
553 		kfree(bi->bi_clone);
554 		bi->bi_clone = NULL;
555 	}
556 }
557 
558 /**
559  * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
560  * @ip: the inode for this reservation
561  */
562 int gfs2_rs_alloc(struct gfs2_inode *ip)
563 {
564 	int error = 0;
565 
566 	down_write(&ip->i_rw_mutex);
567 	if (ip->i_res)
568 		goto out;
569 
570 	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
571 	if (!ip->i_res) {
572 		error = -ENOMEM;
573 		goto out;
574 	}
575 
576 	RB_CLEAR_NODE(&ip->i_res->rs_node);
577 out:
578 	up_write(&ip->i_rw_mutex);
579 	return error;
580 }
581 
582 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
583 {
584 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
585 		       (unsigned long long)rs->rs_inum,
586 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
587 		       rs->rs_rbm.offset, rs->rs_free);
588 }
589 
590 /**
591  * __rs_deltree - remove a multi-block reservation from the rgd tree
592  * @rs: The reservation to remove
593  *
594  */
595 static void __rs_deltree(struct gfs2_blkreserv *rs)
596 {
597 	struct gfs2_rgrpd *rgd;
598 
599 	if (!gfs2_rs_active(rs))
600 		return;
601 
602 	rgd = rs->rs_rbm.rgd;
603 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
604 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
605 	RB_CLEAR_NODE(&rs->rs_node);
606 
607 	if (rs->rs_free) {
608 		/* return reserved blocks to the rgrp */
609 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
610 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
611 		rs->rs_free = 0;
612 		clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
613 		smp_mb__after_clear_bit();
614 	}
615 }
616 
617 /**
618  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
619  * @rs: The reservation to remove
620  *
621  */
622 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
623 {
624 	struct gfs2_rgrpd *rgd;
625 
626 	rgd = rs->rs_rbm.rgd;
627 	if (rgd) {
628 		spin_lock(&rgd->rd_rsspin);
629 		__rs_deltree(rs);
630 		spin_unlock(&rgd->rd_rsspin);
631 	}
632 }
633 
634 /**
635  * gfs2_rs_delete - delete a multi-block reservation
636  * @ip: The inode for this reservation
637  *
638  */
639 void gfs2_rs_delete(struct gfs2_inode *ip)
640 {
641 	struct inode *inode = &ip->i_inode;
642 
643 	down_write(&ip->i_rw_mutex);
644 	if (ip->i_res && atomic_read(&inode->i_writecount) <= 1) {
645 		gfs2_rs_deltree(ip->i_res);
646 		BUG_ON(ip->i_res->rs_free);
647 		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
648 		ip->i_res = NULL;
649 	}
650 	up_write(&ip->i_rw_mutex);
651 }
652 
653 /**
654  * return_all_reservations - return all reserved blocks back to the rgrp.
655  * @rgd: the rgrp that needs its space back
656  *
657  * We previously reserved a bunch of blocks for allocation. Now we need to
658  * give them back. This leave the reservation structures in tact, but removes
659  * all of their corresponding "no-fly zones".
660  */
661 static void return_all_reservations(struct gfs2_rgrpd *rgd)
662 {
663 	struct rb_node *n;
664 	struct gfs2_blkreserv *rs;
665 
666 	spin_lock(&rgd->rd_rsspin);
667 	while ((n = rb_first(&rgd->rd_rstree))) {
668 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
669 		__rs_deltree(rs);
670 	}
671 	spin_unlock(&rgd->rd_rsspin);
672 }
673 
674 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
675 {
676 	struct rb_node *n;
677 	struct gfs2_rgrpd *rgd;
678 	struct gfs2_glock *gl;
679 
680 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
681 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
682 		gl = rgd->rd_gl;
683 
684 		rb_erase(n, &sdp->sd_rindex_tree);
685 
686 		if (gl) {
687 			spin_lock(&gl->gl_spin);
688 			gl->gl_object = NULL;
689 			spin_unlock(&gl->gl_spin);
690 			gfs2_glock_add_to_lru(gl);
691 			gfs2_glock_put(gl);
692 		}
693 
694 		gfs2_free_clones(rgd);
695 		kfree(rgd->rd_bits);
696 		return_all_reservations(rgd);
697 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
698 	}
699 }
700 
701 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
702 {
703 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
704 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
705 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
706 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
707 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
708 }
709 
710 /**
711  * gfs2_compute_bitstructs - Compute the bitmap sizes
712  * @rgd: The resource group descriptor
713  *
714  * Calculates bitmap descriptors, one for each block that contains bitmap data
715  *
716  * Returns: errno
717  */
718 
719 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
720 {
721 	struct gfs2_sbd *sdp = rgd->rd_sbd;
722 	struct gfs2_bitmap *bi;
723 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
724 	u32 bytes_left, bytes;
725 	int x;
726 
727 	if (!length)
728 		return -EINVAL;
729 
730 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
731 	if (!rgd->rd_bits)
732 		return -ENOMEM;
733 
734 	bytes_left = rgd->rd_bitbytes;
735 
736 	for (x = 0; x < length; x++) {
737 		bi = rgd->rd_bits + x;
738 
739 		bi->bi_flags = 0;
740 		/* small rgrp; bitmap stored completely in header block */
741 		if (length == 1) {
742 			bytes = bytes_left;
743 			bi->bi_offset = sizeof(struct gfs2_rgrp);
744 			bi->bi_start = 0;
745 			bi->bi_len = bytes;
746 		/* header block */
747 		} else if (x == 0) {
748 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
749 			bi->bi_offset = sizeof(struct gfs2_rgrp);
750 			bi->bi_start = 0;
751 			bi->bi_len = bytes;
752 		/* last block */
753 		} else if (x + 1 == length) {
754 			bytes = bytes_left;
755 			bi->bi_offset = sizeof(struct gfs2_meta_header);
756 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
757 			bi->bi_len = bytes;
758 		/* other blocks */
759 		} else {
760 			bytes = sdp->sd_sb.sb_bsize -
761 				sizeof(struct gfs2_meta_header);
762 			bi->bi_offset = sizeof(struct gfs2_meta_header);
763 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
764 			bi->bi_len = bytes;
765 		}
766 
767 		bytes_left -= bytes;
768 	}
769 
770 	if (bytes_left) {
771 		gfs2_consist_rgrpd(rgd);
772 		return -EIO;
773 	}
774 	bi = rgd->rd_bits + (length - 1);
775 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
776 		if (gfs2_consist_rgrpd(rgd)) {
777 			gfs2_rindex_print(rgd);
778 			fs_err(sdp, "start=%u len=%u offset=%u\n",
779 			       bi->bi_start, bi->bi_len, bi->bi_offset);
780 		}
781 		return -EIO;
782 	}
783 
784 	return 0;
785 }
786 
787 /**
788  * gfs2_ri_total - Total up the file system space, according to the rindex.
789  * @sdp: the filesystem
790  *
791  */
792 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
793 {
794 	u64 total_data = 0;
795 	struct inode *inode = sdp->sd_rindex;
796 	struct gfs2_inode *ip = GFS2_I(inode);
797 	char buf[sizeof(struct gfs2_rindex)];
798 	int error, rgrps;
799 
800 	for (rgrps = 0;; rgrps++) {
801 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
802 
803 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
804 			break;
805 		error = gfs2_internal_read(ip, buf, &pos,
806 					   sizeof(struct gfs2_rindex));
807 		if (error != sizeof(struct gfs2_rindex))
808 			break;
809 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
810 	}
811 	return total_data;
812 }
813 
814 static int rgd_insert(struct gfs2_rgrpd *rgd)
815 {
816 	struct gfs2_sbd *sdp = rgd->rd_sbd;
817 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
818 
819 	/* Figure out where to put new node */
820 	while (*newn) {
821 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
822 						  rd_node);
823 
824 		parent = *newn;
825 		if (rgd->rd_addr < cur->rd_addr)
826 			newn = &((*newn)->rb_left);
827 		else if (rgd->rd_addr > cur->rd_addr)
828 			newn = &((*newn)->rb_right);
829 		else
830 			return -EEXIST;
831 	}
832 
833 	rb_link_node(&rgd->rd_node, parent, newn);
834 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
835 	sdp->sd_rgrps++;
836 	return 0;
837 }
838 
839 /**
840  * read_rindex_entry - Pull in a new resource index entry from the disk
841  * @ip: Pointer to the rindex inode
842  *
843  * Returns: 0 on success, > 0 on EOF, error code otherwise
844  */
845 
846 static int read_rindex_entry(struct gfs2_inode *ip)
847 {
848 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
849 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
850 	struct gfs2_rindex buf;
851 	int error;
852 	struct gfs2_rgrpd *rgd;
853 
854 	if (pos >= i_size_read(&ip->i_inode))
855 		return 1;
856 
857 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
858 				   sizeof(struct gfs2_rindex));
859 
860 	if (error != sizeof(struct gfs2_rindex))
861 		return (error == 0) ? 1 : error;
862 
863 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
864 	error = -ENOMEM;
865 	if (!rgd)
866 		return error;
867 
868 	rgd->rd_sbd = sdp;
869 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
870 	rgd->rd_length = be32_to_cpu(buf.ri_length);
871 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
872 	rgd->rd_data = be32_to_cpu(buf.ri_data);
873 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
874 	spin_lock_init(&rgd->rd_rsspin);
875 
876 	error = compute_bitstructs(rgd);
877 	if (error)
878 		goto fail;
879 
880 	error = gfs2_glock_get(sdp, rgd->rd_addr,
881 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
882 	if (error)
883 		goto fail;
884 
885 	rgd->rd_gl->gl_object = rgd;
886 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
887 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
888 	if (rgd->rd_data > sdp->sd_max_rg_data)
889 		sdp->sd_max_rg_data = rgd->rd_data;
890 	spin_lock(&sdp->sd_rindex_spin);
891 	error = rgd_insert(rgd);
892 	spin_unlock(&sdp->sd_rindex_spin);
893 	if (!error)
894 		return 0;
895 
896 	error = 0; /* someone else read in the rgrp; free it and ignore it */
897 	gfs2_glock_put(rgd->rd_gl);
898 
899 fail:
900 	kfree(rgd->rd_bits);
901 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
902 	return error;
903 }
904 
905 /**
906  * gfs2_ri_update - Pull in a new resource index from the disk
907  * @ip: pointer to the rindex inode
908  *
909  * Returns: 0 on successful update, error code otherwise
910  */
911 
912 static int gfs2_ri_update(struct gfs2_inode *ip)
913 {
914 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
915 	int error;
916 
917 	do {
918 		error = read_rindex_entry(ip);
919 	} while (error == 0);
920 
921 	if (error < 0)
922 		return error;
923 
924 	sdp->sd_rindex_uptodate = 1;
925 	return 0;
926 }
927 
928 /**
929  * gfs2_rindex_update - Update the rindex if required
930  * @sdp: The GFS2 superblock
931  *
932  * We grab a lock on the rindex inode to make sure that it doesn't
933  * change whilst we are performing an operation. We keep this lock
934  * for quite long periods of time compared to other locks. This
935  * doesn't matter, since it is shared and it is very, very rarely
936  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
937  *
938  * This makes sure that we're using the latest copy of the resource index
939  * special file, which might have been updated if someone expanded the
940  * filesystem (via gfs2_grow utility), which adds new resource groups.
941  *
942  * Returns: 0 on succeess, error code otherwise
943  */
944 
945 int gfs2_rindex_update(struct gfs2_sbd *sdp)
946 {
947 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
948 	struct gfs2_glock *gl = ip->i_gl;
949 	struct gfs2_holder ri_gh;
950 	int error = 0;
951 	int unlock_required = 0;
952 
953 	/* Read new copy from disk if we don't have the latest */
954 	if (!sdp->sd_rindex_uptodate) {
955 		if (!gfs2_glock_is_locked_by_me(gl)) {
956 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
957 			if (error)
958 				return error;
959 			unlock_required = 1;
960 		}
961 		if (!sdp->sd_rindex_uptodate)
962 			error = gfs2_ri_update(ip);
963 		if (unlock_required)
964 			gfs2_glock_dq_uninit(&ri_gh);
965 	}
966 
967 	return error;
968 }
969 
970 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
971 {
972 	const struct gfs2_rgrp *str = buf;
973 	u32 rg_flags;
974 
975 	rg_flags = be32_to_cpu(str->rg_flags);
976 	rg_flags &= ~GFS2_RDF_MASK;
977 	rgd->rd_flags &= GFS2_RDF_MASK;
978 	rgd->rd_flags |= rg_flags;
979 	rgd->rd_free = be32_to_cpu(str->rg_free);
980 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
981 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
982 }
983 
984 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
985 {
986 	struct gfs2_rgrp *str = buf;
987 
988 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
989 	str->rg_free = cpu_to_be32(rgd->rd_free);
990 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
991 	str->__pad = cpu_to_be32(0);
992 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
993 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
994 }
995 
996 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
997 {
998 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
999 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1000 
1001 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1002 	    rgl->rl_dinodes != str->rg_dinodes ||
1003 	    rgl->rl_igeneration != str->rg_igeneration)
1004 		return 0;
1005 	return 1;
1006 }
1007 
1008 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1009 {
1010 	const struct gfs2_rgrp *str = buf;
1011 
1012 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1013 	rgl->rl_flags = str->rg_flags;
1014 	rgl->rl_free = str->rg_free;
1015 	rgl->rl_dinodes = str->rg_dinodes;
1016 	rgl->rl_igeneration = str->rg_igeneration;
1017 	rgl->__pad = 0UL;
1018 }
1019 
1020 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1021 {
1022 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1023 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1024 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1025 }
1026 
1027 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1028 {
1029 	struct gfs2_bitmap *bi;
1030 	const u32 length = rgd->rd_length;
1031 	const u8 *buffer = NULL;
1032 	u32 i, goal, count = 0;
1033 
1034 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1035 		goal = 0;
1036 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1037 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1038 		while (goal < bi->bi_len * GFS2_NBBY) {
1039 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1040 					   GFS2_BLKST_UNLINKED);
1041 			if (goal == BFITNOENT)
1042 				break;
1043 			count++;
1044 			goal++;
1045 		}
1046 	}
1047 
1048 	return count;
1049 }
1050 
1051 
1052 /**
1053  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1054  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1055  *
1056  * Read in all of a Resource Group's header and bitmap blocks.
1057  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1058  *
1059  * Returns: errno
1060  */
1061 
1062 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1063 {
1064 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1065 	struct gfs2_glock *gl = rgd->rd_gl;
1066 	unsigned int length = rgd->rd_length;
1067 	struct gfs2_bitmap *bi;
1068 	unsigned int x, y;
1069 	int error;
1070 
1071 	if (rgd->rd_bits[0].bi_bh != NULL)
1072 		return 0;
1073 
1074 	for (x = 0; x < length; x++) {
1075 		bi = rgd->rd_bits + x;
1076 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1077 		if (error)
1078 			goto fail;
1079 	}
1080 
1081 	for (y = length; y--;) {
1082 		bi = rgd->rd_bits + y;
1083 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1084 		if (error)
1085 			goto fail;
1086 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1087 					      GFS2_METATYPE_RG)) {
1088 			error = -EIO;
1089 			goto fail;
1090 		}
1091 	}
1092 
1093 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1094 		for (x = 0; x < length; x++)
1095 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1096 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1097 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1098 		rgd->rd_free_clone = rgd->rd_free;
1099 	}
1100 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1101 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1102 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1103 				     rgd->rd_bits[0].bi_bh->b_data);
1104 	}
1105 	else if (sdp->sd_args.ar_rgrplvb) {
1106 		if (!gfs2_rgrp_lvb_valid(rgd)){
1107 			gfs2_consist_rgrpd(rgd);
1108 			error = -EIO;
1109 			goto fail;
1110 		}
1111 		if (rgd->rd_rgl->rl_unlinked == 0)
1112 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1113 	}
1114 	return 0;
1115 
1116 fail:
1117 	while (x--) {
1118 		bi = rgd->rd_bits + x;
1119 		brelse(bi->bi_bh);
1120 		bi->bi_bh = NULL;
1121 		gfs2_assert_warn(sdp, !bi->bi_clone);
1122 	}
1123 
1124 	return error;
1125 }
1126 
1127 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1128 {
1129 	u32 rl_flags;
1130 
1131 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1132 		return 0;
1133 
1134 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1135 		return gfs2_rgrp_bh_get(rgd);
1136 
1137 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1138 	rl_flags &= ~GFS2_RDF_MASK;
1139 	rgd->rd_flags &= GFS2_RDF_MASK;
1140 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1141 	if (rgd->rd_rgl->rl_unlinked == 0)
1142 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1143 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1144 	rgd->rd_free_clone = rgd->rd_free;
1145 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1146 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1147 	return 0;
1148 }
1149 
1150 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1151 {
1152 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1153 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1154 
1155 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1156 		return 0;
1157 	return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1158 }
1159 
1160 /**
1161  * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1162  * @gh: The glock holder for the resource group
1163  *
1164  */
1165 
1166 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1167 {
1168 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1169 	int x, length = rgd->rd_length;
1170 
1171 	for (x = 0; x < length; x++) {
1172 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1173 		if (bi->bi_bh) {
1174 			brelse(bi->bi_bh);
1175 			bi->bi_bh = NULL;
1176 		}
1177 	}
1178 
1179 }
1180 
1181 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1182 			     struct buffer_head *bh,
1183 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1184 {
1185 	struct super_block *sb = sdp->sd_vfs;
1186 	u64 blk;
1187 	sector_t start = 0;
1188 	sector_t nr_blks = 0;
1189 	int rv;
1190 	unsigned int x;
1191 	u32 trimmed = 0;
1192 	u8 diff;
1193 
1194 	for (x = 0; x < bi->bi_len; x++) {
1195 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1196 		clone += bi->bi_offset;
1197 		clone += x;
1198 		if (bh) {
1199 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1200 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1201 		} else {
1202 			diff = ~(*clone | (*clone >> 1));
1203 		}
1204 		diff &= 0x55;
1205 		if (diff == 0)
1206 			continue;
1207 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1208 		while(diff) {
1209 			if (diff & 1) {
1210 				if (nr_blks == 0)
1211 					goto start_new_extent;
1212 				if ((start + nr_blks) != blk) {
1213 					if (nr_blks >= minlen) {
1214 						rv = sb_issue_discard(sb,
1215 							start, nr_blks,
1216 							GFP_NOFS, 0);
1217 						if (rv)
1218 							goto fail;
1219 						trimmed += nr_blks;
1220 					}
1221 					nr_blks = 0;
1222 start_new_extent:
1223 					start = blk;
1224 				}
1225 				nr_blks++;
1226 			}
1227 			diff >>= 2;
1228 			blk++;
1229 		}
1230 	}
1231 	if (nr_blks >= minlen) {
1232 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1233 		if (rv)
1234 			goto fail;
1235 		trimmed += nr_blks;
1236 	}
1237 	if (ptrimmed)
1238 		*ptrimmed = trimmed;
1239 	return 0;
1240 
1241 fail:
1242 	if (sdp->sd_args.ar_discard)
1243 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1244 	sdp->sd_args.ar_discard = 0;
1245 	return -EIO;
1246 }
1247 
1248 /**
1249  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1250  * @filp: Any file on the filesystem
1251  * @argp: Pointer to the arguments (also used to pass result)
1252  *
1253  * Returns: 0 on success, otherwise error code
1254  */
1255 
1256 int gfs2_fitrim(struct file *filp, void __user *argp)
1257 {
1258 	struct inode *inode = file_inode(filp);
1259 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1260 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1261 	struct buffer_head *bh;
1262 	struct gfs2_rgrpd *rgd;
1263 	struct gfs2_rgrpd *rgd_end;
1264 	struct gfs2_holder gh;
1265 	struct fstrim_range r;
1266 	int ret = 0;
1267 	u64 amt;
1268 	u64 trimmed = 0;
1269 	u64 start, end, minlen;
1270 	unsigned int x;
1271 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1272 
1273 	if (!capable(CAP_SYS_ADMIN))
1274 		return -EPERM;
1275 
1276 	if (!blk_queue_discard(q))
1277 		return -EOPNOTSUPP;
1278 
1279 	if (copy_from_user(&r, argp, sizeof(r)))
1280 		return -EFAULT;
1281 
1282 	ret = gfs2_rindex_update(sdp);
1283 	if (ret)
1284 		return ret;
1285 
1286 	start = r.start >> bs_shift;
1287 	end = start + (r.len >> bs_shift);
1288 	minlen = max_t(u64, r.minlen,
1289 		       q->limits.discard_granularity) >> bs_shift;
1290 
1291 	if (end <= start || minlen > sdp->sd_max_rg_data)
1292 		return -EINVAL;
1293 
1294 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1295 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1296 
1297 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1298 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1299 		return -EINVAL; /* start is beyond the end of the fs */
1300 
1301 	while (1) {
1302 
1303 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1304 		if (ret)
1305 			goto out;
1306 
1307 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1308 			/* Trim each bitmap in the rgrp */
1309 			for (x = 0; x < rgd->rd_length; x++) {
1310 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1311 				ret = gfs2_rgrp_send_discards(sdp,
1312 						rgd->rd_data0, NULL, bi, minlen,
1313 						&amt);
1314 				if (ret) {
1315 					gfs2_glock_dq_uninit(&gh);
1316 					goto out;
1317 				}
1318 				trimmed += amt;
1319 			}
1320 
1321 			/* Mark rgrp as having been trimmed */
1322 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1323 			if (ret == 0) {
1324 				bh = rgd->rd_bits[0].bi_bh;
1325 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1326 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1327 				gfs2_rgrp_out(rgd, bh->b_data);
1328 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1329 				gfs2_trans_end(sdp);
1330 			}
1331 		}
1332 		gfs2_glock_dq_uninit(&gh);
1333 
1334 		if (rgd == rgd_end)
1335 			break;
1336 
1337 		rgd = gfs2_rgrpd_get_next(rgd);
1338 	}
1339 
1340 out:
1341 	r.len = trimmed << bs_shift;
1342 	if (copy_to_user(argp, &r, sizeof(r)))
1343 		return -EFAULT;
1344 
1345 	return ret;
1346 }
1347 
1348 /**
1349  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1350  * @ip: the inode structure
1351  *
1352  */
1353 static void rs_insert(struct gfs2_inode *ip)
1354 {
1355 	struct rb_node **newn, *parent = NULL;
1356 	int rc;
1357 	struct gfs2_blkreserv *rs = ip->i_res;
1358 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1359 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1360 
1361 	BUG_ON(gfs2_rs_active(rs));
1362 
1363 	spin_lock(&rgd->rd_rsspin);
1364 	newn = &rgd->rd_rstree.rb_node;
1365 	while (*newn) {
1366 		struct gfs2_blkreserv *cur =
1367 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1368 
1369 		parent = *newn;
1370 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1371 		if (rc > 0)
1372 			newn = &((*newn)->rb_right);
1373 		else if (rc < 0)
1374 			newn = &((*newn)->rb_left);
1375 		else {
1376 			spin_unlock(&rgd->rd_rsspin);
1377 			WARN_ON(1);
1378 			return;
1379 		}
1380 	}
1381 
1382 	rb_link_node(&rs->rs_node, parent, newn);
1383 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1384 
1385 	/* Do our rgrp accounting for the reservation */
1386 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1387 	spin_unlock(&rgd->rd_rsspin);
1388 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1389 }
1390 
1391 /**
1392  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1393  * @rgd: the resource group descriptor
1394  * @ip: pointer to the inode for which we're reserving blocks
1395  * @requested: number of blocks required for this allocation
1396  *
1397  */
1398 
1399 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1400 			   unsigned requested)
1401 {
1402 	struct gfs2_rbm rbm = { .rgd = rgd, };
1403 	u64 goal;
1404 	struct gfs2_blkreserv *rs = ip->i_res;
1405 	u32 extlen;
1406 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1407 	int ret;
1408 	struct inode *inode = &ip->i_inode;
1409 
1410 	if (S_ISDIR(inode->i_mode))
1411 		extlen = 1;
1412 	else {
1413 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1414 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1415 	}
1416 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1417 		return;
1418 
1419 	/* Find bitmap block that contains bits for goal block */
1420 	if (rgrp_contains_block(rgd, ip->i_goal))
1421 		goal = ip->i_goal;
1422 	else
1423 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1424 
1425 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1426 		return;
1427 
1428 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1429 	if (ret == 0) {
1430 		rs->rs_rbm = rbm;
1431 		rs->rs_free = extlen;
1432 		rs->rs_inum = ip->i_no_addr;
1433 		rs_insert(ip);
1434 	} else {
1435 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1436 			rgd->rd_last_alloc = 0;
1437 	}
1438 }
1439 
1440 /**
1441  * gfs2_next_unreserved_block - Return next block that is not reserved
1442  * @rgd: The resource group
1443  * @block: The starting block
1444  * @length: The required length
1445  * @ip: Ignore any reservations for this inode
1446  *
1447  * If the block does not appear in any reservation, then return the
1448  * block number unchanged. If it does appear in the reservation, then
1449  * keep looking through the tree of reservations in order to find the
1450  * first block number which is not reserved.
1451  */
1452 
1453 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1454 				      u32 length,
1455 				      const struct gfs2_inode *ip)
1456 {
1457 	struct gfs2_blkreserv *rs;
1458 	struct rb_node *n;
1459 	int rc;
1460 
1461 	spin_lock(&rgd->rd_rsspin);
1462 	n = rgd->rd_rstree.rb_node;
1463 	while (n) {
1464 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1465 		rc = rs_cmp(block, length, rs);
1466 		if (rc < 0)
1467 			n = n->rb_left;
1468 		else if (rc > 0)
1469 			n = n->rb_right;
1470 		else
1471 			break;
1472 	}
1473 
1474 	if (n) {
1475 		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1476 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1477 			n = n->rb_right;
1478 			if (n == NULL)
1479 				break;
1480 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1481 		}
1482 	}
1483 
1484 	spin_unlock(&rgd->rd_rsspin);
1485 	return block;
1486 }
1487 
1488 /**
1489  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1490  * @rbm: The current position in the resource group
1491  * @ip: The inode for which we are searching for blocks
1492  * @minext: The minimum extent length
1493  *
1494  * This checks the current position in the rgrp to see whether there is
1495  * a reservation covering this block. If not then this function is a
1496  * no-op. If there is, then the position is moved to the end of the
1497  * contiguous reservation(s) so that we are pointing at the first
1498  * non-reserved block.
1499  *
1500  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1501  */
1502 
1503 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1504 					     const struct gfs2_inode *ip,
1505 					     u32 minext)
1506 {
1507 	u64 block = gfs2_rbm_to_block(rbm);
1508 	u32 extlen = 1;
1509 	u64 nblock;
1510 	int ret;
1511 
1512 	/*
1513 	 * If we have a minimum extent length, then skip over any extent
1514 	 * which is less than the min extent length in size.
1515 	 */
1516 	if (minext) {
1517 		extlen = gfs2_free_extlen(rbm, minext);
1518 		nblock = block + extlen;
1519 		if (extlen < minext)
1520 			goto fail;
1521 	}
1522 
1523 	/*
1524 	 * Check the extent which has been found against the reservations
1525 	 * and skip if parts of it are already reserved
1526 	 */
1527 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1528 	if (nblock == block)
1529 		return 0;
1530 fail:
1531 	ret = gfs2_rbm_from_block(rbm, nblock);
1532 	if (ret < 0)
1533 		return ret;
1534 	return 1;
1535 }
1536 
1537 /**
1538  * gfs2_rbm_find - Look for blocks of a particular state
1539  * @rbm: Value/result starting position and final position
1540  * @state: The state which we want to find
1541  * @minext: The requested extent length (0 for a single block)
1542  * @ip: If set, check for reservations
1543  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1544  *          around until we've reached the starting point.
1545  *
1546  * Side effects:
1547  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1548  *   has no free blocks in it.
1549  *
1550  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1551  */
1552 
1553 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1554 			 const struct gfs2_inode *ip, bool nowrap)
1555 {
1556 	struct buffer_head *bh;
1557 	struct gfs2_bitmap *initial_bi;
1558 	u32 initial_offset;
1559 	u32 offset;
1560 	u8 *buffer;
1561 	int index;
1562 	int n = 0;
1563 	int iters = rbm->rgd->rd_length;
1564 	int ret;
1565 
1566 	/* If we are not starting at the beginning of a bitmap, then we
1567 	 * need to add one to the bitmap count to ensure that we search
1568 	 * the starting bitmap twice.
1569 	 */
1570 	if (rbm->offset != 0)
1571 		iters++;
1572 
1573 	while(1) {
1574 		if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1575 		    (state == GFS2_BLKST_FREE))
1576 			goto next_bitmap;
1577 
1578 		bh = rbm->bi->bi_bh;
1579 		buffer = bh->b_data + rbm->bi->bi_offset;
1580 		WARN_ON(!buffer_uptodate(bh));
1581 		if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1582 			buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1583 		initial_offset = rbm->offset;
1584 		offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1585 		if (offset == BFITNOENT)
1586 			goto bitmap_full;
1587 		rbm->offset = offset;
1588 		if (ip == NULL)
1589 			return 0;
1590 
1591 		initial_bi = rbm->bi;
1592 		ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1593 		if (ret == 0)
1594 			return 0;
1595 		if (ret > 0) {
1596 			n += (rbm->bi - initial_bi);
1597 			goto next_iter;
1598 		}
1599 		if (ret == -E2BIG) {
1600 			index = 0;
1601 			rbm->offset = 0;
1602 			n += (rbm->bi - initial_bi);
1603 			goto res_covered_end_of_rgrp;
1604 		}
1605 		return ret;
1606 
1607 bitmap_full:	/* Mark bitmap as full and fall through */
1608 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1609 			set_bit(GBF_FULL, &rbm->bi->bi_flags);
1610 
1611 next_bitmap:	/* Find next bitmap in the rgrp */
1612 		rbm->offset = 0;
1613 		index = rbm->bi - rbm->rgd->rd_bits;
1614 		index++;
1615 		if (index == rbm->rgd->rd_length)
1616 			index = 0;
1617 res_covered_end_of_rgrp:
1618 		rbm->bi = &rbm->rgd->rd_bits[index];
1619 		if ((index == 0) && nowrap)
1620 			break;
1621 		n++;
1622 next_iter:
1623 		if (n >= iters)
1624 			break;
1625 	}
1626 
1627 	return -ENOSPC;
1628 }
1629 
1630 /**
1631  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1632  * @rgd: The rgrp
1633  * @last_unlinked: block address of the last dinode we unlinked
1634  * @skip: block address we should explicitly not unlink
1635  *
1636  * Returns: 0 if no error
1637  *          The inode, if one has been found, in inode.
1638  */
1639 
1640 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1641 {
1642 	u64 block;
1643 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1644 	struct gfs2_glock *gl;
1645 	struct gfs2_inode *ip;
1646 	int error;
1647 	int found = 0;
1648 	struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1649 
1650 	while (1) {
1651 		down_write(&sdp->sd_log_flush_lock);
1652 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1653 		up_write(&sdp->sd_log_flush_lock);
1654 		if (error == -ENOSPC)
1655 			break;
1656 		if (WARN_ON_ONCE(error))
1657 			break;
1658 
1659 		block = gfs2_rbm_to_block(&rbm);
1660 		if (gfs2_rbm_from_block(&rbm, block + 1))
1661 			break;
1662 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1663 			continue;
1664 		if (block == skip)
1665 			continue;
1666 		*last_unlinked = block;
1667 
1668 		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1669 		if (error)
1670 			continue;
1671 
1672 		/* If the inode is already in cache, we can ignore it here
1673 		 * because the existing inode disposal code will deal with
1674 		 * it when all refs have gone away. Accessing gl_object like
1675 		 * this is not safe in general. Here it is ok because we do
1676 		 * not dereference the pointer, and we only need an approx
1677 		 * answer to whether it is NULL or not.
1678 		 */
1679 		ip = gl->gl_object;
1680 
1681 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1682 			gfs2_glock_put(gl);
1683 		else
1684 			found++;
1685 
1686 		/* Limit reclaim to sensible number of tasks */
1687 		if (found > NR_CPUS)
1688 			return;
1689 	}
1690 
1691 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1692 	return;
1693 }
1694 
1695 /**
1696  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1697  * @rgd: The rgrp in question
1698  * @loops: An indication of how picky we can be (0=very, 1=less so)
1699  *
1700  * This function uses the recently added glock statistics in order to
1701  * figure out whether a parciular resource group is suffering from
1702  * contention from multiple nodes. This is done purely on the basis
1703  * of timings, since this is the only data we have to work with and
1704  * our aim here is to reject a resource group which is highly contended
1705  * but (very important) not to do this too often in order to ensure that
1706  * we do not land up introducing fragmentation by changing resource
1707  * groups when not actually required.
1708  *
1709  * The calculation is fairly simple, we want to know whether the SRTTB
1710  * (i.e. smoothed round trip time for blocking operations) to acquire
1711  * the lock for this rgrp's glock is significantly greater than the
1712  * time taken for resource groups on average. We introduce a margin in
1713  * the form of the variable @var which is computed as the sum of the two
1714  * respective variences, and multiplied by a factor depending on @loops
1715  * and whether we have a lot of data to base the decision on. This is
1716  * then tested against the square difference of the means in order to
1717  * decide whether the result is statistically significant or not.
1718  *
1719  * Returns: A boolean verdict on the congestion status
1720  */
1721 
1722 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1723 {
1724 	const struct gfs2_glock *gl = rgd->rd_gl;
1725 	const struct gfs2_sbd *sdp = gl->gl_sbd;
1726 	struct gfs2_lkstats *st;
1727 	s64 r_dcount, l_dcount;
1728 	s64 r_srttb, l_srttb;
1729 	s64 srttb_diff;
1730 	s64 sqr_diff;
1731 	s64 var;
1732 
1733 	preempt_disable();
1734 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1735 	r_srttb = st->stats[GFS2_LKS_SRTTB];
1736 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1737 	var = st->stats[GFS2_LKS_SRTTVARB] +
1738 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1739 	preempt_enable();
1740 
1741 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1742 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1743 
1744 	if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1745 		return false;
1746 
1747 	srttb_diff = r_srttb - l_srttb;
1748 	sqr_diff = srttb_diff * srttb_diff;
1749 
1750 	var *= 2;
1751 	if (l_dcount < 8 || r_dcount < 8)
1752 		var *= 2;
1753 	if (loops == 1)
1754 		var *= 2;
1755 
1756 	return ((srttb_diff < 0) && (sqr_diff > var));
1757 }
1758 
1759 /**
1760  * gfs2_rgrp_used_recently
1761  * @rs: The block reservation with the rgrp to test
1762  * @msecs: The time limit in milliseconds
1763  *
1764  * Returns: True if the rgrp glock has been used within the time limit
1765  */
1766 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1767 				    u64 msecs)
1768 {
1769 	u64 tdiff;
1770 
1771 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1772                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1773 
1774 	return tdiff > (msecs * 1000 * 1000);
1775 }
1776 
1777 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1778 {
1779 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1780 	u32 skip;
1781 
1782 	get_random_bytes(&skip, sizeof(skip));
1783 	return skip % sdp->sd_rgrps;
1784 }
1785 
1786 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1787 {
1788 	struct gfs2_rgrpd *rgd = *pos;
1789 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1790 
1791 	rgd = gfs2_rgrpd_get_next(rgd);
1792 	if (rgd == NULL)
1793 		rgd = gfs2_rgrpd_get_first(sdp);
1794 	*pos = rgd;
1795 	if (rgd != begin) /* If we didn't wrap */
1796 		return true;
1797 	return false;
1798 }
1799 
1800 /**
1801  * gfs2_inplace_reserve - Reserve space in the filesystem
1802  * @ip: the inode to reserve space for
1803  * @requested: the number of blocks to be reserved
1804  *
1805  * Returns: errno
1806  */
1807 
1808 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1809 {
1810 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1811 	struct gfs2_rgrpd *begin = NULL;
1812 	struct gfs2_blkreserv *rs = ip->i_res;
1813 	int error = 0, rg_locked, flags = 0;
1814 	u64 last_unlinked = NO_BLOCK;
1815 	int loops = 0;
1816 	u32 skip = 0;
1817 
1818 	if (sdp->sd_args.ar_rgrplvb)
1819 		flags |= GL_SKIP;
1820 	if (gfs2_assert_warn(sdp, requested))
1821 		return -EINVAL;
1822 	if (gfs2_rs_active(rs)) {
1823 		begin = rs->rs_rbm.rgd;
1824 		flags = 0; /* Yoda: Do or do not. There is no try */
1825 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1826 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1827 	} else {
1828 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1829 	}
1830 	if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1831 		skip = gfs2_orlov_skip(ip);
1832 	if (rs->rs_rbm.rgd == NULL)
1833 		return -EBADSLT;
1834 
1835 	while (loops < 3) {
1836 		rg_locked = 1;
1837 
1838 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1839 			rg_locked = 0;
1840 			if (skip && skip--)
1841 				goto next_rgrp;
1842 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1843 			     gfs2_rgrp_used_recently(rs, 1000) &&
1844 			     gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1845 				goto next_rgrp;
1846 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1847 						   LM_ST_EXCLUSIVE, flags,
1848 						   &rs->rs_rgd_gh);
1849 			if (unlikely(error))
1850 				return error;
1851 			if (!gfs2_rs_active(rs) && (loops < 2) &&
1852 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1853 				goto skip_rgrp;
1854 			if (sdp->sd_args.ar_rgrplvb) {
1855 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
1856 				if (unlikely(error)) {
1857 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1858 					return error;
1859 				}
1860 			}
1861 		}
1862 
1863 		/* Skip unuseable resource groups */
1864 		if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1865 			goto skip_rgrp;
1866 
1867 		if (sdp->sd_args.ar_rgrplvb)
1868 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1869 
1870 		/* Get a reservation if we don't already have one */
1871 		if (!gfs2_rs_active(rs))
1872 			rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1873 
1874 		/* Skip rgrps when we can't get a reservation on first pass */
1875 		if (!gfs2_rs_active(rs) && (loops < 1))
1876 			goto check_rgrp;
1877 
1878 		/* If rgrp has enough free space, use it */
1879 		if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1880 			ip->i_rgd = rs->rs_rbm.rgd;
1881 			return 0;
1882 		}
1883 
1884 		/* Drop reservation, if we couldn't use reserved rgrp */
1885 		if (gfs2_rs_active(rs))
1886 			gfs2_rs_deltree(rs);
1887 check_rgrp:
1888 		/* Check for unlinked inodes which can be reclaimed */
1889 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1890 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1891 					ip->i_no_addr);
1892 skip_rgrp:
1893 		/* Unlock rgrp if required */
1894 		if (!rg_locked)
1895 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1896 next_rgrp:
1897 		/* Find the next rgrp, and continue looking */
1898 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1899 			continue;
1900 		if (skip)
1901 			continue;
1902 
1903 		/* If we've scanned all the rgrps, but found no free blocks
1904 		 * then this checks for some less likely conditions before
1905 		 * trying again.
1906 		 */
1907 		loops++;
1908 		/* Check that fs hasn't grown if writing to rindex */
1909 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1910 			error = gfs2_ri_update(ip);
1911 			if (error)
1912 				return error;
1913 		}
1914 		/* Flushing the log may release space */
1915 		if (loops == 2)
1916 			gfs2_log_flush(sdp, NULL);
1917 	}
1918 
1919 	return -ENOSPC;
1920 }
1921 
1922 /**
1923  * gfs2_inplace_release - release an inplace reservation
1924  * @ip: the inode the reservation was taken out on
1925  *
1926  * Release a reservation made by gfs2_inplace_reserve().
1927  */
1928 
1929 void gfs2_inplace_release(struct gfs2_inode *ip)
1930 {
1931 	struct gfs2_blkreserv *rs = ip->i_res;
1932 
1933 	if (rs->rs_rgd_gh.gh_gl)
1934 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1935 }
1936 
1937 /**
1938  * gfs2_get_block_type - Check a block in a RG is of given type
1939  * @rgd: the resource group holding the block
1940  * @block: the block number
1941  *
1942  * Returns: The block type (GFS2_BLKST_*)
1943  */
1944 
1945 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1946 {
1947 	struct gfs2_rbm rbm = { .rgd = rgd, };
1948 	int ret;
1949 
1950 	ret = gfs2_rbm_from_block(&rbm, block);
1951 	WARN_ON_ONCE(ret != 0);
1952 
1953 	return gfs2_testbit(&rbm);
1954 }
1955 
1956 
1957 /**
1958  * gfs2_alloc_extent - allocate an extent from a given bitmap
1959  * @rbm: the resource group information
1960  * @dinode: TRUE if the first block we allocate is for a dinode
1961  * @n: The extent length (value/result)
1962  *
1963  * Add the bitmap buffer to the transaction.
1964  * Set the found bits to @new_state to change block's allocation state.
1965  */
1966 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1967 			     unsigned int *n)
1968 {
1969 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1970 	const unsigned int elen = *n;
1971 	u64 block;
1972 	int ret;
1973 
1974 	*n = 1;
1975 	block = gfs2_rbm_to_block(rbm);
1976 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm->bi->bi_bh);
1977 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1978 	block++;
1979 	while (*n < elen) {
1980 		ret = gfs2_rbm_from_block(&pos, block);
1981 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1982 			break;
1983 		gfs2_trans_add_meta(pos.rgd->rd_gl, pos.bi->bi_bh);
1984 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1985 		(*n)++;
1986 		block++;
1987 	}
1988 }
1989 
1990 /**
1991  * rgblk_free - Change alloc state of given block(s)
1992  * @sdp: the filesystem
1993  * @bstart: the start of a run of blocks to free
1994  * @blen: the length of the block run (all must lie within ONE RG!)
1995  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1996  *
1997  * Returns:  Resource group containing the block(s)
1998  */
1999 
2000 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2001 				     u32 blen, unsigned char new_state)
2002 {
2003 	struct gfs2_rbm rbm;
2004 
2005 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2006 	if (!rbm.rgd) {
2007 		if (gfs2_consist(sdp))
2008 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2009 		return NULL;
2010 	}
2011 
2012 	while (blen--) {
2013 		gfs2_rbm_from_block(&rbm, bstart);
2014 		bstart++;
2015 		if (!rbm.bi->bi_clone) {
2016 			rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
2017 						   GFP_NOFS | __GFP_NOFAIL);
2018 			memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
2019 			       rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
2020 			       rbm.bi->bi_len);
2021 		}
2022 		gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.bi->bi_bh);
2023 		gfs2_setbit(&rbm, false, new_state);
2024 	}
2025 
2026 	return rbm.rgd;
2027 }
2028 
2029 /**
2030  * gfs2_rgrp_dump - print out an rgrp
2031  * @seq: The iterator
2032  * @gl: The glock in question
2033  *
2034  */
2035 
2036 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2037 {
2038 	struct gfs2_rgrpd *rgd = gl->gl_object;
2039 	struct gfs2_blkreserv *trs;
2040 	const struct rb_node *n;
2041 
2042 	if (rgd == NULL)
2043 		return 0;
2044 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2045 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2046 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2047 		       rgd->rd_reserved);
2048 	spin_lock(&rgd->rd_rsspin);
2049 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2050 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2051 		dump_rs(seq, trs);
2052 	}
2053 	spin_unlock(&rgd->rd_rsspin);
2054 	return 0;
2055 }
2056 
2057 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2058 {
2059 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2060 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2061 		(unsigned long long)rgd->rd_addr);
2062 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2063 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2064 	rgd->rd_flags |= GFS2_RDF_ERROR;
2065 }
2066 
2067 /**
2068  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2069  * @ip: The inode we have just allocated blocks for
2070  * @rbm: The start of the allocated blocks
2071  * @len: The extent length
2072  *
2073  * Adjusts a reservation after an allocation has taken place. If the
2074  * reservation does not match the allocation, or if it is now empty
2075  * then it is removed.
2076  */
2077 
2078 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2079 				    const struct gfs2_rbm *rbm, unsigned len)
2080 {
2081 	struct gfs2_blkreserv *rs = ip->i_res;
2082 	struct gfs2_rgrpd *rgd = rbm->rgd;
2083 	unsigned rlen;
2084 	u64 block;
2085 	int ret;
2086 
2087 	spin_lock(&rgd->rd_rsspin);
2088 	if (gfs2_rs_active(rs)) {
2089 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2090 			block = gfs2_rbm_to_block(rbm);
2091 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2092 			rlen = min(rs->rs_free, len);
2093 			rs->rs_free -= rlen;
2094 			rgd->rd_reserved -= rlen;
2095 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2096 			if (rs->rs_free && !ret)
2097 				goto out;
2098 		}
2099 		__rs_deltree(rs);
2100 	}
2101 out:
2102 	spin_unlock(&rgd->rd_rsspin);
2103 }
2104 
2105 /**
2106  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2107  * @ip: the inode to allocate the block for
2108  * @bn: Used to return the starting block number
2109  * @nblocks: requested number of blocks/extent length (value/result)
2110  * @dinode: 1 if we're allocating a dinode block, else 0
2111  * @generation: the generation number of the inode
2112  *
2113  * Returns: 0 or error
2114  */
2115 
2116 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2117 		      bool dinode, u64 *generation)
2118 {
2119 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2120 	struct buffer_head *dibh;
2121 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2122 	unsigned int ndata;
2123 	u64 goal;
2124 	u64 block; /* block, within the file system scope */
2125 	int error;
2126 
2127 	if (gfs2_rs_active(ip->i_res))
2128 		goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2129 	else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2130 		goal = ip->i_goal;
2131 	else
2132 		goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2133 
2134 	gfs2_rbm_from_block(&rbm, goal);
2135 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2136 
2137 	if (error == -ENOSPC) {
2138 		gfs2_rbm_from_block(&rbm, goal);
2139 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2140 	}
2141 
2142 	/* Since all blocks are reserved in advance, this shouldn't happen */
2143 	if (error) {
2144 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2145 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2146 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2147 		goto rgrp_error;
2148 	}
2149 
2150 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2151 	block = gfs2_rbm_to_block(&rbm);
2152 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2153 	if (gfs2_rs_active(ip->i_res))
2154 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2155 	ndata = *nblocks;
2156 	if (dinode)
2157 		ndata--;
2158 
2159 	if (!dinode) {
2160 		ip->i_goal = block + ndata - 1;
2161 		error = gfs2_meta_inode_buffer(ip, &dibh);
2162 		if (error == 0) {
2163 			struct gfs2_dinode *di =
2164 				(struct gfs2_dinode *)dibh->b_data;
2165 			gfs2_trans_add_meta(ip->i_gl, dibh);
2166 			di->di_goal_meta = di->di_goal_data =
2167 				cpu_to_be64(ip->i_goal);
2168 			brelse(dibh);
2169 		}
2170 	}
2171 	if (rbm.rgd->rd_free < *nblocks) {
2172 		printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2173 		goto rgrp_error;
2174 	}
2175 
2176 	rbm.rgd->rd_free -= *nblocks;
2177 	if (dinode) {
2178 		rbm.rgd->rd_dinodes++;
2179 		*generation = rbm.rgd->rd_igeneration++;
2180 		if (*generation == 0)
2181 			*generation = rbm.rgd->rd_igeneration++;
2182 	}
2183 
2184 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2185 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2186 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2187 
2188 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2189 	if (dinode)
2190 		gfs2_trans_add_unrevoke(sdp, block, 1);
2191 
2192 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2193 
2194 	rbm.rgd->rd_free_clone -= *nblocks;
2195 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2196 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2197 	*bn = block;
2198 	return 0;
2199 
2200 rgrp_error:
2201 	gfs2_rgrp_error(rbm.rgd);
2202 	return -EIO;
2203 }
2204 
2205 /**
2206  * __gfs2_free_blocks - free a contiguous run of block(s)
2207  * @ip: the inode these blocks are being freed from
2208  * @bstart: first block of a run of contiguous blocks
2209  * @blen: the length of the block run
2210  * @meta: 1 if the blocks represent metadata
2211  *
2212  */
2213 
2214 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2215 {
2216 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2217 	struct gfs2_rgrpd *rgd;
2218 
2219 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2220 	if (!rgd)
2221 		return;
2222 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2223 	rgd->rd_free += blen;
2224 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2225 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2226 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2227 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2228 
2229 	/* Directories keep their data in the metadata address space */
2230 	if (meta || ip->i_depth)
2231 		gfs2_meta_wipe(ip, bstart, blen);
2232 }
2233 
2234 /**
2235  * gfs2_free_meta - free a contiguous run of data block(s)
2236  * @ip: the inode these blocks are being freed from
2237  * @bstart: first block of a run of contiguous blocks
2238  * @blen: the length of the block run
2239  *
2240  */
2241 
2242 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2243 {
2244 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2245 
2246 	__gfs2_free_blocks(ip, bstart, blen, 1);
2247 	gfs2_statfs_change(sdp, 0, +blen, 0);
2248 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2249 }
2250 
2251 void gfs2_unlink_di(struct inode *inode)
2252 {
2253 	struct gfs2_inode *ip = GFS2_I(inode);
2254 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2255 	struct gfs2_rgrpd *rgd;
2256 	u64 blkno = ip->i_no_addr;
2257 
2258 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2259 	if (!rgd)
2260 		return;
2261 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2262 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2263 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2264 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2265 	update_rgrp_lvb_unlinked(rgd, 1);
2266 }
2267 
2268 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2269 {
2270 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2271 	struct gfs2_rgrpd *tmp_rgd;
2272 
2273 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2274 	if (!tmp_rgd)
2275 		return;
2276 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2277 
2278 	if (!rgd->rd_dinodes)
2279 		gfs2_consist_rgrpd(rgd);
2280 	rgd->rd_dinodes--;
2281 	rgd->rd_free++;
2282 
2283 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2284 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2285 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2286 	update_rgrp_lvb_unlinked(rgd, -1);
2287 
2288 	gfs2_statfs_change(sdp, 0, +1, -1);
2289 }
2290 
2291 
2292 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2293 {
2294 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2295 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2296 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2297 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2298 }
2299 
2300 /**
2301  * gfs2_check_blk_type - Check the type of a block
2302  * @sdp: The superblock
2303  * @no_addr: The block number to check
2304  * @type: The block type we are looking for
2305  *
2306  * Returns: 0 if the block type matches the expected type
2307  *          -ESTALE if it doesn't match
2308  *          or -ve errno if something went wrong while checking
2309  */
2310 
2311 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2312 {
2313 	struct gfs2_rgrpd *rgd;
2314 	struct gfs2_holder rgd_gh;
2315 	int error = -EINVAL;
2316 
2317 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2318 	if (!rgd)
2319 		goto fail;
2320 
2321 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2322 	if (error)
2323 		goto fail;
2324 
2325 	if (gfs2_get_block_type(rgd, no_addr) != type)
2326 		error = -ESTALE;
2327 
2328 	gfs2_glock_dq_uninit(&rgd_gh);
2329 fail:
2330 	return error;
2331 }
2332 
2333 /**
2334  * gfs2_rlist_add - add a RG to a list of RGs
2335  * @ip: the inode
2336  * @rlist: the list of resource groups
2337  * @block: the block
2338  *
2339  * Figure out what RG a block belongs to and add that RG to the list
2340  *
2341  * FIXME: Don't use NOFAIL
2342  *
2343  */
2344 
2345 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2346 		    u64 block)
2347 {
2348 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2349 	struct gfs2_rgrpd *rgd;
2350 	struct gfs2_rgrpd **tmp;
2351 	unsigned int new_space;
2352 	unsigned int x;
2353 
2354 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2355 		return;
2356 
2357 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2358 		rgd = ip->i_rgd;
2359 	else
2360 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2361 	if (!rgd) {
2362 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2363 		return;
2364 	}
2365 	ip->i_rgd = rgd;
2366 
2367 	for (x = 0; x < rlist->rl_rgrps; x++)
2368 		if (rlist->rl_rgd[x] == rgd)
2369 			return;
2370 
2371 	if (rlist->rl_rgrps == rlist->rl_space) {
2372 		new_space = rlist->rl_space + 10;
2373 
2374 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2375 			      GFP_NOFS | __GFP_NOFAIL);
2376 
2377 		if (rlist->rl_rgd) {
2378 			memcpy(tmp, rlist->rl_rgd,
2379 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2380 			kfree(rlist->rl_rgd);
2381 		}
2382 
2383 		rlist->rl_space = new_space;
2384 		rlist->rl_rgd = tmp;
2385 	}
2386 
2387 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2388 }
2389 
2390 /**
2391  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2392  *      and initialize an array of glock holders for them
2393  * @rlist: the list of resource groups
2394  * @state: the lock state to acquire the RG lock in
2395  *
2396  * FIXME: Don't use NOFAIL
2397  *
2398  */
2399 
2400 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2401 {
2402 	unsigned int x;
2403 
2404 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2405 				GFP_NOFS | __GFP_NOFAIL);
2406 	for (x = 0; x < rlist->rl_rgrps; x++)
2407 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2408 				state, 0,
2409 				&rlist->rl_ghs[x]);
2410 }
2411 
2412 /**
2413  * gfs2_rlist_free - free a resource group list
2414  * @list: the list of resource groups
2415  *
2416  */
2417 
2418 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2419 {
2420 	unsigned int x;
2421 
2422 	kfree(rlist->rl_rgd);
2423 
2424 	if (rlist->rl_ghs) {
2425 		for (x = 0; x < rlist->rl_rgrps; x++)
2426 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2427 		kfree(rlist->rl_ghs);
2428 		rlist->rl_ghs = NULL;
2429 	}
2430 }
2431 
2432