xref: /openbmc/linux/fs/gfs2/rgrp.c (revision cc8bbe1a)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22 
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37 
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40 
41 #if BITS_PER_LONG == 32
42 #define LBITMASK   (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK   (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50 
51 /*
52  * These routines are used by the resource group routines (rgrp.c)
53  * to keep track of block allocation.  Each block is represented by two
54  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55  *
56  * 0 = Free
57  * 1 = Used (not metadata)
58  * 2 = Unlinked (still in use) inode
59  * 3 = Used (metadata)
60  */
61 
62 struct gfs2_extent {
63 	struct gfs2_rbm rbm;
64 	u32 len;
65 };
66 
67 static const char valid_change[16] = {
68 	        /* current */
69 	/* n */ 0, 1, 1, 1,
70 	/* e */ 1, 0, 0, 0,
71 	/* w */ 0, 0, 0, 1,
72 	        1, 0, 0, 0
73 };
74 
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 			 const struct gfs2_inode *ip, bool nowrap,
77 			 const struct gfs2_alloc_parms *ap);
78 
79 
80 /**
81  * gfs2_setbit - Set a bit in the bitmaps
82  * @rbm: The position of the bit to set
83  * @do_clone: Also set the clone bitmap, if it exists
84  * @new_state: the new state of the block
85  *
86  */
87 
88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89 			       unsigned char new_state)
90 {
91 	unsigned char *byte1, *byte2, *end, cur_state;
92 	struct gfs2_bitmap *bi = rbm_bi(rbm);
93 	unsigned int buflen = bi->bi_len;
94 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95 
96 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98 
99 	BUG_ON(byte1 >= end);
100 
101 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102 
103 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104 		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 			rbm->offset, cur_state, new_state);
106 		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108 		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 			bi->bi_offset, bi->bi_len);
110 		dump_stack();
111 		gfs2_consist_rgrpd(rbm->rgd);
112 		return;
113 	}
114 	*byte1 ^= (cur_state ^ new_state) << bit;
115 
116 	if (do_clone && bi->bi_clone) {
117 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119 		*byte2 ^= (cur_state ^ new_state) << bit;
120 	}
121 }
122 
123 /**
124  * gfs2_testbit - test a bit in the bitmaps
125  * @rbm: The bit to test
126  *
127  * Returns: The two bit block state of the requested bit
128  */
129 
130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
131 {
132 	struct gfs2_bitmap *bi = rbm_bi(rbm);
133 	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
134 	const u8 *byte;
135 	unsigned int bit;
136 
137 	byte = buffer + (rbm->offset / GFS2_NBBY);
138 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139 
140 	return (*byte >> bit) & GFS2_BIT_MASK;
141 }
142 
143 /**
144  * gfs2_bit_search
145  * @ptr: Pointer to bitmap data
146  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147  * @state: The state we are searching for
148  *
149  * We xor the bitmap data with a patter which is the bitwise opposite
150  * of what we are looking for, this gives rise to a pattern of ones
151  * wherever there is a match. Since we have two bits per entry, we
152  * take this pattern, shift it down by one place and then and it with
153  * the original. All the even bit positions (0,2,4, etc) then represent
154  * successful matches, so we mask with 0x55555..... to remove the unwanted
155  * odd bit positions.
156  *
157  * This allows searching of a whole u64 at once (32 blocks) with a
158  * single test (on 64 bit arches).
159  */
160 
161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162 {
163 	u64 tmp;
164 	static const u64 search[] = {
165 		[0] = 0xffffffffffffffffULL,
166 		[1] = 0xaaaaaaaaaaaaaaaaULL,
167 		[2] = 0x5555555555555555ULL,
168 		[3] = 0x0000000000000000ULL,
169 	};
170 	tmp = le64_to_cpu(*ptr) ^ search[state];
171 	tmp &= (tmp >> 1);
172 	tmp &= mask;
173 	return tmp;
174 }
175 
176 /**
177  * rs_cmp - multi-block reservation range compare
178  * @blk: absolute file system block number of the new reservation
179  * @len: number of blocks in the new reservation
180  * @rs: existing reservation to compare against
181  *
182  * returns: 1 if the block range is beyond the reach of the reservation
183  *         -1 if the block range is before the start of the reservation
184  *          0 if the block range overlaps with the reservation
185  */
186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187 {
188 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189 
190 	if (blk >= startblk + rs->rs_free)
191 		return 1;
192 	if (blk + len - 1 < startblk)
193 		return -1;
194 	return 0;
195 }
196 
197 /**
198  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199  *       a block in a given allocation state.
200  * @buf: the buffer that holds the bitmaps
201  * @len: the length (in bytes) of the buffer
202  * @goal: start search at this block's bit-pair (within @buffer)
203  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204  *
205  * Scope of @goal and returned block number is only within this bitmap buffer,
206  * not entire rgrp or filesystem.  @buffer will be offset from the actual
207  * beginning of a bitmap block buffer, skipping any header structures, but
208  * headers are always a multiple of 64 bits long so that the buffer is
209  * always aligned to a 64 bit boundary.
210  *
211  * The size of the buffer is in bytes, but is it assumed that it is
212  * always ok to read a complete multiple of 64 bits at the end
213  * of the block in case the end is no aligned to a natural boundary.
214  *
215  * Return: the block number (bitmap buffer scope) that was found
216  */
217 
218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 		       u32 goal, u8 state)
220 {
221 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 	u64 tmp;
225 	u64 mask = 0x5555555555555555ULL;
226 	u32 bit;
227 
228 	/* Mask off bits we don't care about at the start of the search */
229 	mask <<= spoint;
230 	tmp = gfs2_bit_search(ptr, mask, state);
231 	ptr++;
232 	while(tmp == 0 && ptr < end) {
233 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 		ptr++;
235 	}
236 	/* Mask off any bits which are more than len bytes from the start */
237 	if (ptr == end && (len & (sizeof(u64) - 1)))
238 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 	/* Didn't find anything, so return */
240 	if (tmp == 0)
241 		return BFITNOENT;
242 	ptr--;
243 	bit = __ffs64(tmp);
244 	bit /= 2;	/* two bits per entry in the bitmap */
245 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246 }
247 
248 /**
249  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250  * @rbm: The rbm with rgd already set correctly
251  * @block: The block number (filesystem relative)
252  *
253  * This sets the bi and offset members of an rbm based on a
254  * resource group and a filesystem relative block number. The
255  * resource group must be set in the rbm on entry, the bi and
256  * offset members will be set by this function.
257  *
258  * Returns: 0 on success, or an error code
259  */
260 
261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262 {
263 	u64 rblock = block - rbm->rgd->rd_data0;
264 
265 	if (WARN_ON_ONCE(rblock > UINT_MAX))
266 		return -EINVAL;
267 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
268 		return -E2BIG;
269 
270 	rbm->bii = 0;
271 	rbm->offset = (u32)(rblock);
272 	/* Check if the block is within the first block */
273 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
274 		return 0;
275 
276 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 	rbm->offset += (sizeof(struct gfs2_rgrp) -
278 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
279 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
281 	return 0;
282 }
283 
284 /**
285  * gfs2_rbm_incr - increment an rbm structure
286  * @rbm: The rbm with rgd already set correctly
287  *
288  * This function takes an existing rbm structure and increments it to the next
289  * viable block offset.
290  *
291  * Returns: If incrementing the offset would cause the rbm to go past the
292  *          end of the rgrp, true is returned, otherwise false.
293  *
294  */
295 
296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
297 {
298 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
299 		rbm->offset++;
300 		return false;
301 	}
302 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
303 		return true;
304 
305 	rbm->offset = 0;
306 	rbm->bii++;
307 	return false;
308 }
309 
310 /**
311  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312  * @rbm: Position to search (value/result)
313  * @n_unaligned: Number of unaligned blocks to check
314  * @len: Decremented for each block found (terminate on zero)
315  *
316  * Returns: true if a non-free block is encountered
317  */
318 
319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
320 {
321 	u32 n;
322 	u8 res;
323 
324 	for (n = 0; n < n_unaligned; n++) {
325 		res = gfs2_testbit(rbm);
326 		if (res != GFS2_BLKST_FREE)
327 			return true;
328 		(*len)--;
329 		if (*len == 0)
330 			return true;
331 		if (gfs2_rbm_incr(rbm))
332 			return true;
333 	}
334 
335 	return false;
336 }
337 
338 /**
339  * gfs2_free_extlen - Return extent length of free blocks
340  * @rrbm: Starting position
341  * @len: Max length to check
342  *
343  * Starting at the block specified by the rbm, see how many free blocks
344  * there are, not reading more than len blocks ahead. This can be done
345  * using memchr_inv when the blocks are byte aligned, but has to be done
346  * on a block by block basis in case of unaligned blocks. Also this
347  * function can cope with bitmap boundaries (although it must stop on
348  * a resource group boundary)
349  *
350  * Returns: Number of free blocks in the extent
351  */
352 
353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
354 {
355 	struct gfs2_rbm rbm = *rrbm;
356 	u32 n_unaligned = rbm.offset & 3;
357 	u32 size = len;
358 	u32 bytes;
359 	u32 chunk_size;
360 	u8 *ptr, *start, *end;
361 	u64 block;
362 	struct gfs2_bitmap *bi;
363 
364 	if (n_unaligned &&
365 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
366 		goto out;
367 
368 	n_unaligned = len & 3;
369 	/* Start is now byte aligned */
370 	while (len > 3) {
371 		bi = rbm_bi(&rbm);
372 		start = bi->bi_bh->b_data;
373 		if (bi->bi_clone)
374 			start = bi->bi_clone;
375 		end = start + bi->bi_bh->b_size;
376 		start += bi->bi_offset;
377 		BUG_ON(rbm.offset & 3);
378 		start += (rbm.offset / GFS2_NBBY);
379 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
380 		ptr = memchr_inv(start, 0, bytes);
381 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
382 		chunk_size *= GFS2_NBBY;
383 		BUG_ON(len < chunk_size);
384 		len -= chunk_size;
385 		block = gfs2_rbm_to_block(&rbm);
386 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
387 			n_unaligned = 0;
388 			break;
389 		}
390 		if (ptr) {
391 			n_unaligned = 3;
392 			break;
393 		}
394 		n_unaligned = len & 3;
395 	}
396 
397 	/* Deal with any bits left over at the end */
398 	if (n_unaligned)
399 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
400 out:
401 	return size - len;
402 }
403 
404 /**
405  * gfs2_bitcount - count the number of bits in a certain state
406  * @rgd: the resource group descriptor
407  * @buffer: the buffer that holds the bitmaps
408  * @buflen: the length (in bytes) of the buffer
409  * @state: the state of the block we're looking for
410  *
411  * Returns: The number of bits
412  */
413 
414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
415 			 unsigned int buflen, u8 state)
416 {
417 	const u8 *byte = buffer;
418 	const u8 *end = buffer + buflen;
419 	const u8 state1 = state << 2;
420 	const u8 state2 = state << 4;
421 	const u8 state3 = state << 6;
422 	u32 count = 0;
423 
424 	for (; byte < end; byte++) {
425 		if (((*byte) & 0x03) == state)
426 			count++;
427 		if (((*byte) & 0x0C) == state1)
428 			count++;
429 		if (((*byte) & 0x30) == state2)
430 			count++;
431 		if (((*byte) & 0xC0) == state3)
432 			count++;
433 	}
434 
435 	return count;
436 }
437 
438 /**
439  * gfs2_rgrp_verify - Verify that a resource group is consistent
440  * @rgd: the rgrp
441  *
442  */
443 
444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
445 {
446 	struct gfs2_sbd *sdp = rgd->rd_sbd;
447 	struct gfs2_bitmap *bi = NULL;
448 	u32 length = rgd->rd_length;
449 	u32 count[4], tmp;
450 	int buf, x;
451 
452 	memset(count, 0, 4 * sizeof(u32));
453 
454 	/* Count # blocks in each of 4 possible allocation states */
455 	for (buf = 0; buf < length; buf++) {
456 		bi = rgd->rd_bits + buf;
457 		for (x = 0; x < 4; x++)
458 			count[x] += gfs2_bitcount(rgd,
459 						  bi->bi_bh->b_data +
460 						  bi->bi_offset,
461 						  bi->bi_len, x);
462 	}
463 
464 	if (count[0] != rgd->rd_free) {
465 		if (gfs2_consist_rgrpd(rgd))
466 			fs_err(sdp, "free data mismatch:  %u != %u\n",
467 			       count[0], rgd->rd_free);
468 		return;
469 	}
470 
471 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
472 	if (count[1] != tmp) {
473 		if (gfs2_consist_rgrpd(rgd))
474 			fs_err(sdp, "used data mismatch:  %u != %u\n",
475 			       count[1], tmp);
476 		return;
477 	}
478 
479 	if (count[2] + count[3] != rgd->rd_dinodes) {
480 		if (gfs2_consist_rgrpd(rgd))
481 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
482 			       count[2] + count[3], rgd->rd_dinodes);
483 		return;
484 	}
485 }
486 
487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
488 {
489 	u64 first = rgd->rd_data0;
490 	u64 last = first + rgd->rd_data;
491 	return first <= block && block < last;
492 }
493 
494 /**
495  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496  * @sdp: The GFS2 superblock
497  * @blk: The data block number
498  * @exact: True if this needs to be an exact match
499  *
500  * Returns: The resource group, or NULL if not found
501  */
502 
503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
504 {
505 	struct rb_node *n, *next;
506 	struct gfs2_rgrpd *cur;
507 
508 	spin_lock(&sdp->sd_rindex_spin);
509 	n = sdp->sd_rindex_tree.rb_node;
510 	while (n) {
511 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 		next = NULL;
513 		if (blk < cur->rd_addr)
514 			next = n->rb_left;
515 		else if (blk >= cur->rd_data0 + cur->rd_data)
516 			next = n->rb_right;
517 		if (next == NULL) {
518 			spin_unlock(&sdp->sd_rindex_spin);
519 			if (exact) {
520 				if (blk < cur->rd_addr)
521 					return NULL;
522 				if (blk >= cur->rd_data0 + cur->rd_data)
523 					return NULL;
524 			}
525 			return cur;
526 		}
527 		n = next;
528 	}
529 	spin_unlock(&sdp->sd_rindex_spin);
530 
531 	return NULL;
532 }
533 
534 /**
535  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536  * @sdp: The GFS2 superblock
537  *
538  * Returns: The first rgrp in the filesystem
539  */
540 
541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
542 {
543 	const struct rb_node *n;
544 	struct gfs2_rgrpd *rgd;
545 
546 	spin_lock(&sdp->sd_rindex_spin);
547 	n = rb_first(&sdp->sd_rindex_tree);
548 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
549 	spin_unlock(&sdp->sd_rindex_spin);
550 
551 	return rgd;
552 }
553 
554 /**
555  * gfs2_rgrpd_get_next - get the next RG
556  * @rgd: the resource group descriptor
557  *
558  * Returns: The next rgrp
559  */
560 
561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
562 {
563 	struct gfs2_sbd *sdp = rgd->rd_sbd;
564 	const struct rb_node *n;
565 
566 	spin_lock(&sdp->sd_rindex_spin);
567 	n = rb_next(&rgd->rd_node);
568 	if (n == NULL)
569 		n = rb_first(&sdp->sd_rindex_tree);
570 
571 	if (unlikely(&rgd->rd_node == n)) {
572 		spin_unlock(&sdp->sd_rindex_spin);
573 		return NULL;
574 	}
575 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
576 	spin_unlock(&sdp->sd_rindex_spin);
577 	return rgd;
578 }
579 
580 void check_and_update_goal(struct gfs2_inode *ip)
581 {
582 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
583 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
584 		ip->i_goal = ip->i_no_addr;
585 }
586 
587 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
588 {
589 	int x;
590 
591 	for (x = 0; x < rgd->rd_length; x++) {
592 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
593 		kfree(bi->bi_clone);
594 		bi->bi_clone = NULL;
595 	}
596 }
597 
598 /**
599  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
600  *                 plus a quota allocations data structure, if necessary
601  * @ip: the inode for this reservation
602  */
603 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
604 {
605 	return gfs2_qa_alloc(ip);
606 }
607 
608 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
609 {
610 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
611 		       (unsigned long long)rs->rs_inum,
612 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
613 		       rs->rs_rbm.offset, rs->rs_free);
614 }
615 
616 /**
617  * __rs_deltree - remove a multi-block reservation from the rgd tree
618  * @rs: The reservation to remove
619  *
620  */
621 static void __rs_deltree(struct gfs2_blkreserv *rs)
622 {
623 	struct gfs2_rgrpd *rgd;
624 
625 	if (!gfs2_rs_active(rs))
626 		return;
627 
628 	rgd = rs->rs_rbm.rgd;
629 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
630 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
631 	RB_CLEAR_NODE(&rs->rs_node);
632 
633 	if (rs->rs_free) {
634 		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
635 
636 		/* return reserved blocks to the rgrp */
637 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
638 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
639 		/* The rgrp extent failure point is likely not to increase;
640 		   it will only do so if the freed blocks are somehow
641 		   contiguous with a span of free blocks that follows. Still,
642 		   it will force the number to be recalculated later. */
643 		rgd->rd_extfail_pt += rs->rs_free;
644 		rs->rs_free = 0;
645 		clear_bit(GBF_FULL, &bi->bi_flags);
646 	}
647 }
648 
649 /**
650  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
651  * @rs: The reservation to remove
652  *
653  */
654 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
655 {
656 	struct gfs2_rgrpd *rgd;
657 
658 	rgd = rs->rs_rbm.rgd;
659 	if (rgd) {
660 		spin_lock(&rgd->rd_rsspin);
661 		__rs_deltree(rs);
662 		spin_unlock(&rgd->rd_rsspin);
663 	}
664 }
665 
666 /**
667  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
668  * @ip: The inode for this reservation
669  * @wcount: The inode's write count, or NULL
670  *
671  */
672 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
673 {
674 	down_write(&ip->i_rw_mutex);
675 	if ((wcount == NULL) || (atomic_read(wcount) <= 1)) {
676 		gfs2_rs_deltree(&ip->i_res);
677 		BUG_ON(ip->i_res.rs_free);
678 	}
679 	up_write(&ip->i_rw_mutex);
680 	gfs2_qa_delete(ip, wcount);
681 }
682 
683 /**
684  * return_all_reservations - return all reserved blocks back to the rgrp.
685  * @rgd: the rgrp that needs its space back
686  *
687  * We previously reserved a bunch of blocks for allocation. Now we need to
688  * give them back. This leave the reservation structures in tact, but removes
689  * all of their corresponding "no-fly zones".
690  */
691 static void return_all_reservations(struct gfs2_rgrpd *rgd)
692 {
693 	struct rb_node *n;
694 	struct gfs2_blkreserv *rs;
695 
696 	spin_lock(&rgd->rd_rsspin);
697 	while ((n = rb_first(&rgd->rd_rstree))) {
698 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
699 		__rs_deltree(rs);
700 	}
701 	spin_unlock(&rgd->rd_rsspin);
702 }
703 
704 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
705 {
706 	struct rb_node *n;
707 	struct gfs2_rgrpd *rgd;
708 	struct gfs2_glock *gl;
709 
710 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
711 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
712 		gl = rgd->rd_gl;
713 
714 		rb_erase(n, &sdp->sd_rindex_tree);
715 
716 		if (gl) {
717 			spin_lock(&gl->gl_lockref.lock);
718 			gl->gl_object = NULL;
719 			spin_unlock(&gl->gl_lockref.lock);
720 			gfs2_glock_add_to_lru(gl);
721 			gfs2_glock_put(gl);
722 		}
723 
724 		gfs2_free_clones(rgd);
725 		kfree(rgd->rd_bits);
726 		return_all_reservations(rgd);
727 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
728 	}
729 }
730 
731 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
732 {
733 	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
734 	pr_info("ri_length = %u\n", rgd->rd_length);
735 	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
736 	pr_info("ri_data = %u\n", rgd->rd_data);
737 	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
738 }
739 
740 /**
741  * gfs2_compute_bitstructs - Compute the bitmap sizes
742  * @rgd: The resource group descriptor
743  *
744  * Calculates bitmap descriptors, one for each block that contains bitmap data
745  *
746  * Returns: errno
747  */
748 
749 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
750 {
751 	struct gfs2_sbd *sdp = rgd->rd_sbd;
752 	struct gfs2_bitmap *bi;
753 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
754 	u32 bytes_left, bytes;
755 	int x;
756 
757 	if (!length)
758 		return -EINVAL;
759 
760 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
761 	if (!rgd->rd_bits)
762 		return -ENOMEM;
763 
764 	bytes_left = rgd->rd_bitbytes;
765 
766 	for (x = 0; x < length; x++) {
767 		bi = rgd->rd_bits + x;
768 
769 		bi->bi_flags = 0;
770 		/* small rgrp; bitmap stored completely in header block */
771 		if (length == 1) {
772 			bytes = bytes_left;
773 			bi->bi_offset = sizeof(struct gfs2_rgrp);
774 			bi->bi_start = 0;
775 			bi->bi_len = bytes;
776 			bi->bi_blocks = bytes * GFS2_NBBY;
777 		/* header block */
778 		} else if (x == 0) {
779 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
780 			bi->bi_offset = sizeof(struct gfs2_rgrp);
781 			bi->bi_start = 0;
782 			bi->bi_len = bytes;
783 			bi->bi_blocks = bytes * GFS2_NBBY;
784 		/* last block */
785 		} else if (x + 1 == length) {
786 			bytes = bytes_left;
787 			bi->bi_offset = sizeof(struct gfs2_meta_header);
788 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
789 			bi->bi_len = bytes;
790 			bi->bi_blocks = bytes * GFS2_NBBY;
791 		/* other blocks */
792 		} else {
793 			bytes = sdp->sd_sb.sb_bsize -
794 				sizeof(struct gfs2_meta_header);
795 			bi->bi_offset = sizeof(struct gfs2_meta_header);
796 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
797 			bi->bi_len = bytes;
798 			bi->bi_blocks = bytes * GFS2_NBBY;
799 		}
800 
801 		bytes_left -= bytes;
802 	}
803 
804 	if (bytes_left) {
805 		gfs2_consist_rgrpd(rgd);
806 		return -EIO;
807 	}
808 	bi = rgd->rd_bits + (length - 1);
809 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
810 		if (gfs2_consist_rgrpd(rgd)) {
811 			gfs2_rindex_print(rgd);
812 			fs_err(sdp, "start=%u len=%u offset=%u\n",
813 			       bi->bi_start, bi->bi_len, bi->bi_offset);
814 		}
815 		return -EIO;
816 	}
817 
818 	return 0;
819 }
820 
821 /**
822  * gfs2_ri_total - Total up the file system space, according to the rindex.
823  * @sdp: the filesystem
824  *
825  */
826 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
827 {
828 	u64 total_data = 0;
829 	struct inode *inode = sdp->sd_rindex;
830 	struct gfs2_inode *ip = GFS2_I(inode);
831 	char buf[sizeof(struct gfs2_rindex)];
832 	int error, rgrps;
833 
834 	for (rgrps = 0;; rgrps++) {
835 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
836 
837 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
838 			break;
839 		error = gfs2_internal_read(ip, buf, &pos,
840 					   sizeof(struct gfs2_rindex));
841 		if (error != sizeof(struct gfs2_rindex))
842 			break;
843 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
844 	}
845 	return total_data;
846 }
847 
848 static int rgd_insert(struct gfs2_rgrpd *rgd)
849 {
850 	struct gfs2_sbd *sdp = rgd->rd_sbd;
851 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
852 
853 	/* Figure out where to put new node */
854 	while (*newn) {
855 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
856 						  rd_node);
857 
858 		parent = *newn;
859 		if (rgd->rd_addr < cur->rd_addr)
860 			newn = &((*newn)->rb_left);
861 		else if (rgd->rd_addr > cur->rd_addr)
862 			newn = &((*newn)->rb_right);
863 		else
864 			return -EEXIST;
865 	}
866 
867 	rb_link_node(&rgd->rd_node, parent, newn);
868 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
869 	sdp->sd_rgrps++;
870 	return 0;
871 }
872 
873 /**
874  * read_rindex_entry - Pull in a new resource index entry from the disk
875  * @ip: Pointer to the rindex inode
876  *
877  * Returns: 0 on success, > 0 on EOF, error code otherwise
878  */
879 
880 static int read_rindex_entry(struct gfs2_inode *ip)
881 {
882 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
883 	const unsigned bsize = sdp->sd_sb.sb_bsize;
884 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
885 	struct gfs2_rindex buf;
886 	int error;
887 	struct gfs2_rgrpd *rgd;
888 
889 	if (pos >= i_size_read(&ip->i_inode))
890 		return 1;
891 
892 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
893 				   sizeof(struct gfs2_rindex));
894 
895 	if (error != sizeof(struct gfs2_rindex))
896 		return (error == 0) ? 1 : error;
897 
898 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
899 	error = -ENOMEM;
900 	if (!rgd)
901 		return error;
902 
903 	rgd->rd_sbd = sdp;
904 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
905 	rgd->rd_length = be32_to_cpu(buf.ri_length);
906 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
907 	rgd->rd_data = be32_to_cpu(buf.ri_data);
908 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
909 	spin_lock_init(&rgd->rd_rsspin);
910 
911 	error = compute_bitstructs(rgd);
912 	if (error)
913 		goto fail;
914 
915 	error = gfs2_glock_get(sdp, rgd->rd_addr,
916 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
917 	if (error)
918 		goto fail;
919 
920 	rgd->rd_gl->gl_object = rgd;
921 	rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_CACHE_MASK;
922 	rgd->rd_gl->gl_vm.end = PAGE_CACHE_ALIGN((rgd->rd_addr +
923 						  rgd->rd_length) * bsize) - 1;
924 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
925 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
926 	if (rgd->rd_data > sdp->sd_max_rg_data)
927 		sdp->sd_max_rg_data = rgd->rd_data;
928 	spin_lock(&sdp->sd_rindex_spin);
929 	error = rgd_insert(rgd);
930 	spin_unlock(&sdp->sd_rindex_spin);
931 	if (!error)
932 		return 0;
933 
934 	error = 0; /* someone else read in the rgrp; free it and ignore it */
935 	gfs2_glock_put(rgd->rd_gl);
936 
937 fail:
938 	kfree(rgd->rd_bits);
939 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
940 	return error;
941 }
942 
943 /**
944  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
945  * @sdp: the GFS2 superblock
946  *
947  * The purpose of this function is to select a subset of the resource groups
948  * and mark them as PREFERRED. We do it in such a way that each node prefers
949  * to use a unique set of rgrps to minimize glock contention.
950  */
951 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
952 {
953 	struct gfs2_rgrpd *rgd, *first;
954 	int i;
955 
956 	/* Skip an initial number of rgrps, based on this node's journal ID.
957 	   That should start each node out on its own set. */
958 	rgd = gfs2_rgrpd_get_first(sdp);
959 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
960 		rgd = gfs2_rgrpd_get_next(rgd);
961 	first = rgd;
962 
963 	do {
964 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
965 		for (i = 0; i < sdp->sd_journals; i++) {
966 			rgd = gfs2_rgrpd_get_next(rgd);
967 			if (!rgd || rgd == first)
968 				break;
969 		}
970 	} while (rgd && rgd != first);
971 }
972 
973 /**
974  * gfs2_ri_update - Pull in a new resource index from the disk
975  * @ip: pointer to the rindex inode
976  *
977  * Returns: 0 on successful update, error code otherwise
978  */
979 
980 static int gfs2_ri_update(struct gfs2_inode *ip)
981 {
982 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
983 	int error;
984 
985 	do {
986 		error = read_rindex_entry(ip);
987 	} while (error == 0);
988 
989 	if (error < 0)
990 		return error;
991 
992 	set_rgrp_preferences(sdp);
993 
994 	sdp->sd_rindex_uptodate = 1;
995 	return 0;
996 }
997 
998 /**
999  * gfs2_rindex_update - Update the rindex if required
1000  * @sdp: The GFS2 superblock
1001  *
1002  * We grab a lock on the rindex inode to make sure that it doesn't
1003  * change whilst we are performing an operation. We keep this lock
1004  * for quite long periods of time compared to other locks. This
1005  * doesn't matter, since it is shared and it is very, very rarely
1006  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1007  *
1008  * This makes sure that we're using the latest copy of the resource index
1009  * special file, which might have been updated if someone expanded the
1010  * filesystem (via gfs2_grow utility), which adds new resource groups.
1011  *
1012  * Returns: 0 on succeess, error code otherwise
1013  */
1014 
1015 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1016 {
1017 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1018 	struct gfs2_glock *gl = ip->i_gl;
1019 	struct gfs2_holder ri_gh;
1020 	int error = 0;
1021 	int unlock_required = 0;
1022 
1023 	/* Read new copy from disk if we don't have the latest */
1024 	if (!sdp->sd_rindex_uptodate) {
1025 		if (!gfs2_glock_is_locked_by_me(gl)) {
1026 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1027 			if (error)
1028 				return error;
1029 			unlock_required = 1;
1030 		}
1031 		if (!sdp->sd_rindex_uptodate)
1032 			error = gfs2_ri_update(ip);
1033 		if (unlock_required)
1034 			gfs2_glock_dq_uninit(&ri_gh);
1035 	}
1036 
1037 	return error;
1038 }
1039 
1040 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1041 {
1042 	const struct gfs2_rgrp *str = buf;
1043 	u32 rg_flags;
1044 
1045 	rg_flags = be32_to_cpu(str->rg_flags);
1046 	rg_flags &= ~GFS2_RDF_MASK;
1047 	rgd->rd_flags &= GFS2_RDF_MASK;
1048 	rgd->rd_flags |= rg_flags;
1049 	rgd->rd_free = be32_to_cpu(str->rg_free);
1050 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1051 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1052 }
1053 
1054 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1055 {
1056 	struct gfs2_rgrp *str = buf;
1057 
1058 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1059 	str->rg_free = cpu_to_be32(rgd->rd_free);
1060 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1061 	str->__pad = cpu_to_be32(0);
1062 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1063 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1064 }
1065 
1066 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1067 {
1068 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1069 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1070 
1071 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1072 	    rgl->rl_dinodes != str->rg_dinodes ||
1073 	    rgl->rl_igeneration != str->rg_igeneration)
1074 		return 0;
1075 	return 1;
1076 }
1077 
1078 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1079 {
1080 	const struct gfs2_rgrp *str = buf;
1081 
1082 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1083 	rgl->rl_flags = str->rg_flags;
1084 	rgl->rl_free = str->rg_free;
1085 	rgl->rl_dinodes = str->rg_dinodes;
1086 	rgl->rl_igeneration = str->rg_igeneration;
1087 	rgl->__pad = 0UL;
1088 }
1089 
1090 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1091 {
1092 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1093 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1094 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1095 }
1096 
1097 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1098 {
1099 	struct gfs2_bitmap *bi;
1100 	const u32 length = rgd->rd_length;
1101 	const u8 *buffer = NULL;
1102 	u32 i, goal, count = 0;
1103 
1104 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1105 		goal = 0;
1106 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1107 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1108 		while (goal < bi->bi_len * GFS2_NBBY) {
1109 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1110 					   GFS2_BLKST_UNLINKED);
1111 			if (goal == BFITNOENT)
1112 				break;
1113 			count++;
1114 			goal++;
1115 		}
1116 	}
1117 
1118 	return count;
1119 }
1120 
1121 
1122 /**
1123  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1124  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1125  *
1126  * Read in all of a Resource Group's header and bitmap blocks.
1127  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1128  *
1129  * Returns: errno
1130  */
1131 
1132 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1133 {
1134 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1135 	struct gfs2_glock *gl = rgd->rd_gl;
1136 	unsigned int length = rgd->rd_length;
1137 	struct gfs2_bitmap *bi;
1138 	unsigned int x, y;
1139 	int error;
1140 
1141 	if (rgd->rd_bits[0].bi_bh != NULL)
1142 		return 0;
1143 
1144 	for (x = 0; x < length; x++) {
1145 		bi = rgd->rd_bits + x;
1146 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1147 		if (error)
1148 			goto fail;
1149 	}
1150 
1151 	for (y = length; y--;) {
1152 		bi = rgd->rd_bits + y;
1153 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1154 		if (error)
1155 			goto fail;
1156 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1157 					      GFS2_METATYPE_RG)) {
1158 			error = -EIO;
1159 			goto fail;
1160 		}
1161 	}
1162 
1163 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1164 		for (x = 0; x < length; x++)
1165 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1166 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1167 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1168 		rgd->rd_free_clone = rgd->rd_free;
1169 		/* max out the rgrp allocation failure point */
1170 		rgd->rd_extfail_pt = rgd->rd_free;
1171 	}
1172 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1173 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1174 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1175 				     rgd->rd_bits[0].bi_bh->b_data);
1176 	}
1177 	else if (sdp->sd_args.ar_rgrplvb) {
1178 		if (!gfs2_rgrp_lvb_valid(rgd)){
1179 			gfs2_consist_rgrpd(rgd);
1180 			error = -EIO;
1181 			goto fail;
1182 		}
1183 		if (rgd->rd_rgl->rl_unlinked == 0)
1184 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1185 	}
1186 	return 0;
1187 
1188 fail:
1189 	while (x--) {
1190 		bi = rgd->rd_bits + x;
1191 		brelse(bi->bi_bh);
1192 		bi->bi_bh = NULL;
1193 		gfs2_assert_warn(sdp, !bi->bi_clone);
1194 	}
1195 
1196 	return error;
1197 }
1198 
1199 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1200 {
1201 	u32 rl_flags;
1202 
1203 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1204 		return 0;
1205 
1206 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1207 		return gfs2_rgrp_bh_get(rgd);
1208 
1209 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1210 	rl_flags &= ~GFS2_RDF_MASK;
1211 	rgd->rd_flags &= GFS2_RDF_MASK;
1212 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1213 	if (rgd->rd_rgl->rl_unlinked == 0)
1214 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1215 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1216 	rgd->rd_free_clone = rgd->rd_free;
1217 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1218 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1219 	return 0;
1220 }
1221 
1222 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1223 {
1224 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1225 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1226 
1227 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1228 		return 0;
1229 	return gfs2_rgrp_bh_get(rgd);
1230 }
1231 
1232 /**
1233  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1234  * @rgd: The resource group
1235  *
1236  */
1237 
1238 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1239 {
1240 	int x, length = rgd->rd_length;
1241 
1242 	for (x = 0; x < length; x++) {
1243 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1244 		if (bi->bi_bh) {
1245 			brelse(bi->bi_bh);
1246 			bi->bi_bh = NULL;
1247 		}
1248 	}
1249 
1250 }
1251 
1252 /**
1253  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1254  * @gh: The glock holder for the resource group
1255  *
1256  */
1257 
1258 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1259 {
1260 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1261 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1262 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1263 
1264 	if (rgd && demote_requested)
1265 		gfs2_rgrp_brelse(rgd);
1266 }
1267 
1268 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1269 			     struct buffer_head *bh,
1270 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1271 {
1272 	struct super_block *sb = sdp->sd_vfs;
1273 	u64 blk;
1274 	sector_t start = 0;
1275 	sector_t nr_blks = 0;
1276 	int rv;
1277 	unsigned int x;
1278 	u32 trimmed = 0;
1279 	u8 diff;
1280 
1281 	for (x = 0; x < bi->bi_len; x++) {
1282 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1283 		clone += bi->bi_offset;
1284 		clone += x;
1285 		if (bh) {
1286 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1287 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1288 		} else {
1289 			diff = ~(*clone | (*clone >> 1));
1290 		}
1291 		diff &= 0x55;
1292 		if (diff == 0)
1293 			continue;
1294 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1295 		while(diff) {
1296 			if (diff & 1) {
1297 				if (nr_blks == 0)
1298 					goto start_new_extent;
1299 				if ((start + nr_blks) != blk) {
1300 					if (nr_blks >= minlen) {
1301 						rv = sb_issue_discard(sb,
1302 							start, nr_blks,
1303 							GFP_NOFS, 0);
1304 						if (rv)
1305 							goto fail;
1306 						trimmed += nr_blks;
1307 					}
1308 					nr_blks = 0;
1309 start_new_extent:
1310 					start = blk;
1311 				}
1312 				nr_blks++;
1313 			}
1314 			diff >>= 2;
1315 			blk++;
1316 		}
1317 	}
1318 	if (nr_blks >= minlen) {
1319 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1320 		if (rv)
1321 			goto fail;
1322 		trimmed += nr_blks;
1323 	}
1324 	if (ptrimmed)
1325 		*ptrimmed = trimmed;
1326 	return 0;
1327 
1328 fail:
1329 	if (sdp->sd_args.ar_discard)
1330 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1331 	sdp->sd_args.ar_discard = 0;
1332 	return -EIO;
1333 }
1334 
1335 /**
1336  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1337  * @filp: Any file on the filesystem
1338  * @argp: Pointer to the arguments (also used to pass result)
1339  *
1340  * Returns: 0 on success, otherwise error code
1341  */
1342 
1343 int gfs2_fitrim(struct file *filp, void __user *argp)
1344 {
1345 	struct inode *inode = file_inode(filp);
1346 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1347 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1348 	struct buffer_head *bh;
1349 	struct gfs2_rgrpd *rgd;
1350 	struct gfs2_rgrpd *rgd_end;
1351 	struct gfs2_holder gh;
1352 	struct fstrim_range r;
1353 	int ret = 0;
1354 	u64 amt;
1355 	u64 trimmed = 0;
1356 	u64 start, end, minlen;
1357 	unsigned int x;
1358 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1359 
1360 	if (!capable(CAP_SYS_ADMIN))
1361 		return -EPERM;
1362 
1363 	if (!blk_queue_discard(q))
1364 		return -EOPNOTSUPP;
1365 
1366 	if (copy_from_user(&r, argp, sizeof(r)))
1367 		return -EFAULT;
1368 
1369 	ret = gfs2_rindex_update(sdp);
1370 	if (ret)
1371 		return ret;
1372 
1373 	start = r.start >> bs_shift;
1374 	end = start + (r.len >> bs_shift);
1375 	minlen = max_t(u64, r.minlen,
1376 		       q->limits.discard_granularity) >> bs_shift;
1377 
1378 	if (end <= start || minlen > sdp->sd_max_rg_data)
1379 		return -EINVAL;
1380 
1381 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1382 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1383 
1384 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1385 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1386 		return -EINVAL; /* start is beyond the end of the fs */
1387 
1388 	while (1) {
1389 
1390 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1391 		if (ret)
1392 			goto out;
1393 
1394 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1395 			/* Trim each bitmap in the rgrp */
1396 			for (x = 0; x < rgd->rd_length; x++) {
1397 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1398 				ret = gfs2_rgrp_send_discards(sdp,
1399 						rgd->rd_data0, NULL, bi, minlen,
1400 						&amt);
1401 				if (ret) {
1402 					gfs2_glock_dq_uninit(&gh);
1403 					goto out;
1404 				}
1405 				trimmed += amt;
1406 			}
1407 
1408 			/* Mark rgrp as having been trimmed */
1409 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1410 			if (ret == 0) {
1411 				bh = rgd->rd_bits[0].bi_bh;
1412 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1413 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1414 				gfs2_rgrp_out(rgd, bh->b_data);
1415 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1416 				gfs2_trans_end(sdp);
1417 			}
1418 		}
1419 		gfs2_glock_dq_uninit(&gh);
1420 
1421 		if (rgd == rgd_end)
1422 			break;
1423 
1424 		rgd = gfs2_rgrpd_get_next(rgd);
1425 	}
1426 
1427 out:
1428 	r.len = trimmed << bs_shift;
1429 	if (copy_to_user(argp, &r, sizeof(r)))
1430 		return -EFAULT;
1431 
1432 	return ret;
1433 }
1434 
1435 /**
1436  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1437  * @ip: the inode structure
1438  *
1439  */
1440 static void rs_insert(struct gfs2_inode *ip)
1441 {
1442 	struct rb_node **newn, *parent = NULL;
1443 	int rc;
1444 	struct gfs2_blkreserv *rs = &ip->i_res;
1445 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1446 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1447 
1448 	BUG_ON(gfs2_rs_active(rs));
1449 
1450 	spin_lock(&rgd->rd_rsspin);
1451 	newn = &rgd->rd_rstree.rb_node;
1452 	while (*newn) {
1453 		struct gfs2_blkreserv *cur =
1454 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1455 
1456 		parent = *newn;
1457 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1458 		if (rc > 0)
1459 			newn = &((*newn)->rb_right);
1460 		else if (rc < 0)
1461 			newn = &((*newn)->rb_left);
1462 		else {
1463 			spin_unlock(&rgd->rd_rsspin);
1464 			WARN_ON(1);
1465 			return;
1466 		}
1467 	}
1468 
1469 	rb_link_node(&rs->rs_node, parent, newn);
1470 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1471 
1472 	/* Do our rgrp accounting for the reservation */
1473 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1474 	spin_unlock(&rgd->rd_rsspin);
1475 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1476 }
1477 
1478 /**
1479  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1480  * @rgd: the resource group descriptor
1481  * @ip: pointer to the inode for which we're reserving blocks
1482  * @ap: the allocation parameters
1483  *
1484  */
1485 
1486 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1487 			   const struct gfs2_alloc_parms *ap)
1488 {
1489 	struct gfs2_rbm rbm = { .rgd = rgd, };
1490 	u64 goal;
1491 	struct gfs2_blkreserv *rs = &ip->i_res;
1492 	u32 extlen;
1493 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1494 	int ret;
1495 	struct inode *inode = &ip->i_inode;
1496 
1497 	if (S_ISDIR(inode->i_mode))
1498 		extlen = 1;
1499 	else {
1500 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1501 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1502 	}
1503 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1504 		return;
1505 
1506 	/* Find bitmap block that contains bits for goal block */
1507 	if (rgrp_contains_block(rgd, ip->i_goal))
1508 		goal = ip->i_goal;
1509 	else
1510 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1511 
1512 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1513 		return;
1514 
1515 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1516 	if (ret == 0) {
1517 		rs->rs_rbm = rbm;
1518 		rs->rs_free = extlen;
1519 		rs->rs_inum = ip->i_no_addr;
1520 		rs_insert(ip);
1521 	} else {
1522 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1523 			rgd->rd_last_alloc = 0;
1524 	}
1525 }
1526 
1527 /**
1528  * gfs2_next_unreserved_block - Return next block that is not reserved
1529  * @rgd: The resource group
1530  * @block: The starting block
1531  * @length: The required length
1532  * @ip: Ignore any reservations for this inode
1533  *
1534  * If the block does not appear in any reservation, then return the
1535  * block number unchanged. If it does appear in the reservation, then
1536  * keep looking through the tree of reservations in order to find the
1537  * first block number which is not reserved.
1538  */
1539 
1540 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1541 				      u32 length,
1542 				      const struct gfs2_inode *ip)
1543 {
1544 	struct gfs2_blkreserv *rs;
1545 	struct rb_node *n;
1546 	int rc;
1547 
1548 	spin_lock(&rgd->rd_rsspin);
1549 	n = rgd->rd_rstree.rb_node;
1550 	while (n) {
1551 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1552 		rc = rs_cmp(block, length, rs);
1553 		if (rc < 0)
1554 			n = n->rb_left;
1555 		else if (rc > 0)
1556 			n = n->rb_right;
1557 		else
1558 			break;
1559 	}
1560 
1561 	if (n) {
1562 		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1563 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1564 			n = n->rb_right;
1565 			if (n == NULL)
1566 				break;
1567 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1568 		}
1569 	}
1570 
1571 	spin_unlock(&rgd->rd_rsspin);
1572 	return block;
1573 }
1574 
1575 /**
1576  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1577  * @rbm: The current position in the resource group
1578  * @ip: The inode for which we are searching for blocks
1579  * @minext: The minimum extent length
1580  * @maxext: A pointer to the maximum extent structure
1581  *
1582  * This checks the current position in the rgrp to see whether there is
1583  * a reservation covering this block. If not then this function is a
1584  * no-op. If there is, then the position is moved to the end of the
1585  * contiguous reservation(s) so that we are pointing at the first
1586  * non-reserved block.
1587  *
1588  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1589  */
1590 
1591 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1592 					     const struct gfs2_inode *ip,
1593 					     u32 minext,
1594 					     struct gfs2_extent *maxext)
1595 {
1596 	u64 block = gfs2_rbm_to_block(rbm);
1597 	u32 extlen = 1;
1598 	u64 nblock;
1599 	int ret;
1600 
1601 	/*
1602 	 * If we have a minimum extent length, then skip over any extent
1603 	 * which is less than the min extent length in size.
1604 	 */
1605 	if (minext) {
1606 		extlen = gfs2_free_extlen(rbm, minext);
1607 		if (extlen <= maxext->len)
1608 			goto fail;
1609 	}
1610 
1611 	/*
1612 	 * Check the extent which has been found against the reservations
1613 	 * and skip if parts of it are already reserved
1614 	 */
1615 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1616 	if (nblock == block) {
1617 		if (!minext || extlen >= minext)
1618 			return 0;
1619 
1620 		if (extlen > maxext->len) {
1621 			maxext->len = extlen;
1622 			maxext->rbm = *rbm;
1623 		}
1624 fail:
1625 		nblock = block + extlen;
1626 	}
1627 	ret = gfs2_rbm_from_block(rbm, nblock);
1628 	if (ret < 0)
1629 		return ret;
1630 	return 1;
1631 }
1632 
1633 /**
1634  * gfs2_rbm_find - Look for blocks of a particular state
1635  * @rbm: Value/result starting position and final position
1636  * @state: The state which we want to find
1637  * @minext: Pointer to the requested extent length (NULL for a single block)
1638  *          This is updated to be the actual reservation size.
1639  * @ip: If set, check for reservations
1640  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1641  *          around until we've reached the starting point.
1642  * @ap: the allocation parameters
1643  *
1644  * Side effects:
1645  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1646  *   has no free blocks in it.
1647  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1648  *   has come up short on a free block search.
1649  *
1650  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1651  */
1652 
1653 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1654 			 const struct gfs2_inode *ip, bool nowrap,
1655 			 const struct gfs2_alloc_parms *ap)
1656 {
1657 	struct buffer_head *bh;
1658 	int initial_bii;
1659 	u32 initial_offset;
1660 	int first_bii = rbm->bii;
1661 	u32 first_offset = rbm->offset;
1662 	u32 offset;
1663 	u8 *buffer;
1664 	int n = 0;
1665 	int iters = rbm->rgd->rd_length;
1666 	int ret;
1667 	struct gfs2_bitmap *bi;
1668 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1669 
1670 	/* If we are not starting at the beginning of a bitmap, then we
1671 	 * need to add one to the bitmap count to ensure that we search
1672 	 * the starting bitmap twice.
1673 	 */
1674 	if (rbm->offset != 0)
1675 		iters++;
1676 
1677 	while(1) {
1678 		bi = rbm_bi(rbm);
1679 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1680 		    (state == GFS2_BLKST_FREE))
1681 			goto next_bitmap;
1682 
1683 		bh = bi->bi_bh;
1684 		buffer = bh->b_data + bi->bi_offset;
1685 		WARN_ON(!buffer_uptodate(bh));
1686 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1687 			buffer = bi->bi_clone + bi->bi_offset;
1688 		initial_offset = rbm->offset;
1689 		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1690 		if (offset == BFITNOENT)
1691 			goto bitmap_full;
1692 		rbm->offset = offset;
1693 		if (ip == NULL)
1694 			return 0;
1695 
1696 		initial_bii = rbm->bii;
1697 		ret = gfs2_reservation_check_and_update(rbm, ip,
1698 							minext ? *minext : 0,
1699 							&maxext);
1700 		if (ret == 0)
1701 			return 0;
1702 		if (ret > 0) {
1703 			n += (rbm->bii - initial_bii);
1704 			goto next_iter;
1705 		}
1706 		if (ret == -E2BIG) {
1707 			rbm->bii = 0;
1708 			rbm->offset = 0;
1709 			n += (rbm->bii - initial_bii);
1710 			goto res_covered_end_of_rgrp;
1711 		}
1712 		return ret;
1713 
1714 bitmap_full:	/* Mark bitmap as full and fall through */
1715 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1716 			set_bit(GBF_FULL, &bi->bi_flags);
1717 
1718 next_bitmap:	/* Find next bitmap in the rgrp */
1719 		rbm->offset = 0;
1720 		rbm->bii++;
1721 		if (rbm->bii == rbm->rgd->rd_length)
1722 			rbm->bii = 0;
1723 res_covered_end_of_rgrp:
1724 		if ((rbm->bii == 0) && nowrap)
1725 			break;
1726 		n++;
1727 next_iter:
1728 		if (n >= iters)
1729 			break;
1730 	}
1731 
1732 	if (minext == NULL || state != GFS2_BLKST_FREE)
1733 		return -ENOSPC;
1734 
1735 	/* If the extent was too small, and it's smaller than the smallest
1736 	   to have failed before, remember for future reference that it's
1737 	   useless to search this rgrp again for this amount or more. */
1738 	if ((first_offset == 0) && (first_bii == 0) &&
1739 	    (*minext < rbm->rgd->rd_extfail_pt))
1740 		rbm->rgd->rd_extfail_pt = *minext;
1741 
1742 	/* If the maximum extent we found is big enough to fulfill the
1743 	   minimum requirements, use it anyway. */
1744 	if (maxext.len) {
1745 		*rbm = maxext.rbm;
1746 		*minext = maxext.len;
1747 		return 0;
1748 	}
1749 
1750 	return -ENOSPC;
1751 }
1752 
1753 /**
1754  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1755  * @rgd: The rgrp
1756  * @last_unlinked: block address of the last dinode we unlinked
1757  * @skip: block address we should explicitly not unlink
1758  *
1759  * Returns: 0 if no error
1760  *          The inode, if one has been found, in inode.
1761  */
1762 
1763 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1764 {
1765 	u64 block;
1766 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1767 	struct gfs2_glock *gl;
1768 	struct gfs2_inode *ip;
1769 	int error;
1770 	int found = 0;
1771 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1772 
1773 	while (1) {
1774 		down_write(&sdp->sd_log_flush_lock);
1775 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1776 				      true, NULL);
1777 		up_write(&sdp->sd_log_flush_lock);
1778 		if (error == -ENOSPC)
1779 			break;
1780 		if (WARN_ON_ONCE(error))
1781 			break;
1782 
1783 		block = gfs2_rbm_to_block(&rbm);
1784 		if (gfs2_rbm_from_block(&rbm, block + 1))
1785 			break;
1786 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1787 			continue;
1788 		if (block == skip)
1789 			continue;
1790 		*last_unlinked = block;
1791 
1792 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1793 		if (error)
1794 			continue;
1795 
1796 		/* If the inode is already in cache, we can ignore it here
1797 		 * because the existing inode disposal code will deal with
1798 		 * it when all refs have gone away. Accessing gl_object like
1799 		 * this is not safe in general. Here it is ok because we do
1800 		 * not dereference the pointer, and we only need an approx
1801 		 * answer to whether it is NULL or not.
1802 		 */
1803 		ip = gl->gl_object;
1804 
1805 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1806 			gfs2_glock_put(gl);
1807 		else
1808 			found++;
1809 
1810 		/* Limit reclaim to sensible number of tasks */
1811 		if (found > NR_CPUS)
1812 			return;
1813 	}
1814 
1815 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1816 	return;
1817 }
1818 
1819 /**
1820  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1821  * @rgd: The rgrp in question
1822  * @loops: An indication of how picky we can be (0=very, 1=less so)
1823  *
1824  * This function uses the recently added glock statistics in order to
1825  * figure out whether a parciular resource group is suffering from
1826  * contention from multiple nodes. This is done purely on the basis
1827  * of timings, since this is the only data we have to work with and
1828  * our aim here is to reject a resource group which is highly contended
1829  * but (very important) not to do this too often in order to ensure that
1830  * we do not land up introducing fragmentation by changing resource
1831  * groups when not actually required.
1832  *
1833  * The calculation is fairly simple, we want to know whether the SRTTB
1834  * (i.e. smoothed round trip time for blocking operations) to acquire
1835  * the lock for this rgrp's glock is significantly greater than the
1836  * time taken for resource groups on average. We introduce a margin in
1837  * the form of the variable @var which is computed as the sum of the two
1838  * respective variences, and multiplied by a factor depending on @loops
1839  * and whether we have a lot of data to base the decision on. This is
1840  * then tested against the square difference of the means in order to
1841  * decide whether the result is statistically significant or not.
1842  *
1843  * Returns: A boolean verdict on the congestion status
1844  */
1845 
1846 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1847 {
1848 	const struct gfs2_glock *gl = rgd->rd_gl;
1849 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1850 	struct gfs2_lkstats *st;
1851 	u64 r_dcount, l_dcount;
1852 	u64 l_srttb, a_srttb = 0;
1853 	s64 srttb_diff;
1854 	u64 sqr_diff;
1855 	u64 var;
1856 	int cpu, nonzero = 0;
1857 
1858 	preempt_disable();
1859 	for_each_present_cpu(cpu) {
1860 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1861 		if (st->stats[GFS2_LKS_SRTTB]) {
1862 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1863 			nonzero++;
1864 		}
1865 	}
1866 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1867 	if (nonzero)
1868 		do_div(a_srttb, nonzero);
1869 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1870 	var = st->stats[GFS2_LKS_SRTTVARB] +
1871 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1872 	preempt_enable();
1873 
1874 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1875 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1876 
1877 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1878 		return false;
1879 
1880 	srttb_diff = a_srttb - l_srttb;
1881 	sqr_diff = srttb_diff * srttb_diff;
1882 
1883 	var *= 2;
1884 	if (l_dcount < 8 || r_dcount < 8)
1885 		var *= 2;
1886 	if (loops == 1)
1887 		var *= 2;
1888 
1889 	return ((srttb_diff < 0) && (sqr_diff > var));
1890 }
1891 
1892 /**
1893  * gfs2_rgrp_used_recently
1894  * @rs: The block reservation with the rgrp to test
1895  * @msecs: The time limit in milliseconds
1896  *
1897  * Returns: True if the rgrp glock has been used within the time limit
1898  */
1899 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1900 				    u64 msecs)
1901 {
1902 	u64 tdiff;
1903 
1904 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1905                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1906 
1907 	return tdiff > (msecs * 1000 * 1000);
1908 }
1909 
1910 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1911 {
1912 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1913 	u32 skip;
1914 
1915 	get_random_bytes(&skip, sizeof(skip));
1916 	return skip % sdp->sd_rgrps;
1917 }
1918 
1919 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1920 {
1921 	struct gfs2_rgrpd *rgd = *pos;
1922 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1923 
1924 	rgd = gfs2_rgrpd_get_next(rgd);
1925 	if (rgd == NULL)
1926 		rgd = gfs2_rgrpd_get_first(sdp);
1927 	*pos = rgd;
1928 	if (rgd != begin) /* If we didn't wrap */
1929 		return true;
1930 	return false;
1931 }
1932 
1933 /**
1934  * fast_to_acquire - determine if a resource group will be fast to acquire
1935  *
1936  * If this is one of our preferred rgrps, it should be quicker to acquire,
1937  * because we tried to set ourselves up as dlm lock master.
1938  */
1939 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1940 {
1941 	struct gfs2_glock *gl = rgd->rd_gl;
1942 
1943 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1944 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1945 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1946 		return 1;
1947 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1948 		return 1;
1949 	return 0;
1950 }
1951 
1952 /**
1953  * gfs2_inplace_reserve - Reserve space in the filesystem
1954  * @ip: the inode to reserve space for
1955  * @ap: the allocation parameters
1956  *
1957  * We try our best to find an rgrp that has at least ap->target blocks
1958  * available. After a couple of passes (loops == 2), the prospects of finding
1959  * such an rgrp diminish. At this stage, we return the first rgrp that has
1960  * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1961  * the number of blocks available in the chosen rgrp.
1962  *
1963  * Returns: 0 on success,
1964  *          -ENOMEM if a suitable rgrp can't be found
1965  *          errno otherwise
1966  */
1967 
1968 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1969 {
1970 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1971 	struct gfs2_rgrpd *begin = NULL;
1972 	struct gfs2_blkreserv *rs = &ip->i_res;
1973 	int error = 0, rg_locked, flags = 0;
1974 	u64 last_unlinked = NO_BLOCK;
1975 	int loops = 0;
1976 	u32 skip = 0;
1977 
1978 	if (sdp->sd_args.ar_rgrplvb)
1979 		flags |= GL_SKIP;
1980 	if (gfs2_assert_warn(sdp, ap->target))
1981 		return -EINVAL;
1982 	if (gfs2_rs_active(rs)) {
1983 		begin = rs->rs_rbm.rgd;
1984 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1985 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1986 	} else {
1987 		check_and_update_goal(ip);
1988 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1989 	}
1990 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1991 		skip = gfs2_orlov_skip(ip);
1992 	if (rs->rs_rbm.rgd == NULL)
1993 		return -EBADSLT;
1994 
1995 	while (loops < 3) {
1996 		rg_locked = 1;
1997 
1998 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1999 			rg_locked = 0;
2000 			if (skip && skip--)
2001 				goto next_rgrp;
2002 			if (!gfs2_rs_active(rs)) {
2003 				if (loops == 0 &&
2004 				    !fast_to_acquire(rs->rs_rbm.rgd))
2005 					goto next_rgrp;
2006 				if ((loops < 2) &&
2007 				    gfs2_rgrp_used_recently(rs, 1000) &&
2008 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2009 					goto next_rgrp;
2010 			}
2011 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2012 						   LM_ST_EXCLUSIVE, flags,
2013 						   &rs->rs_rgd_gh);
2014 			if (unlikely(error))
2015 				return error;
2016 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2017 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2018 				goto skip_rgrp;
2019 			if (sdp->sd_args.ar_rgrplvb) {
2020 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2021 				if (unlikely(error)) {
2022 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2023 					return error;
2024 				}
2025 			}
2026 		}
2027 
2028 		/* Skip unuseable resource groups */
2029 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2030 						 GFS2_RDF_ERROR)) ||
2031 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2032 			goto skip_rgrp;
2033 
2034 		if (sdp->sd_args.ar_rgrplvb)
2035 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2036 
2037 		/* Get a reservation if we don't already have one */
2038 		if (!gfs2_rs_active(rs))
2039 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2040 
2041 		/* Skip rgrps when we can't get a reservation on first pass */
2042 		if (!gfs2_rs_active(rs) && (loops < 1))
2043 			goto check_rgrp;
2044 
2045 		/* If rgrp has enough free space, use it */
2046 		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2047 		    (loops == 2 && ap->min_target &&
2048 		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2049 			ip->i_rgd = rs->rs_rbm.rgd;
2050 			ap->allowed = ip->i_rgd->rd_free_clone;
2051 			return 0;
2052 		}
2053 check_rgrp:
2054 		/* Check for unlinked inodes which can be reclaimed */
2055 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2056 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2057 					ip->i_no_addr);
2058 skip_rgrp:
2059 		/* Drop reservation, if we couldn't use reserved rgrp */
2060 		if (gfs2_rs_active(rs))
2061 			gfs2_rs_deltree(rs);
2062 
2063 		/* Unlock rgrp if required */
2064 		if (!rg_locked)
2065 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2066 next_rgrp:
2067 		/* Find the next rgrp, and continue looking */
2068 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2069 			continue;
2070 		if (skip)
2071 			continue;
2072 
2073 		/* If we've scanned all the rgrps, but found no free blocks
2074 		 * then this checks for some less likely conditions before
2075 		 * trying again.
2076 		 */
2077 		loops++;
2078 		/* Check that fs hasn't grown if writing to rindex */
2079 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2080 			error = gfs2_ri_update(ip);
2081 			if (error)
2082 				return error;
2083 		}
2084 		/* Flushing the log may release space */
2085 		if (loops == 2)
2086 			gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2087 	}
2088 
2089 	return -ENOSPC;
2090 }
2091 
2092 /**
2093  * gfs2_inplace_release - release an inplace reservation
2094  * @ip: the inode the reservation was taken out on
2095  *
2096  * Release a reservation made by gfs2_inplace_reserve().
2097  */
2098 
2099 void gfs2_inplace_release(struct gfs2_inode *ip)
2100 {
2101 	struct gfs2_blkreserv *rs = &ip->i_res;
2102 
2103 	if (rs->rs_rgd_gh.gh_gl)
2104 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2105 }
2106 
2107 /**
2108  * gfs2_get_block_type - Check a block in a RG is of given type
2109  * @rgd: the resource group holding the block
2110  * @block: the block number
2111  *
2112  * Returns: The block type (GFS2_BLKST_*)
2113  */
2114 
2115 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2116 {
2117 	struct gfs2_rbm rbm = { .rgd = rgd, };
2118 	int ret;
2119 
2120 	ret = gfs2_rbm_from_block(&rbm, block);
2121 	WARN_ON_ONCE(ret != 0);
2122 
2123 	return gfs2_testbit(&rbm);
2124 }
2125 
2126 
2127 /**
2128  * gfs2_alloc_extent - allocate an extent from a given bitmap
2129  * @rbm: the resource group information
2130  * @dinode: TRUE if the first block we allocate is for a dinode
2131  * @n: The extent length (value/result)
2132  *
2133  * Add the bitmap buffer to the transaction.
2134  * Set the found bits to @new_state to change block's allocation state.
2135  */
2136 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2137 			     unsigned int *n)
2138 {
2139 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2140 	const unsigned int elen = *n;
2141 	u64 block;
2142 	int ret;
2143 
2144 	*n = 1;
2145 	block = gfs2_rbm_to_block(rbm);
2146 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2147 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2148 	block++;
2149 	while (*n < elen) {
2150 		ret = gfs2_rbm_from_block(&pos, block);
2151 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2152 			break;
2153 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2154 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2155 		(*n)++;
2156 		block++;
2157 	}
2158 }
2159 
2160 /**
2161  * rgblk_free - Change alloc state of given block(s)
2162  * @sdp: the filesystem
2163  * @bstart: the start of a run of blocks to free
2164  * @blen: the length of the block run (all must lie within ONE RG!)
2165  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2166  *
2167  * Returns:  Resource group containing the block(s)
2168  */
2169 
2170 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2171 				     u32 blen, unsigned char new_state)
2172 {
2173 	struct gfs2_rbm rbm;
2174 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2175 
2176 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2177 	if (!rbm.rgd) {
2178 		if (gfs2_consist(sdp))
2179 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2180 		return NULL;
2181 	}
2182 
2183 	gfs2_rbm_from_block(&rbm, bstart);
2184 	while (blen--) {
2185 		bi = rbm_bi(&rbm);
2186 		if (bi != bi_prev) {
2187 			if (!bi->bi_clone) {
2188 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2189 						      GFP_NOFS | __GFP_NOFAIL);
2190 				memcpy(bi->bi_clone + bi->bi_offset,
2191 				       bi->bi_bh->b_data + bi->bi_offset,
2192 				       bi->bi_len);
2193 			}
2194 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2195 			bi_prev = bi;
2196 		}
2197 		gfs2_setbit(&rbm, false, new_state);
2198 		gfs2_rbm_incr(&rbm);
2199 	}
2200 
2201 	return rbm.rgd;
2202 }
2203 
2204 /**
2205  * gfs2_rgrp_dump - print out an rgrp
2206  * @seq: The iterator
2207  * @gl: The glock in question
2208  *
2209  */
2210 
2211 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2212 {
2213 	struct gfs2_rgrpd *rgd = gl->gl_object;
2214 	struct gfs2_blkreserv *trs;
2215 	const struct rb_node *n;
2216 
2217 	if (rgd == NULL)
2218 		return;
2219 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2220 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2221 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2222 		       rgd->rd_reserved, rgd->rd_extfail_pt);
2223 	spin_lock(&rgd->rd_rsspin);
2224 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2225 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2226 		dump_rs(seq, trs);
2227 	}
2228 	spin_unlock(&rgd->rd_rsspin);
2229 }
2230 
2231 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2232 {
2233 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2234 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2235 		(unsigned long long)rgd->rd_addr);
2236 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2237 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2238 	rgd->rd_flags |= GFS2_RDF_ERROR;
2239 }
2240 
2241 /**
2242  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2243  * @ip: The inode we have just allocated blocks for
2244  * @rbm: The start of the allocated blocks
2245  * @len: The extent length
2246  *
2247  * Adjusts a reservation after an allocation has taken place. If the
2248  * reservation does not match the allocation, or if it is now empty
2249  * then it is removed.
2250  */
2251 
2252 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2253 				    const struct gfs2_rbm *rbm, unsigned len)
2254 {
2255 	struct gfs2_blkreserv *rs = &ip->i_res;
2256 	struct gfs2_rgrpd *rgd = rbm->rgd;
2257 	unsigned rlen;
2258 	u64 block;
2259 	int ret;
2260 
2261 	spin_lock(&rgd->rd_rsspin);
2262 	if (gfs2_rs_active(rs)) {
2263 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2264 			block = gfs2_rbm_to_block(rbm);
2265 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2266 			rlen = min(rs->rs_free, len);
2267 			rs->rs_free -= rlen;
2268 			rgd->rd_reserved -= rlen;
2269 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2270 			if (rs->rs_free && !ret)
2271 				goto out;
2272 			/* We used up our block reservation, so we should
2273 			   reserve more blocks next time. */
2274 			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2275 		}
2276 		__rs_deltree(rs);
2277 	}
2278 out:
2279 	spin_unlock(&rgd->rd_rsspin);
2280 }
2281 
2282 /**
2283  * gfs2_set_alloc_start - Set starting point for block allocation
2284  * @rbm: The rbm which will be set to the required location
2285  * @ip: The gfs2 inode
2286  * @dinode: Flag to say if allocation includes a new inode
2287  *
2288  * This sets the starting point from the reservation if one is active
2289  * otherwise it falls back to guessing a start point based on the
2290  * inode's goal block or the last allocation point in the rgrp.
2291  */
2292 
2293 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2294 				 const struct gfs2_inode *ip, bool dinode)
2295 {
2296 	u64 goal;
2297 
2298 	if (gfs2_rs_active(&ip->i_res)) {
2299 		*rbm = ip->i_res.rs_rbm;
2300 		return;
2301 	}
2302 
2303 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2304 		goal = ip->i_goal;
2305 	else
2306 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2307 
2308 	gfs2_rbm_from_block(rbm, goal);
2309 }
2310 
2311 /**
2312  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2313  * @ip: the inode to allocate the block for
2314  * @bn: Used to return the starting block number
2315  * @nblocks: requested number of blocks/extent length (value/result)
2316  * @dinode: 1 if we're allocating a dinode block, else 0
2317  * @generation: the generation number of the inode
2318  *
2319  * Returns: 0 or error
2320  */
2321 
2322 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2323 		      bool dinode, u64 *generation)
2324 {
2325 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2326 	struct buffer_head *dibh;
2327 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2328 	unsigned int ndata;
2329 	u64 block; /* block, within the file system scope */
2330 	int error;
2331 
2332 	gfs2_set_alloc_start(&rbm, ip, dinode);
2333 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2334 
2335 	if (error == -ENOSPC) {
2336 		gfs2_set_alloc_start(&rbm, ip, dinode);
2337 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2338 				      NULL);
2339 	}
2340 
2341 	/* Since all blocks are reserved in advance, this shouldn't happen */
2342 	if (error) {
2343 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2344 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2345 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2346 			rbm.rgd->rd_extfail_pt);
2347 		goto rgrp_error;
2348 	}
2349 
2350 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2351 	block = gfs2_rbm_to_block(&rbm);
2352 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2353 	if (gfs2_rs_active(&ip->i_res))
2354 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2355 	ndata = *nblocks;
2356 	if (dinode)
2357 		ndata--;
2358 
2359 	if (!dinode) {
2360 		ip->i_goal = block + ndata - 1;
2361 		error = gfs2_meta_inode_buffer(ip, &dibh);
2362 		if (error == 0) {
2363 			struct gfs2_dinode *di =
2364 				(struct gfs2_dinode *)dibh->b_data;
2365 			gfs2_trans_add_meta(ip->i_gl, dibh);
2366 			di->di_goal_meta = di->di_goal_data =
2367 				cpu_to_be64(ip->i_goal);
2368 			brelse(dibh);
2369 		}
2370 	}
2371 	if (rbm.rgd->rd_free < *nblocks) {
2372 		pr_warn("nblocks=%u\n", *nblocks);
2373 		goto rgrp_error;
2374 	}
2375 
2376 	rbm.rgd->rd_free -= *nblocks;
2377 	if (dinode) {
2378 		rbm.rgd->rd_dinodes++;
2379 		*generation = rbm.rgd->rd_igeneration++;
2380 		if (*generation == 0)
2381 			*generation = rbm.rgd->rd_igeneration++;
2382 	}
2383 
2384 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2385 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2386 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2387 
2388 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2389 	if (dinode)
2390 		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2391 
2392 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2393 
2394 	rbm.rgd->rd_free_clone -= *nblocks;
2395 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2396 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2397 	*bn = block;
2398 	return 0;
2399 
2400 rgrp_error:
2401 	gfs2_rgrp_error(rbm.rgd);
2402 	return -EIO;
2403 }
2404 
2405 /**
2406  * __gfs2_free_blocks - free a contiguous run of block(s)
2407  * @ip: the inode these blocks are being freed from
2408  * @bstart: first block of a run of contiguous blocks
2409  * @blen: the length of the block run
2410  * @meta: 1 if the blocks represent metadata
2411  *
2412  */
2413 
2414 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2415 {
2416 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2417 	struct gfs2_rgrpd *rgd;
2418 
2419 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2420 	if (!rgd)
2421 		return;
2422 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2423 	rgd->rd_free += blen;
2424 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2425 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2426 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2427 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2428 
2429 	/* Directories keep their data in the metadata address space */
2430 	if (meta || ip->i_depth)
2431 		gfs2_meta_wipe(ip, bstart, blen);
2432 }
2433 
2434 /**
2435  * gfs2_free_meta - free a contiguous run of data block(s)
2436  * @ip: the inode these blocks are being freed from
2437  * @bstart: first block of a run of contiguous blocks
2438  * @blen: the length of the block run
2439  *
2440  */
2441 
2442 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2443 {
2444 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2445 
2446 	__gfs2_free_blocks(ip, bstart, blen, 1);
2447 	gfs2_statfs_change(sdp, 0, +blen, 0);
2448 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2449 }
2450 
2451 void gfs2_unlink_di(struct inode *inode)
2452 {
2453 	struct gfs2_inode *ip = GFS2_I(inode);
2454 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2455 	struct gfs2_rgrpd *rgd;
2456 	u64 blkno = ip->i_no_addr;
2457 
2458 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2459 	if (!rgd)
2460 		return;
2461 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2462 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2463 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2464 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2465 	update_rgrp_lvb_unlinked(rgd, 1);
2466 }
2467 
2468 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2469 {
2470 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2471 	struct gfs2_rgrpd *tmp_rgd;
2472 
2473 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2474 	if (!tmp_rgd)
2475 		return;
2476 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2477 
2478 	if (!rgd->rd_dinodes)
2479 		gfs2_consist_rgrpd(rgd);
2480 	rgd->rd_dinodes--;
2481 	rgd->rd_free++;
2482 
2483 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2484 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2485 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2486 	update_rgrp_lvb_unlinked(rgd, -1);
2487 
2488 	gfs2_statfs_change(sdp, 0, +1, -1);
2489 }
2490 
2491 
2492 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2493 {
2494 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2495 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2496 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2497 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2498 }
2499 
2500 /**
2501  * gfs2_check_blk_type - Check the type of a block
2502  * @sdp: The superblock
2503  * @no_addr: The block number to check
2504  * @type: The block type we are looking for
2505  *
2506  * Returns: 0 if the block type matches the expected type
2507  *          -ESTALE if it doesn't match
2508  *          or -ve errno if something went wrong while checking
2509  */
2510 
2511 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2512 {
2513 	struct gfs2_rgrpd *rgd;
2514 	struct gfs2_holder rgd_gh;
2515 	int error = -EINVAL;
2516 
2517 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2518 	if (!rgd)
2519 		goto fail;
2520 
2521 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2522 	if (error)
2523 		goto fail;
2524 
2525 	if (gfs2_get_block_type(rgd, no_addr) != type)
2526 		error = -ESTALE;
2527 
2528 	gfs2_glock_dq_uninit(&rgd_gh);
2529 fail:
2530 	return error;
2531 }
2532 
2533 /**
2534  * gfs2_rlist_add - add a RG to a list of RGs
2535  * @ip: the inode
2536  * @rlist: the list of resource groups
2537  * @block: the block
2538  *
2539  * Figure out what RG a block belongs to and add that RG to the list
2540  *
2541  * FIXME: Don't use NOFAIL
2542  *
2543  */
2544 
2545 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2546 		    u64 block)
2547 {
2548 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2549 	struct gfs2_rgrpd *rgd;
2550 	struct gfs2_rgrpd **tmp;
2551 	unsigned int new_space;
2552 	unsigned int x;
2553 
2554 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2555 		return;
2556 
2557 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2558 		rgd = ip->i_rgd;
2559 	else
2560 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2561 	if (!rgd) {
2562 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2563 		return;
2564 	}
2565 	ip->i_rgd = rgd;
2566 
2567 	for (x = 0; x < rlist->rl_rgrps; x++)
2568 		if (rlist->rl_rgd[x] == rgd)
2569 			return;
2570 
2571 	if (rlist->rl_rgrps == rlist->rl_space) {
2572 		new_space = rlist->rl_space + 10;
2573 
2574 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2575 			      GFP_NOFS | __GFP_NOFAIL);
2576 
2577 		if (rlist->rl_rgd) {
2578 			memcpy(tmp, rlist->rl_rgd,
2579 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2580 			kfree(rlist->rl_rgd);
2581 		}
2582 
2583 		rlist->rl_space = new_space;
2584 		rlist->rl_rgd = tmp;
2585 	}
2586 
2587 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2588 }
2589 
2590 /**
2591  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2592  *      and initialize an array of glock holders for them
2593  * @rlist: the list of resource groups
2594  * @state: the lock state to acquire the RG lock in
2595  *
2596  * FIXME: Don't use NOFAIL
2597  *
2598  */
2599 
2600 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2601 {
2602 	unsigned int x;
2603 
2604 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2605 				GFP_NOFS | __GFP_NOFAIL);
2606 	for (x = 0; x < rlist->rl_rgrps; x++)
2607 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2608 				state, 0,
2609 				&rlist->rl_ghs[x]);
2610 }
2611 
2612 /**
2613  * gfs2_rlist_free - free a resource group list
2614  * @rlist: the list of resource groups
2615  *
2616  */
2617 
2618 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2619 {
2620 	unsigned int x;
2621 
2622 	kfree(rlist->rl_rgd);
2623 
2624 	if (rlist->rl_ghs) {
2625 		for (x = 0; x < rlist->rl_rgrps; x++)
2626 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2627 		kfree(rlist->rl_ghs);
2628 		rlist->rl_ghs = NULL;
2629 	}
2630 }
2631 
2632