xref: /openbmc/linux/fs/gfs2/rgrp.c (revision c606970d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19 
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35 
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38 
39 struct gfs2_rbm {
40 	struct gfs2_rgrpd *rgd;
41 	u32 offset;		/* The offset is bitmap relative */
42 	int bii;		/* Bitmap index */
43 };
44 
45 static inline struct gfs2_bitmap *rbm_bi(const struct gfs2_rbm *rbm)
46 {
47 	return rbm->rgd->rd_bits + rbm->bii;
48 }
49 
50 static inline u64 gfs2_rbm_to_block(const struct gfs2_rbm *rbm)
51 {
52 	BUG_ON(rbm->offset >= rbm->rgd->rd_data);
53 	return rbm->rgd->rd_data0 + (rbm_bi(rbm)->bi_start * GFS2_NBBY) +
54 		rbm->offset;
55 }
56 
57 /*
58  * These routines are used by the resource group routines (rgrp.c)
59  * to keep track of block allocation.  Each block is represented by two
60  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
61  *
62  * 0 = Free
63  * 1 = Used (not metadata)
64  * 2 = Unlinked (still in use) inode
65  * 3 = Used (metadata)
66  */
67 
68 struct gfs2_extent {
69 	struct gfs2_rbm rbm;
70 	u32 len;
71 };
72 
73 static const char valid_change[16] = {
74 	        /* current */
75 	/* n */ 0, 1, 1, 1,
76 	/* e */ 1, 0, 0, 0,
77 	/* w */ 0, 0, 0, 1,
78 	        1, 0, 0, 0
79 };
80 
81 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
82 			 struct gfs2_blkreserv *rs, bool nowrap);
83 
84 
85 /**
86  * gfs2_setbit - Set a bit in the bitmaps
87  * @rbm: The position of the bit to set
88  * @do_clone: Also set the clone bitmap, if it exists
89  * @new_state: the new state of the block
90  *
91  */
92 
93 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
94 			       unsigned char new_state)
95 {
96 	unsigned char *byte1, *byte2, *end, cur_state;
97 	struct gfs2_bitmap *bi = rbm_bi(rbm);
98 	unsigned int buflen = bi->bi_bytes;
99 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
100 
101 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
102 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
103 
104 	BUG_ON(byte1 >= end);
105 
106 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
107 
108 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
109 		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
110 
111 		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
112 			rbm->offset, cur_state, new_state);
113 		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
114 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
115 			(unsigned long long)bi->bi_bh->b_blocknr);
116 		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
117 			bi->bi_offset, bi->bi_bytes,
118 			(unsigned long long)gfs2_rbm_to_block(rbm));
119 		dump_stack();
120 		gfs2_consist_rgrpd(rbm->rgd);
121 		return;
122 	}
123 	*byte1 ^= (cur_state ^ new_state) << bit;
124 
125 	if (do_clone && bi->bi_clone) {
126 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
127 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
128 		*byte2 ^= (cur_state ^ new_state) << bit;
129 	}
130 }
131 
132 /**
133  * gfs2_testbit - test a bit in the bitmaps
134  * @rbm: The bit to test
135  * @use_clone: If true, test the clone bitmap, not the official bitmap.
136  *
137  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
138  * not the "real" bitmaps, to avoid allocating recently freed blocks.
139  *
140  * Returns: The two bit block state of the requested bit
141  */
142 
143 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
144 {
145 	struct gfs2_bitmap *bi = rbm_bi(rbm);
146 	const u8 *buffer;
147 	const u8 *byte;
148 	unsigned int bit;
149 
150 	if (use_clone && bi->bi_clone)
151 		buffer = bi->bi_clone;
152 	else
153 		buffer = bi->bi_bh->b_data;
154 	buffer += bi->bi_offset;
155 	byte = buffer + (rbm->offset / GFS2_NBBY);
156 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
157 
158 	return (*byte >> bit) & GFS2_BIT_MASK;
159 }
160 
161 /**
162  * gfs2_bit_search
163  * @ptr: Pointer to bitmap data
164  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
165  * @state: The state we are searching for
166  *
167  * We xor the bitmap data with a patter which is the bitwise opposite
168  * of what we are looking for, this gives rise to a pattern of ones
169  * wherever there is a match. Since we have two bits per entry, we
170  * take this pattern, shift it down by one place and then and it with
171  * the original. All the even bit positions (0,2,4, etc) then represent
172  * successful matches, so we mask with 0x55555..... to remove the unwanted
173  * odd bit positions.
174  *
175  * This allows searching of a whole u64 at once (32 blocks) with a
176  * single test (on 64 bit arches).
177  */
178 
179 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
180 {
181 	u64 tmp;
182 	static const u64 search[] = {
183 		[0] = 0xffffffffffffffffULL,
184 		[1] = 0xaaaaaaaaaaaaaaaaULL,
185 		[2] = 0x5555555555555555ULL,
186 		[3] = 0x0000000000000000ULL,
187 	};
188 	tmp = le64_to_cpu(*ptr) ^ search[state];
189 	tmp &= (tmp >> 1);
190 	tmp &= mask;
191 	return tmp;
192 }
193 
194 /**
195  * rs_cmp - multi-block reservation range compare
196  * @start: start of the new reservation
197  * @len: number of blocks in the new reservation
198  * @rs: existing reservation to compare against
199  *
200  * returns: 1 if the block range is beyond the reach of the reservation
201  *         -1 if the block range is before the start of the reservation
202  *          0 if the block range overlaps with the reservation
203  */
204 static inline int rs_cmp(u64 start, u32 len, struct gfs2_blkreserv *rs)
205 {
206 	if (start >= rs->rs_start + rs->rs_requested)
207 		return 1;
208 	if (rs->rs_start >= start + len)
209 		return -1;
210 	return 0;
211 }
212 
213 /**
214  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
215  *       a block in a given allocation state.
216  * @buf: the buffer that holds the bitmaps
217  * @len: the length (in bytes) of the buffer
218  * @goal: start search at this block's bit-pair (within @buffer)
219  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
220  *
221  * Scope of @goal and returned block number is only within this bitmap buffer,
222  * not entire rgrp or filesystem.  @buffer will be offset from the actual
223  * beginning of a bitmap block buffer, skipping any header structures, but
224  * headers are always a multiple of 64 bits long so that the buffer is
225  * always aligned to a 64 bit boundary.
226  *
227  * The size of the buffer is in bytes, but is it assumed that it is
228  * always ok to read a complete multiple of 64 bits at the end
229  * of the block in case the end is no aligned to a natural boundary.
230  *
231  * Return: the block number (bitmap buffer scope) that was found
232  */
233 
234 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
235 		       u32 goal, u8 state)
236 {
237 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
238 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
239 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
240 	u64 tmp;
241 	u64 mask = 0x5555555555555555ULL;
242 	u32 bit;
243 
244 	/* Mask off bits we don't care about at the start of the search */
245 	mask <<= spoint;
246 	tmp = gfs2_bit_search(ptr, mask, state);
247 	ptr++;
248 	while(tmp == 0 && ptr < end) {
249 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
250 		ptr++;
251 	}
252 	/* Mask off any bits which are more than len bytes from the start */
253 	if (ptr == end && (len & (sizeof(u64) - 1)))
254 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
255 	/* Didn't find anything, so return */
256 	if (tmp == 0)
257 		return BFITNOENT;
258 	ptr--;
259 	bit = __ffs64(tmp);
260 	bit /= 2;	/* two bits per entry in the bitmap */
261 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
262 }
263 
264 /**
265  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
266  * @rbm: The rbm with rgd already set correctly
267  * @block: The block number (filesystem relative)
268  *
269  * This sets the bi and offset members of an rbm based on a
270  * resource group and a filesystem relative block number. The
271  * resource group must be set in the rbm on entry, the bi and
272  * offset members will be set by this function.
273  *
274  * Returns: 0 on success, or an error code
275  */
276 
277 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
278 {
279 	if (!rgrp_contains_block(rbm->rgd, block))
280 		return -E2BIG;
281 	rbm->bii = 0;
282 	rbm->offset = block - rbm->rgd->rd_data0;
283 	/* Check if the block is within the first block */
284 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
285 		return 0;
286 
287 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
288 	rbm->offset += (sizeof(struct gfs2_rgrp) -
289 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
290 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
291 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
292 	return 0;
293 }
294 
295 /**
296  * gfs2_rbm_add - add a number of blocks to an rbm
297  * @rbm: The rbm with rgd already set correctly
298  * @blocks: The number of blocks to add to rpm
299  *
300  * This function takes an existing rbm structure and adds a number of blocks to
301  * it.
302  *
303  * Returns: True if the new rbm would point past the end of the rgrp.
304  */
305 
306 static bool gfs2_rbm_add(struct gfs2_rbm *rbm, u32 blocks)
307 {
308 	struct gfs2_rgrpd *rgd = rbm->rgd;
309 	struct gfs2_bitmap *bi = rgd->rd_bits + rbm->bii;
310 
311 	if (rbm->offset + blocks < bi->bi_blocks) {
312 		rbm->offset += blocks;
313 		return false;
314 	}
315 	blocks -= bi->bi_blocks - rbm->offset;
316 
317 	for(;;) {
318 		bi++;
319 		if (bi == rgd->rd_bits + rgd->rd_length)
320 			return true;
321 		if (blocks < bi->bi_blocks) {
322 			rbm->offset = blocks;
323 			rbm->bii = bi - rgd->rd_bits;
324 			return false;
325 		}
326 		blocks -= bi->bi_blocks;
327 	}
328 }
329 
330 /**
331  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
332  * @rbm: Position to search (value/result)
333  * @n_unaligned: Number of unaligned blocks to check
334  * @len: Decremented for each block found (terminate on zero)
335  *
336  * Returns: true if a non-free block is encountered or the end of the resource
337  *	    group is reached.
338  */
339 
340 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
341 {
342 	u32 n;
343 	u8 res;
344 
345 	for (n = 0; n < n_unaligned; n++) {
346 		res = gfs2_testbit(rbm, true);
347 		if (res != GFS2_BLKST_FREE)
348 			return true;
349 		(*len)--;
350 		if (*len == 0)
351 			return true;
352 		if (gfs2_rbm_add(rbm, 1))
353 			return true;
354 	}
355 
356 	return false;
357 }
358 
359 /**
360  * gfs2_free_extlen - Return extent length of free blocks
361  * @rrbm: Starting position
362  * @len: Max length to check
363  *
364  * Starting at the block specified by the rbm, see how many free blocks
365  * there are, not reading more than len blocks ahead. This can be done
366  * using memchr_inv when the blocks are byte aligned, but has to be done
367  * on a block by block basis in case of unaligned blocks. Also this
368  * function can cope with bitmap boundaries (although it must stop on
369  * a resource group boundary)
370  *
371  * Returns: Number of free blocks in the extent
372  */
373 
374 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
375 {
376 	struct gfs2_rbm rbm = *rrbm;
377 	u32 n_unaligned = rbm.offset & 3;
378 	u32 size = len;
379 	u32 bytes;
380 	u32 chunk_size;
381 	u8 *ptr, *start, *end;
382 	u64 block;
383 	struct gfs2_bitmap *bi;
384 
385 	if (n_unaligned &&
386 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
387 		goto out;
388 
389 	n_unaligned = len & 3;
390 	/* Start is now byte aligned */
391 	while (len > 3) {
392 		bi = rbm_bi(&rbm);
393 		start = bi->bi_bh->b_data;
394 		if (bi->bi_clone)
395 			start = bi->bi_clone;
396 		start += bi->bi_offset;
397 		end = start + bi->bi_bytes;
398 		BUG_ON(rbm.offset & 3);
399 		start += (rbm.offset / GFS2_NBBY);
400 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
401 		ptr = memchr_inv(start, 0, bytes);
402 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
403 		chunk_size *= GFS2_NBBY;
404 		BUG_ON(len < chunk_size);
405 		len -= chunk_size;
406 		block = gfs2_rbm_to_block(&rbm);
407 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
408 			n_unaligned = 0;
409 			break;
410 		}
411 		if (ptr) {
412 			n_unaligned = 3;
413 			break;
414 		}
415 		n_unaligned = len & 3;
416 	}
417 
418 	/* Deal with any bits left over at the end */
419 	if (n_unaligned)
420 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
421 out:
422 	return size - len;
423 }
424 
425 /**
426  * gfs2_bitcount - count the number of bits in a certain state
427  * @rgd: the resource group descriptor
428  * @buffer: the buffer that holds the bitmaps
429  * @buflen: the length (in bytes) of the buffer
430  * @state: the state of the block we're looking for
431  *
432  * Returns: The number of bits
433  */
434 
435 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
436 			 unsigned int buflen, u8 state)
437 {
438 	const u8 *byte = buffer;
439 	const u8 *end = buffer + buflen;
440 	const u8 state1 = state << 2;
441 	const u8 state2 = state << 4;
442 	const u8 state3 = state << 6;
443 	u32 count = 0;
444 
445 	for (; byte < end; byte++) {
446 		if (((*byte) & 0x03) == state)
447 			count++;
448 		if (((*byte) & 0x0C) == state1)
449 			count++;
450 		if (((*byte) & 0x30) == state2)
451 			count++;
452 		if (((*byte) & 0xC0) == state3)
453 			count++;
454 	}
455 
456 	return count;
457 }
458 
459 /**
460  * gfs2_rgrp_verify - Verify that a resource group is consistent
461  * @rgd: the rgrp
462  *
463  */
464 
465 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
466 {
467 	struct gfs2_sbd *sdp = rgd->rd_sbd;
468 	struct gfs2_bitmap *bi = NULL;
469 	u32 length = rgd->rd_length;
470 	u32 count[4], tmp;
471 	int buf, x;
472 
473 	memset(count, 0, 4 * sizeof(u32));
474 
475 	/* Count # blocks in each of 4 possible allocation states */
476 	for (buf = 0; buf < length; buf++) {
477 		bi = rgd->rd_bits + buf;
478 		for (x = 0; x < 4; x++)
479 			count[x] += gfs2_bitcount(rgd,
480 						  bi->bi_bh->b_data +
481 						  bi->bi_offset,
482 						  bi->bi_bytes, x);
483 	}
484 
485 	if (count[0] != rgd->rd_free) {
486 		gfs2_lm(sdp, "free data mismatch:  %u != %u\n",
487 			count[0], rgd->rd_free);
488 		gfs2_consist_rgrpd(rgd);
489 		return;
490 	}
491 
492 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
493 	if (count[1] != tmp) {
494 		gfs2_lm(sdp, "used data mismatch:  %u != %u\n",
495 			count[1], tmp);
496 		gfs2_consist_rgrpd(rgd);
497 		return;
498 	}
499 
500 	if (count[2] + count[3] != rgd->rd_dinodes) {
501 		gfs2_lm(sdp, "used metadata mismatch:  %u != %u\n",
502 			count[2] + count[3], rgd->rd_dinodes);
503 		gfs2_consist_rgrpd(rgd);
504 		return;
505 	}
506 }
507 
508 /**
509  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
510  * @sdp: The GFS2 superblock
511  * @blk: The data block number
512  * @exact: True if this needs to be an exact match
513  *
514  * The @exact argument should be set to true by most callers. The exception
515  * is when we need to match blocks which are not represented by the rgrp
516  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
517  * there for alignment purposes. Another way of looking at it is that @exact
518  * matches only valid data/metadata blocks, but with @exact false, it will
519  * match any block within the extent of the rgrp.
520  *
521  * Returns: The resource group, or NULL if not found
522  */
523 
524 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
525 {
526 	struct rb_node *n, *next;
527 	struct gfs2_rgrpd *cur;
528 
529 	spin_lock(&sdp->sd_rindex_spin);
530 	n = sdp->sd_rindex_tree.rb_node;
531 	while (n) {
532 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
533 		next = NULL;
534 		if (blk < cur->rd_addr)
535 			next = n->rb_left;
536 		else if (blk >= cur->rd_data0 + cur->rd_data)
537 			next = n->rb_right;
538 		if (next == NULL) {
539 			spin_unlock(&sdp->sd_rindex_spin);
540 			if (exact) {
541 				if (blk < cur->rd_addr)
542 					return NULL;
543 				if (blk >= cur->rd_data0 + cur->rd_data)
544 					return NULL;
545 			}
546 			return cur;
547 		}
548 		n = next;
549 	}
550 	spin_unlock(&sdp->sd_rindex_spin);
551 
552 	return NULL;
553 }
554 
555 /**
556  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
557  * @sdp: The GFS2 superblock
558  *
559  * Returns: The first rgrp in the filesystem
560  */
561 
562 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
563 {
564 	const struct rb_node *n;
565 	struct gfs2_rgrpd *rgd;
566 
567 	spin_lock(&sdp->sd_rindex_spin);
568 	n = rb_first(&sdp->sd_rindex_tree);
569 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
570 	spin_unlock(&sdp->sd_rindex_spin);
571 
572 	return rgd;
573 }
574 
575 /**
576  * gfs2_rgrpd_get_next - get the next RG
577  * @rgd: the resource group descriptor
578  *
579  * Returns: The next rgrp
580  */
581 
582 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
583 {
584 	struct gfs2_sbd *sdp = rgd->rd_sbd;
585 	const struct rb_node *n;
586 
587 	spin_lock(&sdp->sd_rindex_spin);
588 	n = rb_next(&rgd->rd_node);
589 	if (n == NULL)
590 		n = rb_first(&sdp->sd_rindex_tree);
591 
592 	if (unlikely(&rgd->rd_node == n)) {
593 		spin_unlock(&sdp->sd_rindex_spin);
594 		return NULL;
595 	}
596 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
597 	spin_unlock(&sdp->sd_rindex_spin);
598 	return rgd;
599 }
600 
601 void check_and_update_goal(struct gfs2_inode *ip)
602 {
603 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
604 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
605 		ip->i_goal = ip->i_no_addr;
606 }
607 
608 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
609 {
610 	int x;
611 
612 	for (x = 0; x < rgd->rd_length; x++) {
613 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
614 		kfree(bi->bi_clone);
615 		bi->bi_clone = NULL;
616 	}
617 }
618 
619 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
620 		    const char *fs_id_buf)
621 {
622 	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
623 
624 	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu f:%u\n",
625 		       fs_id_buf,
626 		       (unsigned long long)ip->i_no_addr,
627 		       (unsigned long long)rs->rs_start,
628 		       rs->rs_requested);
629 }
630 
631 /**
632  * __rs_deltree - remove a multi-block reservation from the rgd tree
633  * @rs: The reservation to remove
634  *
635  */
636 static void __rs_deltree(struct gfs2_blkreserv *rs)
637 {
638 	struct gfs2_rgrpd *rgd;
639 
640 	if (!gfs2_rs_active(rs))
641 		return;
642 
643 	rgd = rs->rs_rgd;
644 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
645 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
646 	RB_CLEAR_NODE(&rs->rs_node);
647 
648 	if (rs->rs_requested) {
649 		/* return requested blocks to the rgrp */
650 		BUG_ON(rs->rs_rgd->rd_requested < rs->rs_requested);
651 		rs->rs_rgd->rd_requested -= rs->rs_requested;
652 
653 		/* The rgrp extent failure point is likely not to increase;
654 		   it will only do so if the freed blocks are somehow
655 		   contiguous with a span of free blocks that follows. Still,
656 		   it will force the number to be recalculated later. */
657 		rgd->rd_extfail_pt += rs->rs_requested;
658 		rs->rs_requested = 0;
659 	}
660 }
661 
662 /**
663  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
664  * @rs: The reservation to remove
665  *
666  */
667 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
668 {
669 	struct gfs2_rgrpd *rgd;
670 
671 	rgd = rs->rs_rgd;
672 	if (rgd) {
673 		spin_lock(&rgd->rd_rsspin);
674 		__rs_deltree(rs);
675 		BUG_ON(rs->rs_requested);
676 		spin_unlock(&rgd->rd_rsspin);
677 	}
678 }
679 
680 /**
681  * gfs2_rs_delete - delete a multi-block reservation
682  * @ip: The inode for this reservation
683  * @wcount: The inode's write count, or NULL
684  *
685  */
686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
687 {
688 	down_write(&ip->i_rw_mutex);
689 	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
690 		gfs2_rs_deltree(&ip->i_res);
691 	up_write(&ip->i_rw_mutex);
692 }
693 
694 /**
695  * return_all_reservations - return all reserved blocks back to the rgrp.
696  * @rgd: the rgrp that needs its space back
697  *
698  * We previously reserved a bunch of blocks for allocation. Now we need to
699  * give them back. This leave the reservation structures in tact, but removes
700  * all of their corresponding "no-fly zones".
701  */
702 static void return_all_reservations(struct gfs2_rgrpd *rgd)
703 {
704 	struct rb_node *n;
705 	struct gfs2_blkreserv *rs;
706 
707 	spin_lock(&rgd->rd_rsspin);
708 	while ((n = rb_first(&rgd->rd_rstree))) {
709 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
710 		__rs_deltree(rs);
711 	}
712 	spin_unlock(&rgd->rd_rsspin);
713 }
714 
715 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
716 {
717 	struct rb_node *n;
718 	struct gfs2_rgrpd *rgd;
719 	struct gfs2_glock *gl;
720 
721 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
722 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
723 		gl = rgd->rd_gl;
724 
725 		rb_erase(n, &sdp->sd_rindex_tree);
726 
727 		if (gl) {
728 			if (gl->gl_state != LM_ST_UNLOCKED) {
729 				gfs2_glock_cb(gl, LM_ST_UNLOCKED);
730 				flush_delayed_work(&gl->gl_work);
731 			}
732 			gfs2_rgrp_brelse(rgd);
733 			glock_clear_object(gl, rgd);
734 			gfs2_glock_put(gl);
735 		}
736 
737 		gfs2_free_clones(rgd);
738 		return_all_reservations(rgd);
739 		kfree(rgd->rd_bits);
740 		rgd->rd_bits = NULL;
741 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
742 	}
743 }
744 
745 /**
746  * gfs2_compute_bitstructs - Compute the bitmap sizes
747  * @rgd: The resource group descriptor
748  *
749  * Calculates bitmap descriptors, one for each block that contains bitmap data
750  *
751  * Returns: errno
752  */
753 
754 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
755 {
756 	struct gfs2_sbd *sdp = rgd->rd_sbd;
757 	struct gfs2_bitmap *bi;
758 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
759 	u32 bytes_left, bytes;
760 	int x;
761 
762 	if (!length)
763 		return -EINVAL;
764 
765 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
766 	if (!rgd->rd_bits)
767 		return -ENOMEM;
768 
769 	bytes_left = rgd->rd_bitbytes;
770 
771 	for (x = 0; x < length; x++) {
772 		bi = rgd->rd_bits + x;
773 
774 		bi->bi_flags = 0;
775 		/* small rgrp; bitmap stored completely in header block */
776 		if (length == 1) {
777 			bytes = bytes_left;
778 			bi->bi_offset = sizeof(struct gfs2_rgrp);
779 			bi->bi_start = 0;
780 			bi->bi_bytes = bytes;
781 			bi->bi_blocks = bytes * GFS2_NBBY;
782 		/* header block */
783 		} else if (x == 0) {
784 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
785 			bi->bi_offset = sizeof(struct gfs2_rgrp);
786 			bi->bi_start = 0;
787 			bi->bi_bytes = bytes;
788 			bi->bi_blocks = bytes * GFS2_NBBY;
789 		/* last block */
790 		} else if (x + 1 == length) {
791 			bytes = bytes_left;
792 			bi->bi_offset = sizeof(struct gfs2_meta_header);
793 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
794 			bi->bi_bytes = bytes;
795 			bi->bi_blocks = bytes * GFS2_NBBY;
796 		/* other blocks */
797 		} else {
798 			bytes = sdp->sd_sb.sb_bsize -
799 				sizeof(struct gfs2_meta_header);
800 			bi->bi_offset = sizeof(struct gfs2_meta_header);
801 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
802 			bi->bi_bytes = bytes;
803 			bi->bi_blocks = bytes * GFS2_NBBY;
804 		}
805 
806 		bytes_left -= bytes;
807 	}
808 
809 	if (bytes_left) {
810 		gfs2_consist_rgrpd(rgd);
811 		return -EIO;
812 	}
813 	bi = rgd->rd_bits + (length - 1);
814 	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
815 		gfs2_lm(sdp,
816 			"ri_addr = %llu\n"
817 			"ri_length = %u\n"
818 			"ri_data0 = %llu\n"
819 			"ri_data = %u\n"
820 			"ri_bitbytes = %u\n"
821 			"start=%u len=%u offset=%u\n",
822 			(unsigned long long)rgd->rd_addr,
823 			rgd->rd_length,
824 			(unsigned long long)rgd->rd_data0,
825 			rgd->rd_data,
826 			rgd->rd_bitbytes,
827 			bi->bi_start, bi->bi_bytes, bi->bi_offset);
828 		gfs2_consist_rgrpd(rgd);
829 		return -EIO;
830 	}
831 
832 	return 0;
833 }
834 
835 /**
836  * gfs2_ri_total - Total up the file system space, according to the rindex.
837  * @sdp: the filesystem
838  *
839  */
840 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
841 {
842 	u64 total_data = 0;
843 	struct inode *inode = sdp->sd_rindex;
844 	struct gfs2_inode *ip = GFS2_I(inode);
845 	char buf[sizeof(struct gfs2_rindex)];
846 	int error, rgrps;
847 
848 	for (rgrps = 0;; rgrps++) {
849 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
850 
851 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
852 			break;
853 		error = gfs2_internal_read(ip, buf, &pos,
854 					   sizeof(struct gfs2_rindex));
855 		if (error != sizeof(struct gfs2_rindex))
856 			break;
857 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
858 	}
859 	return total_data;
860 }
861 
862 static int rgd_insert(struct gfs2_rgrpd *rgd)
863 {
864 	struct gfs2_sbd *sdp = rgd->rd_sbd;
865 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
866 
867 	/* Figure out where to put new node */
868 	while (*newn) {
869 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
870 						  rd_node);
871 
872 		parent = *newn;
873 		if (rgd->rd_addr < cur->rd_addr)
874 			newn = &((*newn)->rb_left);
875 		else if (rgd->rd_addr > cur->rd_addr)
876 			newn = &((*newn)->rb_right);
877 		else
878 			return -EEXIST;
879 	}
880 
881 	rb_link_node(&rgd->rd_node, parent, newn);
882 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
883 	sdp->sd_rgrps++;
884 	return 0;
885 }
886 
887 /**
888  * read_rindex_entry - Pull in a new resource index entry from the disk
889  * @ip: Pointer to the rindex inode
890  *
891  * Returns: 0 on success, > 0 on EOF, error code otherwise
892  */
893 
894 static int read_rindex_entry(struct gfs2_inode *ip)
895 {
896 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
897 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
898 	struct gfs2_rindex buf;
899 	int error;
900 	struct gfs2_rgrpd *rgd;
901 
902 	if (pos >= i_size_read(&ip->i_inode))
903 		return 1;
904 
905 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
906 				   sizeof(struct gfs2_rindex));
907 
908 	if (error != sizeof(struct gfs2_rindex))
909 		return (error == 0) ? 1 : error;
910 
911 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
912 	error = -ENOMEM;
913 	if (!rgd)
914 		return error;
915 
916 	rgd->rd_sbd = sdp;
917 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
918 	rgd->rd_length = be32_to_cpu(buf.ri_length);
919 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
920 	rgd->rd_data = be32_to_cpu(buf.ri_data);
921 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
922 	spin_lock_init(&rgd->rd_rsspin);
923 	mutex_init(&rgd->rd_mutex);
924 
925 	error = compute_bitstructs(rgd);
926 	if (error)
927 		goto fail;
928 
929 	error = gfs2_glock_get(sdp, rgd->rd_addr,
930 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
931 	if (error)
932 		goto fail;
933 
934 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
935 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
936 	if (rgd->rd_data > sdp->sd_max_rg_data)
937 		sdp->sd_max_rg_data = rgd->rd_data;
938 	spin_lock(&sdp->sd_rindex_spin);
939 	error = rgd_insert(rgd);
940 	spin_unlock(&sdp->sd_rindex_spin);
941 	if (!error) {
942 		glock_set_object(rgd->rd_gl, rgd);
943 		return 0;
944 	}
945 
946 	error = 0; /* someone else read in the rgrp; free it and ignore it */
947 	gfs2_glock_put(rgd->rd_gl);
948 
949 fail:
950 	kfree(rgd->rd_bits);
951 	rgd->rd_bits = NULL;
952 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
953 	return error;
954 }
955 
956 /**
957  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
958  * @sdp: the GFS2 superblock
959  *
960  * The purpose of this function is to select a subset of the resource groups
961  * and mark them as PREFERRED. We do it in such a way that each node prefers
962  * to use a unique set of rgrps to minimize glock contention.
963  */
964 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
965 {
966 	struct gfs2_rgrpd *rgd, *first;
967 	int i;
968 
969 	/* Skip an initial number of rgrps, based on this node's journal ID.
970 	   That should start each node out on its own set. */
971 	rgd = gfs2_rgrpd_get_first(sdp);
972 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
973 		rgd = gfs2_rgrpd_get_next(rgd);
974 	first = rgd;
975 
976 	do {
977 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
978 		for (i = 0; i < sdp->sd_journals; i++) {
979 			rgd = gfs2_rgrpd_get_next(rgd);
980 			if (!rgd || rgd == first)
981 				break;
982 		}
983 	} while (rgd && rgd != first);
984 }
985 
986 /**
987  * gfs2_ri_update - Pull in a new resource index from the disk
988  * @ip: pointer to the rindex inode
989  *
990  * Returns: 0 on successful update, error code otherwise
991  */
992 
993 static int gfs2_ri_update(struct gfs2_inode *ip)
994 {
995 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
996 	int error;
997 
998 	do {
999 		error = read_rindex_entry(ip);
1000 	} while (error == 0);
1001 
1002 	if (error < 0)
1003 		return error;
1004 
1005 	if (RB_EMPTY_ROOT(&sdp->sd_rindex_tree)) {
1006 		fs_err(sdp, "no resource groups found in the file system.\n");
1007 		return -ENOENT;
1008 	}
1009 	set_rgrp_preferences(sdp);
1010 
1011 	sdp->sd_rindex_uptodate = 1;
1012 	return 0;
1013 }
1014 
1015 /**
1016  * gfs2_rindex_update - Update the rindex if required
1017  * @sdp: The GFS2 superblock
1018  *
1019  * We grab a lock on the rindex inode to make sure that it doesn't
1020  * change whilst we are performing an operation. We keep this lock
1021  * for quite long periods of time compared to other locks. This
1022  * doesn't matter, since it is shared and it is very, very rarely
1023  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1024  *
1025  * This makes sure that we're using the latest copy of the resource index
1026  * special file, which might have been updated if someone expanded the
1027  * filesystem (via gfs2_grow utility), which adds new resource groups.
1028  *
1029  * Returns: 0 on succeess, error code otherwise
1030  */
1031 
1032 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1033 {
1034 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1035 	struct gfs2_glock *gl = ip->i_gl;
1036 	struct gfs2_holder ri_gh;
1037 	int error = 0;
1038 	int unlock_required = 0;
1039 
1040 	/* Read new copy from disk if we don't have the latest */
1041 	if (!sdp->sd_rindex_uptodate) {
1042 		if (!gfs2_glock_is_locked_by_me(gl)) {
1043 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1044 			if (error)
1045 				return error;
1046 			unlock_required = 1;
1047 		}
1048 		if (!sdp->sd_rindex_uptodate)
1049 			error = gfs2_ri_update(ip);
1050 		if (unlock_required)
1051 			gfs2_glock_dq_uninit(&ri_gh);
1052 	}
1053 
1054 	return error;
1055 }
1056 
1057 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1058 {
1059 	const struct gfs2_rgrp *str = buf;
1060 	u32 rg_flags;
1061 
1062 	rg_flags = be32_to_cpu(str->rg_flags);
1063 	rg_flags &= ~GFS2_RDF_MASK;
1064 	rgd->rd_flags &= GFS2_RDF_MASK;
1065 	rgd->rd_flags |= rg_flags;
1066 	rgd->rd_free = be32_to_cpu(str->rg_free);
1067 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1068 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1069 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */
1070 }
1071 
1072 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1073 {
1074 	const struct gfs2_rgrp *str = buf;
1075 
1076 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1077 	rgl->rl_flags = str->rg_flags;
1078 	rgl->rl_free = str->rg_free;
1079 	rgl->rl_dinodes = str->rg_dinodes;
1080 	rgl->rl_igeneration = str->rg_igeneration;
1081 	rgl->__pad = 0UL;
1082 }
1083 
1084 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1085 {
1086 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1087 	struct gfs2_rgrp *str = buf;
1088 	u32 crc;
1089 
1090 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1091 	str->rg_free = cpu_to_be32(rgd->rd_free);
1092 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1093 	if (next == NULL)
1094 		str->rg_skip = 0;
1095 	else if (next->rd_addr > rgd->rd_addr)
1096 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1097 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1098 	str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1099 	str->rg_data = cpu_to_be32(rgd->rd_data);
1100 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1101 	str->rg_crc = 0;
1102 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1103 	str->rg_crc = cpu_to_be32(crc);
1104 
1105 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1106 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1107 }
1108 
1109 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1110 {
1111 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1112 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1113 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1114 	int valid = 1;
1115 
1116 	if (rgl->rl_flags != str->rg_flags) {
1117 		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1118 			(unsigned long long)rgd->rd_addr,
1119 		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1120 		valid = 0;
1121 	}
1122 	if (rgl->rl_free != str->rg_free) {
1123 		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1124 			(unsigned long long)rgd->rd_addr,
1125 			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1126 		valid = 0;
1127 	}
1128 	if (rgl->rl_dinodes != str->rg_dinodes) {
1129 		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1130 			(unsigned long long)rgd->rd_addr,
1131 			be32_to_cpu(rgl->rl_dinodes),
1132 			be32_to_cpu(str->rg_dinodes));
1133 		valid = 0;
1134 	}
1135 	if (rgl->rl_igeneration != str->rg_igeneration) {
1136 		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1137 			(unsigned long long)rgd->rd_addr,
1138 			(unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1139 			(unsigned long long)be64_to_cpu(str->rg_igeneration));
1140 		valid = 0;
1141 	}
1142 	return valid;
1143 }
1144 
1145 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1146 {
1147 	struct gfs2_bitmap *bi;
1148 	const u32 length = rgd->rd_length;
1149 	const u8 *buffer = NULL;
1150 	u32 i, goal, count = 0;
1151 
1152 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1153 		goal = 0;
1154 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1155 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1156 		while (goal < bi->bi_blocks) {
1157 			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1158 					   GFS2_BLKST_UNLINKED);
1159 			if (goal == BFITNOENT)
1160 				break;
1161 			count++;
1162 			goal++;
1163 		}
1164 	}
1165 
1166 	return count;
1167 }
1168 
1169 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd *rgd)
1170 {
1171 	struct gfs2_bitmap *bi;
1172 	int x;
1173 
1174 	if (rgd->rd_free) {
1175 		for (x = 0; x < rgd->rd_length; x++) {
1176 			bi = rgd->rd_bits + x;
1177 			clear_bit(GBF_FULL, &bi->bi_flags);
1178 		}
1179 	} else {
1180 		for (x = 0; x < rgd->rd_length; x++) {
1181 			bi = rgd->rd_bits + x;
1182 			set_bit(GBF_FULL, &bi->bi_flags);
1183 		}
1184 	}
1185 }
1186 
1187 /**
1188  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1189  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1190  *
1191  * Read in all of a Resource Group's header and bitmap blocks.
1192  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1193  *
1194  * Returns: errno
1195  */
1196 
1197 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1198 {
1199 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1200 	struct gfs2_glock *gl = rgd->rd_gl;
1201 	unsigned int length = rgd->rd_length;
1202 	struct gfs2_bitmap *bi;
1203 	unsigned int x, y;
1204 	int error;
1205 
1206 	if (rgd->rd_bits[0].bi_bh != NULL)
1207 		return 0;
1208 
1209 	for (x = 0; x < length; x++) {
1210 		bi = rgd->rd_bits + x;
1211 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1212 		if (error)
1213 			goto fail;
1214 	}
1215 
1216 	for (y = length; y--;) {
1217 		bi = rgd->rd_bits + y;
1218 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1219 		if (error)
1220 			goto fail;
1221 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1222 					      GFS2_METATYPE_RG)) {
1223 			error = -EIO;
1224 			goto fail;
1225 		}
1226 	}
1227 
1228 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1229 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1230 		rgrp_set_bitmap_flags(rgd);
1231 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1232 		rgd->rd_free_clone = rgd->rd_free;
1233 		BUG_ON(rgd->rd_reserved);
1234 		/* max out the rgrp allocation failure point */
1235 		rgd->rd_extfail_pt = rgd->rd_free;
1236 	}
1237 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1238 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1239 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1240 				     rgd->rd_bits[0].bi_bh->b_data);
1241 	}
1242 	else if (sdp->sd_args.ar_rgrplvb) {
1243 		if (!gfs2_rgrp_lvb_valid(rgd)){
1244 			gfs2_consist_rgrpd(rgd);
1245 			error = -EIO;
1246 			goto fail;
1247 		}
1248 		if (rgd->rd_rgl->rl_unlinked == 0)
1249 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1250 	}
1251 	return 0;
1252 
1253 fail:
1254 	while (x--) {
1255 		bi = rgd->rd_bits + x;
1256 		brelse(bi->bi_bh);
1257 		bi->bi_bh = NULL;
1258 		gfs2_assert_warn(sdp, !bi->bi_clone);
1259 	}
1260 
1261 	return error;
1262 }
1263 
1264 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1265 {
1266 	u32 rl_flags;
1267 
1268 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1269 		return 0;
1270 
1271 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1272 		return gfs2_rgrp_bh_get(rgd);
1273 
1274 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1275 	rl_flags &= ~GFS2_RDF_MASK;
1276 	rgd->rd_flags &= GFS2_RDF_MASK;
1277 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1278 	if (rgd->rd_rgl->rl_unlinked == 0)
1279 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1280 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1281 	rgrp_set_bitmap_flags(rgd);
1282 	rgd->rd_free_clone = rgd->rd_free;
1283 	BUG_ON(rgd->rd_reserved);
1284 	/* max out the rgrp allocation failure point */
1285 	rgd->rd_extfail_pt = rgd->rd_free;
1286 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1287 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1288 	return 0;
1289 }
1290 
1291 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1292 {
1293 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1294 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1295 
1296 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1297 		return 0;
1298 	return gfs2_rgrp_bh_get(rgd);
1299 }
1300 
1301 /**
1302  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1303  * @rgd: The resource group
1304  *
1305  */
1306 
1307 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1308 {
1309 	int x, length = rgd->rd_length;
1310 
1311 	for (x = 0; x < length; x++) {
1312 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1313 		if (bi->bi_bh) {
1314 			brelse(bi->bi_bh);
1315 			bi->bi_bh = NULL;
1316 		}
1317 	}
1318 }
1319 
1320 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1321 			     struct buffer_head *bh,
1322 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1323 {
1324 	struct super_block *sb = sdp->sd_vfs;
1325 	u64 blk;
1326 	sector_t start = 0;
1327 	sector_t nr_blks = 0;
1328 	int rv;
1329 	unsigned int x;
1330 	u32 trimmed = 0;
1331 	u8 diff;
1332 
1333 	for (x = 0; x < bi->bi_bytes; x++) {
1334 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1335 		clone += bi->bi_offset;
1336 		clone += x;
1337 		if (bh) {
1338 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1339 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1340 		} else {
1341 			diff = ~(*clone | (*clone >> 1));
1342 		}
1343 		diff &= 0x55;
1344 		if (diff == 0)
1345 			continue;
1346 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1347 		while(diff) {
1348 			if (diff & 1) {
1349 				if (nr_blks == 0)
1350 					goto start_new_extent;
1351 				if ((start + nr_blks) != blk) {
1352 					if (nr_blks >= minlen) {
1353 						rv = sb_issue_discard(sb,
1354 							start, nr_blks,
1355 							GFP_NOFS, 0);
1356 						if (rv)
1357 							goto fail;
1358 						trimmed += nr_blks;
1359 					}
1360 					nr_blks = 0;
1361 start_new_extent:
1362 					start = blk;
1363 				}
1364 				nr_blks++;
1365 			}
1366 			diff >>= 2;
1367 			blk++;
1368 		}
1369 	}
1370 	if (nr_blks >= minlen) {
1371 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1372 		if (rv)
1373 			goto fail;
1374 		trimmed += nr_blks;
1375 	}
1376 	if (ptrimmed)
1377 		*ptrimmed = trimmed;
1378 	return 0;
1379 
1380 fail:
1381 	if (sdp->sd_args.ar_discard)
1382 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1383 	sdp->sd_args.ar_discard = 0;
1384 	return -EIO;
1385 }
1386 
1387 /**
1388  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1389  * @filp: Any file on the filesystem
1390  * @argp: Pointer to the arguments (also used to pass result)
1391  *
1392  * Returns: 0 on success, otherwise error code
1393  */
1394 
1395 int gfs2_fitrim(struct file *filp, void __user *argp)
1396 {
1397 	struct inode *inode = file_inode(filp);
1398 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1399 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1400 	struct buffer_head *bh;
1401 	struct gfs2_rgrpd *rgd;
1402 	struct gfs2_rgrpd *rgd_end;
1403 	struct gfs2_holder gh;
1404 	struct fstrim_range r;
1405 	int ret = 0;
1406 	u64 amt;
1407 	u64 trimmed = 0;
1408 	u64 start, end, minlen;
1409 	unsigned int x;
1410 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1411 
1412 	if (!capable(CAP_SYS_ADMIN))
1413 		return -EPERM;
1414 
1415 	if (!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))
1416 		return -EROFS;
1417 
1418 	if (!blk_queue_discard(q))
1419 		return -EOPNOTSUPP;
1420 
1421 	if (copy_from_user(&r, argp, sizeof(r)))
1422 		return -EFAULT;
1423 
1424 	ret = gfs2_rindex_update(sdp);
1425 	if (ret)
1426 		return ret;
1427 
1428 	start = r.start >> bs_shift;
1429 	end = start + (r.len >> bs_shift);
1430 	minlen = max_t(u64, r.minlen,
1431 		       q->limits.discard_granularity) >> bs_shift;
1432 
1433 	if (end <= start || minlen > sdp->sd_max_rg_data)
1434 		return -EINVAL;
1435 
1436 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1437 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1438 
1439 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1440 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1441 		return -EINVAL; /* start is beyond the end of the fs */
1442 
1443 	while (1) {
1444 
1445 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1446 					 LM_FLAG_NODE_SCOPE, &gh);
1447 		if (ret)
1448 			goto out;
1449 
1450 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1451 			/* Trim each bitmap in the rgrp */
1452 			for (x = 0; x < rgd->rd_length; x++) {
1453 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1454 				rgrp_lock_local(rgd);
1455 				ret = gfs2_rgrp_send_discards(sdp,
1456 						rgd->rd_data0, NULL, bi, minlen,
1457 						&amt);
1458 				rgrp_unlock_local(rgd);
1459 				if (ret) {
1460 					gfs2_glock_dq_uninit(&gh);
1461 					goto out;
1462 				}
1463 				trimmed += amt;
1464 			}
1465 
1466 			/* Mark rgrp as having been trimmed */
1467 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1468 			if (ret == 0) {
1469 				bh = rgd->rd_bits[0].bi_bh;
1470 				rgrp_lock_local(rgd);
1471 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1472 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1473 				gfs2_rgrp_out(rgd, bh->b_data);
1474 				rgrp_unlock_local(rgd);
1475 				gfs2_trans_end(sdp);
1476 			}
1477 		}
1478 		gfs2_glock_dq_uninit(&gh);
1479 
1480 		if (rgd == rgd_end)
1481 			break;
1482 
1483 		rgd = gfs2_rgrpd_get_next(rgd);
1484 	}
1485 
1486 out:
1487 	r.len = trimmed << bs_shift;
1488 	if (copy_to_user(argp, &r, sizeof(r)))
1489 		return -EFAULT;
1490 
1491 	return ret;
1492 }
1493 
1494 /**
1495  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1496  * @ip: the inode structure
1497  *
1498  */
1499 static void rs_insert(struct gfs2_inode *ip)
1500 {
1501 	struct rb_node **newn, *parent = NULL;
1502 	int rc;
1503 	struct gfs2_blkreserv *rs = &ip->i_res;
1504 	struct gfs2_rgrpd *rgd = rs->rs_rgd;
1505 
1506 	BUG_ON(gfs2_rs_active(rs));
1507 
1508 	spin_lock(&rgd->rd_rsspin);
1509 	newn = &rgd->rd_rstree.rb_node;
1510 	while (*newn) {
1511 		struct gfs2_blkreserv *cur =
1512 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1513 
1514 		parent = *newn;
1515 		rc = rs_cmp(rs->rs_start, rs->rs_requested, cur);
1516 		if (rc > 0)
1517 			newn = &((*newn)->rb_right);
1518 		else if (rc < 0)
1519 			newn = &((*newn)->rb_left);
1520 		else {
1521 			spin_unlock(&rgd->rd_rsspin);
1522 			WARN_ON(1);
1523 			return;
1524 		}
1525 	}
1526 
1527 	rb_link_node(&rs->rs_node, parent, newn);
1528 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1529 
1530 	/* Do our rgrp accounting for the reservation */
1531 	rgd->rd_requested += rs->rs_requested; /* blocks requested */
1532 	spin_unlock(&rgd->rd_rsspin);
1533 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1534 }
1535 
1536 /**
1537  * rgd_free - return the number of free blocks we can allocate.
1538  * @rgd: the resource group
1539  *
1540  * This function returns the number of free blocks for an rgrp.
1541  * That's the clone-free blocks (blocks that are free, not including those
1542  * still being used for unlinked files that haven't been deleted.)
1543  *
1544  * It also subtracts any blocks reserved by someone else, but does not
1545  * include free blocks that are still part of our current reservation,
1546  * because obviously we can (and will) allocate them.
1547  */
1548 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1549 {
1550 	u32 tot_reserved, tot_free;
1551 
1552 	if (WARN_ON_ONCE(rgd->rd_requested < rs->rs_requested))
1553 		return 0;
1554 	tot_reserved = rgd->rd_requested - rs->rs_requested;
1555 
1556 	if (rgd->rd_free_clone < tot_reserved)
1557 		tot_reserved = 0;
1558 
1559 	tot_free = rgd->rd_free_clone - tot_reserved;
1560 
1561 	return tot_free;
1562 }
1563 
1564 /**
1565  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1566  * @rgd: the resource group descriptor
1567  * @ip: pointer to the inode for which we're reserving blocks
1568  * @ap: the allocation parameters
1569  *
1570  */
1571 
1572 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1573 			   const struct gfs2_alloc_parms *ap)
1574 {
1575 	struct gfs2_rbm rbm = { .rgd = rgd, };
1576 	u64 goal;
1577 	struct gfs2_blkreserv *rs = &ip->i_res;
1578 	u32 extlen;
1579 	u32 free_blocks, blocks_available;
1580 	int ret;
1581 	struct inode *inode = &ip->i_inode;
1582 
1583 	spin_lock(&rgd->rd_rsspin);
1584 	free_blocks = rgd_free(rgd, rs);
1585 	if (rgd->rd_free_clone < rgd->rd_requested)
1586 		free_blocks = 0;
1587 	blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
1588 	if (rgd == rs->rs_rgd)
1589 		blocks_available += rs->rs_reserved;
1590 	spin_unlock(&rgd->rd_rsspin);
1591 
1592 	if (S_ISDIR(inode->i_mode))
1593 		extlen = 1;
1594 	else {
1595 		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1596 		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1597 	}
1598 	if (free_blocks < extlen || blocks_available < extlen)
1599 		return;
1600 
1601 	/* Find bitmap block that contains bits for goal block */
1602 	if (rgrp_contains_block(rgd, ip->i_goal))
1603 		goal = ip->i_goal;
1604 	else
1605 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1606 
1607 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1608 		return;
1609 
1610 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, &ip->i_res, true);
1611 	if (ret == 0) {
1612 		rs->rs_start = gfs2_rbm_to_block(&rbm);
1613 		rs->rs_requested = extlen;
1614 		rs_insert(ip);
1615 	} else {
1616 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1617 			rgd->rd_last_alloc = 0;
1618 	}
1619 }
1620 
1621 /**
1622  * gfs2_next_unreserved_block - Return next block that is not reserved
1623  * @rgd: The resource group
1624  * @block: The starting block
1625  * @length: The required length
1626  * @ignore_rs: Reservation to ignore
1627  *
1628  * If the block does not appear in any reservation, then return the
1629  * block number unchanged. If it does appear in the reservation, then
1630  * keep looking through the tree of reservations in order to find the
1631  * first block number which is not reserved.
1632  */
1633 
1634 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1635 				      u32 length,
1636 				      struct gfs2_blkreserv *ignore_rs)
1637 {
1638 	struct gfs2_blkreserv *rs;
1639 	struct rb_node *n;
1640 	int rc;
1641 
1642 	spin_lock(&rgd->rd_rsspin);
1643 	n = rgd->rd_rstree.rb_node;
1644 	while (n) {
1645 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1646 		rc = rs_cmp(block, length, rs);
1647 		if (rc < 0)
1648 			n = n->rb_left;
1649 		else if (rc > 0)
1650 			n = n->rb_right;
1651 		else
1652 			break;
1653 	}
1654 
1655 	if (n) {
1656 		while (rs_cmp(block, length, rs) == 0 && rs != ignore_rs) {
1657 			block = rs->rs_start + rs->rs_requested;
1658 			n = n->rb_right;
1659 			if (n == NULL)
1660 				break;
1661 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1662 		}
1663 	}
1664 
1665 	spin_unlock(&rgd->rd_rsspin);
1666 	return block;
1667 }
1668 
1669 /**
1670  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1671  * @rbm: The current position in the resource group
1672  * @rs: Our own reservation
1673  * @minext: The minimum extent length
1674  * @maxext: A pointer to the maximum extent structure
1675  *
1676  * This checks the current position in the rgrp to see whether there is
1677  * a reservation covering this block. If not then this function is a
1678  * no-op. If there is, then the position is moved to the end of the
1679  * contiguous reservation(s) so that we are pointing at the first
1680  * non-reserved block.
1681  *
1682  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1683  */
1684 
1685 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1686 					     struct gfs2_blkreserv *rs,
1687 					     u32 minext,
1688 					     struct gfs2_extent *maxext)
1689 {
1690 	u64 block = gfs2_rbm_to_block(rbm);
1691 	u32 extlen = 1;
1692 	u64 nblock;
1693 
1694 	/*
1695 	 * If we have a minimum extent length, then skip over any extent
1696 	 * which is less than the min extent length in size.
1697 	 */
1698 	if (minext > 1) {
1699 		extlen = gfs2_free_extlen(rbm, minext);
1700 		if (extlen <= maxext->len)
1701 			goto fail;
1702 	}
1703 
1704 	/*
1705 	 * Check the extent which has been found against the reservations
1706 	 * and skip if parts of it are already reserved
1707 	 */
1708 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, rs);
1709 	if (nblock == block) {
1710 		if (!minext || extlen >= minext)
1711 			return 0;
1712 
1713 		if (extlen > maxext->len) {
1714 			maxext->len = extlen;
1715 			maxext->rbm = *rbm;
1716 		}
1717 	} else {
1718 		u64 len = nblock - block;
1719 		if (len >= (u64)1 << 32)
1720 			return -E2BIG;
1721 		extlen = len;
1722 	}
1723 fail:
1724 	if (gfs2_rbm_add(rbm, extlen))
1725 		return -E2BIG;
1726 	return 1;
1727 }
1728 
1729 /**
1730  * gfs2_rbm_find - Look for blocks of a particular state
1731  * @rbm: Value/result starting position and final position
1732  * @state: The state which we want to find
1733  * @minext: Pointer to the requested extent length
1734  *          This is updated to be the actual reservation size.
1735  * @rs: Our own reservation (NULL to skip checking for reservations)
1736  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1737  *          around until we've reached the starting point.
1738  *
1739  * Side effects:
1740  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1741  *   has no free blocks in it.
1742  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1743  *   has come up short on a free block search.
1744  *
1745  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1746  */
1747 
1748 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1749 			 struct gfs2_blkreserv *rs, bool nowrap)
1750 {
1751 	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1752 	struct buffer_head *bh;
1753 	int last_bii;
1754 	u32 offset;
1755 	u8 *buffer;
1756 	bool wrapped = false;
1757 	int ret;
1758 	struct gfs2_bitmap *bi;
1759 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1760 
1761 	/*
1762 	 * Determine the last bitmap to search.  If we're not starting at the
1763 	 * beginning of a bitmap, we need to search that bitmap twice to scan
1764 	 * the entire resource group.
1765 	 */
1766 	last_bii = rbm->bii - (rbm->offset == 0);
1767 
1768 	while(1) {
1769 		bi = rbm_bi(rbm);
1770 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1771 		    (state == GFS2_BLKST_FREE))
1772 			goto next_bitmap;
1773 
1774 		bh = bi->bi_bh;
1775 		buffer = bh->b_data + bi->bi_offset;
1776 		WARN_ON(!buffer_uptodate(bh));
1777 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1778 			buffer = bi->bi_clone + bi->bi_offset;
1779 		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1780 		if (offset == BFITNOENT) {
1781 			if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1782 				set_bit(GBF_FULL, &bi->bi_flags);
1783 			goto next_bitmap;
1784 		}
1785 		rbm->offset = offset;
1786 		if (!rs)
1787 			return 0;
1788 
1789 		ret = gfs2_reservation_check_and_update(rbm, rs, *minext,
1790 							&maxext);
1791 		if (ret == 0)
1792 			return 0;
1793 		if (ret > 0)
1794 			goto next_iter;
1795 		if (ret == -E2BIG) {
1796 			rbm->bii = 0;
1797 			rbm->offset = 0;
1798 			goto res_covered_end_of_rgrp;
1799 		}
1800 		return ret;
1801 
1802 next_bitmap:	/* Find next bitmap in the rgrp */
1803 		rbm->offset = 0;
1804 		rbm->bii++;
1805 		if (rbm->bii == rbm->rgd->rd_length)
1806 			rbm->bii = 0;
1807 res_covered_end_of_rgrp:
1808 		if (rbm->bii == 0) {
1809 			if (wrapped)
1810 				break;
1811 			wrapped = true;
1812 			if (nowrap)
1813 				break;
1814 		}
1815 next_iter:
1816 		/* Have we scanned the entire resource group? */
1817 		if (wrapped && rbm->bii > last_bii)
1818 			break;
1819 	}
1820 
1821 	if (state != GFS2_BLKST_FREE)
1822 		return -ENOSPC;
1823 
1824 	/* If the extent was too small, and it's smaller than the smallest
1825 	   to have failed before, remember for future reference that it's
1826 	   useless to search this rgrp again for this amount or more. */
1827 	if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1828 	    *minext < rbm->rgd->rd_extfail_pt)
1829 		rbm->rgd->rd_extfail_pt = *minext - 1;
1830 
1831 	/* If the maximum extent we found is big enough to fulfill the
1832 	   minimum requirements, use it anyway. */
1833 	if (maxext.len) {
1834 		*rbm = maxext.rbm;
1835 		*minext = maxext.len;
1836 		return 0;
1837 	}
1838 
1839 	return -ENOSPC;
1840 }
1841 
1842 /**
1843  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1844  * @rgd: The rgrp
1845  * @last_unlinked: block address of the last dinode we unlinked
1846  * @skip: block address we should explicitly not unlink
1847  *
1848  * Returns: 0 if no error
1849  *          The inode, if one has been found, in inode.
1850  */
1851 
1852 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1853 {
1854 	u64 block;
1855 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1856 	struct gfs2_glock *gl;
1857 	struct gfs2_inode *ip;
1858 	int error;
1859 	int found = 0;
1860 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1861 
1862 	while (1) {
1863 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1864 				      true);
1865 		if (error == -ENOSPC)
1866 			break;
1867 		if (WARN_ON_ONCE(error))
1868 			break;
1869 
1870 		block = gfs2_rbm_to_block(&rbm);
1871 		if (gfs2_rbm_from_block(&rbm, block + 1))
1872 			break;
1873 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1874 			continue;
1875 		if (block == skip)
1876 			continue;
1877 		*last_unlinked = block;
1878 
1879 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1880 		if (error)
1881 			continue;
1882 
1883 		/* If the inode is already in cache, we can ignore it here
1884 		 * because the existing inode disposal code will deal with
1885 		 * it when all refs have gone away. Accessing gl_object like
1886 		 * this is not safe in general. Here it is ok because we do
1887 		 * not dereference the pointer, and we only need an approx
1888 		 * answer to whether it is NULL or not.
1889 		 */
1890 		ip = gl->gl_object;
1891 
1892 		if (ip || !gfs2_queue_delete_work(gl, 0))
1893 			gfs2_glock_put(gl);
1894 		else
1895 			found++;
1896 
1897 		/* Limit reclaim to sensible number of tasks */
1898 		if (found > NR_CPUS)
1899 			return;
1900 	}
1901 
1902 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1903 	return;
1904 }
1905 
1906 /**
1907  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1908  * @rgd: The rgrp in question
1909  * @loops: An indication of how picky we can be (0=very, 1=less so)
1910  *
1911  * This function uses the recently added glock statistics in order to
1912  * figure out whether a parciular resource group is suffering from
1913  * contention from multiple nodes. This is done purely on the basis
1914  * of timings, since this is the only data we have to work with and
1915  * our aim here is to reject a resource group which is highly contended
1916  * but (very important) not to do this too often in order to ensure that
1917  * we do not land up introducing fragmentation by changing resource
1918  * groups when not actually required.
1919  *
1920  * The calculation is fairly simple, we want to know whether the SRTTB
1921  * (i.e. smoothed round trip time for blocking operations) to acquire
1922  * the lock for this rgrp's glock is significantly greater than the
1923  * time taken for resource groups on average. We introduce a margin in
1924  * the form of the variable @var which is computed as the sum of the two
1925  * respective variences, and multiplied by a factor depending on @loops
1926  * and whether we have a lot of data to base the decision on. This is
1927  * then tested against the square difference of the means in order to
1928  * decide whether the result is statistically significant or not.
1929  *
1930  * Returns: A boolean verdict on the congestion status
1931  */
1932 
1933 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1934 {
1935 	const struct gfs2_glock *gl = rgd->rd_gl;
1936 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1937 	struct gfs2_lkstats *st;
1938 	u64 r_dcount, l_dcount;
1939 	u64 l_srttb, a_srttb = 0;
1940 	s64 srttb_diff;
1941 	u64 sqr_diff;
1942 	u64 var;
1943 	int cpu, nonzero = 0;
1944 
1945 	preempt_disable();
1946 	for_each_present_cpu(cpu) {
1947 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1948 		if (st->stats[GFS2_LKS_SRTTB]) {
1949 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1950 			nonzero++;
1951 		}
1952 	}
1953 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1954 	if (nonzero)
1955 		do_div(a_srttb, nonzero);
1956 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1957 	var = st->stats[GFS2_LKS_SRTTVARB] +
1958 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1959 	preempt_enable();
1960 
1961 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1962 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1963 
1964 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1965 		return false;
1966 
1967 	srttb_diff = a_srttb - l_srttb;
1968 	sqr_diff = srttb_diff * srttb_diff;
1969 
1970 	var *= 2;
1971 	if (l_dcount < 8 || r_dcount < 8)
1972 		var *= 2;
1973 	if (loops == 1)
1974 		var *= 2;
1975 
1976 	return ((srttb_diff < 0) && (sqr_diff > var));
1977 }
1978 
1979 /**
1980  * gfs2_rgrp_used_recently
1981  * @rs: The block reservation with the rgrp to test
1982  * @msecs: The time limit in milliseconds
1983  *
1984  * Returns: True if the rgrp glock has been used within the time limit
1985  */
1986 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1987 				    u64 msecs)
1988 {
1989 	u64 tdiff;
1990 
1991 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1992                             rs->rs_rgd->rd_gl->gl_dstamp));
1993 
1994 	return tdiff > (msecs * 1000 * 1000);
1995 }
1996 
1997 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1998 {
1999 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2000 	u32 skip;
2001 
2002 	get_random_bytes(&skip, sizeof(skip));
2003 	return skip % sdp->sd_rgrps;
2004 }
2005 
2006 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
2007 {
2008 	struct gfs2_rgrpd *rgd = *pos;
2009 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2010 
2011 	rgd = gfs2_rgrpd_get_next(rgd);
2012 	if (rgd == NULL)
2013 		rgd = gfs2_rgrpd_get_first(sdp);
2014 	*pos = rgd;
2015 	if (rgd != begin) /* If we didn't wrap */
2016 		return true;
2017 	return false;
2018 }
2019 
2020 /**
2021  * fast_to_acquire - determine if a resource group will be fast to acquire
2022  *
2023  * If this is one of our preferred rgrps, it should be quicker to acquire,
2024  * because we tried to set ourselves up as dlm lock master.
2025  */
2026 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
2027 {
2028 	struct gfs2_glock *gl = rgd->rd_gl;
2029 
2030 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
2031 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
2032 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
2033 		return 1;
2034 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2035 		return 1;
2036 	return 0;
2037 }
2038 
2039 /**
2040  * gfs2_inplace_reserve - Reserve space in the filesystem
2041  * @ip: the inode to reserve space for
2042  * @ap: the allocation parameters
2043  *
2044  * We try our best to find an rgrp that has at least ap->target blocks
2045  * available. After a couple of passes (loops == 2), the prospects of finding
2046  * such an rgrp diminish. At this stage, we return the first rgrp that has
2047  * at least ap->min_target blocks available.
2048  *
2049  * Returns: 0 on success,
2050  *          -ENOMEM if a suitable rgrp can't be found
2051  *          errno otherwise
2052  */
2053 
2054 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2055 {
2056 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2057 	struct gfs2_rgrpd *begin = NULL;
2058 	struct gfs2_blkreserv *rs = &ip->i_res;
2059 	int error = 0, flags = LM_FLAG_NODE_SCOPE;
2060 	bool rg_locked;
2061 	u64 last_unlinked = NO_BLOCK;
2062 	u32 target = ap->target;
2063 	int loops = 0;
2064 	u32 free_blocks, blocks_available, skip = 0;
2065 
2066 	BUG_ON(rs->rs_reserved);
2067 
2068 	if (sdp->sd_args.ar_rgrplvb)
2069 		flags |= GL_SKIP;
2070 	if (gfs2_assert_warn(sdp, target))
2071 		return -EINVAL;
2072 	if (gfs2_rs_active(rs)) {
2073 		begin = rs->rs_rgd;
2074 	} else if (rs->rs_rgd &&
2075 		   rgrp_contains_block(rs->rs_rgd, ip->i_goal)) {
2076 		begin = rs->rs_rgd;
2077 	} else {
2078 		check_and_update_goal(ip);
2079 		rs->rs_rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2080 	}
2081 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2082 		skip = gfs2_orlov_skip(ip);
2083 	if (rs->rs_rgd == NULL)
2084 		return -EBADSLT;
2085 
2086 	while (loops < 3) {
2087 		struct gfs2_rgrpd *rgd;
2088 
2089 		rg_locked = gfs2_glock_is_locked_by_me(rs->rs_rgd->rd_gl);
2090 		if (rg_locked) {
2091 			rgrp_lock_local(rs->rs_rgd);
2092 		} else {
2093 			if (skip && skip--)
2094 				goto next_rgrp;
2095 			if (!gfs2_rs_active(rs)) {
2096 				if (loops == 0 &&
2097 				    !fast_to_acquire(rs->rs_rgd))
2098 					goto next_rgrp;
2099 				if ((loops < 2) &&
2100 				    gfs2_rgrp_used_recently(rs, 1000) &&
2101 				    gfs2_rgrp_congested(rs->rs_rgd, loops))
2102 					goto next_rgrp;
2103 			}
2104 			error = gfs2_glock_nq_init(rs->rs_rgd->rd_gl,
2105 						   LM_ST_EXCLUSIVE, flags,
2106 						   &ip->i_rgd_gh);
2107 			if (unlikely(error))
2108 				return error;
2109 			rgrp_lock_local(rs->rs_rgd);
2110 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2111 			    gfs2_rgrp_congested(rs->rs_rgd, loops))
2112 				goto skip_rgrp;
2113 			if (sdp->sd_args.ar_rgrplvb) {
2114 				error = update_rgrp_lvb(rs->rs_rgd);
2115 				if (unlikely(error)) {
2116 					rgrp_unlock_local(rs->rs_rgd);
2117 					gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2118 					return error;
2119 				}
2120 			}
2121 		}
2122 
2123 		/* Skip unusable resource groups */
2124 		if ((rs->rs_rgd->rd_flags & (GFS2_RGF_NOALLOC |
2125 						 GFS2_RDF_ERROR)) ||
2126 		    (loops == 0 && target > rs->rs_rgd->rd_extfail_pt))
2127 			goto skip_rgrp;
2128 
2129 		if (sdp->sd_args.ar_rgrplvb)
2130 			gfs2_rgrp_bh_get(rs->rs_rgd);
2131 
2132 		/* Get a reservation if we don't already have one */
2133 		if (!gfs2_rs_active(rs))
2134 			rg_mblk_search(rs->rs_rgd, ip, ap);
2135 
2136 		/* Skip rgrps when we can't get a reservation on first pass */
2137 		if (!gfs2_rs_active(rs) && (loops < 1))
2138 			goto check_rgrp;
2139 
2140 		/* If rgrp has enough free space, use it */
2141 		rgd = rs->rs_rgd;
2142 		spin_lock(&rgd->rd_rsspin);
2143 		free_blocks = rgd_free(rgd, rs);
2144 		blocks_available = rgd->rd_free_clone - rgd->rd_reserved;
2145 		if (free_blocks < target || blocks_available < target) {
2146 			spin_unlock(&rgd->rd_rsspin);
2147 			goto check_rgrp;
2148 		}
2149 		rs->rs_reserved = ap->target;
2150 		if (rs->rs_reserved > blocks_available)
2151 			rs->rs_reserved = blocks_available;
2152 		rgd->rd_reserved += rs->rs_reserved;
2153 		spin_unlock(&rgd->rd_rsspin);
2154 		rgrp_unlock_local(rs->rs_rgd);
2155 		return 0;
2156 check_rgrp:
2157 		/* Check for unlinked inodes which can be reclaimed */
2158 		if (rs->rs_rgd->rd_flags & GFS2_RDF_CHECK)
2159 			try_rgrp_unlink(rs->rs_rgd, &last_unlinked,
2160 					ip->i_no_addr);
2161 skip_rgrp:
2162 		rgrp_unlock_local(rs->rs_rgd);
2163 
2164 		/* Drop reservation, if we couldn't use reserved rgrp */
2165 		if (gfs2_rs_active(rs))
2166 			gfs2_rs_deltree(rs);
2167 
2168 		/* Unlock rgrp if required */
2169 		if (!rg_locked)
2170 			gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2171 next_rgrp:
2172 		/* Find the next rgrp, and continue looking */
2173 		if (gfs2_select_rgrp(&rs->rs_rgd, begin))
2174 			continue;
2175 		if (skip)
2176 			continue;
2177 
2178 		/* If we've scanned all the rgrps, but found no free blocks
2179 		 * then this checks for some less likely conditions before
2180 		 * trying again.
2181 		 */
2182 		loops++;
2183 		/* Check that fs hasn't grown if writing to rindex */
2184 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2185 			error = gfs2_ri_update(ip);
2186 			if (error)
2187 				return error;
2188 		}
2189 		/* Flushing the log may release space */
2190 		if (loops == 2) {
2191 			if (ap->min_target)
2192 				target = ap->min_target;
2193 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2194 				       GFS2_LFC_INPLACE_RESERVE);
2195 		}
2196 	}
2197 
2198 	return -ENOSPC;
2199 }
2200 
2201 /**
2202  * gfs2_inplace_release - release an inplace reservation
2203  * @ip: the inode the reservation was taken out on
2204  *
2205  * Release a reservation made by gfs2_inplace_reserve().
2206  */
2207 
2208 void gfs2_inplace_release(struct gfs2_inode *ip)
2209 {
2210 	struct gfs2_blkreserv *rs = &ip->i_res;
2211 
2212 	if (rs->rs_reserved) {
2213 		struct gfs2_rgrpd *rgd = rs->rs_rgd;
2214 
2215 		spin_lock(&rgd->rd_rsspin);
2216 		BUG_ON(rgd->rd_reserved < rs->rs_reserved);
2217 		rgd->rd_reserved -= rs->rs_reserved;
2218 		spin_unlock(&rgd->rd_rsspin);
2219 		rs->rs_reserved = 0;
2220 	}
2221 	if (gfs2_holder_initialized(&ip->i_rgd_gh))
2222 		gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2223 }
2224 
2225 /**
2226  * gfs2_alloc_extent - allocate an extent from a given bitmap
2227  * @rbm: the resource group information
2228  * @dinode: TRUE if the first block we allocate is for a dinode
2229  * @n: The extent length (value/result)
2230  *
2231  * Add the bitmap buffer to the transaction.
2232  * Set the found bits to @new_state to change block's allocation state.
2233  */
2234 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2235 			     unsigned int *n)
2236 {
2237 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2238 	const unsigned int elen = *n;
2239 	u64 block;
2240 	int ret;
2241 
2242 	*n = 1;
2243 	block = gfs2_rbm_to_block(rbm);
2244 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2245 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2246 	block++;
2247 	while (*n < elen) {
2248 		ret = gfs2_rbm_from_block(&pos, block);
2249 		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2250 			break;
2251 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2252 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2253 		(*n)++;
2254 		block++;
2255 	}
2256 }
2257 
2258 /**
2259  * rgblk_free - Change alloc state of given block(s)
2260  * @sdp: the filesystem
2261  * @rgd: the resource group the blocks are in
2262  * @bstart: the start of a run of blocks to free
2263  * @blen: the length of the block run (all must lie within ONE RG!)
2264  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2265  */
2266 
2267 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2268 		       u64 bstart, u32 blen, unsigned char new_state)
2269 {
2270 	struct gfs2_rbm rbm;
2271 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2272 
2273 	rbm.rgd = rgd;
2274 	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2275 		return;
2276 	while (blen--) {
2277 		bi = rbm_bi(&rbm);
2278 		if (bi != bi_prev) {
2279 			if (!bi->bi_clone) {
2280 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2281 						      GFP_NOFS | __GFP_NOFAIL);
2282 				memcpy(bi->bi_clone + bi->bi_offset,
2283 				       bi->bi_bh->b_data + bi->bi_offset,
2284 				       bi->bi_bytes);
2285 			}
2286 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2287 			bi_prev = bi;
2288 		}
2289 		gfs2_setbit(&rbm, false, new_state);
2290 		gfs2_rbm_add(&rbm, 1);
2291 	}
2292 }
2293 
2294 /**
2295  * gfs2_rgrp_dump - print out an rgrp
2296  * @seq: The iterator
2297  * @rgd: The rgrp in question
2298  * @fs_id_buf: pointer to file system id (if requested)
2299  *
2300  */
2301 
2302 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_rgrpd *rgd,
2303 		    const char *fs_id_buf)
2304 {
2305 	struct gfs2_blkreserv *trs;
2306 	const struct rb_node *n;
2307 
2308 	spin_lock(&rgd->rd_rsspin);
2309 	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2310 		       fs_id_buf,
2311 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2312 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2313 		       rgd->rd_requested, rgd->rd_reserved, rgd->rd_extfail_pt);
2314 	if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2315 		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2316 
2317 		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf,
2318 			       be32_to_cpu(rgl->rl_flags),
2319 			       be32_to_cpu(rgl->rl_free),
2320 			       be32_to_cpu(rgl->rl_dinodes));
2321 	}
2322 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2323 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2324 		dump_rs(seq, trs, fs_id_buf);
2325 	}
2326 	spin_unlock(&rgd->rd_rsspin);
2327 }
2328 
2329 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2330 {
2331 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2332 	char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2333 
2334 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2335 		(unsigned long long)rgd->rd_addr);
2336 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2337 	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2338 	gfs2_rgrp_dump(NULL, rgd, fs_id_buf);
2339 	rgd->rd_flags |= GFS2_RDF_ERROR;
2340 }
2341 
2342 /**
2343  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2344  * @ip: The inode we have just allocated blocks for
2345  * @rbm: The start of the allocated blocks
2346  * @len: The extent length
2347  *
2348  * Adjusts a reservation after an allocation has taken place. If the
2349  * reservation does not match the allocation, or if it is now empty
2350  * then it is removed.
2351  */
2352 
2353 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2354 				    const struct gfs2_rbm *rbm, unsigned len)
2355 {
2356 	struct gfs2_blkreserv *rs = &ip->i_res;
2357 	struct gfs2_rgrpd *rgd = rbm->rgd;
2358 
2359 	BUG_ON(rs->rs_reserved < len);
2360 	rs->rs_reserved -= len;
2361 	if (gfs2_rs_active(rs)) {
2362 		u64 start = gfs2_rbm_to_block(rbm);
2363 
2364 		if (rs->rs_start == start) {
2365 			unsigned int rlen;
2366 
2367 			rs->rs_start += len;
2368 			rlen = min(rs->rs_requested, len);
2369 			rs->rs_requested -= rlen;
2370 			rgd->rd_requested -= rlen;
2371 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2372 			if (rs->rs_start < rgd->rd_data0 + rgd->rd_data &&
2373 			    rs->rs_requested)
2374 				return;
2375 			/* We used up our block reservation, so we should
2376 			   reserve more blocks next time. */
2377 			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2378 		}
2379 		__rs_deltree(rs);
2380 	}
2381 }
2382 
2383 /**
2384  * gfs2_set_alloc_start - Set starting point for block allocation
2385  * @rbm: The rbm which will be set to the required location
2386  * @ip: The gfs2 inode
2387  * @dinode: Flag to say if allocation includes a new inode
2388  *
2389  * This sets the starting point from the reservation if one is active
2390  * otherwise it falls back to guessing a start point based on the
2391  * inode's goal block or the last allocation point in the rgrp.
2392  */
2393 
2394 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2395 				 const struct gfs2_inode *ip, bool dinode)
2396 {
2397 	u64 goal;
2398 
2399 	if (gfs2_rs_active(&ip->i_res)) {
2400 		goal = ip->i_res.rs_start;
2401 	} else {
2402 		if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2403 			goal = ip->i_goal;
2404 		else
2405 			goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2406 	}
2407 	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2408 		rbm->bii = 0;
2409 		rbm->offset = 0;
2410 	}
2411 }
2412 
2413 /**
2414  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2415  * @ip: the inode to allocate the block for
2416  * @bn: Used to return the starting block number
2417  * @nblocks: requested number of blocks/extent length (value/result)
2418  * @dinode: 1 if we're allocating a dinode block, else 0
2419  * @generation: the generation number of the inode
2420  *
2421  * Returns: 0 or error
2422  */
2423 
2424 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2425 		      bool dinode, u64 *generation)
2426 {
2427 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2428 	struct buffer_head *dibh;
2429 	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rgd, };
2430 	u64 block; /* block, within the file system scope */
2431 	u32 minext = 1;
2432 	int error = -ENOSPC;
2433 
2434 	BUG_ON(ip->i_res.rs_reserved < *nblocks);
2435 
2436 	rgrp_lock_local(rbm.rgd);
2437 	if (gfs2_rs_active(&ip->i_res)) {
2438 		gfs2_set_alloc_start(&rbm, ip, dinode);
2439 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, &ip->i_res, false);
2440 	}
2441 	if (error == -ENOSPC) {
2442 		gfs2_set_alloc_start(&rbm, ip, dinode);
2443 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &minext, NULL, false);
2444 	}
2445 
2446 	/* Since all blocks are reserved in advance, this shouldn't happen */
2447 	if (error) {
2448 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2449 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2450 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2451 			rbm.rgd->rd_extfail_pt);
2452 		goto rgrp_error;
2453 	}
2454 
2455 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2456 	block = gfs2_rbm_to_block(&rbm);
2457 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2458 	if (!dinode) {
2459 		ip->i_goal = block + *nblocks - 1;
2460 		error = gfs2_meta_inode_buffer(ip, &dibh);
2461 		if (error == 0) {
2462 			struct gfs2_dinode *di =
2463 				(struct gfs2_dinode *)dibh->b_data;
2464 			gfs2_trans_add_meta(ip->i_gl, dibh);
2465 			di->di_goal_meta = di->di_goal_data =
2466 				cpu_to_be64(ip->i_goal);
2467 			brelse(dibh);
2468 		}
2469 	}
2470 	spin_lock(&rbm.rgd->rd_rsspin);
2471 	gfs2_adjust_reservation(ip, &rbm, *nblocks);
2472 	if (rbm.rgd->rd_free < *nblocks || rbm.rgd->rd_reserved < *nblocks) {
2473 		fs_warn(sdp, "nblocks=%u\n", *nblocks);
2474 		spin_unlock(&rbm.rgd->rd_rsspin);
2475 		goto rgrp_error;
2476 	}
2477 	BUG_ON(rbm.rgd->rd_reserved < *nblocks);
2478 	BUG_ON(rbm.rgd->rd_free_clone < *nblocks);
2479 	BUG_ON(rbm.rgd->rd_free < *nblocks);
2480 	rbm.rgd->rd_reserved -= *nblocks;
2481 	rbm.rgd->rd_free_clone -= *nblocks;
2482 	rbm.rgd->rd_free -= *nblocks;
2483 	spin_unlock(&rbm.rgd->rd_rsspin);
2484 	if (dinode) {
2485 		rbm.rgd->rd_dinodes++;
2486 		*generation = rbm.rgd->rd_igeneration++;
2487 		if (*generation == 0)
2488 			*generation = rbm.rgd->rd_igeneration++;
2489 	}
2490 
2491 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2492 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2493 	rgrp_unlock_local(rbm.rgd);
2494 
2495 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2496 	if (dinode)
2497 		gfs2_trans_remove_revoke(sdp, block, *nblocks);
2498 
2499 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2500 
2501 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2502 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2503 	*bn = block;
2504 	return 0;
2505 
2506 rgrp_error:
2507 	rgrp_unlock_local(rbm.rgd);
2508 	gfs2_rgrp_error(rbm.rgd);
2509 	return -EIO;
2510 }
2511 
2512 /**
2513  * __gfs2_free_blocks - free a contiguous run of block(s)
2514  * @ip: the inode these blocks are being freed from
2515  * @rgd: the resource group the blocks are in
2516  * @bstart: first block of a run of contiguous blocks
2517  * @blen: the length of the block run
2518  * @meta: 1 if the blocks represent metadata
2519  *
2520  */
2521 
2522 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2523 			u64 bstart, u32 blen, int meta)
2524 {
2525 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2526 
2527 	rgrp_lock_local(rgd);
2528 	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2529 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2530 	rgd->rd_free += blen;
2531 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2532 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2533 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2534 	rgrp_unlock_local(rgd);
2535 
2536 	/* Directories keep their data in the metadata address space */
2537 	if (meta || ip->i_depth || gfs2_is_jdata(ip))
2538 		gfs2_journal_wipe(ip, bstart, blen);
2539 }
2540 
2541 /**
2542  * gfs2_free_meta - free a contiguous run of data block(s)
2543  * @ip: the inode these blocks are being freed from
2544  * @rgd: the resource group the blocks are in
2545  * @bstart: first block of a run of contiguous blocks
2546  * @blen: the length of the block run
2547  *
2548  */
2549 
2550 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2551 		    u64 bstart, u32 blen)
2552 {
2553 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2554 
2555 	__gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2556 	gfs2_statfs_change(sdp, 0, +blen, 0);
2557 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2558 }
2559 
2560 void gfs2_unlink_di(struct inode *inode)
2561 {
2562 	struct gfs2_inode *ip = GFS2_I(inode);
2563 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2564 	struct gfs2_rgrpd *rgd;
2565 	u64 blkno = ip->i_no_addr;
2566 
2567 	rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2568 	if (!rgd)
2569 		return;
2570 	rgrp_lock_local(rgd);
2571 	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2572 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2573 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2574 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2575 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2576 	rgrp_unlock_local(rgd);
2577 }
2578 
2579 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2580 {
2581 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2582 
2583 	rgrp_lock_local(rgd);
2584 	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2585 	if (!rgd->rd_dinodes)
2586 		gfs2_consist_rgrpd(rgd);
2587 	rgd->rd_dinodes--;
2588 	rgd->rd_free++;
2589 
2590 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2591 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2592 	rgrp_unlock_local(rgd);
2593 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2594 
2595 	gfs2_statfs_change(sdp, 0, +1, -1);
2596 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2597 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2598 	gfs2_journal_wipe(ip, ip->i_no_addr, 1);
2599 }
2600 
2601 /**
2602  * gfs2_check_blk_type - Check the type of a block
2603  * @sdp: The superblock
2604  * @no_addr: The block number to check
2605  * @type: The block type we are looking for
2606  *
2607  * The inode glock of @no_addr must be held.  The @type to check for is either
2608  * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2609  * or GFS2_BLKST_USED would make no sense.
2610  *
2611  * Returns: 0 if the block type matches the expected type
2612  *          -ESTALE if it doesn't match
2613  *          or -ve errno if something went wrong while checking
2614  */
2615 
2616 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2617 {
2618 	struct gfs2_rgrpd *rgd;
2619 	struct gfs2_holder rgd_gh;
2620 	struct gfs2_rbm rbm;
2621 	int error = -EINVAL;
2622 
2623 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2624 	if (!rgd)
2625 		goto fail;
2626 
2627 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2628 	if (error)
2629 		goto fail;
2630 
2631 	rbm.rgd = rgd;
2632 	error = gfs2_rbm_from_block(&rbm, no_addr);
2633 	if (!WARN_ON_ONCE(error)) {
2634 		/*
2635 		 * No need to take the local resource group lock here; the
2636 		 * inode glock of @no_addr provides the necessary
2637 		 * synchronization in case the block is an inode.  (In case
2638 		 * the block is not an inode, the block type will not match
2639 		 * the @type we are looking for.)
2640 		 */
2641 		if (gfs2_testbit(&rbm, false) != type)
2642 			error = -ESTALE;
2643 	}
2644 
2645 	gfs2_glock_dq_uninit(&rgd_gh);
2646 
2647 fail:
2648 	return error;
2649 }
2650 
2651 /**
2652  * gfs2_rlist_add - add a RG to a list of RGs
2653  * @ip: the inode
2654  * @rlist: the list of resource groups
2655  * @block: the block
2656  *
2657  * Figure out what RG a block belongs to and add that RG to the list
2658  *
2659  * FIXME: Don't use NOFAIL
2660  *
2661  */
2662 
2663 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2664 		    u64 block)
2665 {
2666 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2667 	struct gfs2_rgrpd *rgd;
2668 	struct gfs2_rgrpd **tmp;
2669 	unsigned int new_space;
2670 	unsigned int x;
2671 
2672 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2673 		return;
2674 
2675 	/*
2676 	 * The resource group last accessed is kept in the last position.
2677 	 */
2678 
2679 	if (rlist->rl_rgrps) {
2680 		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2681 		if (rgrp_contains_block(rgd, block))
2682 			return;
2683 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2684 	} else {
2685 		rgd = ip->i_res.rs_rgd;
2686 		if (!rgd || !rgrp_contains_block(rgd, block))
2687 			rgd = gfs2_blk2rgrpd(sdp, block, 1);
2688 	}
2689 
2690 	if (!rgd) {
2691 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2692 		       (unsigned long long)block);
2693 		return;
2694 	}
2695 
2696 	for (x = 0; x < rlist->rl_rgrps; x++) {
2697 		if (rlist->rl_rgd[x] == rgd) {
2698 			swap(rlist->rl_rgd[x],
2699 			     rlist->rl_rgd[rlist->rl_rgrps - 1]);
2700 			return;
2701 		}
2702 	}
2703 
2704 	if (rlist->rl_rgrps == rlist->rl_space) {
2705 		new_space = rlist->rl_space + 10;
2706 
2707 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2708 			      GFP_NOFS | __GFP_NOFAIL);
2709 
2710 		if (rlist->rl_rgd) {
2711 			memcpy(tmp, rlist->rl_rgd,
2712 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2713 			kfree(rlist->rl_rgd);
2714 		}
2715 
2716 		rlist->rl_space = new_space;
2717 		rlist->rl_rgd = tmp;
2718 	}
2719 
2720 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2721 }
2722 
2723 /**
2724  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2725  *      and initialize an array of glock holders for them
2726  * @rlist: the list of resource groups
2727  *
2728  * FIXME: Don't use NOFAIL
2729  *
2730  */
2731 
2732 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2733 {
2734 	unsigned int x;
2735 
2736 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2737 				      sizeof(struct gfs2_holder),
2738 				      GFP_NOFS | __GFP_NOFAIL);
2739 	for (x = 0; x < rlist->rl_rgrps; x++)
2740 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, LM_ST_EXCLUSIVE,
2741 				 LM_FLAG_NODE_SCOPE, &rlist->rl_ghs[x]);
2742 }
2743 
2744 /**
2745  * gfs2_rlist_free - free a resource group list
2746  * @rlist: the list of resource groups
2747  *
2748  */
2749 
2750 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2751 {
2752 	unsigned int x;
2753 
2754 	kfree(rlist->rl_rgd);
2755 
2756 	if (rlist->rl_ghs) {
2757 		for (x = 0; x < rlist->rl_rgrps; x++)
2758 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2759 		kfree(rlist->rl_ghs);
2760 		rlist->rl_ghs = NULL;
2761 	}
2762 }
2763 
2764 void rgrp_lock_local(struct gfs2_rgrpd *rgd)
2765 {
2766 	BUG_ON(!gfs2_glock_is_held_excl(rgd->rd_gl) &&
2767 	       !test_bit(SDF_NORECOVERY, &rgd->rd_sbd->sd_flags));
2768 	mutex_lock(&rgd->rd_mutex);
2769 }
2770 
2771 void rgrp_unlock_local(struct gfs2_rgrpd *rgd)
2772 {
2773 	mutex_unlock(&rgd->rd_mutex);
2774 }
2775