1 /* 2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This copyrighted material is made available to anyone wishing to use, 6 * modify, copy, or redistribute it subject to the terms and conditions 7 * of the GNU General Public License version 2. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/completion.h> 15 #include <linux/buffer_head.h> 16 #include <linux/fs.h> 17 #include <linux/gfs2_ondisk.h> 18 #include <linux/prefetch.h> 19 #include <linux/blkdev.h> 20 #include <linux/rbtree.h> 21 #include <linux/random.h> 22 23 #include "gfs2.h" 24 #include "incore.h" 25 #include "glock.h" 26 #include "glops.h" 27 #include "lops.h" 28 #include "meta_io.h" 29 #include "quota.h" 30 #include "rgrp.h" 31 #include "super.h" 32 #include "trans.h" 33 #include "util.h" 34 #include "log.h" 35 #include "inode.h" 36 #include "trace_gfs2.h" 37 38 #define BFITNOENT ((u32)~0) 39 #define NO_BLOCK ((u64)~0) 40 41 #if BITS_PER_LONG == 32 42 #define LBITMASK (0x55555555UL) 43 #define LBITSKIP55 (0x55555555UL) 44 #define LBITSKIP00 (0x00000000UL) 45 #else 46 #define LBITMASK (0x5555555555555555UL) 47 #define LBITSKIP55 (0x5555555555555555UL) 48 #define LBITSKIP00 (0x0000000000000000UL) 49 #endif 50 51 /* 52 * These routines are used by the resource group routines (rgrp.c) 53 * to keep track of block allocation. Each block is represented by two 54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks. 55 * 56 * 0 = Free 57 * 1 = Used (not metadata) 58 * 2 = Unlinked (still in use) inode 59 * 3 = Used (metadata) 60 */ 61 62 struct gfs2_extent { 63 struct gfs2_rbm rbm; 64 u32 len; 65 }; 66 67 static const char valid_change[16] = { 68 /* current */ 69 /* n */ 0, 1, 1, 1, 70 /* e */ 1, 0, 0, 0, 71 /* w */ 0, 0, 0, 1, 72 1, 0, 0, 0 73 }; 74 75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 76 const struct gfs2_inode *ip, bool nowrap); 77 78 79 /** 80 * gfs2_setbit - Set a bit in the bitmaps 81 * @rbm: The position of the bit to set 82 * @do_clone: Also set the clone bitmap, if it exists 83 * @new_state: the new state of the block 84 * 85 */ 86 87 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, 88 unsigned char new_state) 89 { 90 unsigned char *byte1, *byte2, *end, cur_state; 91 struct gfs2_bitmap *bi = rbm_bi(rbm); 92 unsigned int buflen = bi->bi_len; 93 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 94 95 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); 96 end = bi->bi_bh->b_data + bi->bi_offset + buflen; 97 98 BUG_ON(byte1 >= end); 99 100 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; 101 102 if (unlikely(!valid_change[new_state * 4 + cur_state])) { 103 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n", 104 rbm->offset, cur_state, new_state); 105 pr_warn("rgrp=0x%llx bi_start=0x%x\n", 106 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start); 107 pr_warn("bi_offset=0x%x bi_len=0x%x\n", 108 bi->bi_offset, bi->bi_len); 109 dump_stack(); 110 gfs2_consist_rgrpd(rbm->rgd); 111 return; 112 } 113 *byte1 ^= (cur_state ^ new_state) << bit; 114 115 if (do_clone && bi->bi_clone) { 116 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); 117 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; 118 *byte2 ^= (cur_state ^ new_state) << bit; 119 } 120 } 121 122 /** 123 * gfs2_testbit - test a bit in the bitmaps 124 * @rbm: The bit to test 125 * 126 * Returns: The two bit block state of the requested bit 127 */ 128 129 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm) 130 { 131 struct gfs2_bitmap *bi = rbm_bi(rbm); 132 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset; 133 const u8 *byte; 134 unsigned int bit; 135 136 byte = buffer + (rbm->offset / GFS2_NBBY); 137 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; 138 139 return (*byte >> bit) & GFS2_BIT_MASK; 140 } 141 142 /** 143 * gfs2_bit_search 144 * @ptr: Pointer to bitmap data 145 * @mask: Mask to use (normally 0x55555.... but adjusted for search start) 146 * @state: The state we are searching for 147 * 148 * We xor the bitmap data with a patter which is the bitwise opposite 149 * of what we are looking for, this gives rise to a pattern of ones 150 * wherever there is a match. Since we have two bits per entry, we 151 * take this pattern, shift it down by one place and then and it with 152 * the original. All the even bit positions (0,2,4, etc) then represent 153 * successful matches, so we mask with 0x55555..... to remove the unwanted 154 * odd bit positions. 155 * 156 * This allows searching of a whole u64 at once (32 blocks) with a 157 * single test (on 64 bit arches). 158 */ 159 160 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) 161 { 162 u64 tmp; 163 static const u64 search[] = { 164 [0] = 0xffffffffffffffffULL, 165 [1] = 0xaaaaaaaaaaaaaaaaULL, 166 [2] = 0x5555555555555555ULL, 167 [3] = 0x0000000000000000ULL, 168 }; 169 tmp = le64_to_cpu(*ptr) ^ search[state]; 170 tmp &= (tmp >> 1); 171 tmp &= mask; 172 return tmp; 173 } 174 175 /** 176 * rs_cmp - multi-block reservation range compare 177 * @blk: absolute file system block number of the new reservation 178 * @len: number of blocks in the new reservation 179 * @rs: existing reservation to compare against 180 * 181 * returns: 1 if the block range is beyond the reach of the reservation 182 * -1 if the block range is before the start of the reservation 183 * 0 if the block range overlaps with the reservation 184 */ 185 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) 186 { 187 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); 188 189 if (blk >= startblk + rs->rs_free) 190 return 1; 191 if (blk + len - 1 < startblk) 192 return -1; 193 return 0; 194 } 195 196 /** 197 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing 198 * a block in a given allocation state. 199 * @buf: the buffer that holds the bitmaps 200 * @len: the length (in bytes) of the buffer 201 * @goal: start search at this block's bit-pair (within @buffer) 202 * @state: GFS2_BLKST_XXX the state of the block we're looking for. 203 * 204 * Scope of @goal and returned block number is only within this bitmap buffer, 205 * not entire rgrp or filesystem. @buffer will be offset from the actual 206 * beginning of a bitmap block buffer, skipping any header structures, but 207 * headers are always a multiple of 64 bits long so that the buffer is 208 * always aligned to a 64 bit boundary. 209 * 210 * The size of the buffer is in bytes, but is it assumed that it is 211 * always ok to read a complete multiple of 64 bits at the end 212 * of the block in case the end is no aligned to a natural boundary. 213 * 214 * Return: the block number (bitmap buffer scope) that was found 215 */ 216 217 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, 218 u32 goal, u8 state) 219 { 220 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); 221 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); 222 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); 223 u64 tmp; 224 u64 mask = 0x5555555555555555ULL; 225 u32 bit; 226 227 /* Mask off bits we don't care about at the start of the search */ 228 mask <<= spoint; 229 tmp = gfs2_bit_search(ptr, mask, state); 230 ptr++; 231 while(tmp == 0 && ptr < end) { 232 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); 233 ptr++; 234 } 235 /* Mask off any bits which are more than len bytes from the start */ 236 if (ptr == end && (len & (sizeof(u64) - 1))) 237 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); 238 /* Didn't find anything, so return */ 239 if (tmp == 0) 240 return BFITNOENT; 241 ptr--; 242 bit = __ffs64(tmp); 243 bit /= 2; /* two bits per entry in the bitmap */ 244 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; 245 } 246 247 /** 248 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number 249 * @rbm: The rbm with rgd already set correctly 250 * @block: The block number (filesystem relative) 251 * 252 * This sets the bi and offset members of an rbm based on a 253 * resource group and a filesystem relative block number. The 254 * resource group must be set in the rbm on entry, the bi and 255 * offset members will be set by this function. 256 * 257 * Returns: 0 on success, or an error code 258 */ 259 260 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) 261 { 262 u64 rblock = block - rbm->rgd->rd_data0; 263 264 if (WARN_ON_ONCE(rblock > UINT_MAX)) 265 return -EINVAL; 266 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data) 267 return -E2BIG; 268 269 rbm->bii = 0; 270 rbm->offset = (u32)(rblock); 271 /* Check if the block is within the first block */ 272 if (rbm->offset < rbm_bi(rbm)->bi_blocks) 273 return 0; 274 275 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ 276 rbm->offset += (sizeof(struct gfs2_rgrp) - 277 sizeof(struct gfs2_meta_header)) * GFS2_NBBY; 278 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 279 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; 280 return 0; 281 } 282 283 /** 284 * gfs2_rbm_incr - increment an rbm structure 285 * @rbm: The rbm with rgd already set correctly 286 * 287 * This function takes an existing rbm structure and increments it to the next 288 * viable block offset. 289 * 290 * Returns: If incrementing the offset would cause the rbm to go past the 291 * end of the rgrp, true is returned, otherwise false. 292 * 293 */ 294 295 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) 296 { 297 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ 298 rbm->offset++; 299 return false; 300 } 301 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ 302 return true; 303 304 rbm->offset = 0; 305 rbm->bii++; 306 return false; 307 } 308 309 /** 310 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned 311 * @rbm: Position to search (value/result) 312 * @n_unaligned: Number of unaligned blocks to check 313 * @len: Decremented for each block found (terminate on zero) 314 * 315 * Returns: true if a non-free block is encountered 316 */ 317 318 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) 319 { 320 u32 n; 321 u8 res; 322 323 for (n = 0; n < n_unaligned; n++) { 324 res = gfs2_testbit(rbm); 325 if (res != GFS2_BLKST_FREE) 326 return true; 327 (*len)--; 328 if (*len == 0) 329 return true; 330 if (gfs2_rbm_incr(rbm)) 331 return true; 332 } 333 334 return false; 335 } 336 337 /** 338 * gfs2_free_extlen - Return extent length of free blocks 339 * @rrbm: Starting position 340 * @len: Max length to check 341 * 342 * Starting at the block specified by the rbm, see how many free blocks 343 * there are, not reading more than len blocks ahead. This can be done 344 * using memchr_inv when the blocks are byte aligned, but has to be done 345 * on a block by block basis in case of unaligned blocks. Also this 346 * function can cope with bitmap boundaries (although it must stop on 347 * a resource group boundary) 348 * 349 * Returns: Number of free blocks in the extent 350 */ 351 352 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) 353 { 354 struct gfs2_rbm rbm = *rrbm; 355 u32 n_unaligned = rbm.offset & 3; 356 u32 size = len; 357 u32 bytes; 358 u32 chunk_size; 359 u8 *ptr, *start, *end; 360 u64 block; 361 struct gfs2_bitmap *bi; 362 363 if (n_unaligned && 364 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) 365 goto out; 366 367 n_unaligned = len & 3; 368 /* Start is now byte aligned */ 369 while (len > 3) { 370 bi = rbm_bi(&rbm); 371 start = bi->bi_bh->b_data; 372 if (bi->bi_clone) 373 start = bi->bi_clone; 374 end = start + bi->bi_bh->b_size; 375 start += bi->bi_offset; 376 BUG_ON(rbm.offset & 3); 377 start += (rbm.offset / GFS2_NBBY); 378 bytes = min_t(u32, len / GFS2_NBBY, (end - start)); 379 ptr = memchr_inv(start, 0, bytes); 380 chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); 381 chunk_size *= GFS2_NBBY; 382 BUG_ON(len < chunk_size); 383 len -= chunk_size; 384 block = gfs2_rbm_to_block(&rbm); 385 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { 386 n_unaligned = 0; 387 break; 388 } 389 if (ptr) { 390 n_unaligned = 3; 391 break; 392 } 393 n_unaligned = len & 3; 394 } 395 396 /* Deal with any bits left over at the end */ 397 if (n_unaligned) 398 gfs2_unaligned_extlen(&rbm, n_unaligned, &len); 399 out: 400 return size - len; 401 } 402 403 /** 404 * gfs2_bitcount - count the number of bits in a certain state 405 * @rgd: the resource group descriptor 406 * @buffer: the buffer that holds the bitmaps 407 * @buflen: the length (in bytes) of the buffer 408 * @state: the state of the block we're looking for 409 * 410 * Returns: The number of bits 411 */ 412 413 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, 414 unsigned int buflen, u8 state) 415 { 416 const u8 *byte = buffer; 417 const u8 *end = buffer + buflen; 418 const u8 state1 = state << 2; 419 const u8 state2 = state << 4; 420 const u8 state3 = state << 6; 421 u32 count = 0; 422 423 for (; byte < end; byte++) { 424 if (((*byte) & 0x03) == state) 425 count++; 426 if (((*byte) & 0x0C) == state1) 427 count++; 428 if (((*byte) & 0x30) == state2) 429 count++; 430 if (((*byte) & 0xC0) == state3) 431 count++; 432 } 433 434 return count; 435 } 436 437 /** 438 * gfs2_rgrp_verify - Verify that a resource group is consistent 439 * @rgd: the rgrp 440 * 441 */ 442 443 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) 444 { 445 struct gfs2_sbd *sdp = rgd->rd_sbd; 446 struct gfs2_bitmap *bi = NULL; 447 u32 length = rgd->rd_length; 448 u32 count[4], tmp; 449 int buf, x; 450 451 memset(count, 0, 4 * sizeof(u32)); 452 453 /* Count # blocks in each of 4 possible allocation states */ 454 for (buf = 0; buf < length; buf++) { 455 bi = rgd->rd_bits + buf; 456 for (x = 0; x < 4; x++) 457 count[x] += gfs2_bitcount(rgd, 458 bi->bi_bh->b_data + 459 bi->bi_offset, 460 bi->bi_len, x); 461 } 462 463 if (count[0] != rgd->rd_free) { 464 if (gfs2_consist_rgrpd(rgd)) 465 fs_err(sdp, "free data mismatch: %u != %u\n", 466 count[0], rgd->rd_free); 467 return; 468 } 469 470 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; 471 if (count[1] != tmp) { 472 if (gfs2_consist_rgrpd(rgd)) 473 fs_err(sdp, "used data mismatch: %u != %u\n", 474 count[1], tmp); 475 return; 476 } 477 478 if (count[2] + count[3] != rgd->rd_dinodes) { 479 if (gfs2_consist_rgrpd(rgd)) 480 fs_err(sdp, "used metadata mismatch: %u != %u\n", 481 count[2] + count[3], rgd->rd_dinodes); 482 return; 483 } 484 } 485 486 /** 487 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number 488 * @sdp: The GFS2 superblock 489 * @blk: The data block number 490 * @exact: True if this needs to be an exact match 491 * 492 * Returns: The resource group, or NULL if not found 493 */ 494 495 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) 496 { 497 struct rb_node *n, *next; 498 struct gfs2_rgrpd *cur; 499 500 spin_lock(&sdp->sd_rindex_spin); 501 n = sdp->sd_rindex_tree.rb_node; 502 while (n) { 503 cur = rb_entry(n, struct gfs2_rgrpd, rd_node); 504 next = NULL; 505 if (blk < cur->rd_addr) 506 next = n->rb_left; 507 else if (blk >= cur->rd_data0 + cur->rd_data) 508 next = n->rb_right; 509 if (next == NULL) { 510 spin_unlock(&sdp->sd_rindex_spin); 511 if (exact) { 512 if (blk < cur->rd_addr) 513 return NULL; 514 if (blk >= cur->rd_data0 + cur->rd_data) 515 return NULL; 516 } 517 return cur; 518 } 519 n = next; 520 } 521 spin_unlock(&sdp->sd_rindex_spin); 522 523 return NULL; 524 } 525 526 /** 527 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem 528 * @sdp: The GFS2 superblock 529 * 530 * Returns: The first rgrp in the filesystem 531 */ 532 533 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) 534 { 535 const struct rb_node *n; 536 struct gfs2_rgrpd *rgd; 537 538 spin_lock(&sdp->sd_rindex_spin); 539 n = rb_first(&sdp->sd_rindex_tree); 540 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 541 spin_unlock(&sdp->sd_rindex_spin); 542 543 return rgd; 544 } 545 546 /** 547 * gfs2_rgrpd_get_next - get the next RG 548 * @rgd: the resource group descriptor 549 * 550 * Returns: The next rgrp 551 */ 552 553 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) 554 { 555 struct gfs2_sbd *sdp = rgd->rd_sbd; 556 const struct rb_node *n; 557 558 spin_lock(&sdp->sd_rindex_spin); 559 n = rb_next(&rgd->rd_node); 560 if (n == NULL) 561 n = rb_first(&sdp->sd_rindex_tree); 562 563 if (unlikely(&rgd->rd_node == n)) { 564 spin_unlock(&sdp->sd_rindex_spin); 565 return NULL; 566 } 567 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 568 spin_unlock(&sdp->sd_rindex_spin); 569 return rgd; 570 } 571 572 void check_and_update_goal(struct gfs2_inode *ip) 573 { 574 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 575 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) 576 ip->i_goal = ip->i_no_addr; 577 } 578 579 void gfs2_free_clones(struct gfs2_rgrpd *rgd) 580 { 581 int x; 582 583 for (x = 0; x < rgd->rd_length; x++) { 584 struct gfs2_bitmap *bi = rgd->rd_bits + x; 585 kfree(bi->bi_clone); 586 bi->bi_clone = NULL; 587 } 588 } 589 590 /** 591 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode 592 * plus a quota allocations data structure, if necessary 593 * @ip: the inode for this reservation 594 */ 595 int gfs2_rsqa_alloc(struct gfs2_inode *ip) 596 { 597 return gfs2_qa_alloc(ip); 598 } 599 600 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs) 601 { 602 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n", 603 (unsigned long long)rs->rs_inum, 604 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), 605 rs->rs_rbm.offset, rs->rs_free); 606 } 607 608 /** 609 * __rs_deltree - remove a multi-block reservation from the rgd tree 610 * @rs: The reservation to remove 611 * 612 */ 613 static void __rs_deltree(struct gfs2_blkreserv *rs) 614 { 615 struct gfs2_rgrpd *rgd; 616 617 if (!gfs2_rs_active(rs)) 618 return; 619 620 rgd = rs->rs_rbm.rgd; 621 trace_gfs2_rs(rs, TRACE_RS_TREEDEL); 622 rb_erase(&rs->rs_node, &rgd->rd_rstree); 623 RB_CLEAR_NODE(&rs->rs_node); 624 625 if (rs->rs_free) { 626 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm); 627 628 /* return reserved blocks to the rgrp */ 629 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); 630 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; 631 /* The rgrp extent failure point is likely not to increase; 632 it will only do so if the freed blocks are somehow 633 contiguous with a span of free blocks that follows. Still, 634 it will force the number to be recalculated later. */ 635 rgd->rd_extfail_pt += rs->rs_free; 636 rs->rs_free = 0; 637 clear_bit(GBF_FULL, &bi->bi_flags); 638 } 639 } 640 641 /** 642 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree 643 * @rs: The reservation to remove 644 * 645 */ 646 void gfs2_rs_deltree(struct gfs2_blkreserv *rs) 647 { 648 struct gfs2_rgrpd *rgd; 649 650 rgd = rs->rs_rbm.rgd; 651 if (rgd) { 652 spin_lock(&rgd->rd_rsspin); 653 __rs_deltree(rs); 654 BUG_ON(rs->rs_free); 655 spin_unlock(&rgd->rd_rsspin); 656 } 657 } 658 659 /** 660 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation 661 * @ip: The inode for this reservation 662 * @wcount: The inode's write count, or NULL 663 * 664 */ 665 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) 666 { 667 down_write(&ip->i_rw_mutex); 668 if ((wcount == NULL) || (atomic_read(wcount) <= 1)) 669 gfs2_rs_deltree(&ip->i_res); 670 up_write(&ip->i_rw_mutex); 671 gfs2_qa_delete(ip, wcount); 672 } 673 674 /** 675 * return_all_reservations - return all reserved blocks back to the rgrp. 676 * @rgd: the rgrp that needs its space back 677 * 678 * We previously reserved a bunch of blocks for allocation. Now we need to 679 * give them back. This leave the reservation structures in tact, but removes 680 * all of their corresponding "no-fly zones". 681 */ 682 static void return_all_reservations(struct gfs2_rgrpd *rgd) 683 { 684 struct rb_node *n; 685 struct gfs2_blkreserv *rs; 686 687 spin_lock(&rgd->rd_rsspin); 688 while ((n = rb_first(&rgd->rd_rstree))) { 689 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 690 __rs_deltree(rs); 691 } 692 spin_unlock(&rgd->rd_rsspin); 693 } 694 695 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) 696 { 697 struct rb_node *n; 698 struct gfs2_rgrpd *rgd; 699 struct gfs2_glock *gl; 700 701 while ((n = rb_first(&sdp->sd_rindex_tree))) { 702 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); 703 gl = rgd->rd_gl; 704 705 rb_erase(n, &sdp->sd_rindex_tree); 706 707 if (gl) { 708 glock_set_object(gl, NULL); 709 gfs2_glock_add_to_lru(gl); 710 gfs2_glock_put(gl); 711 } 712 713 gfs2_free_clones(rgd); 714 kfree(rgd->rd_bits); 715 rgd->rd_bits = NULL; 716 return_all_reservations(rgd); 717 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 718 } 719 } 720 721 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) 722 { 723 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); 724 pr_info("ri_length = %u\n", rgd->rd_length); 725 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); 726 pr_info("ri_data = %u\n", rgd->rd_data); 727 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes); 728 } 729 730 /** 731 * gfs2_compute_bitstructs - Compute the bitmap sizes 732 * @rgd: The resource group descriptor 733 * 734 * Calculates bitmap descriptors, one for each block that contains bitmap data 735 * 736 * Returns: errno 737 */ 738 739 static int compute_bitstructs(struct gfs2_rgrpd *rgd) 740 { 741 struct gfs2_sbd *sdp = rgd->rd_sbd; 742 struct gfs2_bitmap *bi; 743 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ 744 u32 bytes_left, bytes; 745 int x; 746 747 if (!length) 748 return -EINVAL; 749 750 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); 751 if (!rgd->rd_bits) 752 return -ENOMEM; 753 754 bytes_left = rgd->rd_bitbytes; 755 756 for (x = 0; x < length; x++) { 757 bi = rgd->rd_bits + x; 758 759 bi->bi_flags = 0; 760 /* small rgrp; bitmap stored completely in header block */ 761 if (length == 1) { 762 bytes = bytes_left; 763 bi->bi_offset = sizeof(struct gfs2_rgrp); 764 bi->bi_start = 0; 765 bi->bi_len = bytes; 766 bi->bi_blocks = bytes * GFS2_NBBY; 767 /* header block */ 768 } else if (x == 0) { 769 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); 770 bi->bi_offset = sizeof(struct gfs2_rgrp); 771 bi->bi_start = 0; 772 bi->bi_len = bytes; 773 bi->bi_blocks = bytes * GFS2_NBBY; 774 /* last block */ 775 } else if (x + 1 == length) { 776 bytes = bytes_left; 777 bi->bi_offset = sizeof(struct gfs2_meta_header); 778 bi->bi_start = rgd->rd_bitbytes - bytes_left; 779 bi->bi_len = bytes; 780 bi->bi_blocks = bytes * GFS2_NBBY; 781 /* other blocks */ 782 } else { 783 bytes = sdp->sd_sb.sb_bsize - 784 sizeof(struct gfs2_meta_header); 785 bi->bi_offset = sizeof(struct gfs2_meta_header); 786 bi->bi_start = rgd->rd_bitbytes - bytes_left; 787 bi->bi_len = bytes; 788 bi->bi_blocks = bytes * GFS2_NBBY; 789 } 790 791 bytes_left -= bytes; 792 } 793 794 if (bytes_left) { 795 gfs2_consist_rgrpd(rgd); 796 return -EIO; 797 } 798 bi = rgd->rd_bits + (length - 1); 799 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) { 800 if (gfs2_consist_rgrpd(rgd)) { 801 gfs2_rindex_print(rgd); 802 fs_err(sdp, "start=%u len=%u offset=%u\n", 803 bi->bi_start, bi->bi_len, bi->bi_offset); 804 } 805 return -EIO; 806 } 807 808 return 0; 809 } 810 811 /** 812 * gfs2_ri_total - Total up the file system space, according to the rindex. 813 * @sdp: the filesystem 814 * 815 */ 816 u64 gfs2_ri_total(struct gfs2_sbd *sdp) 817 { 818 u64 total_data = 0; 819 struct inode *inode = sdp->sd_rindex; 820 struct gfs2_inode *ip = GFS2_I(inode); 821 char buf[sizeof(struct gfs2_rindex)]; 822 int error, rgrps; 823 824 for (rgrps = 0;; rgrps++) { 825 loff_t pos = rgrps * sizeof(struct gfs2_rindex); 826 827 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) 828 break; 829 error = gfs2_internal_read(ip, buf, &pos, 830 sizeof(struct gfs2_rindex)); 831 if (error != sizeof(struct gfs2_rindex)) 832 break; 833 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); 834 } 835 return total_data; 836 } 837 838 static int rgd_insert(struct gfs2_rgrpd *rgd) 839 { 840 struct gfs2_sbd *sdp = rgd->rd_sbd; 841 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; 842 843 /* Figure out where to put new node */ 844 while (*newn) { 845 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, 846 rd_node); 847 848 parent = *newn; 849 if (rgd->rd_addr < cur->rd_addr) 850 newn = &((*newn)->rb_left); 851 else if (rgd->rd_addr > cur->rd_addr) 852 newn = &((*newn)->rb_right); 853 else 854 return -EEXIST; 855 } 856 857 rb_link_node(&rgd->rd_node, parent, newn); 858 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); 859 sdp->sd_rgrps++; 860 return 0; 861 } 862 863 /** 864 * read_rindex_entry - Pull in a new resource index entry from the disk 865 * @ip: Pointer to the rindex inode 866 * 867 * Returns: 0 on success, > 0 on EOF, error code otherwise 868 */ 869 870 static int read_rindex_entry(struct gfs2_inode *ip) 871 { 872 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 873 const unsigned bsize = sdp->sd_sb.sb_bsize; 874 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); 875 struct gfs2_rindex buf; 876 int error; 877 struct gfs2_rgrpd *rgd; 878 879 if (pos >= i_size_read(&ip->i_inode)) 880 return 1; 881 882 error = gfs2_internal_read(ip, (char *)&buf, &pos, 883 sizeof(struct gfs2_rindex)); 884 885 if (error != sizeof(struct gfs2_rindex)) 886 return (error == 0) ? 1 : error; 887 888 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); 889 error = -ENOMEM; 890 if (!rgd) 891 return error; 892 893 rgd->rd_sbd = sdp; 894 rgd->rd_addr = be64_to_cpu(buf.ri_addr); 895 rgd->rd_length = be32_to_cpu(buf.ri_length); 896 rgd->rd_data0 = be64_to_cpu(buf.ri_data0); 897 rgd->rd_data = be32_to_cpu(buf.ri_data); 898 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); 899 spin_lock_init(&rgd->rd_rsspin); 900 901 error = compute_bitstructs(rgd); 902 if (error) 903 goto fail; 904 905 error = gfs2_glock_get(sdp, rgd->rd_addr, 906 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); 907 if (error) 908 goto fail; 909 910 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; 911 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); 912 if (rgd->rd_data > sdp->sd_max_rg_data) 913 sdp->sd_max_rg_data = rgd->rd_data; 914 spin_lock(&sdp->sd_rindex_spin); 915 error = rgd_insert(rgd); 916 spin_unlock(&sdp->sd_rindex_spin); 917 if (!error) { 918 glock_set_object(rgd->rd_gl, rgd); 919 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; 920 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + 921 rgd->rd_length) * bsize) - 1; 922 return 0; 923 } 924 925 error = 0; /* someone else read in the rgrp; free it and ignore it */ 926 gfs2_glock_put(rgd->rd_gl); 927 928 fail: 929 kfree(rgd->rd_bits); 930 rgd->rd_bits = NULL; 931 kmem_cache_free(gfs2_rgrpd_cachep, rgd); 932 return error; 933 } 934 935 /** 936 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use 937 * @sdp: the GFS2 superblock 938 * 939 * The purpose of this function is to select a subset of the resource groups 940 * and mark them as PREFERRED. We do it in such a way that each node prefers 941 * to use a unique set of rgrps to minimize glock contention. 942 */ 943 static void set_rgrp_preferences(struct gfs2_sbd *sdp) 944 { 945 struct gfs2_rgrpd *rgd, *first; 946 int i; 947 948 /* Skip an initial number of rgrps, based on this node's journal ID. 949 That should start each node out on its own set. */ 950 rgd = gfs2_rgrpd_get_first(sdp); 951 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) 952 rgd = gfs2_rgrpd_get_next(rgd); 953 first = rgd; 954 955 do { 956 rgd->rd_flags |= GFS2_RDF_PREFERRED; 957 for (i = 0; i < sdp->sd_journals; i++) { 958 rgd = gfs2_rgrpd_get_next(rgd); 959 if (!rgd || rgd == first) 960 break; 961 } 962 } while (rgd && rgd != first); 963 } 964 965 /** 966 * gfs2_ri_update - Pull in a new resource index from the disk 967 * @ip: pointer to the rindex inode 968 * 969 * Returns: 0 on successful update, error code otherwise 970 */ 971 972 static int gfs2_ri_update(struct gfs2_inode *ip) 973 { 974 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 975 int error; 976 977 do { 978 error = read_rindex_entry(ip); 979 } while (error == 0); 980 981 if (error < 0) 982 return error; 983 984 set_rgrp_preferences(sdp); 985 986 sdp->sd_rindex_uptodate = 1; 987 return 0; 988 } 989 990 /** 991 * gfs2_rindex_update - Update the rindex if required 992 * @sdp: The GFS2 superblock 993 * 994 * We grab a lock on the rindex inode to make sure that it doesn't 995 * change whilst we are performing an operation. We keep this lock 996 * for quite long periods of time compared to other locks. This 997 * doesn't matter, since it is shared and it is very, very rarely 998 * accessed in the exclusive mode (i.e. only when expanding the filesystem). 999 * 1000 * This makes sure that we're using the latest copy of the resource index 1001 * special file, which might have been updated if someone expanded the 1002 * filesystem (via gfs2_grow utility), which adds new resource groups. 1003 * 1004 * Returns: 0 on succeess, error code otherwise 1005 */ 1006 1007 int gfs2_rindex_update(struct gfs2_sbd *sdp) 1008 { 1009 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); 1010 struct gfs2_glock *gl = ip->i_gl; 1011 struct gfs2_holder ri_gh; 1012 int error = 0; 1013 int unlock_required = 0; 1014 1015 /* Read new copy from disk if we don't have the latest */ 1016 if (!sdp->sd_rindex_uptodate) { 1017 if (!gfs2_glock_is_locked_by_me(gl)) { 1018 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); 1019 if (error) 1020 return error; 1021 unlock_required = 1; 1022 } 1023 if (!sdp->sd_rindex_uptodate) 1024 error = gfs2_ri_update(ip); 1025 if (unlock_required) 1026 gfs2_glock_dq_uninit(&ri_gh); 1027 } 1028 1029 return error; 1030 } 1031 1032 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) 1033 { 1034 const struct gfs2_rgrp *str = buf; 1035 u32 rg_flags; 1036 1037 rg_flags = be32_to_cpu(str->rg_flags); 1038 rg_flags &= ~GFS2_RDF_MASK; 1039 rgd->rd_flags &= GFS2_RDF_MASK; 1040 rgd->rd_flags |= rg_flags; 1041 rgd->rd_free = be32_to_cpu(str->rg_free); 1042 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); 1043 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); 1044 } 1045 1046 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) 1047 { 1048 struct gfs2_rgrp *str = buf; 1049 1050 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); 1051 str->rg_free = cpu_to_be32(rgd->rd_free); 1052 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); 1053 str->__pad = cpu_to_be32(0); 1054 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); 1055 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); 1056 } 1057 1058 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) 1059 { 1060 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1061 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; 1062 1063 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free || 1064 rgl->rl_dinodes != str->rg_dinodes || 1065 rgl->rl_igeneration != str->rg_igeneration) 1066 return 0; 1067 return 1; 1068 } 1069 1070 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) 1071 { 1072 const struct gfs2_rgrp *str = buf; 1073 1074 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); 1075 rgl->rl_flags = str->rg_flags; 1076 rgl->rl_free = str->rg_free; 1077 rgl->rl_dinodes = str->rg_dinodes; 1078 rgl->rl_igeneration = str->rg_igeneration; 1079 rgl->__pad = 0UL; 1080 } 1081 1082 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change) 1083 { 1084 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; 1085 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change; 1086 rgl->rl_unlinked = cpu_to_be32(unlinked); 1087 } 1088 1089 static u32 count_unlinked(struct gfs2_rgrpd *rgd) 1090 { 1091 struct gfs2_bitmap *bi; 1092 const u32 length = rgd->rd_length; 1093 const u8 *buffer = NULL; 1094 u32 i, goal, count = 0; 1095 1096 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { 1097 goal = 0; 1098 buffer = bi->bi_bh->b_data + bi->bi_offset; 1099 WARN_ON(!buffer_uptodate(bi->bi_bh)); 1100 while (goal < bi->bi_len * GFS2_NBBY) { 1101 goal = gfs2_bitfit(buffer, bi->bi_len, goal, 1102 GFS2_BLKST_UNLINKED); 1103 if (goal == BFITNOENT) 1104 break; 1105 count++; 1106 goal++; 1107 } 1108 } 1109 1110 return count; 1111 } 1112 1113 1114 /** 1115 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps 1116 * @rgd: the struct gfs2_rgrpd describing the RG to read in 1117 * 1118 * Read in all of a Resource Group's header and bitmap blocks. 1119 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps. 1120 * 1121 * Returns: errno 1122 */ 1123 1124 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) 1125 { 1126 struct gfs2_sbd *sdp = rgd->rd_sbd; 1127 struct gfs2_glock *gl = rgd->rd_gl; 1128 unsigned int length = rgd->rd_length; 1129 struct gfs2_bitmap *bi; 1130 unsigned int x, y; 1131 int error; 1132 1133 if (rgd->rd_bits[0].bi_bh != NULL) 1134 return 0; 1135 1136 for (x = 0; x < length; x++) { 1137 bi = rgd->rd_bits + x; 1138 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); 1139 if (error) 1140 goto fail; 1141 } 1142 1143 for (y = length; y--;) { 1144 bi = rgd->rd_bits + y; 1145 error = gfs2_meta_wait(sdp, bi->bi_bh); 1146 if (error) 1147 goto fail; 1148 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : 1149 GFS2_METATYPE_RG)) { 1150 error = -EIO; 1151 goto fail; 1152 } 1153 } 1154 1155 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { 1156 for (x = 0; x < length; x++) 1157 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); 1158 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); 1159 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1160 rgd->rd_free_clone = rgd->rd_free; 1161 /* max out the rgrp allocation failure point */ 1162 rgd->rd_extfail_pt = rgd->rd_free; 1163 } 1164 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { 1165 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); 1166 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, 1167 rgd->rd_bits[0].bi_bh->b_data); 1168 } 1169 else if (sdp->sd_args.ar_rgrplvb) { 1170 if (!gfs2_rgrp_lvb_valid(rgd)){ 1171 gfs2_consist_rgrpd(rgd); 1172 error = -EIO; 1173 goto fail; 1174 } 1175 if (rgd->rd_rgl->rl_unlinked == 0) 1176 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1177 } 1178 return 0; 1179 1180 fail: 1181 while (x--) { 1182 bi = rgd->rd_bits + x; 1183 brelse(bi->bi_bh); 1184 bi->bi_bh = NULL; 1185 gfs2_assert_warn(sdp, !bi->bi_clone); 1186 } 1187 1188 return error; 1189 } 1190 1191 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) 1192 { 1193 u32 rl_flags; 1194 1195 if (rgd->rd_flags & GFS2_RDF_UPTODATE) 1196 return 0; 1197 1198 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) 1199 return gfs2_rgrp_bh_get(rgd); 1200 1201 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); 1202 rl_flags &= ~GFS2_RDF_MASK; 1203 rgd->rd_flags &= GFS2_RDF_MASK; 1204 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); 1205 if (rgd->rd_rgl->rl_unlinked == 0) 1206 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1207 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); 1208 rgd->rd_free_clone = rgd->rd_free; 1209 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); 1210 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); 1211 return 0; 1212 } 1213 1214 int gfs2_rgrp_go_lock(struct gfs2_holder *gh) 1215 { 1216 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1217 struct gfs2_sbd *sdp = rgd->rd_sbd; 1218 1219 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) 1220 return 0; 1221 return gfs2_rgrp_bh_get(rgd); 1222 } 1223 1224 /** 1225 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() 1226 * @rgd: The resource group 1227 * 1228 */ 1229 1230 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) 1231 { 1232 int x, length = rgd->rd_length; 1233 1234 for (x = 0; x < length; x++) { 1235 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1236 if (bi->bi_bh) { 1237 brelse(bi->bi_bh); 1238 bi->bi_bh = NULL; 1239 } 1240 } 1241 1242 } 1243 1244 /** 1245 * gfs2_rgrp_go_unlock - Unlock a rgrp glock 1246 * @gh: The glock holder for the resource group 1247 * 1248 */ 1249 1250 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) 1251 { 1252 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; 1253 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | 1254 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); 1255 1256 if (rgd && demote_requested) 1257 gfs2_rgrp_brelse(rgd); 1258 } 1259 1260 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, 1261 struct buffer_head *bh, 1262 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) 1263 { 1264 struct super_block *sb = sdp->sd_vfs; 1265 u64 blk; 1266 sector_t start = 0; 1267 sector_t nr_blks = 0; 1268 int rv; 1269 unsigned int x; 1270 u32 trimmed = 0; 1271 u8 diff; 1272 1273 for (x = 0; x < bi->bi_len; x++) { 1274 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; 1275 clone += bi->bi_offset; 1276 clone += x; 1277 if (bh) { 1278 const u8 *orig = bh->b_data + bi->bi_offset + x; 1279 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); 1280 } else { 1281 diff = ~(*clone | (*clone >> 1)); 1282 } 1283 diff &= 0x55; 1284 if (diff == 0) 1285 continue; 1286 blk = offset + ((bi->bi_start + x) * GFS2_NBBY); 1287 while(diff) { 1288 if (diff & 1) { 1289 if (nr_blks == 0) 1290 goto start_new_extent; 1291 if ((start + nr_blks) != blk) { 1292 if (nr_blks >= minlen) { 1293 rv = sb_issue_discard(sb, 1294 start, nr_blks, 1295 GFP_NOFS, 0); 1296 if (rv) 1297 goto fail; 1298 trimmed += nr_blks; 1299 } 1300 nr_blks = 0; 1301 start_new_extent: 1302 start = blk; 1303 } 1304 nr_blks++; 1305 } 1306 diff >>= 2; 1307 blk++; 1308 } 1309 } 1310 if (nr_blks >= minlen) { 1311 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); 1312 if (rv) 1313 goto fail; 1314 trimmed += nr_blks; 1315 } 1316 if (ptrimmed) 1317 *ptrimmed = trimmed; 1318 return 0; 1319 1320 fail: 1321 if (sdp->sd_args.ar_discard) 1322 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv); 1323 sdp->sd_args.ar_discard = 0; 1324 return -EIO; 1325 } 1326 1327 /** 1328 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem 1329 * @filp: Any file on the filesystem 1330 * @argp: Pointer to the arguments (also used to pass result) 1331 * 1332 * Returns: 0 on success, otherwise error code 1333 */ 1334 1335 int gfs2_fitrim(struct file *filp, void __user *argp) 1336 { 1337 struct inode *inode = file_inode(filp); 1338 struct gfs2_sbd *sdp = GFS2_SB(inode); 1339 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); 1340 struct buffer_head *bh; 1341 struct gfs2_rgrpd *rgd; 1342 struct gfs2_rgrpd *rgd_end; 1343 struct gfs2_holder gh; 1344 struct fstrim_range r; 1345 int ret = 0; 1346 u64 amt; 1347 u64 trimmed = 0; 1348 u64 start, end, minlen; 1349 unsigned int x; 1350 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; 1351 1352 if (!capable(CAP_SYS_ADMIN)) 1353 return -EPERM; 1354 1355 if (!blk_queue_discard(q)) 1356 return -EOPNOTSUPP; 1357 1358 if (copy_from_user(&r, argp, sizeof(r))) 1359 return -EFAULT; 1360 1361 ret = gfs2_rindex_update(sdp); 1362 if (ret) 1363 return ret; 1364 1365 start = r.start >> bs_shift; 1366 end = start + (r.len >> bs_shift); 1367 minlen = max_t(u64, r.minlen, 1368 q->limits.discard_granularity) >> bs_shift; 1369 1370 if (end <= start || minlen > sdp->sd_max_rg_data) 1371 return -EINVAL; 1372 1373 rgd = gfs2_blk2rgrpd(sdp, start, 0); 1374 rgd_end = gfs2_blk2rgrpd(sdp, end, 0); 1375 1376 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) 1377 && (start > rgd_end->rd_data0 + rgd_end->rd_data)) 1378 return -EINVAL; /* start is beyond the end of the fs */ 1379 1380 while (1) { 1381 1382 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); 1383 if (ret) 1384 goto out; 1385 1386 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { 1387 /* Trim each bitmap in the rgrp */ 1388 for (x = 0; x < rgd->rd_length; x++) { 1389 struct gfs2_bitmap *bi = rgd->rd_bits + x; 1390 ret = gfs2_rgrp_send_discards(sdp, 1391 rgd->rd_data0, NULL, bi, minlen, 1392 &amt); 1393 if (ret) { 1394 gfs2_glock_dq_uninit(&gh); 1395 goto out; 1396 } 1397 trimmed += amt; 1398 } 1399 1400 /* Mark rgrp as having been trimmed */ 1401 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); 1402 if (ret == 0) { 1403 bh = rgd->rd_bits[0].bi_bh; 1404 rgd->rd_flags |= GFS2_RGF_TRIMMED; 1405 gfs2_trans_add_meta(rgd->rd_gl, bh); 1406 gfs2_rgrp_out(rgd, bh->b_data); 1407 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data); 1408 gfs2_trans_end(sdp); 1409 } 1410 } 1411 gfs2_glock_dq_uninit(&gh); 1412 1413 if (rgd == rgd_end) 1414 break; 1415 1416 rgd = gfs2_rgrpd_get_next(rgd); 1417 } 1418 1419 out: 1420 r.len = trimmed << bs_shift; 1421 if (copy_to_user(argp, &r, sizeof(r))) 1422 return -EFAULT; 1423 1424 return ret; 1425 } 1426 1427 /** 1428 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree 1429 * @ip: the inode structure 1430 * 1431 */ 1432 static void rs_insert(struct gfs2_inode *ip) 1433 { 1434 struct rb_node **newn, *parent = NULL; 1435 int rc; 1436 struct gfs2_blkreserv *rs = &ip->i_res; 1437 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; 1438 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); 1439 1440 BUG_ON(gfs2_rs_active(rs)); 1441 1442 spin_lock(&rgd->rd_rsspin); 1443 newn = &rgd->rd_rstree.rb_node; 1444 while (*newn) { 1445 struct gfs2_blkreserv *cur = 1446 rb_entry(*newn, struct gfs2_blkreserv, rs_node); 1447 1448 parent = *newn; 1449 rc = rs_cmp(fsblock, rs->rs_free, cur); 1450 if (rc > 0) 1451 newn = &((*newn)->rb_right); 1452 else if (rc < 0) 1453 newn = &((*newn)->rb_left); 1454 else { 1455 spin_unlock(&rgd->rd_rsspin); 1456 WARN_ON(1); 1457 return; 1458 } 1459 } 1460 1461 rb_link_node(&rs->rs_node, parent, newn); 1462 rb_insert_color(&rs->rs_node, &rgd->rd_rstree); 1463 1464 /* Do our rgrp accounting for the reservation */ 1465 rgd->rd_reserved += rs->rs_free; /* blocks reserved */ 1466 spin_unlock(&rgd->rd_rsspin); 1467 trace_gfs2_rs(rs, TRACE_RS_INSERT); 1468 } 1469 1470 /** 1471 * rg_mblk_search - find a group of multiple free blocks to form a reservation 1472 * @rgd: the resource group descriptor 1473 * @ip: pointer to the inode for which we're reserving blocks 1474 * @ap: the allocation parameters 1475 * 1476 */ 1477 1478 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, 1479 const struct gfs2_alloc_parms *ap) 1480 { 1481 struct gfs2_rbm rbm = { .rgd = rgd, }; 1482 u64 goal; 1483 struct gfs2_blkreserv *rs = &ip->i_res; 1484 u32 extlen; 1485 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved; 1486 int ret; 1487 struct inode *inode = &ip->i_inode; 1488 1489 if (S_ISDIR(inode->i_mode)) 1490 extlen = 1; 1491 else { 1492 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target); 1493 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks); 1494 } 1495 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) 1496 return; 1497 1498 /* Find bitmap block that contains bits for goal block */ 1499 if (rgrp_contains_block(rgd, ip->i_goal)) 1500 goal = ip->i_goal; 1501 else 1502 goal = rgd->rd_last_alloc + rgd->rd_data0; 1503 1504 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) 1505 return; 1506 1507 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); 1508 if (ret == 0) { 1509 rs->rs_rbm = rbm; 1510 rs->rs_free = extlen; 1511 rs->rs_inum = ip->i_no_addr; 1512 rs_insert(ip); 1513 } else { 1514 if (goal == rgd->rd_last_alloc + rgd->rd_data0) 1515 rgd->rd_last_alloc = 0; 1516 } 1517 } 1518 1519 /** 1520 * gfs2_next_unreserved_block - Return next block that is not reserved 1521 * @rgd: The resource group 1522 * @block: The starting block 1523 * @length: The required length 1524 * @ip: Ignore any reservations for this inode 1525 * 1526 * If the block does not appear in any reservation, then return the 1527 * block number unchanged. If it does appear in the reservation, then 1528 * keep looking through the tree of reservations in order to find the 1529 * first block number which is not reserved. 1530 */ 1531 1532 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, 1533 u32 length, 1534 const struct gfs2_inode *ip) 1535 { 1536 struct gfs2_blkreserv *rs; 1537 struct rb_node *n; 1538 int rc; 1539 1540 spin_lock(&rgd->rd_rsspin); 1541 n = rgd->rd_rstree.rb_node; 1542 while (n) { 1543 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1544 rc = rs_cmp(block, length, rs); 1545 if (rc < 0) 1546 n = n->rb_left; 1547 else if (rc > 0) 1548 n = n->rb_right; 1549 else 1550 break; 1551 } 1552 1553 if (n) { 1554 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { 1555 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; 1556 n = n->rb_right; 1557 if (n == NULL) 1558 break; 1559 rs = rb_entry(n, struct gfs2_blkreserv, rs_node); 1560 } 1561 } 1562 1563 spin_unlock(&rgd->rd_rsspin); 1564 return block; 1565 } 1566 1567 /** 1568 * gfs2_reservation_check_and_update - Check for reservations during block alloc 1569 * @rbm: The current position in the resource group 1570 * @ip: The inode for which we are searching for blocks 1571 * @minext: The minimum extent length 1572 * @maxext: A pointer to the maximum extent structure 1573 * 1574 * This checks the current position in the rgrp to see whether there is 1575 * a reservation covering this block. If not then this function is a 1576 * no-op. If there is, then the position is moved to the end of the 1577 * contiguous reservation(s) so that we are pointing at the first 1578 * non-reserved block. 1579 * 1580 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error 1581 */ 1582 1583 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, 1584 const struct gfs2_inode *ip, 1585 u32 minext, 1586 struct gfs2_extent *maxext) 1587 { 1588 u64 block = gfs2_rbm_to_block(rbm); 1589 u32 extlen = 1; 1590 u64 nblock; 1591 int ret; 1592 1593 /* 1594 * If we have a minimum extent length, then skip over any extent 1595 * which is less than the min extent length in size. 1596 */ 1597 if (minext) { 1598 extlen = gfs2_free_extlen(rbm, minext); 1599 if (extlen <= maxext->len) 1600 goto fail; 1601 } 1602 1603 /* 1604 * Check the extent which has been found against the reservations 1605 * and skip if parts of it are already reserved 1606 */ 1607 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); 1608 if (nblock == block) { 1609 if (!minext || extlen >= minext) 1610 return 0; 1611 1612 if (extlen > maxext->len) { 1613 maxext->len = extlen; 1614 maxext->rbm = *rbm; 1615 } 1616 fail: 1617 nblock = block + extlen; 1618 } 1619 ret = gfs2_rbm_from_block(rbm, nblock); 1620 if (ret < 0) 1621 return ret; 1622 return 1; 1623 } 1624 1625 /** 1626 * gfs2_rbm_find - Look for blocks of a particular state 1627 * @rbm: Value/result starting position and final position 1628 * @state: The state which we want to find 1629 * @minext: Pointer to the requested extent length (NULL for a single block) 1630 * This is updated to be the actual reservation size. 1631 * @ip: If set, check for reservations 1632 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping 1633 * around until we've reached the starting point. 1634 * 1635 * Side effects: 1636 * - If looking for free blocks, we set GBF_FULL on each bitmap which 1637 * has no free blocks in it. 1638 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which 1639 * has come up short on a free block search. 1640 * 1641 * Returns: 0 on success, -ENOSPC if there is no block of the requested state 1642 */ 1643 1644 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, 1645 const struct gfs2_inode *ip, bool nowrap) 1646 { 1647 struct buffer_head *bh; 1648 int initial_bii; 1649 u32 initial_offset; 1650 int first_bii = rbm->bii; 1651 u32 first_offset = rbm->offset; 1652 u32 offset; 1653 u8 *buffer; 1654 int n = 0; 1655 int iters = rbm->rgd->rd_length; 1656 int ret; 1657 struct gfs2_bitmap *bi; 1658 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; 1659 1660 /* If we are not starting at the beginning of a bitmap, then we 1661 * need to add one to the bitmap count to ensure that we search 1662 * the starting bitmap twice. 1663 */ 1664 if (rbm->offset != 0) 1665 iters++; 1666 1667 while(1) { 1668 bi = rbm_bi(rbm); 1669 if (test_bit(GBF_FULL, &bi->bi_flags) && 1670 (state == GFS2_BLKST_FREE)) 1671 goto next_bitmap; 1672 1673 bh = bi->bi_bh; 1674 buffer = bh->b_data + bi->bi_offset; 1675 WARN_ON(!buffer_uptodate(bh)); 1676 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) 1677 buffer = bi->bi_clone + bi->bi_offset; 1678 initial_offset = rbm->offset; 1679 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state); 1680 if (offset == BFITNOENT) 1681 goto bitmap_full; 1682 rbm->offset = offset; 1683 if (ip == NULL) 1684 return 0; 1685 1686 initial_bii = rbm->bii; 1687 ret = gfs2_reservation_check_and_update(rbm, ip, 1688 minext ? *minext : 0, 1689 &maxext); 1690 if (ret == 0) 1691 return 0; 1692 if (ret > 0) { 1693 n += (rbm->bii - initial_bii); 1694 goto next_iter; 1695 } 1696 if (ret == -E2BIG) { 1697 rbm->bii = 0; 1698 rbm->offset = 0; 1699 n += (rbm->bii - initial_bii); 1700 goto res_covered_end_of_rgrp; 1701 } 1702 return ret; 1703 1704 bitmap_full: /* Mark bitmap as full and fall through */ 1705 if ((state == GFS2_BLKST_FREE) && initial_offset == 0) 1706 set_bit(GBF_FULL, &bi->bi_flags); 1707 1708 next_bitmap: /* Find next bitmap in the rgrp */ 1709 rbm->offset = 0; 1710 rbm->bii++; 1711 if (rbm->bii == rbm->rgd->rd_length) 1712 rbm->bii = 0; 1713 res_covered_end_of_rgrp: 1714 if ((rbm->bii == 0) && nowrap) 1715 break; 1716 n++; 1717 next_iter: 1718 if (n >= iters) 1719 break; 1720 } 1721 1722 if (minext == NULL || state != GFS2_BLKST_FREE) 1723 return -ENOSPC; 1724 1725 /* If the extent was too small, and it's smaller than the smallest 1726 to have failed before, remember for future reference that it's 1727 useless to search this rgrp again for this amount or more. */ 1728 if ((first_offset == 0) && (first_bii == 0) && 1729 (*minext < rbm->rgd->rd_extfail_pt)) 1730 rbm->rgd->rd_extfail_pt = *minext; 1731 1732 /* If the maximum extent we found is big enough to fulfill the 1733 minimum requirements, use it anyway. */ 1734 if (maxext.len) { 1735 *rbm = maxext.rbm; 1736 *minext = maxext.len; 1737 return 0; 1738 } 1739 1740 return -ENOSPC; 1741 } 1742 1743 /** 1744 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes 1745 * @rgd: The rgrp 1746 * @last_unlinked: block address of the last dinode we unlinked 1747 * @skip: block address we should explicitly not unlink 1748 * 1749 * Returns: 0 if no error 1750 * The inode, if one has been found, in inode. 1751 */ 1752 1753 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) 1754 { 1755 u64 block; 1756 struct gfs2_sbd *sdp = rgd->rd_sbd; 1757 struct gfs2_glock *gl; 1758 struct gfs2_inode *ip; 1759 int error; 1760 int found = 0; 1761 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; 1762 1763 while (1) { 1764 down_write(&sdp->sd_log_flush_lock); 1765 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, 1766 true); 1767 up_write(&sdp->sd_log_flush_lock); 1768 if (error == -ENOSPC) 1769 break; 1770 if (WARN_ON_ONCE(error)) 1771 break; 1772 1773 block = gfs2_rbm_to_block(&rbm); 1774 if (gfs2_rbm_from_block(&rbm, block + 1)) 1775 break; 1776 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) 1777 continue; 1778 if (block == skip) 1779 continue; 1780 *last_unlinked = block; 1781 1782 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); 1783 if (error) 1784 continue; 1785 1786 /* If the inode is already in cache, we can ignore it here 1787 * because the existing inode disposal code will deal with 1788 * it when all refs have gone away. Accessing gl_object like 1789 * this is not safe in general. Here it is ok because we do 1790 * not dereference the pointer, and we only need an approx 1791 * answer to whether it is NULL or not. 1792 */ 1793 ip = gl->gl_object; 1794 1795 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) 1796 gfs2_glock_put(gl); 1797 else 1798 found++; 1799 1800 /* Limit reclaim to sensible number of tasks */ 1801 if (found > NR_CPUS) 1802 return; 1803 } 1804 1805 rgd->rd_flags &= ~GFS2_RDF_CHECK; 1806 return; 1807 } 1808 1809 /** 1810 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested 1811 * @rgd: The rgrp in question 1812 * @loops: An indication of how picky we can be (0=very, 1=less so) 1813 * 1814 * This function uses the recently added glock statistics in order to 1815 * figure out whether a parciular resource group is suffering from 1816 * contention from multiple nodes. This is done purely on the basis 1817 * of timings, since this is the only data we have to work with and 1818 * our aim here is to reject a resource group which is highly contended 1819 * but (very important) not to do this too often in order to ensure that 1820 * we do not land up introducing fragmentation by changing resource 1821 * groups when not actually required. 1822 * 1823 * The calculation is fairly simple, we want to know whether the SRTTB 1824 * (i.e. smoothed round trip time for blocking operations) to acquire 1825 * the lock for this rgrp's glock is significantly greater than the 1826 * time taken for resource groups on average. We introduce a margin in 1827 * the form of the variable @var which is computed as the sum of the two 1828 * respective variences, and multiplied by a factor depending on @loops 1829 * and whether we have a lot of data to base the decision on. This is 1830 * then tested against the square difference of the means in order to 1831 * decide whether the result is statistically significant or not. 1832 * 1833 * Returns: A boolean verdict on the congestion status 1834 */ 1835 1836 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) 1837 { 1838 const struct gfs2_glock *gl = rgd->rd_gl; 1839 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 1840 struct gfs2_lkstats *st; 1841 u64 r_dcount, l_dcount; 1842 u64 l_srttb, a_srttb = 0; 1843 s64 srttb_diff; 1844 u64 sqr_diff; 1845 u64 var; 1846 int cpu, nonzero = 0; 1847 1848 preempt_disable(); 1849 for_each_present_cpu(cpu) { 1850 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; 1851 if (st->stats[GFS2_LKS_SRTTB]) { 1852 a_srttb += st->stats[GFS2_LKS_SRTTB]; 1853 nonzero++; 1854 } 1855 } 1856 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; 1857 if (nonzero) 1858 do_div(a_srttb, nonzero); 1859 r_dcount = st->stats[GFS2_LKS_DCOUNT]; 1860 var = st->stats[GFS2_LKS_SRTTVARB] + 1861 gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; 1862 preempt_enable(); 1863 1864 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; 1865 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; 1866 1867 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) 1868 return false; 1869 1870 srttb_diff = a_srttb - l_srttb; 1871 sqr_diff = srttb_diff * srttb_diff; 1872 1873 var *= 2; 1874 if (l_dcount < 8 || r_dcount < 8) 1875 var *= 2; 1876 if (loops == 1) 1877 var *= 2; 1878 1879 return ((srttb_diff < 0) && (sqr_diff > var)); 1880 } 1881 1882 /** 1883 * gfs2_rgrp_used_recently 1884 * @rs: The block reservation with the rgrp to test 1885 * @msecs: The time limit in milliseconds 1886 * 1887 * Returns: True if the rgrp glock has been used within the time limit 1888 */ 1889 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, 1890 u64 msecs) 1891 { 1892 u64 tdiff; 1893 1894 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), 1895 rs->rs_rbm.rgd->rd_gl->gl_dstamp)); 1896 1897 return tdiff > (msecs * 1000 * 1000); 1898 } 1899 1900 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) 1901 { 1902 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1903 u32 skip; 1904 1905 get_random_bytes(&skip, sizeof(skip)); 1906 return skip % sdp->sd_rgrps; 1907 } 1908 1909 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) 1910 { 1911 struct gfs2_rgrpd *rgd = *pos; 1912 struct gfs2_sbd *sdp = rgd->rd_sbd; 1913 1914 rgd = gfs2_rgrpd_get_next(rgd); 1915 if (rgd == NULL) 1916 rgd = gfs2_rgrpd_get_first(sdp); 1917 *pos = rgd; 1918 if (rgd != begin) /* If we didn't wrap */ 1919 return true; 1920 return false; 1921 } 1922 1923 /** 1924 * fast_to_acquire - determine if a resource group will be fast to acquire 1925 * 1926 * If this is one of our preferred rgrps, it should be quicker to acquire, 1927 * because we tried to set ourselves up as dlm lock master. 1928 */ 1929 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) 1930 { 1931 struct gfs2_glock *gl = rgd->rd_gl; 1932 1933 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && 1934 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && 1935 !test_bit(GLF_DEMOTE, &gl->gl_flags)) 1936 return 1; 1937 if (rgd->rd_flags & GFS2_RDF_PREFERRED) 1938 return 1; 1939 return 0; 1940 } 1941 1942 /** 1943 * gfs2_inplace_reserve - Reserve space in the filesystem 1944 * @ip: the inode to reserve space for 1945 * @ap: the allocation parameters 1946 * 1947 * We try our best to find an rgrp that has at least ap->target blocks 1948 * available. After a couple of passes (loops == 2), the prospects of finding 1949 * such an rgrp diminish. At this stage, we return the first rgrp that has 1950 * atleast ap->min_target blocks available. Either way, we set ap->allowed to 1951 * the number of blocks available in the chosen rgrp. 1952 * 1953 * Returns: 0 on success, 1954 * -ENOMEM if a suitable rgrp can't be found 1955 * errno otherwise 1956 */ 1957 1958 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) 1959 { 1960 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1961 struct gfs2_rgrpd *begin = NULL; 1962 struct gfs2_blkreserv *rs = &ip->i_res; 1963 int error = 0, rg_locked, flags = 0; 1964 u64 last_unlinked = NO_BLOCK; 1965 int loops = 0; 1966 u32 skip = 0; 1967 1968 if (sdp->sd_args.ar_rgrplvb) 1969 flags |= GL_SKIP; 1970 if (gfs2_assert_warn(sdp, ap->target)) 1971 return -EINVAL; 1972 if (gfs2_rs_active(rs)) { 1973 begin = rs->rs_rbm.rgd; 1974 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) { 1975 rs->rs_rbm.rgd = begin = ip->i_rgd; 1976 } else { 1977 check_and_update_goal(ip); 1978 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); 1979 } 1980 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) 1981 skip = gfs2_orlov_skip(ip); 1982 if (rs->rs_rbm.rgd == NULL) 1983 return -EBADSLT; 1984 1985 while (loops < 3) { 1986 rg_locked = 1; 1987 1988 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { 1989 rg_locked = 0; 1990 if (skip && skip--) 1991 goto next_rgrp; 1992 if (!gfs2_rs_active(rs)) { 1993 if (loops == 0 && 1994 !fast_to_acquire(rs->rs_rbm.rgd)) 1995 goto next_rgrp; 1996 if ((loops < 2) && 1997 gfs2_rgrp_used_recently(rs, 1000) && 1998 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 1999 goto next_rgrp; 2000 } 2001 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, 2002 LM_ST_EXCLUSIVE, flags, 2003 &rs->rs_rgd_gh); 2004 if (unlikely(error)) 2005 return error; 2006 if (!gfs2_rs_active(rs) && (loops < 2) && 2007 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) 2008 goto skip_rgrp; 2009 if (sdp->sd_args.ar_rgrplvb) { 2010 error = update_rgrp_lvb(rs->rs_rbm.rgd); 2011 if (unlikely(error)) { 2012 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2013 return error; 2014 } 2015 } 2016 } 2017 2018 /* Skip unuseable resource groups */ 2019 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | 2020 GFS2_RDF_ERROR)) || 2021 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) 2022 goto skip_rgrp; 2023 2024 if (sdp->sd_args.ar_rgrplvb) 2025 gfs2_rgrp_bh_get(rs->rs_rbm.rgd); 2026 2027 /* Get a reservation if we don't already have one */ 2028 if (!gfs2_rs_active(rs)) 2029 rg_mblk_search(rs->rs_rbm.rgd, ip, ap); 2030 2031 /* Skip rgrps when we can't get a reservation on first pass */ 2032 if (!gfs2_rs_active(rs) && (loops < 1)) 2033 goto check_rgrp; 2034 2035 /* If rgrp has enough free space, use it */ 2036 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target || 2037 (loops == 2 && ap->min_target && 2038 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) { 2039 ip->i_rgd = rs->rs_rbm.rgd; 2040 ap->allowed = ip->i_rgd->rd_free_clone; 2041 return 0; 2042 } 2043 check_rgrp: 2044 /* Check for unlinked inodes which can be reclaimed */ 2045 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) 2046 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, 2047 ip->i_no_addr); 2048 skip_rgrp: 2049 /* Drop reservation, if we couldn't use reserved rgrp */ 2050 if (gfs2_rs_active(rs)) 2051 gfs2_rs_deltree(rs); 2052 2053 /* Unlock rgrp if required */ 2054 if (!rg_locked) 2055 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2056 next_rgrp: 2057 /* Find the next rgrp, and continue looking */ 2058 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) 2059 continue; 2060 if (skip) 2061 continue; 2062 2063 /* If we've scanned all the rgrps, but found no free blocks 2064 * then this checks for some less likely conditions before 2065 * trying again. 2066 */ 2067 loops++; 2068 /* Check that fs hasn't grown if writing to rindex */ 2069 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { 2070 error = gfs2_ri_update(ip); 2071 if (error) 2072 return error; 2073 } 2074 /* Flushing the log may release space */ 2075 if (loops == 2) 2076 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH); 2077 } 2078 2079 return -ENOSPC; 2080 } 2081 2082 /** 2083 * gfs2_inplace_release - release an inplace reservation 2084 * @ip: the inode the reservation was taken out on 2085 * 2086 * Release a reservation made by gfs2_inplace_reserve(). 2087 */ 2088 2089 void gfs2_inplace_release(struct gfs2_inode *ip) 2090 { 2091 struct gfs2_blkreserv *rs = &ip->i_res; 2092 2093 if (gfs2_holder_initialized(&rs->rs_rgd_gh)) 2094 gfs2_glock_dq_uninit(&rs->rs_rgd_gh); 2095 } 2096 2097 /** 2098 * gfs2_get_block_type - Check a block in a RG is of given type 2099 * @rgd: the resource group holding the block 2100 * @block: the block number 2101 * 2102 * Returns: The block type (GFS2_BLKST_*) 2103 */ 2104 2105 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block) 2106 { 2107 struct gfs2_rbm rbm = { .rgd = rgd, }; 2108 int ret; 2109 2110 ret = gfs2_rbm_from_block(&rbm, block); 2111 WARN_ON_ONCE(ret != 0); 2112 2113 return gfs2_testbit(&rbm); 2114 } 2115 2116 2117 /** 2118 * gfs2_alloc_extent - allocate an extent from a given bitmap 2119 * @rbm: the resource group information 2120 * @dinode: TRUE if the first block we allocate is for a dinode 2121 * @n: The extent length (value/result) 2122 * 2123 * Add the bitmap buffer to the transaction. 2124 * Set the found bits to @new_state to change block's allocation state. 2125 */ 2126 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, 2127 unsigned int *n) 2128 { 2129 struct gfs2_rbm pos = { .rgd = rbm->rgd, }; 2130 const unsigned int elen = *n; 2131 u64 block; 2132 int ret; 2133 2134 *n = 1; 2135 block = gfs2_rbm_to_block(rbm); 2136 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); 2137 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2138 block++; 2139 while (*n < elen) { 2140 ret = gfs2_rbm_from_block(&pos, block); 2141 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE) 2142 break; 2143 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); 2144 gfs2_setbit(&pos, true, GFS2_BLKST_USED); 2145 (*n)++; 2146 block++; 2147 } 2148 } 2149 2150 /** 2151 * rgblk_free - Change alloc state of given block(s) 2152 * @sdp: the filesystem 2153 * @bstart: the start of a run of blocks to free 2154 * @blen: the length of the block run (all must lie within ONE RG!) 2155 * @new_state: GFS2_BLKST_XXX the after-allocation block state 2156 * 2157 * Returns: Resource group containing the block(s) 2158 */ 2159 2160 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart, 2161 u32 blen, unsigned char new_state) 2162 { 2163 struct gfs2_rbm rbm; 2164 struct gfs2_bitmap *bi, *bi_prev = NULL; 2165 2166 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1); 2167 if (!rbm.rgd) { 2168 if (gfs2_consist(sdp)) 2169 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart); 2170 return NULL; 2171 } 2172 2173 gfs2_rbm_from_block(&rbm, bstart); 2174 while (blen--) { 2175 bi = rbm_bi(&rbm); 2176 if (bi != bi_prev) { 2177 if (!bi->bi_clone) { 2178 bi->bi_clone = kmalloc(bi->bi_bh->b_size, 2179 GFP_NOFS | __GFP_NOFAIL); 2180 memcpy(bi->bi_clone + bi->bi_offset, 2181 bi->bi_bh->b_data + bi->bi_offset, 2182 bi->bi_len); 2183 } 2184 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); 2185 bi_prev = bi; 2186 } 2187 gfs2_setbit(&rbm, false, new_state); 2188 gfs2_rbm_incr(&rbm); 2189 } 2190 2191 return rbm.rgd; 2192 } 2193 2194 /** 2195 * gfs2_rgrp_dump - print out an rgrp 2196 * @seq: The iterator 2197 * @gl: The glock in question 2198 * 2199 */ 2200 2201 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl) 2202 { 2203 struct gfs2_rgrpd *rgd = gl->gl_object; 2204 struct gfs2_blkreserv *trs; 2205 const struct rb_node *n; 2206 2207 if (rgd == NULL) 2208 return; 2209 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", 2210 (unsigned long long)rgd->rd_addr, rgd->rd_flags, 2211 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, 2212 rgd->rd_reserved, rgd->rd_extfail_pt); 2213 spin_lock(&rgd->rd_rsspin); 2214 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { 2215 trs = rb_entry(n, struct gfs2_blkreserv, rs_node); 2216 dump_rs(seq, trs); 2217 } 2218 spin_unlock(&rgd->rd_rsspin); 2219 } 2220 2221 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) 2222 { 2223 struct gfs2_sbd *sdp = rgd->rd_sbd; 2224 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", 2225 (unsigned long long)rgd->rd_addr); 2226 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); 2227 gfs2_rgrp_dump(NULL, rgd->rd_gl); 2228 rgd->rd_flags |= GFS2_RDF_ERROR; 2229 } 2230 2231 /** 2232 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation 2233 * @ip: The inode we have just allocated blocks for 2234 * @rbm: The start of the allocated blocks 2235 * @len: The extent length 2236 * 2237 * Adjusts a reservation after an allocation has taken place. If the 2238 * reservation does not match the allocation, or if it is now empty 2239 * then it is removed. 2240 */ 2241 2242 static void gfs2_adjust_reservation(struct gfs2_inode *ip, 2243 const struct gfs2_rbm *rbm, unsigned len) 2244 { 2245 struct gfs2_blkreserv *rs = &ip->i_res; 2246 struct gfs2_rgrpd *rgd = rbm->rgd; 2247 unsigned rlen; 2248 u64 block; 2249 int ret; 2250 2251 spin_lock(&rgd->rd_rsspin); 2252 if (gfs2_rs_active(rs)) { 2253 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { 2254 block = gfs2_rbm_to_block(rbm); 2255 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); 2256 rlen = min(rs->rs_free, len); 2257 rs->rs_free -= rlen; 2258 rgd->rd_reserved -= rlen; 2259 trace_gfs2_rs(rs, TRACE_RS_CLAIM); 2260 if (rs->rs_free && !ret) 2261 goto out; 2262 /* We used up our block reservation, so we should 2263 reserve more blocks next time. */ 2264 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint); 2265 } 2266 __rs_deltree(rs); 2267 } 2268 out: 2269 spin_unlock(&rgd->rd_rsspin); 2270 } 2271 2272 /** 2273 * gfs2_set_alloc_start - Set starting point for block allocation 2274 * @rbm: The rbm which will be set to the required location 2275 * @ip: The gfs2 inode 2276 * @dinode: Flag to say if allocation includes a new inode 2277 * 2278 * This sets the starting point from the reservation if one is active 2279 * otherwise it falls back to guessing a start point based on the 2280 * inode's goal block or the last allocation point in the rgrp. 2281 */ 2282 2283 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, 2284 const struct gfs2_inode *ip, bool dinode) 2285 { 2286 u64 goal; 2287 2288 if (gfs2_rs_active(&ip->i_res)) { 2289 *rbm = ip->i_res.rs_rbm; 2290 return; 2291 } 2292 2293 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) 2294 goal = ip->i_goal; 2295 else 2296 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; 2297 2298 gfs2_rbm_from_block(rbm, goal); 2299 } 2300 2301 /** 2302 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode 2303 * @ip: the inode to allocate the block for 2304 * @bn: Used to return the starting block number 2305 * @nblocks: requested number of blocks/extent length (value/result) 2306 * @dinode: 1 if we're allocating a dinode block, else 0 2307 * @generation: the generation number of the inode 2308 * 2309 * Returns: 0 or error 2310 */ 2311 2312 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, 2313 bool dinode, u64 *generation) 2314 { 2315 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2316 struct buffer_head *dibh; 2317 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, }; 2318 unsigned int ndata; 2319 u64 block; /* block, within the file system scope */ 2320 int error; 2321 2322 gfs2_set_alloc_start(&rbm, ip, dinode); 2323 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); 2324 2325 if (error == -ENOSPC) { 2326 gfs2_set_alloc_start(&rbm, ip, dinode); 2327 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); 2328 } 2329 2330 /* Since all blocks are reserved in advance, this shouldn't happen */ 2331 if (error) { 2332 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", 2333 (unsigned long long)ip->i_no_addr, error, *nblocks, 2334 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), 2335 rbm.rgd->rd_extfail_pt); 2336 goto rgrp_error; 2337 } 2338 2339 gfs2_alloc_extent(&rbm, dinode, nblocks); 2340 block = gfs2_rbm_to_block(&rbm); 2341 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; 2342 if (gfs2_rs_active(&ip->i_res)) 2343 gfs2_adjust_reservation(ip, &rbm, *nblocks); 2344 ndata = *nblocks; 2345 if (dinode) 2346 ndata--; 2347 2348 if (!dinode) { 2349 ip->i_goal = block + ndata - 1; 2350 error = gfs2_meta_inode_buffer(ip, &dibh); 2351 if (error == 0) { 2352 struct gfs2_dinode *di = 2353 (struct gfs2_dinode *)dibh->b_data; 2354 gfs2_trans_add_meta(ip->i_gl, dibh); 2355 di->di_goal_meta = di->di_goal_data = 2356 cpu_to_be64(ip->i_goal); 2357 brelse(dibh); 2358 } 2359 } 2360 if (rbm.rgd->rd_free < *nblocks) { 2361 pr_warn("nblocks=%u\n", *nblocks); 2362 goto rgrp_error; 2363 } 2364 2365 rbm.rgd->rd_free -= *nblocks; 2366 if (dinode) { 2367 rbm.rgd->rd_dinodes++; 2368 *generation = rbm.rgd->rd_igeneration++; 2369 if (*generation == 0) 2370 *generation = rbm.rgd->rd_igeneration++; 2371 } 2372 2373 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); 2374 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); 2375 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data); 2376 2377 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); 2378 if (dinode) 2379 gfs2_trans_add_unrevoke(sdp, block, *nblocks); 2380 2381 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); 2382 2383 rbm.rgd->rd_free_clone -= *nblocks; 2384 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, 2385 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); 2386 *bn = block; 2387 return 0; 2388 2389 rgrp_error: 2390 gfs2_rgrp_error(rbm.rgd); 2391 return -EIO; 2392 } 2393 2394 /** 2395 * __gfs2_free_blocks - free a contiguous run of block(s) 2396 * @ip: the inode these blocks are being freed from 2397 * @bstart: first block of a run of contiguous blocks 2398 * @blen: the length of the block run 2399 * @meta: 1 if the blocks represent metadata 2400 * 2401 */ 2402 2403 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta) 2404 { 2405 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2406 struct gfs2_rgrpd *rgd; 2407 2408 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE); 2409 if (!rgd) 2410 return; 2411 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); 2412 rgd->rd_free += blen; 2413 rgd->rd_flags &= ~GFS2_RGF_TRIMMED; 2414 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2415 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2416 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2417 2418 /* Directories keep their data in the metadata address space */ 2419 if (meta || ip->i_depth) 2420 gfs2_meta_wipe(ip, bstart, blen); 2421 } 2422 2423 /** 2424 * gfs2_free_meta - free a contiguous run of data block(s) 2425 * @ip: the inode these blocks are being freed from 2426 * @bstart: first block of a run of contiguous blocks 2427 * @blen: the length of the block run 2428 * 2429 */ 2430 2431 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen) 2432 { 2433 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2434 2435 __gfs2_free_blocks(ip, bstart, blen, 1); 2436 gfs2_statfs_change(sdp, 0, +blen, 0); 2437 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); 2438 } 2439 2440 void gfs2_unlink_di(struct inode *inode) 2441 { 2442 struct gfs2_inode *ip = GFS2_I(inode); 2443 struct gfs2_sbd *sdp = GFS2_SB(inode); 2444 struct gfs2_rgrpd *rgd; 2445 u64 blkno = ip->i_no_addr; 2446 2447 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED); 2448 if (!rgd) 2449 return; 2450 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); 2451 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2452 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2453 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2454 update_rgrp_lvb_unlinked(rgd, 1); 2455 } 2456 2457 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno) 2458 { 2459 struct gfs2_sbd *sdp = rgd->rd_sbd; 2460 struct gfs2_rgrpd *tmp_rgd; 2461 2462 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE); 2463 if (!tmp_rgd) 2464 return; 2465 gfs2_assert_withdraw(sdp, rgd == tmp_rgd); 2466 2467 if (!rgd->rd_dinodes) 2468 gfs2_consist_rgrpd(rgd); 2469 rgd->rd_dinodes--; 2470 rgd->rd_free++; 2471 2472 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); 2473 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); 2474 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data); 2475 update_rgrp_lvb_unlinked(rgd, -1); 2476 2477 gfs2_statfs_change(sdp, 0, +1, -1); 2478 } 2479 2480 2481 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) 2482 { 2483 gfs2_free_uninit_di(rgd, ip->i_no_addr); 2484 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); 2485 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); 2486 gfs2_meta_wipe(ip, ip->i_no_addr, 1); 2487 } 2488 2489 /** 2490 * gfs2_check_blk_type - Check the type of a block 2491 * @sdp: The superblock 2492 * @no_addr: The block number to check 2493 * @type: The block type we are looking for 2494 * 2495 * Returns: 0 if the block type matches the expected type 2496 * -ESTALE if it doesn't match 2497 * or -ve errno if something went wrong while checking 2498 */ 2499 2500 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) 2501 { 2502 struct gfs2_rgrpd *rgd; 2503 struct gfs2_holder rgd_gh; 2504 int error = -EINVAL; 2505 2506 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); 2507 if (!rgd) 2508 goto fail; 2509 2510 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); 2511 if (error) 2512 goto fail; 2513 2514 if (gfs2_get_block_type(rgd, no_addr) != type) 2515 error = -ESTALE; 2516 2517 gfs2_glock_dq_uninit(&rgd_gh); 2518 fail: 2519 return error; 2520 } 2521 2522 /** 2523 * gfs2_rlist_add - add a RG to a list of RGs 2524 * @ip: the inode 2525 * @rlist: the list of resource groups 2526 * @block: the block 2527 * 2528 * Figure out what RG a block belongs to and add that RG to the list 2529 * 2530 * FIXME: Don't use NOFAIL 2531 * 2532 */ 2533 2534 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, 2535 u64 block) 2536 { 2537 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 2538 struct gfs2_rgrpd *rgd; 2539 struct gfs2_rgrpd **tmp; 2540 unsigned int new_space; 2541 unsigned int x; 2542 2543 if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) 2544 return; 2545 2546 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block)) 2547 rgd = ip->i_rgd; 2548 else 2549 rgd = gfs2_blk2rgrpd(sdp, block, 1); 2550 if (!rgd) { 2551 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block); 2552 return; 2553 } 2554 ip->i_rgd = rgd; 2555 2556 for (x = 0; x < rlist->rl_rgrps; x++) 2557 if (rlist->rl_rgd[x] == rgd) 2558 return; 2559 2560 if (rlist->rl_rgrps == rlist->rl_space) { 2561 new_space = rlist->rl_space + 10; 2562 2563 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), 2564 GFP_NOFS | __GFP_NOFAIL); 2565 2566 if (rlist->rl_rgd) { 2567 memcpy(tmp, rlist->rl_rgd, 2568 rlist->rl_space * sizeof(struct gfs2_rgrpd *)); 2569 kfree(rlist->rl_rgd); 2570 } 2571 2572 rlist->rl_space = new_space; 2573 rlist->rl_rgd = tmp; 2574 } 2575 2576 rlist->rl_rgd[rlist->rl_rgrps++] = rgd; 2577 } 2578 2579 /** 2580 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate 2581 * and initialize an array of glock holders for them 2582 * @rlist: the list of resource groups 2583 * @state: the lock state to acquire the RG lock in 2584 * 2585 * FIXME: Don't use NOFAIL 2586 * 2587 */ 2588 2589 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state) 2590 { 2591 unsigned int x; 2592 2593 rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder), 2594 GFP_NOFS | __GFP_NOFAIL); 2595 for (x = 0; x < rlist->rl_rgrps; x++) 2596 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, 2597 state, 0, 2598 &rlist->rl_ghs[x]); 2599 } 2600 2601 /** 2602 * gfs2_rlist_free - free a resource group list 2603 * @rlist: the list of resource groups 2604 * 2605 */ 2606 2607 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) 2608 { 2609 unsigned int x; 2610 2611 kfree(rlist->rl_rgd); 2612 2613 if (rlist->rl_ghs) { 2614 for (x = 0; x < rlist->rl_rgrps; x++) 2615 gfs2_holder_uninit(&rlist->rl_ghs[x]); 2616 kfree(rlist->rl_ghs); 2617 rlist->rl_ghs = NULL; 2618 } 2619 } 2620 2621