xref: /openbmc/linux/fs/gfs2/rgrp.c (revision cf028200)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 
35 #define BFITNOENT ((u32)~0)
36 #define NO_BLOCK ((u64)~0)
37 
38 #if BITS_PER_LONG == 32
39 #define LBITMASK   (0x55555555UL)
40 #define LBITSKIP55 (0x55555555UL)
41 #define LBITSKIP00 (0x00000000UL)
42 #else
43 #define LBITMASK   (0x5555555555555555UL)
44 #define LBITSKIP55 (0x5555555555555555UL)
45 #define LBITSKIP00 (0x0000000000000000UL)
46 #endif
47 
48 /*
49  * These routines are used by the resource group routines (rgrp.c)
50  * to keep track of block allocation.  Each block is represented by two
51  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
52  *
53  * 0 = Free
54  * 1 = Used (not metadata)
55  * 2 = Unlinked (still in use) inode
56  * 3 = Used (metadata)
57  */
58 
59 static const char valid_change[16] = {
60 	        /* current */
61 	/* n */ 0, 1, 1, 1,
62 	/* e */ 1, 0, 0, 0,
63 	/* w */ 0, 0, 0, 1,
64 	        1, 0, 0, 0
65 };
66 
67 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
68                          const struct gfs2_inode *ip, bool nowrap);
69 
70 
71 /**
72  * gfs2_setbit - Set a bit in the bitmaps
73  * @rbm: The position of the bit to set
74  * @do_clone: Also set the clone bitmap, if it exists
75  * @new_state: the new state of the block
76  *
77  */
78 
79 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
80 			       unsigned char new_state)
81 {
82 	unsigned char *byte1, *byte2, *end, cur_state;
83 	unsigned int buflen = rbm->bi->bi_len;
84 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
85 
86 	byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
87 	end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
88 
89 	BUG_ON(byte1 >= end);
90 
91 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
92 
93 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
94 		printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
95 		       "new_state=%d\n", rbm->offset, cur_state, new_state);
96 		printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
97 		       (unsigned long long)rbm->rgd->rd_addr,
98 		       rbm->bi->bi_start);
99 		printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
100 		       rbm->bi->bi_offset, rbm->bi->bi_len);
101 		dump_stack();
102 		gfs2_consist_rgrpd(rbm->rgd);
103 		return;
104 	}
105 	*byte1 ^= (cur_state ^ new_state) << bit;
106 
107 	if (do_clone && rbm->bi->bi_clone) {
108 		byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
109 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
110 		*byte2 ^= (cur_state ^ new_state) << bit;
111 	}
112 }
113 
114 /**
115  * gfs2_testbit - test a bit in the bitmaps
116  * @rbm: The bit to test
117  *
118  * Returns: The two bit block state of the requested bit
119  */
120 
121 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
122 {
123 	const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
124 	const u8 *byte;
125 	unsigned int bit;
126 
127 	byte = buffer + (rbm->offset / GFS2_NBBY);
128 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
129 
130 	return (*byte >> bit) & GFS2_BIT_MASK;
131 }
132 
133 /**
134  * gfs2_bit_search
135  * @ptr: Pointer to bitmap data
136  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
137  * @state: The state we are searching for
138  *
139  * We xor the bitmap data with a patter which is the bitwise opposite
140  * of what we are looking for, this gives rise to a pattern of ones
141  * wherever there is a match. Since we have two bits per entry, we
142  * take this pattern, shift it down by one place and then and it with
143  * the original. All the even bit positions (0,2,4, etc) then represent
144  * successful matches, so we mask with 0x55555..... to remove the unwanted
145  * odd bit positions.
146  *
147  * This allows searching of a whole u64 at once (32 blocks) with a
148  * single test (on 64 bit arches).
149  */
150 
151 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
152 {
153 	u64 tmp;
154 	static const u64 search[] = {
155 		[0] = 0xffffffffffffffffULL,
156 		[1] = 0xaaaaaaaaaaaaaaaaULL,
157 		[2] = 0x5555555555555555ULL,
158 		[3] = 0x0000000000000000ULL,
159 	};
160 	tmp = le64_to_cpu(*ptr) ^ search[state];
161 	tmp &= (tmp >> 1);
162 	tmp &= mask;
163 	return tmp;
164 }
165 
166 /**
167  * rs_cmp - multi-block reservation range compare
168  * @blk: absolute file system block number of the new reservation
169  * @len: number of blocks in the new reservation
170  * @rs: existing reservation to compare against
171  *
172  * returns: 1 if the block range is beyond the reach of the reservation
173  *         -1 if the block range is before the start of the reservation
174  *          0 if the block range overlaps with the reservation
175  */
176 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
177 {
178 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
179 
180 	if (blk >= startblk + rs->rs_free)
181 		return 1;
182 	if (blk + len - 1 < startblk)
183 		return -1;
184 	return 0;
185 }
186 
187 /**
188  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
189  *       a block in a given allocation state.
190  * @buf: the buffer that holds the bitmaps
191  * @len: the length (in bytes) of the buffer
192  * @goal: start search at this block's bit-pair (within @buffer)
193  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
194  *
195  * Scope of @goal and returned block number is only within this bitmap buffer,
196  * not entire rgrp or filesystem.  @buffer will be offset from the actual
197  * beginning of a bitmap block buffer, skipping any header structures, but
198  * headers are always a multiple of 64 bits long so that the buffer is
199  * always aligned to a 64 bit boundary.
200  *
201  * The size of the buffer is in bytes, but is it assumed that it is
202  * always ok to read a complete multiple of 64 bits at the end
203  * of the block in case the end is no aligned to a natural boundary.
204  *
205  * Return: the block number (bitmap buffer scope) that was found
206  */
207 
208 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
209 		       u32 goal, u8 state)
210 {
211 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
212 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
213 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
214 	u64 tmp;
215 	u64 mask = 0x5555555555555555ULL;
216 	u32 bit;
217 
218 	/* Mask off bits we don't care about at the start of the search */
219 	mask <<= spoint;
220 	tmp = gfs2_bit_search(ptr, mask, state);
221 	ptr++;
222 	while(tmp == 0 && ptr < end) {
223 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
224 		ptr++;
225 	}
226 	/* Mask off any bits which are more than len bytes from the start */
227 	if (ptr == end && (len & (sizeof(u64) - 1)))
228 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
229 	/* Didn't find anything, so return */
230 	if (tmp == 0)
231 		return BFITNOENT;
232 	ptr--;
233 	bit = __ffs64(tmp);
234 	bit /= 2;	/* two bits per entry in the bitmap */
235 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
236 }
237 
238 /**
239  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
240  * @rbm: The rbm with rgd already set correctly
241  * @block: The block number (filesystem relative)
242  *
243  * This sets the bi and offset members of an rbm based on a
244  * resource group and a filesystem relative block number. The
245  * resource group must be set in the rbm on entry, the bi and
246  * offset members will be set by this function.
247  *
248  * Returns: 0 on success, or an error code
249  */
250 
251 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
252 {
253 	u64 rblock = block - rbm->rgd->rd_data0;
254 	u32 goal = (u32)rblock;
255 	int x;
256 
257 	if (WARN_ON_ONCE(rblock > UINT_MAX))
258 		return -EINVAL;
259 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 		return -E2BIG;
261 
262 	for (x = 0; x < rbm->rgd->rd_length; x++) {
263 		rbm->bi = rbm->rgd->rd_bits + x;
264 		if (goal < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY) {
265 			rbm->offset = goal - (rbm->bi->bi_start * GFS2_NBBY);
266 			break;
267 		}
268 	}
269 
270 	return 0;
271 }
272 
273 /**
274  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
275  * @rbm: Position to search (value/result)
276  * @n_unaligned: Number of unaligned blocks to check
277  * @len: Decremented for each block found (terminate on zero)
278  *
279  * Returns: true if a non-free block is encountered
280  */
281 
282 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
283 {
284 	u64 block;
285 	u32 n;
286 	u8 res;
287 
288 	for (n = 0; n < n_unaligned; n++) {
289 		res = gfs2_testbit(rbm);
290 		if (res != GFS2_BLKST_FREE)
291 			return true;
292 		(*len)--;
293 		if (*len == 0)
294 			return true;
295 		block = gfs2_rbm_to_block(rbm);
296 		if (gfs2_rbm_from_block(rbm, block + 1))
297 			return true;
298 	}
299 
300 	return false;
301 }
302 
303 /**
304  * gfs2_free_extlen - Return extent length of free blocks
305  * @rbm: Starting position
306  * @len: Max length to check
307  *
308  * Starting at the block specified by the rbm, see how many free blocks
309  * there are, not reading more than len blocks ahead. This can be done
310  * using memchr_inv when the blocks are byte aligned, but has to be done
311  * on a block by block basis in case of unaligned blocks. Also this
312  * function can cope with bitmap boundaries (although it must stop on
313  * a resource group boundary)
314  *
315  * Returns: Number of free blocks in the extent
316  */
317 
318 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
319 {
320 	struct gfs2_rbm rbm = *rrbm;
321 	u32 n_unaligned = rbm.offset & 3;
322 	u32 size = len;
323 	u32 bytes;
324 	u32 chunk_size;
325 	u8 *ptr, *start, *end;
326 	u64 block;
327 
328 	if (n_unaligned &&
329 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
330 		goto out;
331 
332 	n_unaligned = len & 3;
333 	/* Start is now byte aligned */
334 	while (len > 3) {
335 		start = rbm.bi->bi_bh->b_data;
336 		if (rbm.bi->bi_clone)
337 			start = rbm.bi->bi_clone;
338 		end = start + rbm.bi->bi_bh->b_size;
339 		start += rbm.bi->bi_offset;
340 		BUG_ON(rbm.offset & 3);
341 		start += (rbm.offset / GFS2_NBBY);
342 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
343 		ptr = memchr_inv(start, 0, bytes);
344 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
345 		chunk_size *= GFS2_NBBY;
346 		BUG_ON(len < chunk_size);
347 		len -= chunk_size;
348 		block = gfs2_rbm_to_block(&rbm);
349 		gfs2_rbm_from_block(&rbm, block + chunk_size);
350 		n_unaligned = 3;
351 		if (ptr)
352 			break;
353 		n_unaligned = len & 3;
354 	}
355 
356 	/* Deal with any bits left over at the end */
357 	if (n_unaligned)
358 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
359 out:
360 	return size - len;
361 }
362 
363 /**
364  * gfs2_bitcount - count the number of bits in a certain state
365  * @rgd: the resource group descriptor
366  * @buffer: the buffer that holds the bitmaps
367  * @buflen: the length (in bytes) of the buffer
368  * @state: the state of the block we're looking for
369  *
370  * Returns: The number of bits
371  */
372 
373 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
374 			 unsigned int buflen, u8 state)
375 {
376 	const u8 *byte = buffer;
377 	const u8 *end = buffer + buflen;
378 	const u8 state1 = state << 2;
379 	const u8 state2 = state << 4;
380 	const u8 state3 = state << 6;
381 	u32 count = 0;
382 
383 	for (; byte < end; byte++) {
384 		if (((*byte) & 0x03) == state)
385 			count++;
386 		if (((*byte) & 0x0C) == state1)
387 			count++;
388 		if (((*byte) & 0x30) == state2)
389 			count++;
390 		if (((*byte) & 0xC0) == state3)
391 			count++;
392 	}
393 
394 	return count;
395 }
396 
397 /**
398  * gfs2_rgrp_verify - Verify that a resource group is consistent
399  * @rgd: the rgrp
400  *
401  */
402 
403 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
404 {
405 	struct gfs2_sbd *sdp = rgd->rd_sbd;
406 	struct gfs2_bitmap *bi = NULL;
407 	u32 length = rgd->rd_length;
408 	u32 count[4], tmp;
409 	int buf, x;
410 
411 	memset(count, 0, 4 * sizeof(u32));
412 
413 	/* Count # blocks in each of 4 possible allocation states */
414 	for (buf = 0; buf < length; buf++) {
415 		bi = rgd->rd_bits + buf;
416 		for (x = 0; x < 4; x++)
417 			count[x] += gfs2_bitcount(rgd,
418 						  bi->bi_bh->b_data +
419 						  bi->bi_offset,
420 						  bi->bi_len, x);
421 	}
422 
423 	if (count[0] != rgd->rd_free) {
424 		if (gfs2_consist_rgrpd(rgd))
425 			fs_err(sdp, "free data mismatch:  %u != %u\n",
426 			       count[0], rgd->rd_free);
427 		return;
428 	}
429 
430 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
431 	if (count[1] != tmp) {
432 		if (gfs2_consist_rgrpd(rgd))
433 			fs_err(sdp, "used data mismatch:  %u != %u\n",
434 			       count[1], tmp);
435 		return;
436 	}
437 
438 	if (count[2] + count[3] != rgd->rd_dinodes) {
439 		if (gfs2_consist_rgrpd(rgd))
440 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
441 			       count[2] + count[3], rgd->rd_dinodes);
442 		return;
443 	}
444 }
445 
446 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
447 {
448 	u64 first = rgd->rd_data0;
449 	u64 last = first + rgd->rd_data;
450 	return first <= block && block < last;
451 }
452 
453 /**
454  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
455  * @sdp: The GFS2 superblock
456  * @blk: The data block number
457  * @exact: True if this needs to be an exact match
458  *
459  * Returns: The resource group, or NULL if not found
460  */
461 
462 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
463 {
464 	struct rb_node *n, *next;
465 	struct gfs2_rgrpd *cur;
466 
467 	spin_lock(&sdp->sd_rindex_spin);
468 	n = sdp->sd_rindex_tree.rb_node;
469 	while (n) {
470 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
471 		next = NULL;
472 		if (blk < cur->rd_addr)
473 			next = n->rb_left;
474 		else if (blk >= cur->rd_data0 + cur->rd_data)
475 			next = n->rb_right;
476 		if (next == NULL) {
477 			spin_unlock(&sdp->sd_rindex_spin);
478 			if (exact) {
479 				if (blk < cur->rd_addr)
480 					return NULL;
481 				if (blk >= cur->rd_data0 + cur->rd_data)
482 					return NULL;
483 			}
484 			return cur;
485 		}
486 		n = next;
487 	}
488 	spin_unlock(&sdp->sd_rindex_spin);
489 
490 	return NULL;
491 }
492 
493 /**
494  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
495  * @sdp: The GFS2 superblock
496  *
497  * Returns: The first rgrp in the filesystem
498  */
499 
500 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
501 {
502 	const struct rb_node *n;
503 	struct gfs2_rgrpd *rgd;
504 
505 	spin_lock(&sdp->sd_rindex_spin);
506 	n = rb_first(&sdp->sd_rindex_tree);
507 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
508 	spin_unlock(&sdp->sd_rindex_spin);
509 
510 	return rgd;
511 }
512 
513 /**
514  * gfs2_rgrpd_get_next - get the next RG
515  * @rgd: the resource group descriptor
516  *
517  * Returns: The next rgrp
518  */
519 
520 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
521 {
522 	struct gfs2_sbd *sdp = rgd->rd_sbd;
523 	const struct rb_node *n;
524 
525 	spin_lock(&sdp->sd_rindex_spin);
526 	n = rb_next(&rgd->rd_node);
527 	if (n == NULL)
528 		n = rb_first(&sdp->sd_rindex_tree);
529 
530 	if (unlikely(&rgd->rd_node == n)) {
531 		spin_unlock(&sdp->sd_rindex_spin);
532 		return NULL;
533 	}
534 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
535 	spin_unlock(&sdp->sd_rindex_spin);
536 	return rgd;
537 }
538 
539 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
540 {
541 	int x;
542 
543 	for (x = 0; x < rgd->rd_length; x++) {
544 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
545 		kfree(bi->bi_clone);
546 		bi->bi_clone = NULL;
547 	}
548 }
549 
550 /**
551  * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
552  * @ip: the inode for this reservation
553  */
554 int gfs2_rs_alloc(struct gfs2_inode *ip)
555 {
556 	struct gfs2_blkreserv *res;
557 
558 	if (ip->i_res)
559 		return 0;
560 
561 	res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
562 	if (!res)
563 		return -ENOMEM;
564 
565 	RB_CLEAR_NODE(&res->rs_node);
566 
567 	down_write(&ip->i_rw_mutex);
568 	if (ip->i_res)
569 		kmem_cache_free(gfs2_rsrv_cachep, res);
570 	else
571 		ip->i_res = res;
572 	up_write(&ip->i_rw_mutex);
573 	return 0;
574 }
575 
576 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
577 {
578 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
579 		       (unsigned long long)rs->rs_inum,
580 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
581 		       rs->rs_rbm.offset, rs->rs_free);
582 }
583 
584 /**
585  * __rs_deltree - remove a multi-block reservation from the rgd tree
586  * @rs: The reservation to remove
587  *
588  */
589 static void __rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
590 {
591 	struct gfs2_rgrpd *rgd;
592 
593 	if (!gfs2_rs_active(rs))
594 		return;
595 
596 	rgd = rs->rs_rbm.rgd;
597 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
598 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
599 	RB_CLEAR_NODE(&rs->rs_node);
600 
601 	if (rs->rs_free) {
602 		/* return reserved blocks to the rgrp and the ip */
603 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
604 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
605 		rs->rs_free = 0;
606 		clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
607 		smp_mb__after_clear_bit();
608 	}
609 }
610 
611 /**
612  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
613  * @rs: The reservation to remove
614  *
615  */
616 void gfs2_rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
617 {
618 	struct gfs2_rgrpd *rgd;
619 
620 	rgd = rs->rs_rbm.rgd;
621 	if (rgd) {
622 		spin_lock(&rgd->rd_rsspin);
623 		__rs_deltree(ip, rs);
624 		spin_unlock(&rgd->rd_rsspin);
625 	}
626 }
627 
628 /**
629  * gfs2_rs_delete - delete a multi-block reservation
630  * @ip: The inode for this reservation
631  *
632  */
633 void gfs2_rs_delete(struct gfs2_inode *ip)
634 {
635 	down_write(&ip->i_rw_mutex);
636 	if (ip->i_res) {
637 		gfs2_rs_deltree(ip, ip->i_res);
638 		BUG_ON(ip->i_res->rs_free);
639 		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
640 		ip->i_res = NULL;
641 	}
642 	up_write(&ip->i_rw_mutex);
643 }
644 
645 /**
646  * return_all_reservations - return all reserved blocks back to the rgrp.
647  * @rgd: the rgrp that needs its space back
648  *
649  * We previously reserved a bunch of blocks for allocation. Now we need to
650  * give them back. This leave the reservation structures in tact, but removes
651  * all of their corresponding "no-fly zones".
652  */
653 static void return_all_reservations(struct gfs2_rgrpd *rgd)
654 {
655 	struct rb_node *n;
656 	struct gfs2_blkreserv *rs;
657 
658 	spin_lock(&rgd->rd_rsspin);
659 	while ((n = rb_first(&rgd->rd_rstree))) {
660 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
661 		__rs_deltree(NULL, rs);
662 	}
663 	spin_unlock(&rgd->rd_rsspin);
664 }
665 
666 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
667 {
668 	struct rb_node *n;
669 	struct gfs2_rgrpd *rgd;
670 	struct gfs2_glock *gl;
671 
672 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
673 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
674 		gl = rgd->rd_gl;
675 
676 		rb_erase(n, &sdp->sd_rindex_tree);
677 
678 		if (gl) {
679 			spin_lock(&gl->gl_spin);
680 			gl->gl_object = NULL;
681 			spin_unlock(&gl->gl_spin);
682 			gfs2_glock_add_to_lru(gl);
683 			gfs2_glock_put(gl);
684 		}
685 
686 		gfs2_free_clones(rgd);
687 		kfree(rgd->rd_bits);
688 		return_all_reservations(rgd);
689 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
690 	}
691 }
692 
693 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
694 {
695 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
696 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
697 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
698 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
699 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
700 }
701 
702 /**
703  * gfs2_compute_bitstructs - Compute the bitmap sizes
704  * @rgd: The resource group descriptor
705  *
706  * Calculates bitmap descriptors, one for each block that contains bitmap data
707  *
708  * Returns: errno
709  */
710 
711 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
712 {
713 	struct gfs2_sbd *sdp = rgd->rd_sbd;
714 	struct gfs2_bitmap *bi;
715 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
716 	u32 bytes_left, bytes;
717 	int x;
718 
719 	if (!length)
720 		return -EINVAL;
721 
722 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
723 	if (!rgd->rd_bits)
724 		return -ENOMEM;
725 
726 	bytes_left = rgd->rd_bitbytes;
727 
728 	for (x = 0; x < length; x++) {
729 		bi = rgd->rd_bits + x;
730 
731 		bi->bi_flags = 0;
732 		/* small rgrp; bitmap stored completely in header block */
733 		if (length == 1) {
734 			bytes = bytes_left;
735 			bi->bi_offset = sizeof(struct gfs2_rgrp);
736 			bi->bi_start = 0;
737 			bi->bi_len = bytes;
738 		/* header block */
739 		} else if (x == 0) {
740 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
741 			bi->bi_offset = sizeof(struct gfs2_rgrp);
742 			bi->bi_start = 0;
743 			bi->bi_len = bytes;
744 		/* last block */
745 		} else if (x + 1 == length) {
746 			bytes = bytes_left;
747 			bi->bi_offset = sizeof(struct gfs2_meta_header);
748 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
749 			bi->bi_len = bytes;
750 		/* other blocks */
751 		} else {
752 			bytes = sdp->sd_sb.sb_bsize -
753 				sizeof(struct gfs2_meta_header);
754 			bi->bi_offset = sizeof(struct gfs2_meta_header);
755 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
756 			bi->bi_len = bytes;
757 		}
758 
759 		bytes_left -= bytes;
760 	}
761 
762 	if (bytes_left) {
763 		gfs2_consist_rgrpd(rgd);
764 		return -EIO;
765 	}
766 	bi = rgd->rd_bits + (length - 1);
767 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
768 		if (gfs2_consist_rgrpd(rgd)) {
769 			gfs2_rindex_print(rgd);
770 			fs_err(sdp, "start=%u len=%u offset=%u\n",
771 			       bi->bi_start, bi->bi_len, bi->bi_offset);
772 		}
773 		return -EIO;
774 	}
775 
776 	return 0;
777 }
778 
779 /**
780  * gfs2_ri_total - Total up the file system space, according to the rindex.
781  * @sdp: the filesystem
782  *
783  */
784 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
785 {
786 	u64 total_data = 0;
787 	struct inode *inode = sdp->sd_rindex;
788 	struct gfs2_inode *ip = GFS2_I(inode);
789 	char buf[sizeof(struct gfs2_rindex)];
790 	int error, rgrps;
791 
792 	for (rgrps = 0;; rgrps++) {
793 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
794 
795 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
796 			break;
797 		error = gfs2_internal_read(ip, buf, &pos,
798 					   sizeof(struct gfs2_rindex));
799 		if (error != sizeof(struct gfs2_rindex))
800 			break;
801 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
802 	}
803 	return total_data;
804 }
805 
806 static int rgd_insert(struct gfs2_rgrpd *rgd)
807 {
808 	struct gfs2_sbd *sdp = rgd->rd_sbd;
809 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
810 
811 	/* Figure out where to put new node */
812 	while (*newn) {
813 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
814 						  rd_node);
815 
816 		parent = *newn;
817 		if (rgd->rd_addr < cur->rd_addr)
818 			newn = &((*newn)->rb_left);
819 		else if (rgd->rd_addr > cur->rd_addr)
820 			newn = &((*newn)->rb_right);
821 		else
822 			return -EEXIST;
823 	}
824 
825 	rb_link_node(&rgd->rd_node, parent, newn);
826 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
827 	sdp->sd_rgrps++;
828 	return 0;
829 }
830 
831 /**
832  * read_rindex_entry - Pull in a new resource index entry from the disk
833  * @ip: Pointer to the rindex inode
834  *
835  * Returns: 0 on success, > 0 on EOF, error code otherwise
836  */
837 
838 static int read_rindex_entry(struct gfs2_inode *ip)
839 {
840 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
841 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
842 	struct gfs2_rindex buf;
843 	int error;
844 	struct gfs2_rgrpd *rgd;
845 
846 	if (pos >= i_size_read(&ip->i_inode))
847 		return 1;
848 
849 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
850 				   sizeof(struct gfs2_rindex));
851 
852 	if (error != sizeof(struct gfs2_rindex))
853 		return (error == 0) ? 1 : error;
854 
855 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
856 	error = -ENOMEM;
857 	if (!rgd)
858 		return error;
859 
860 	rgd->rd_sbd = sdp;
861 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
862 	rgd->rd_length = be32_to_cpu(buf.ri_length);
863 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
864 	rgd->rd_data = be32_to_cpu(buf.ri_data);
865 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
866 	spin_lock_init(&rgd->rd_rsspin);
867 
868 	error = compute_bitstructs(rgd);
869 	if (error)
870 		goto fail;
871 
872 	error = gfs2_glock_get(sdp, rgd->rd_addr,
873 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
874 	if (error)
875 		goto fail;
876 
877 	rgd->rd_gl->gl_object = rgd;
878 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lvb;
879 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
880 	if (rgd->rd_data > sdp->sd_max_rg_data)
881 		sdp->sd_max_rg_data = rgd->rd_data;
882 	spin_lock(&sdp->sd_rindex_spin);
883 	error = rgd_insert(rgd);
884 	spin_unlock(&sdp->sd_rindex_spin);
885 	if (!error)
886 		return 0;
887 
888 	error = 0; /* someone else read in the rgrp; free it and ignore it */
889 	gfs2_glock_put(rgd->rd_gl);
890 
891 fail:
892 	kfree(rgd->rd_bits);
893 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
894 	return error;
895 }
896 
897 /**
898  * gfs2_ri_update - Pull in a new resource index from the disk
899  * @ip: pointer to the rindex inode
900  *
901  * Returns: 0 on successful update, error code otherwise
902  */
903 
904 static int gfs2_ri_update(struct gfs2_inode *ip)
905 {
906 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
907 	int error;
908 
909 	do {
910 		error = read_rindex_entry(ip);
911 	} while (error == 0);
912 
913 	if (error < 0)
914 		return error;
915 
916 	sdp->sd_rindex_uptodate = 1;
917 	return 0;
918 }
919 
920 /**
921  * gfs2_rindex_update - Update the rindex if required
922  * @sdp: The GFS2 superblock
923  *
924  * We grab a lock on the rindex inode to make sure that it doesn't
925  * change whilst we are performing an operation. We keep this lock
926  * for quite long periods of time compared to other locks. This
927  * doesn't matter, since it is shared and it is very, very rarely
928  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
929  *
930  * This makes sure that we're using the latest copy of the resource index
931  * special file, which might have been updated if someone expanded the
932  * filesystem (via gfs2_grow utility), which adds new resource groups.
933  *
934  * Returns: 0 on succeess, error code otherwise
935  */
936 
937 int gfs2_rindex_update(struct gfs2_sbd *sdp)
938 {
939 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
940 	struct gfs2_glock *gl = ip->i_gl;
941 	struct gfs2_holder ri_gh;
942 	int error = 0;
943 	int unlock_required = 0;
944 
945 	/* Read new copy from disk if we don't have the latest */
946 	if (!sdp->sd_rindex_uptodate) {
947 		if (!gfs2_glock_is_locked_by_me(gl)) {
948 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
949 			if (error)
950 				return error;
951 			unlock_required = 1;
952 		}
953 		if (!sdp->sd_rindex_uptodate)
954 			error = gfs2_ri_update(ip);
955 		if (unlock_required)
956 			gfs2_glock_dq_uninit(&ri_gh);
957 	}
958 
959 	return error;
960 }
961 
962 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
963 {
964 	const struct gfs2_rgrp *str = buf;
965 	u32 rg_flags;
966 
967 	rg_flags = be32_to_cpu(str->rg_flags);
968 	rg_flags &= ~GFS2_RDF_MASK;
969 	rgd->rd_flags &= GFS2_RDF_MASK;
970 	rgd->rd_flags |= rg_flags;
971 	rgd->rd_free = be32_to_cpu(str->rg_free);
972 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
973 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
974 }
975 
976 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
977 {
978 	struct gfs2_rgrp *str = buf;
979 
980 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
981 	str->rg_free = cpu_to_be32(rgd->rd_free);
982 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
983 	str->__pad = cpu_to_be32(0);
984 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
985 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
986 }
987 
988 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
989 {
990 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
991 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
992 
993 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
994 	    rgl->rl_dinodes != str->rg_dinodes ||
995 	    rgl->rl_igeneration != str->rg_igeneration)
996 		return 0;
997 	return 1;
998 }
999 
1000 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1001 {
1002 	const struct gfs2_rgrp *str = buf;
1003 
1004 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1005 	rgl->rl_flags = str->rg_flags;
1006 	rgl->rl_free = str->rg_free;
1007 	rgl->rl_dinodes = str->rg_dinodes;
1008 	rgl->rl_igeneration = str->rg_igeneration;
1009 	rgl->__pad = 0UL;
1010 }
1011 
1012 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1013 {
1014 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1015 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1016 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1017 }
1018 
1019 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1020 {
1021 	struct gfs2_bitmap *bi;
1022 	const u32 length = rgd->rd_length;
1023 	const u8 *buffer = NULL;
1024 	u32 i, goal, count = 0;
1025 
1026 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1027 		goal = 0;
1028 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1029 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1030 		while (goal < bi->bi_len * GFS2_NBBY) {
1031 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1032 					   GFS2_BLKST_UNLINKED);
1033 			if (goal == BFITNOENT)
1034 				break;
1035 			count++;
1036 			goal++;
1037 		}
1038 	}
1039 
1040 	return count;
1041 }
1042 
1043 
1044 /**
1045  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1046  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1047  *
1048  * Read in all of a Resource Group's header and bitmap blocks.
1049  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1050  *
1051  * Returns: errno
1052  */
1053 
1054 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1055 {
1056 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1057 	struct gfs2_glock *gl = rgd->rd_gl;
1058 	unsigned int length = rgd->rd_length;
1059 	struct gfs2_bitmap *bi;
1060 	unsigned int x, y;
1061 	int error;
1062 
1063 	if (rgd->rd_bits[0].bi_bh != NULL)
1064 		return 0;
1065 
1066 	for (x = 0; x < length; x++) {
1067 		bi = rgd->rd_bits + x;
1068 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1069 		if (error)
1070 			goto fail;
1071 	}
1072 
1073 	for (y = length; y--;) {
1074 		bi = rgd->rd_bits + y;
1075 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1076 		if (error)
1077 			goto fail;
1078 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1079 					      GFS2_METATYPE_RG)) {
1080 			error = -EIO;
1081 			goto fail;
1082 		}
1083 	}
1084 
1085 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1086 		for (x = 0; x < length; x++)
1087 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1088 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1089 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1090 		rgd->rd_free_clone = rgd->rd_free;
1091 	}
1092 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1093 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1094 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1095 				     rgd->rd_bits[0].bi_bh->b_data);
1096 	}
1097 	else if (sdp->sd_args.ar_rgrplvb) {
1098 		if (!gfs2_rgrp_lvb_valid(rgd)){
1099 			gfs2_consist_rgrpd(rgd);
1100 			error = -EIO;
1101 			goto fail;
1102 		}
1103 		if (rgd->rd_rgl->rl_unlinked == 0)
1104 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1105 	}
1106 	return 0;
1107 
1108 fail:
1109 	while (x--) {
1110 		bi = rgd->rd_bits + x;
1111 		brelse(bi->bi_bh);
1112 		bi->bi_bh = NULL;
1113 		gfs2_assert_warn(sdp, !bi->bi_clone);
1114 	}
1115 
1116 	return error;
1117 }
1118 
1119 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1120 {
1121 	u32 rl_flags;
1122 
1123 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1124 		return 0;
1125 
1126 	if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1127 		return gfs2_rgrp_bh_get(rgd);
1128 
1129 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1130 	rl_flags &= ~GFS2_RDF_MASK;
1131 	rgd->rd_flags &= GFS2_RDF_MASK;
1132 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1133 	if (rgd->rd_rgl->rl_unlinked == 0)
1134 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1135 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1136 	rgd->rd_free_clone = rgd->rd_free;
1137 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1138 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1139 	return 0;
1140 }
1141 
1142 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1143 {
1144 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1145 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1146 
1147 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1148 		return 0;
1149 	return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1150 }
1151 
1152 /**
1153  * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1154  * @gh: The glock holder for the resource group
1155  *
1156  */
1157 
1158 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1159 {
1160 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1161 	int x, length = rgd->rd_length;
1162 
1163 	for (x = 0; x < length; x++) {
1164 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1165 		if (bi->bi_bh) {
1166 			brelse(bi->bi_bh);
1167 			bi->bi_bh = NULL;
1168 		}
1169 	}
1170 
1171 }
1172 
1173 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1174 			     struct buffer_head *bh,
1175 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1176 {
1177 	struct super_block *sb = sdp->sd_vfs;
1178 	struct block_device *bdev = sb->s_bdev;
1179 	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
1180 					   bdev_logical_block_size(sb->s_bdev);
1181 	u64 blk;
1182 	sector_t start = 0;
1183 	sector_t nr_sects = 0;
1184 	int rv;
1185 	unsigned int x;
1186 	u32 trimmed = 0;
1187 	u8 diff;
1188 
1189 	for (x = 0; x < bi->bi_len; x++) {
1190 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1191 		clone += bi->bi_offset;
1192 		clone += x;
1193 		if (bh) {
1194 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1195 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1196 		} else {
1197 			diff = ~(*clone | (*clone >> 1));
1198 		}
1199 		diff &= 0x55;
1200 		if (diff == 0)
1201 			continue;
1202 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1203 		blk *= sects_per_blk; /* convert to sectors */
1204 		while(diff) {
1205 			if (diff & 1) {
1206 				if (nr_sects == 0)
1207 					goto start_new_extent;
1208 				if ((start + nr_sects) != blk) {
1209 					if (nr_sects >= minlen) {
1210 						rv = blkdev_issue_discard(bdev,
1211 							start, nr_sects,
1212 							GFP_NOFS, 0);
1213 						if (rv)
1214 							goto fail;
1215 						trimmed += nr_sects;
1216 					}
1217 					nr_sects = 0;
1218 start_new_extent:
1219 					start = blk;
1220 				}
1221 				nr_sects += sects_per_blk;
1222 			}
1223 			diff >>= 2;
1224 			blk += sects_per_blk;
1225 		}
1226 	}
1227 	if (nr_sects >= minlen) {
1228 		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
1229 		if (rv)
1230 			goto fail;
1231 		trimmed += nr_sects;
1232 	}
1233 	if (ptrimmed)
1234 		*ptrimmed = trimmed;
1235 	return 0;
1236 
1237 fail:
1238 	if (sdp->sd_args.ar_discard)
1239 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1240 	sdp->sd_args.ar_discard = 0;
1241 	return -EIO;
1242 }
1243 
1244 /**
1245  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1246  * @filp: Any file on the filesystem
1247  * @argp: Pointer to the arguments (also used to pass result)
1248  *
1249  * Returns: 0 on success, otherwise error code
1250  */
1251 
1252 int gfs2_fitrim(struct file *filp, void __user *argp)
1253 {
1254 	struct inode *inode = filp->f_dentry->d_inode;
1255 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1256 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1257 	struct buffer_head *bh;
1258 	struct gfs2_rgrpd *rgd;
1259 	struct gfs2_rgrpd *rgd_end;
1260 	struct gfs2_holder gh;
1261 	struct fstrim_range r;
1262 	int ret = 0;
1263 	u64 amt;
1264 	u64 trimmed = 0;
1265 	u64 start, end, minlen;
1266 	unsigned int x;
1267 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1268 
1269 	if (!capable(CAP_SYS_ADMIN))
1270 		return -EPERM;
1271 
1272 	if (!blk_queue_discard(q))
1273 		return -EOPNOTSUPP;
1274 
1275 	if (copy_from_user(&r, argp, sizeof(r)))
1276 		return -EFAULT;
1277 
1278 	ret = gfs2_rindex_update(sdp);
1279 	if (ret)
1280 		return ret;
1281 
1282 	start = r.start >> bs_shift;
1283 	end = start + (r.len >> bs_shift);
1284 	minlen = max_t(u64, r.minlen,
1285 		       q->limits.discard_granularity) >> bs_shift;
1286 
1287 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1288 	rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0);
1289 
1290 	if (end <= start ||
1291 	    minlen > sdp->sd_max_rg_data ||
1292 	    start > rgd_end->rd_data0 + rgd_end->rd_data)
1293 		return -EINVAL;
1294 
1295 	while (1) {
1296 
1297 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1298 		if (ret)
1299 			goto out;
1300 
1301 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1302 			/* Trim each bitmap in the rgrp */
1303 			for (x = 0; x < rgd->rd_length; x++) {
1304 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1305 				ret = gfs2_rgrp_send_discards(sdp,
1306 						rgd->rd_data0, NULL, bi, minlen,
1307 						&amt);
1308 				if (ret) {
1309 					gfs2_glock_dq_uninit(&gh);
1310 					goto out;
1311 				}
1312 				trimmed += amt;
1313 			}
1314 
1315 			/* Mark rgrp as having been trimmed */
1316 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1317 			if (ret == 0) {
1318 				bh = rgd->rd_bits[0].bi_bh;
1319 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1320 				gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
1321 				gfs2_rgrp_out(rgd, bh->b_data);
1322 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1323 				gfs2_trans_end(sdp);
1324 			}
1325 		}
1326 		gfs2_glock_dq_uninit(&gh);
1327 
1328 		if (rgd == rgd_end)
1329 			break;
1330 
1331 		rgd = gfs2_rgrpd_get_next(rgd);
1332 	}
1333 
1334 out:
1335 	r.len = trimmed << 9;
1336 	if (copy_to_user(argp, &r, sizeof(r)))
1337 		return -EFAULT;
1338 
1339 	return ret;
1340 }
1341 
1342 /**
1343  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1344  * @ip: the inode structure
1345  *
1346  */
1347 static void rs_insert(struct gfs2_inode *ip)
1348 {
1349 	struct rb_node **newn, *parent = NULL;
1350 	int rc;
1351 	struct gfs2_blkreserv *rs = ip->i_res;
1352 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1353 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1354 
1355 	BUG_ON(gfs2_rs_active(rs));
1356 
1357 	spin_lock(&rgd->rd_rsspin);
1358 	newn = &rgd->rd_rstree.rb_node;
1359 	while (*newn) {
1360 		struct gfs2_blkreserv *cur =
1361 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1362 
1363 		parent = *newn;
1364 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1365 		if (rc > 0)
1366 			newn = &((*newn)->rb_right);
1367 		else if (rc < 0)
1368 			newn = &((*newn)->rb_left);
1369 		else {
1370 			spin_unlock(&rgd->rd_rsspin);
1371 			WARN_ON(1);
1372 			return;
1373 		}
1374 	}
1375 
1376 	rb_link_node(&rs->rs_node, parent, newn);
1377 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1378 
1379 	/* Do our rgrp accounting for the reservation */
1380 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1381 	spin_unlock(&rgd->rd_rsspin);
1382 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1383 }
1384 
1385 /**
1386  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1387  * @rgd: the resource group descriptor
1388  * @ip: pointer to the inode for which we're reserving blocks
1389  * @requested: number of blocks required for this allocation
1390  *
1391  */
1392 
1393 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1394 			   unsigned requested)
1395 {
1396 	struct gfs2_rbm rbm = { .rgd = rgd, };
1397 	u64 goal;
1398 	struct gfs2_blkreserv *rs = ip->i_res;
1399 	u32 extlen;
1400 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1401 	int ret;
1402 
1403 	extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1404 	extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1405 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1406 		return;
1407 
1408 	/* Find bitmap block that contains bits for goal block */
1409 	if (rgrp_contains_block(rgd, ip->i_goal))
1410 		goal = ip->i_goal;
1411 	else
1412 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1413 
1414 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1415 		return;
1416 
1417 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1418 	if (ret == 0) {
1419 		rs->rs_rbm = rbm;
1420 		rs->rs_free = extlen;
1421 		rs->rs_inum = ip->i_no_addr;
1422 		rs_insert(ip);
1423 	}
1424 }
1425 
1426 /**
1427  * gfs2_next_unreserved_block - Return next block that is not reserved
1428  * @rgd: The resource group
1429  * @block: The starting block
1430  * @length: The required length
1431  * @ip: Ignore any reservations for this inode
1432  *
1433  * If the block does not appear in any reservation, then return the
1434  * block number unchanged. If it does appear in the reservation, then
1435  * keep looking through the tree of reservations in order to find the
1436  * first block number which is not reserved.
1437  */
1438 
1439 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1440 				      u32 length,
1441 				      const struct gfs2_inode *ip)
1442 {
1443 	struct gfs2_blkreserv *rs;
1444 	struct rb_node *n;
1445 	int rc;
1446 
1447 	spin_lock(&rgd->rd_rsspin);
1448 	n = rgd->rd_rstree.rb_node;
1449 	while (n) {
1450 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1451 		rc = rs_cmp(block, length, rs);
1452 		if (rc < 0)
1453 			n = n->rb_left;
1454 		else if (rc > 0)
1455 			n = n->rb_right;
1456 		else
1457 			break;
1458 	}
1459 
1460 	if (n) {
1461 		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1462 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1463 			n = n->rb_right;
1464 			if (n == NULL)
1465 				break;
1466 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1467 		}
1468 	}
1469 
1470 	spin_unlock(&rgd->rd_rsspin);
1471 	return block;
1472 }
1473 
1474 /**
1475  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1476  * @rbm: The current position in the resource group
1477  * @ip: The inode for which we are searching for blocks
1478  * @minext: The minimum extent length
1479  *
1480  * This checks the current position in the rgrp to see whether there is
1481  * a reservation covering this block. If not then this function is a
1482  * no-op. If there is, then the position is moved to the end of the
1483  * contiguous reservation(s) so that we are pointing at the first
1484  * non-reserved block.
1485  *
1486  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1487  */
1488 
1489 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1490 					     const struct gfs2_inode *ip,
1491 					     u32 minext)
1492 {
1493 	u64 block = gfs2_rbm_to_block(rbm);
1494 	u32 extlen = 1;
1495 	u64 nblock;
1496 	int ret;
1497 
1498 	/*
1499 	 * If we have a minimum extent length, then skip over any extent
1500 	 * which is less than the min extent length in size.
1501 	 */
1502 	if (minext) {
1503 		extlen = gfs2_free_extlen(rbm, minext);
1504 		nblock = block + extlen;
1505 		if (extlen < minext)
1506 			goto fail;
1507 	}
1508 
1509 	/*
1510 	 * Check the extent which has been found against the reservations
1511 	 * and skip if parts of it are already reserved
1512 	 */
1513 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1514 	if (nblock == block)
1515 		return 0;
1516 fail:
1517 	ret = gfs2_rbm_from_block(rbm, nblock);
1518 	if (ret < 0)
1519 		return ret;
1520 	return 1;
1521 }
1522 
1523 /**
1524  * gfs2_rbm_find - Look for blocks of a particular state
1525  * @rbm: Value/result starting position and final position
1526  * @state: The state which we want to find
1527  * @minext: The requested extent length (0 for a single block)
1528  * @ip: If set, check for reservations
1529  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1530  *          around until we've reached the starting point.
1531  *
1532  * Side effects:
1533  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1534  *   has no free blocks in it.
1535  *
1536  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1537  */
1538 
1539 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1540 			 const struct gfs2_inode *ip, bool nowrap)
1541 {
1542 	struct buffer_head *bh;
1543 	struct gfs2_bitmap *initial_bi;
1544 	u32 initial_offset;
1545 	u32 offset;
1546 	u8 *buffer;
1547 	int index;
1548 	int n = 0;
1549 	int iters = rbm->rgd->rd_length;
1550 	int ret;
1551 
1552 	/* If we are not starting at the beginning of a bitmap, then we
1553 	 * need to add one to the bitmap count to ensure that we search
1554 	 * the starting bitmap twice.
1555 	 */
1556 	if (rbm->offset != 0)
1557 		iters++;
1558 
1559 	while(1) {
1560 		if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1561 		    (state == GFS2_BLKST_FREE))
1562 			goto next_bitmap;
1563 
1564 		bh = rbm->bi->bi_bh;
1565 		buffer = bh->b_data + rbm->bi->bi_offset;
1566 		WARN_ON(!buffer_uptodate(bh));
1567 		if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1568 			buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1569 		initial_offset = rbm->offset;
1570 		offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1571 		if (offset == BFITNOENT)
1572 			goto bitmap_full;
1573 		rbm->offset = offset;
1574 		if (ip == NULL)
1575 			return 0;
1576 
1577 		initial_bi = rbm->bi;
1578 		ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1579 		if (ret == 0)
1580 			return 0;
1581 		if (ret > 0) {
1582 			n += (rbm->bi - initial_bi);
1583 			goto next_iter;
1584 		}
1585 		if (ret == -E2BIG) {
1586 			index = 0;
1587 			rbm->offset = 0;
1588 			n += (rbm->bi - initial_bi);
1589 			goto res_covered_end_of_rgrp;
1590 		}
1591 		return ret;
1592 
1593 bitmap_full:	/* Mark bitmap as full and fall through */
1594 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1595 			set_bit(GBF_FULL, &rbm->bi->bi_flags);
1596 
1597 next_bitmap:	/* Find next bitmap in the rgrp */
1598 		rbm->offset = 0;
1599 		index = rbm->bi - rbm->rgd->rd_bits;
1600 		index++;
1601 		if (index == rbm->rgd->rd_length)
1602 			index = 0;
1603 res_covered_end_of_rgrp:
1604 		rbm->bi = &rbm->rgd->rd_bits[index];
1605 		if ((index == 0) && nowrap)
1606 			break;
1607 		n++;
1608 next_iter:
1609 		if (n >= iters)
1610 			break;
1611 	}
1612 
1613 	return -ENOSPC;
1614 }
1615 
1616 /**
1617  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1618  * @rgd: The rgrp
1619  * @last_unlinked: block address of the last dinode we unlinked
1620  * @skip: block address we should explicitly not unlink
1621  *
1622  * Returns: 0 if no error
1623  *          The inode, if one has been found, in inode.
1624  */
1625 
1626 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1627 {
1628 	u64 block;
1629 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1630 	struct gfs2_glock *gl;
1631 	struct gfs2_inode *ip;
1632 	int error;
1633 	int found = 0;
1634 	struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1635 
1636 	while (1) {
1637 		down_write(&sdp->sd_log_flush_lock);
1638 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1639 		up_write(&sdp->sd_log_flush_lock);
1640 		if (error == -ENOSPC)
1641 			break;
1642 		if (WARN_ON_ONCE(error))
1643 			break;
1644 
1645 		block = gfs2_rbm_to_block(&rbm);
1646 		if (gfs2_rbm_from_block(&rbm, block + 1))
1647 			break;
1648 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1649 			continue;
1650 		if (block == skip)
1651 			continue;
1652 		*last_unlinked = block;
1653 
1654 		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1655 		if (error)
1656 			continue;
1657 
1658 		/* If the inode is already in cache, we can ignore it here
1659 		 * because the existing inode disposal code will deal with
1660 		 * it when all refs have gone away. Accessing gl_object like
1661 		 * this is not safe in general. Here it is ok because we do
1662 		 * not dereference the pointer, and we only need an approx
1663 		 * answer to whether it is NULL or not.
1664 		 */
1665 		ip = gl->gl_object;
1666 
1667 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1668 			gfs2_glock_put(gl);
1669 		else
1670 			found++;
1671 
1672 		/* Limit reclaim to sensible number of tasks */
1673 		if (found > NR_CPUS)
1674 			return;
1675 	}
1676 
1677 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1678 	return;
1679 }
1680 
1681 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1682 {
1683 	struct gfs2_rgrpd *rgd = *pos;
1684 
1685 	rgd = gfs2_rgrpd_get_next(rgd);
1686 	if (rgd == NULL)
1687 		rgd = gfs2_rgrpd_get_next(NULL);
1688 	*pos = rgd;
1689 	if (rgd != begin) /* If we didn't wrap */
1690 		return true;
1691 	return false;
1692 }
1693 
1694 /**
1695  * gfs2_inplace_reserve - Reserve space in the filesystem
1696  * @ip: the inode to reserve space for
1697  * @requested: the number of blocks to be reserved
1698  *
1699  * Returns: errno
1700  */
1701 
1702 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested)
1703 {
1704 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1705 	struct gfs2_rgrpd *begin = NULL;
1706 	struct gfs2_blkreserv *rs = ip->i_res;
1707 	int error = 0, rg_locked, flags = LM_FLAG_TRY;
1708 	u64 last_unlinked = NO_BLOCK;
1709 	int loops = 0;
1710 
1711 	if (sdp->sd_args.ar_rgrplvb)
1712 		flags |= GL_SKIP;
1713 	if (gfs2_assert_warn(sdp, requested))
1714 		return -EINVAL;
1715 	if (gfs2_rs_active(rs)) {
1716 		begin = rs->rs_rbm.rgd;
1717 		flags = 0; /* Yoda: Do or do not. There is no try */
1718 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1719 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1720 	} else {
1721 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1722 	}
1723 	if (rs->rs_rbm.rgd == NULL)
1724 		return -EBADSLT;
1725 
1726 	while (loops < 3) {
1727 		rg_locked = 1;
1728 
1729 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1730 			rg_locked = 0;
1731 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1732 						   LM_ST_EXCLUSIVE, flags,
1733 						   &rs->rs_rgd_gh);
1734 			if (error == GLR_TRYFAILED)
1735 				goto next_rgrp;
1736 			if (unlikely(error))
1737 				return error;
1738 			if (sdp->sd_args.ar_rgrplvb) {
1739 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
1740 				if (unlikely(error)) {
1741 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1742 					return error;
1743 				}
1744 			}
1745 		}
1746 
1747 		/* Skip unuseable resource groups */
1748 		if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1749 			goto skip_rgrp;
1750 
1751 		if (sdp->sd_args.ar_rgrplvb)
1752 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1753 
1754 		/* Get a reservation if we don't already have one */
1755 		if (!gfs2_rs_active(rs))
1756 			rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1757 
1758 		/* Skip rgrps when we can't get a reservation on first pass */
1759 		if (!gfs2_rs_active(rs) && (loops < 1))
1760 			goto check_rgrp;
1761 
1762 		/* If rgrp has enough free space, use it */
1763 		if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1764 			ip->i_rgd = rs->rs_rbm.rgd;
1765 			return 0;
1766 		}
1767 
1768 		/* Drop reservation, if we couldn't use reserved rgrp */
1769 		if (gfs2_rs_active(rs))
1770 			gfs2_rs_deltree(ip, rs);
1771 check_rgrp:
1772 		/* Check for unlinked inodes which can be reclaimed */
1773 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1774 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1775 					ip->i_no_addr);
1776 skip_rgrp:
1777 		/* Unlock rgrp if required */
1778 		if (!rg_locked)
1779 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1780 next_rgrp:
1781 		/* Find the next rgrp, and continue looking */
1782 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1783 			continue;
1784 
1785 		/* If we've scanned all the rgrps, but found no free blocks
1786 		 * then this checks for some less likely conditions before
1787 		 * trying again.
1788 		 */
1789 		flags &= ~LM_FLAG_TRY;
1790 		loops++;
1791 		/* Check that fs hasn't grown if writing to rindex */
1792 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1793 			error = gfs2_ri_update(ip);
1794 			if (error)
1795 				return error;
1796 		}
1797 		/* Flushing the log may release space */
1798 		if (loops == 2)
1799 			gfs2_log_flush(sdp, NULL);
1800 	}
1801 
1802 	return -ENOSPC;
1803 }
1804 
1805 /**
1806  * gfs2_inplace_release - release an inplace reservation
1807  * @ip: the inode the reservation was taken out on
1808  *
1809  * Release a reservation made by gfs2_inplace_reserve().
1810  */
1811 
1812 void gfs2_inplace_release(struct gfs2_inode *ip)
1813 {
1814 	struct gfs2_blkreserv *rs = ip->i_res;
1815 
1816 	if (rs->rs_rgd_gh.gh_gl)
1817 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1818 }
1819 
1820 /**
1821  * gfs2_get_block_type - Check a block in a RG is of given type
1822  * @rgd: the resource group holding the block
1823  * @block: the block number
1824  *
1825  * Returns: The block type (GFS2_BLKST_*)
1826  */
1827 
1828 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1829 {
1830 	struct gfs2_rbm rbm = { .rgd = rgd, };
1831 	int ret;
1832 
1833 	ret = gfs2_rbm_from_block(&rbm, block);
1834 	WARN_ON_ONCE(ret != 0);
1835 
1836 	return gfs2_testbit(&rbm);
1837 }
1838 
1839 
1840 /**
1841  * gfs2_alloc_extent - allocate an extent from a given bitmap
1842  * @rbm: the resource group information
1843  * @dinode: TRUE if the first block we allocate is for a dinode
1844  * @n: The extent length (value/result)
1845  *
1846  * Add the bitmap buffer to the transaction.
1847  * Set the found bits to @new_state to change block's allocation state.
1848  */
1849 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1850 			     unsigned int *n)
1851 {
1852 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1853 	const unsigned int elen = *n;
1854 	u64 block;
1855 	int ret;
1856 
1857 	*n = 1;
1858 	block = gfs2_rbm_to_block(rbm);
1859 	gfs2_trans_add_bh(rbm->rgd->rd_gl, rbm->bi->bi_bh, 1);
1860 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1861 	block++;
1862 	while (*n < elen) {
1863 		ret = gfs2_rbm_from_block(&pos, block);
1864 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1865 			break;
1866 		gfs2_trans_add_bh(pos.rgd->rd_gl, pos.bi->bi_bh, 1);
1867 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1868 		(*n)++;
1869 		block++;
1870 	}
1871 }
1872 
1873 /**
1874  * rgblk_free - Change alloc state of given block(s)
1875  * @sdp: the filesystem
1876  * @bstart: the start of a run of blocks to free
1877  * @blen: the length of the block run (all must lie within ONE RG!)
1878  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1879  *
1880  * Returns:  Resource group containing the block(s)
1881  */
1882 
1883 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1884 				     u32 blen, unsigned char new_state)
1885 {
1886 	struct gfs2_rbm rbm;
1887 
1888 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1889 	if (!rbm.rgd) {
1890 		if (gfs2_consist(sdp))
1891 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1892 		return NULL;
1893 	}
1894 
1895 	while (blen--) {
1896 		gfs2_rbm_from_block(&rbm, bstart);
1897 		bstart++;
1898 		if (!rbm.bi->bi_clone) {
1899 			rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
1900 						   GFP_NOFS | __GFP_NOFAIL);
1901 			memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
1902 			       rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
1903 			       rbm.bi->bi_len);
1904 		}
1905 		gfs2_trans_add_bh(rbm.rgd->rd_gl, rbm.bi->bi_bh, 1);
1906 		gfs2_setbit(&rbm, false, new_state);
1907 	}
1908 
1909 	return rbm.rgd;
1910 }
1911 
1912 /**
1913  * gfs2_rgrp_dump - print out an rgrp
1914  * @seq: The iterator
1915  * @gl: The glock in question
1916  *
1917  */
1918 
1919 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
1920 {
1921 	struct gfs2_rgrpd *rgd = gl->gl_object;
1922 	struct gfs2_blkreserv *trs;
1923 	const struct rb_node *n;
1924 
1925 	if (rgd == NULL)
1926 		return 0;
1927 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
1928 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
1929 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
1930 		       rgd->rd_reserved);
1931 	spin_lock(&rgd->rd_rsspin);
1932 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
1933 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1934 		dump_rs(seq, trs);
1935 	}
1936 	spin_unlock(&rgd->rd_rsspin);
1937 	return 0;
1938 }
1939 
1940 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
1941 {
1942 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1943 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
1944 		(unsigned long long)rgd->rd_addr);
1945 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
1946 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
1947 	rgd->rd_flags |= GFS2_RDF_ERROR;
1948 }
1949 
1950 /**
1951  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
1952  * @ip: The inode we have just allocated blocks for
1953  * @rbm: The start of the allocated blocks
1954  * @len: The extent length
1955  *
1956  * Adjusts a reservation after an allocation has taken place. If the
1957  * reservation does not match the allocation, or if it is now empty
1958  * then it is removed.
1959  */
1960 
1961 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
1962 				    const struct gfs2_rbm *rbm, unsigned len)
1963 {
1964 	struct gfs2_blkreserv *rs = ip->i_res;
1965 	struct gfs2_rgrpd *rgd = rbm->rgd;
1966 	unsigned rlen;
1967 	u64 block;
1968 	int ret;
1969 
1970 	spin_lock(&rgd->rd_rsspin);
1971 	if (gfs2_rs_active(rs)) {
1972 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
1973 			block = gfs2_rbm_to_block(rbm);
1974 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
1975 			rlen = min(rs->rs_free, len);
1976 			rs->rs_free -= rlen;
1977 			rgd->rd_reserved -= rlen;
1978 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
1979 			if (rs->rs_free && !ret)
1980 				goto out;
1981 		}
1982 		__rs_deltree(ip, rs);
1983 	}
1984 out:
1985 	spin_unlock(&rgd->rd_rsspin);
1986 }
1987 
1988 /**
1989  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
1990  * @ip: the inode to allocate the block for
1991  * @bn: Used to return the starting block number
1992  * @nblocks: requested number of blocks/extent length (value/result)
1993  * @dinode: 1 if we're allocating a dinode block, else 0
1994  * @generation: the generation number of the inode
1995  *
1996  * Returns: 0 or error
1997  */
1998 
1999 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2000 		      bool dinode, u64 *generation)
2001 {
2002 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2003 	struct buffer_head *dibh;
2004 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2005 	unsigned int ndata;
2006 	u64 goal;
2007 	u64 block; /* block, within the file system scope */
2008 	int error;
2009 
2010 	if (gfs2_rs_active(ip->i_res))
2011 		goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2012 	else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2013 		goal = ip->i_goal;
2014 	else
2015 		goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2016 
2017 	gfs2_rbm_from_block(&rbm, goal);
2018 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2019 
2020 	if (error == -ENOSPC) {
2021 		gfs2_rbm_from_block(&rbm, goal);
2022 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2023 	}
2024 
2025 	/* Since all blocks are reserved in advance, this shouldn't happen */
2026 	if (error) {
2027 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2028 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2029 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2030 		goto rgrp_error;
2031 	}
2032 
2033 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2034 	block = gfs2_rbm_to_block(&rbm);
2035 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2036 	if (gfs2_rs_active(ip->i_res))
2037 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2038 	ndata = *nblocks;
2039 	if (dinode)
2040 		ndata--;
2041 
2042 	if (!dinode) {
2043 		ip->i_goal = block + ndata - 1;
2044 		error = gfs2_meta_inode_buffer(ip, &dibh);
2045 		if (error == 0) {
2046 			struct gfs2_dinode *di =
2047 				(struct gfs2_dinode *)dibh->b_data;
2048 			gfs2_trans_add_bh(ip->i_gl, dibh, 1);
2049 			di->di_goal_meta = di->di_goal_data =
2050 				cpu_to_be64(ip->i_goal);
2051 			brelse(dibh);
2052 		}
2053 	}
2054 	if (rbm.rgd->rd_free < *nblocks) {
2055 		printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2056 		goto rgrp_error;
2057 	}
2058 
2059 	rbm.rgd->rd_free -= *nblocks;
2060 	if (dinode) {
2061 		rbm.rgd->rd_dinodes++;
2062 		*generation = rbm.rgd->rd_igeneration++;
2063 		if (*generation == 0)
2064 			*generation = rbm.rgd->rd_igeneration++;
2065 	}
2066 
2067 	gfs2_trans_add_bh(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh, 1);
2068 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2069 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2070 
2071 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2072 	if (dinode)
2073 		gfs2_trans_add_unrevoke(sdp, block, 1);
2074 
2075 	/*
2076 	 * This needs reviewing to see why we cannot do the quota change
2077 	 * at this point in the dinode case.
2078 	 */
2079 	if (ndata)
2080 		gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
2081 				  ip->i_inode.i_gid);
2082 
2083 	rbm.rgd->rd_free_clone -= *nblocks;
2084 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2085 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2086 	*bn = block;
2087 	return 0;
2088 
2089 rgrp_error:
2090 	gfs2_rgrp_error(rbm.rgd);
2091 	return -EIO;
2092 }
2093 
2094 /**
2095  * __gfs2_free_blocks - free a contiguous run of block(s)
2096  * @ip: the inode these blocks are being freed from
2097  * @bstart: first block of a run of contiguous blocks
2098  * @blen: the length of the block run
2099  * @meta: 1 if the blocks represent metadata
2100  *
2101  */
2102 
2103 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2104 {
2105 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2106 	struct gfs2_rgrpd *rgd;
2107 
2108 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2109 	if (!rgd)
2110 		return;
2111 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2112 	rgd->rd_free += blen;
2113 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2114 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2115 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2116 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2117 
2118 	/* Directories keep their data in the metadata address space */
2119 	if (meta || ip->i_depth)
2120 		gfs2_meta_wipe(ip, bstart, blen);
2121 }
2122 
2123 /**
2124  * gfs2_free_meta - free a contiguous run of data block(s)
2125  * @ip: the inode these blocks are being freed from
2126  * @bstart: first block of a run of contiguous blocks
2127  * @blen: the length of the block run
2128  *
2129  */
2130 
2131 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2132 {
2133 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2134 
2135 	__gfs2_free_blocks(ip, bstart, blen, 1);
2136 	gfs2_statfs_change(sdp, 0, +blen, 0);
2137 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2138 }
2139 
2140 void gfs2_unlink_di(struct inode *inode)
2141 {
2142 	struct gfs2_inode *ip = GFS2_I(inode);
2143 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2144 	struct gfs2_rgrpd *rgd;
2145 	u64 blkno = ip->i_no_addr;
2146 
2147 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2148 	if (!rgd)
2149 		return;
2150 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2151 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2152 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2153 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2154 	update_rgrp_lvb_unlinked(rgd, 1);
2155 }
2156 
2157 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2158 {
2159 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2160 	struct gfs2_rgrpd *tmp_rgd;
2161 
2162 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2163 	if (!tmp_rgd)
2164 		return;
2165 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2166 
2167 	if (!rgd->rd_dinodes)
2168 		gfs2_consist_rgrpd(rgd);
2169 	rgd->rd_dinodes--;
2170 	rgd->rd_free++;
2171 
2172 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2173 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2174 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2175 	update_rgrp_lvb_unlinked(rgd, -1);
2176 
2177 	gfs2_statfs_change(sdp, 0, +1, -1);
2178 }
2179 
2180 
2181 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2182 {
2183 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2184 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2185 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2186 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2187 }
2188 
2189 /**
2190  * gfs2_check_blk_type - Check the type of a block
2191  * @sdp: The superblock
2192  * @no_addr: The block number to check
2193  * @type: The block type we are looking for
2194  *
2195  * Returns: 0 if the block type matches the expected type
2196  *          -ESTALE if it doesn't match
2197  *          or -ve errno if something went wrong while checking
2198  */
2199 
2200 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2201 {
2202 	struct gfs2_rgrpd *rgd;
2203 	struct gfs2_holder rgd_gh;
2204 	int error = -EINVAL;
2205 
2206 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2207 	if (!rgd)
2208 		goto fail;
2209 
2210 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2211 	if (error)
2212 		goto fail;
2213 
2214 	if (gfs2_get_block_type(rgd, no_addr) != type)
2215 		error = -ESTALE;
2216 
2217 	gfs2_glock_dq_uninit(&rgd_gh);
2218 fail:
2219 	return error;
2220 }
2221 
2222 /**
2223  * gfs2_rlist_add - add a RG to a list of RGs
2224  * @ip: the inode
2225  * @rlist: the list of resource groups
2226  * @block: the block
2227  *
2228  * Figure out what RG a block belongs to and add that RG to the list
2229  *
2230  * FIXME: Don't use NOFAIL
2231  *
2232  */
2233 
2234 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2235 		    u64 block)
2236 {
2237 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2238 	struct gfs2_rgrpd *rgd;
2239 	struct gfs2_rgrpd **tmp;
2240 	unsigned int new_space;
2241 	unsigned int x;
2242 
2243 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2244 		return;
2245 
2246 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2247 		rgd = ip->i_rgd;
2248 	else
2249 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2250 	if (!rgd) {
2251 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2252 		return;
2253 	}
2254 	ip->i_rgd = rgd;
2255 
2256 	for (x = 0; x < rlist->rl_rgrps; x++)
2257 		if (rlist->rl_rgd[x] == rgd)
2258 			return;
2259 
2260 	if (rlist->rl_rgrps == rlist->rl_space) {
2261 		new_space = rlist->rl_space + 10;
2262 
2263 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2264 			      GFP_NOFS | __GFP_NOFAIL);
2265 
2266 		if (rlist->rl_rgd) {
2267 			memcpy(tmp, rlist->rl_rgd,
2268 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2269 			kfree(rlist->rl_rgd);
2270 		}
2271 
2272 		rlist->rl_space = new_space;
2273 		rlist->rl_rgd = tmp;
2274 	}
2275 
2276 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2277 }
2278 
2279 /**
2280  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2281  *      and initialize an array of glock holders for them
2282  * @rlist: the list of resource groups
2283  * @state: the lock state to acquire the RG lock in
2284  *
2285  * FIXME: Don't use NOFAIL
2286  *
2287  */
2288 
2289 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2290 {
2291 	unsigned int x;
2292 
2293 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2294 				GFP_NOFS | __GFP_NOFAIL);
2295 	for (x = 0; x < rlist->rl_rgrps; x++)
2296 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2297 				state, 0,
2298 				&rlist->rl_ghs[x]);
2299 }
2300 
2301 /**
2302  * gfs2_rlist_free - free a resource group list
2303  * @list: the list of resource groups
2304  *
2305  */
2306 
2307 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2308 {
2309 	unsigned int x;
2310 
2311 	kfree(rlist->rl_rgd);
2312 
2313 	if (rlist->rl_ghs) {
2314 		for (x = 0; x < rlist->rl_rgrps; x++)
2315 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2316 		kfree(rlist->rl_ghs);
2317 		rlist->rl_ghs = NULL;
2318 	}
2319 }
2320 
2321