xref: /openbmc/linux/fs/gfs2/rgrp.c (revision c0e297dc)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22 
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37 
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40 
41 #if BITS_PER_LONG == 32
42 #define LBITMASK   (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK   (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50 
51 /*
52  * These routines are used by the resource group routines (rgrp.c)
53  * to keep track of block allocation.  Each block is represented by two
54  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55  *
56  * 0 = Free
57  * 1 = Used (not metadata)
58  * 2 = Unlinked (still in use) inode
59  * 3 = Used (metadata)
60  */
61 
62 struct gfs2_extent {
63 	struct gfs2_rbm rbm;
64 	u32 len;
65 };
66 
67 static const char valid_change[16] = {
68 	        /* current */
69 	/* n */ 0, 1, 1, 1,
70 	/* e */ 1, 0, 0, 0,
71 	/* w */ 0, 0, 0, 1,
72 	        1, 0, 0, 0
73 };
74 
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 			 const struct gfs2_inode *ip, bool nowrap,
77 			 const struct gfs2_alloc_parms *ap);
78 
79 
80 /**
81  * gfs2_setbit - Set a bit in the bitmaps
82  * @rbm: The position of the bit to set
83  * @do_clone: Also set the clone bitmap, if it exists
84  * @new_state: the new state of the block
85  *
86  */
87 
88 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89 			       unsigned char new_state)
90 {
91 	unsigned char *byte1, *byte2, *end, cur_state;
92 	struct gfs2_bitmap *bi = rbm_bi(rbm);
93 	unsigned int buflen = bi->bi_len;
94 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95 
96 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98 
99 	BUG_ON(byte1 >= end);
100 
101 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102 
103 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104 		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 			rbm->offset, cur_state, new_state);
106 		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108 		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 			bi->bi_offset, bi->bi_len);
110 		dump_stack();
111 		gfs2_consist_rgrpd(rbm->rgd);
112 		return;
113 	}
114 	*byte1 ^= (cur_state ^ new_state) << bit;
115 
116 	if (do_clone && bi->bi_clone) {
117 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119 		*byte2 ^= (cur_state ^ new_state) << bit;
120 	}
121 }
122 
123 /**
124  * gfs2_testbit - test a bit in the bitmaps
125  * @rbm: The bit to test
126  *
127  * Returns: The two bit block state of the requested bit
128  */
129 
130 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
131 {
132 	struct gfs2_bitmap *bi = rbm_bi(rbm);
133 	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
134 	const u8 *byte;
135 	unsigned int bit;
136 
137 	byte = buffer + (rbm->offset / GFS2_NBBY);
138 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139 
140 	return (*byte >> bit) & GFS2_BIT_MASK;
141 }
142 
143 /**
144  * gfs2_bit_search
145  * @ptr: Pointer to bitmap data
146  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147  * @state: The state we are searching for
148  *
149  * We xor the bitmap data with a patter which is the bitwise opposite
150  * of what we are looking for, this gives rise to a pattern of ones
151  * wherever there is a match. Since we have two bits per entry, we
152  * take this pattern, shift it down by one place and then and it with
153  * the original. All the even bit positions (0,2,4, etc) then represent
154  * successful matches, so we mask with 0x55555..... to remove the unwanted
155  * odd bit positions.
156  *
157  * This allows searching of a whole u64 at once (32 blocks) with a
158  * single test (on 64 bit arches).
159  */
160 
161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162 {
163 	u64 tmp;
164 	static const u64 search[] = {
165 		[0] = 0xffffffffffffffffULL,
166 		[1] = 0xaaaaaaaaaaaaaaaaULL,
167 		[2] = 0x5555555555555555ULL,
168 		[3] = 0x0000000000000000ULL,
169 	};
170 	tmp = le64_to_cpu(*ptr) ^ search[state];
171 	tmp &= (tmp >> 1);
172 	tmp &= mask;
173 	return tmp;
174 }
175 
176 /**
177  * rs_cmp - multi-block reservation range compare
178  * @blk: absolute file system block number of the new reservation
179  * @len: number of blocks in the new reservation
180  * @rs: existing reservation to compare against
181  *
182  * returns: 1 if the block range is beyond the reach of the reservation
183  *         -1 if the block range is before the start of the reservation
184  *          0 if the block range overlaps with the reservation
185  */
186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187 {
188 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189 
190 	if (blk >= startblk + rs->rs_free)
191 		return 1;
192 	if (blk + len - 1 < startblk)
193 		return -1;
194 	return 0;
195 }
196 
197 /**
198  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199  *       a block in a given allocation state.
200  * @buf: the buffer that holds the bitmaps
201  * @len: the length (in bytes) of the buffer
202  * @goal: start search at this block's bit-pair (within @buffer)
203  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204  *
205  * Scope of @goal and returned block number is only within this bitmap buffer,
206  * not entire rgrp or filesystem.  @buffer will be offset from the actual
207  * beginning of a bitmap block buffer, skipping any header structures, but
208  * headers are always a multiple of 64 bits long so that the buffer is
209  * always aligned to a 64 bit boundary.
210  *
211  * The size of the buffer is in bytes, but is it assumed that it is
212  * always ok to read a complete multiple of 64 bits at the end
213  * of the block in case the end is no aligned to a natural boundary.
214  *
215  * Return: the block number (bitmap buffer scope) that was found
216  */
217 
218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 		       u32 goal, u8 state)
220 {
221 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 	u64 tmp;
225 	u64 mask = 0x5555555555555555ULL;
226 	u32 bit;
227 
228 	/* Mask off bits we don't care about at the start of the search */
229 	mask <<= spoint;
230 	tmp = gfs2_bit_search(ptr, mask, state);
231 	ptr++;
232 	while(tmp == 0 && ptr < end) {
233 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 		ptr++;
235 	}
236 	/* Mask off any bits which are more than len bytes from the start */
237 	if (ptr == end && (len & (sizeof(u64) - 1)))
238 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 	/* Didn't find anything, so return */
240 	if (tmp == 0)
241 		return BFITNOENT;
242 	ptr--;
243 	bit = __ffs64(tmp);
244 	bit /= 2;	/* two bits per entry in the bitmap */
245 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246 }
247 
248 /**
249  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250  * @rbm: The rbm with rgd already set correctly
251  * @block: The block number (filesystem relative)
252  *
253  * This sets the bi and offset members of an rbm based on a
254  * resource group and a filesystem relative block number. The
255  * resource group must be set in the rbm on entry, the bi and
256  * offset members will be set by this function.
257  *
258  * Returns: 0 on success, or an error code
259  */
260 
261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262 {
263 	u64 rblock = block - rbm->rgd->rd_data0;
264 
265 	if (WARN_ON_ONCE(rblock > UINT_MAX))
266 		return -EINVAL;
267 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
268 		return -E2BIG;
269 
270 	rbm->bii = 0;
271 	rbm->offset = (u32)(rblock);
272 	/* Check if the block is within the first block */
273 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
274 		return 0;
275 
276 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
277 	rbm->offset += (sizeof(struct gfs2_rgrp) -
278 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
279 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
281 	return 0;
282 }
283 
284 /**
285  * gfs2_rbm_incr - increment an rbm structure
286  * @rbm: The rbm with rgd already set correctly
287  *
288  * This function takes an existing rbm structure and increments it to the next
289  * viable block offset.
290  *
291  * Returns: If incrementing the offset would cause the rbm to go past the
292  *          end of the rgrp, true is returned, otherwise false.
293  *
294  */
295 
296 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
297 {
298 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
299 		rbm->offset++;
300 		return false;
301 	}
302 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
303 		return true;
304 
305 	rbm->offset = 0;
306 	rbm->bii++;
307 	return false;
308 }
309 
310 /**
311  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
312  * @rbm: Position to search (value/result)
313  * @n_unaligned: Number of unaligned blocks to check
314  * @len: Decremented for each block found (terminate on zero)
315  *
316  * Returns: true if a non-free block is encountered
317  */
318 
319 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
320 {
321 	u32 n;
322 	u8 res;
323 
324 	for (n = 0; n < n_unaligned; n++) {
325 		res = gfs2_testbit(rbm);
326 		if (res != GFS2_BLKST_FREE)
327 			return true;
328 		(*len)--;
329 		if (*len == 0)
330 			return true;
331 		if (gfs2_rbm_incr(rbm))
332 			return true;
333 	}
334 
335 	return false;
336 }
337 
338 /**
339  * gfs2_free_extlen - Return extent length of free blocks
340  * @rrbm: Starting position
341  * @len: Max length to check
342  *
343  * Starting at the block specified by the rbm, see how many free blocks
344  * there are, not reading more than len blocks ahead. This can be done
345  * using memchr_inv when the blocks are byte aligned, but has to be done
346  * on a block by block basis in case of unaligned blocks. Also this
347  * function can cope with bitmap boundaries (although it must stop on
348  * a resource group boundary)
349  *
350  * Returns: Number of free blocks in the extent
351  */
352 
353 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
354 {
355 	struct gfs2_rbm rbm = *rrbm;
356 	u32 n_unaligned = rbm.offset & 3;
357 	u32 size = len;
358 	u32 bytes;
359 	u32 chunk_size;
360 	u8 *ptr, *start, *end;
361 	u64 block;
362 	struct gfs2_bitmap *bi;
363 
364 	if (n_unaligned &&
365 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
366 		goto out;
367 
368 	n_unaligned = len & 3;
369 	/* Start is now byte aligned */
370 	while (len > 3) {
371 		bi = rbm_bi(&rbm);
372 		start = bi->bi_bh->b_data;
373 		if (bi->bi_clone)
374 			start = bi->bi_clone;
375 		end = start + bi->bi_bh->b_size;
376 		start += bi->bi_offset;
377 		BUG_ON(rbm.offset & 3);
378 		start += (rbm.offset / GFS2_NBBY);
379 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
380 		ptr = memchr_inv(start, 0, bytes);
381 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
382 		chunk_size *= GFS2_NBBY;
383 		BUG_ON(len < chunk_size);
384 		len -= chunk_size;
385 		block = gfs2_rbm_to_block(&rbm);
386 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
387 			n_unaligned = 0;
388 			break;
389 		}
390 		if (ptr) {
391 			n_unaligned = 3;
392 			break;
393 		}
394 		n_unaligned = len & 3;
395 	}
396 
397 	/* Deal with any bits left over at the end */
398 	if (n_unaligned)
399 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
400 out:
401 	return size - len;
402 }
403 
404 /**
405  * gfs2_bitcount - count the number of bits in a certain state
406  * @rgd: the resource group descriptor
407  * @buffer: the buffer that holds the bitmaps
408  * @buflen: the length (in bytes) of the buffer
409  * @state: the state of the block we're looking for
410  *
411  * Returns: The number of bits
412  */
413 
414 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
415 			 unsigned int buflen, u8 state)
416 {
417 	const u8 *byte = buffer;
418 	const u8 *end = buffer + buflen;
419 	const u8 state1 = state << 2;
420 	const u8 state2 = state << 4;
421 	const u8 state3 = state << 6;
422 	u32 count = 0;
423 
424 	for (; byte < end; byte++) {
425 		if (((*byte) & 0x03) == state)
426 			count++;
427 		if (((*byte) & 0x0C) == state1)
428 			count++;
429 		if (((*byte) & 0x30) == state2)
430 			count++;
431 		if (((*byte) & 0xC0) == state3)
432 			count++;
433 	}
434 
435 	return count;
436 }
437 
438 /**
439  * gfs2_rgrp_verify - Verify that a resource group is consistent
440  * @rgd: the rgrp
441  *
442  */
443 
444 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
445 {
446 	struct gfs2_sbd *sdp = rgd->rd_sbd;
447 	struct gfs2_bitmap *bi = NULL;
448 	u32 length = rgd->rd_length;
449 	u32 count[4], tmp;
450 	int buf, x;
451 
452 	memset(count, 0, 4 * sizeof(u32));
453 
454 	/* Count # blocks in each of 4 possible allocation states */
455 	for (buf = 0; buf < length; buf++) {
456 		bi = rgd->rd_bits + buf;
457 		for (x = 0; x < 4; x++)
458 			count[x] += gfs2_bitcount(rgd,
459 						  bi->bi_bh->b_data +
460 						  bi->bi_offset,
461 						  bi->bi_len, x);
462 	}
463 
464 	if (count[0] != rgd->rd_free) {
465 		if (gfs2_consist_rgrpd(rgd))
466 			fs_err(sdp, "free data mismatch:  %u != %u\n",
467 			       count[0], rgd->rd_free);
468 		return;
469 	}
470 
471 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
472 	if (count[1] != tmp) {
473 		if (gfs2_consist_rgrpd(rgd))
474 			fs_err(sdp, "used data mismatch:  %u != %u\n",
475 			       count[1], tmp);
476 		return;
477 	}
478 
479 	if (count[2] + count[3] != rgd->rd_dinodes) {
480 		if (gfs2_consist_rgrpd(rgd))
481 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
482 			       count[2] + count[3], rgd->rd_dinodes);
483 		return;
484 	}
485 }
486 
487 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
488 {
489 	u64 first = rgd->rd_data0;
490 	u64 last = first + rgd->rd_data;
491 	return first <= block && block < last;
492 }
493 
494 /**
495  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
496  * @sdp: The GFS2 superblock
497  * @blk: The data block number
498  * @exact: True if this needs to be an exact match
499  *
500  * Returns: The resource group, or NULL if not found
501  */
502 
503 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
504 {
505 	struct rb_node *n, *next;
506 	struct gfs2_rgrpd *cur;
507 
508 	spin_lock(&sdp->sd_rindex_spin);
509 	n = sdp->sd_rindex_tree.rb_node;
510 	while (n) {
511 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 		next = NULL;
513 		if (blk < cur->rd_addr)
514 			next = n->rb_left;
515 		else if (blk >= cur->rd_data0 + cur->rd_data)
516 			next = n->rb_right;
517 		if (next == NULL) {
518 			spin_unlock(&sdp->sd_rindex_spin);
519 			if (exact) {
520 				if (blk < cur->rd_addr)
521 					return NULL;
522 				if (blk >= cur->rd_data0 + cur->rd_data)
523 					return NULL;
524 			}
525 			return cur;
526 		}
527 		n = next;
528 	}
529 	spin_unlock(&sdp->sd_rindex_spin);
530 
531 	return NULL;
532 }
533 
534 /**
535  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
536  * @sdp: The GFS2 superblock
537  *
538  * Returns: The first rgrp in the filesystem
539  */
540 
541 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
542 {
543 	const struct rb_node *n;
544 	struct gfs2_rgrpd *rgd;
545 
546 	spin_lock(&sdp->sd_rindex_spin);
547 	n = rb_first(&sdp->sd_rindex_tree);
548 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
549 	spin_unlock(&sdp->sd_rindex_spin);
550 
551 	return rgd;
552 }
553 
554 /**
555  * gfs2_rgrpd_get_next - get the next RG
556  * @rgd: the resource group descriptor
557  *
558  * Returns: The next rgrp
559  */
560 
561 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
562 {
563 	struct gfs2_sbd *sdp = rgd->rd_sbd;
564 	const struct rb_node *n;
565 
566 	spin_lock(&sdp->sd_rindex_spin);
567 	n = rb_next(&rgd->rd_node);
568 	if (n == NULL)
569 		n = rb_first(&sdp->sd_rindex_tree);
570 
571 	if (unlikely(&rgd->rd_node == n)) {
572 		spin_unlock(&sdp->sd_rindex_spin);
573 		return NULL;
574 	}
575 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
576 	spin_unlock(&sdp->sd_rindex_spin);
577 	return rgd;
578 }
579 
580 void check_and_update_goal(struct gfs2_inode *ip)
581 {
582 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
583 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
584 		ip->i_goal = ip->i_no_addr;
585 }
586 
587 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
588 {
589 	int x;
590 
591 	for (x = 0; x < rgd->rd_length; x++) {
592 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
593 		kfree(bi->bi_clone);
594 		bi->bi_clone = NULL;
595 	}
596 }
597 
598 /**
599  * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
600  * @ip: the inode for this reservation
601  */
602 int gfs2_rs_alloc(struct gfs2_inode *ip)
603 {
604 	int error = 0;
605 
606 	down_write(&ip->i_rw_mutex);
607 	if (ip->i_res)
608 		goto out;
609 
610 	ip->i_res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
611 	if (!ip->i_res) {
612 		error = -ENOMEM;
613 		goto out;
614 	}
615 
616 	RB_CLEAR_NODE(&ip->i_res->rs_node);
617 out:
618 	up_write(&ip->i_rw_mutex);
619 	return error;
620 }
621 
622 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
623 {
624 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
625 		       (unsigned long long)rs->rs_inum,
626 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
627 		       rs->rs_rbm.offset, rs->rs_free);
628 }
629 
630 /**
631  * __rs_deltree - remove a multi-block reservation from the rgd tree
632  * @rs: The reservation to remove
633  *
634  */
635 static void __rs_deltree(struct gfs2_blkreserv *rs)
636 {
637 	struct gfs2_rgrpd *rgd;
638 
639 	if (!gfs2_rs_active(rs))
640 		return;
641 
642 	rgd = rs->rs_rbm.rgd;
643 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
644 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
645 	RB_CLEAR_NODE(&rs->rs_node);
646 
647 	if (rs->rs_free) {
648 		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
649 
650 		/* return reserved blocks to the rgrp */
651 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
652 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
653 		/* The rgrp extent failure point is likely not to increase;
654 		   it will only do so if the freed blocks are somehow
655 		   contiguous with a span of free blocks that follows. Still,
656 		   it will force the number to be recalculated later. */
657 		rgd->rd_extfail_pt += rs->rs_free;
658 		rs->rs_free = 0;
659 		clear_bit(GBF_FULL, &bi->bi_flags);
660 	}
661 }
662 
663 /**
664  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
665  * @rs: The reservation to remove
666  *
667  */
668 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
669 {
670 	struct gfs2_rgrpd *rgd;
671 
672 	rgd = rs->rs_rbm.rgd;
673 	if (rgd) {
674 		spin_lock(&rgd->rd_rsspin);
675 		__rs_deltree(rs);
676 		spin_unlock(&rgd->rd_rsspin);
677 	}
678 }
679 
680 /**
681  * gfs2_rs_delete - delete a multi-block reservation
682  * @ip: The inode for this reservation
683  * @wcount: The inode's write count, or NULL
684  *
685  */
686 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
687 {
688 	down_write(&ip->i_rw_mutex);
689 	if (ip->i_res && ((wcount == NULL) || (atomic_read(wcount) <= 1))) {
690 		gfs2_rs_deltree(ip->i_res);
691 		BUG_ON(ip->i_res->rs_free);
692 		kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
693 		ip->i_res = NULL;
694 	}
695 	up_write(&ip->i_rw_mutex);
696 }
697 
698 /**
699  * return_all_reservations - return all reserved blocks back to the rgrp.
700  * @rgd: the rgrp that needs its space back
701  *
702  * We previously reserved a bunch of blocks for allocation. Now we need to
703  * give them back. This leave the reservation structures in tact, but removes
704  * all of their corresponding "no-fly zones".
705  */
706 static void return_all_reservations(struct gfs2_rgrpd *rgd)
707 {
708 	struct rb_node *n;
709 	struct gfs2_blkreserv *rs;
710 
711 	spin_lock(&rgd->rd_rsspin);
712 	while ((n = rb_first(&rgd->rd_rstree))) {
713 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
714 		__rs_deltree(rs);
715 	}
716 	spin_unlock(&rgd->rd_rsspin);
717 }
718 
719 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
720 {
721 	struct rb_node *n;
722 	struct gfs2_rgrpd *rgd;
723 	struct gfs2_glock *gl;
724 
725 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
726 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
727 		gl = rgd->rd_gl;
728 
729 		rb_erase(n, &sdp->sd_rindex_tree);
730 
731 		if (gl) {
732 			spin_lock(&gl->gl_spin);
733 			gl->gl_object = NULL;
734 			spin_unlock(&gl->gl_spin);
735 			gfs2_glock_add_to_lru(gl);
736 			gfs2_glock_put(gl);
737 		}
738 
739 		gfs2_free_clones(rgd);
740 		kfree(rgd->rd_bits);
741 		return_all_reservations(rgd);
742 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
743 	}
744 }
745 
746 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
747 {
748 	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
749 	pr_info("ri_length = %u\n", rgd->rd_length);
750 	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
751 	pr_info("ri_data = %u\n", rgd->rd_data);
752 	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
753 }
754 
755 /**
756  * gfs2_compute_bitstructs - Compute the bitmap sizes
757  * @rgd: The resource group descriptor
758  *
759  * Calculates bitmap descriptors, one for each block that contains bitmap data
760  *
761  * Returns: errno
762  */
763 
764 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
765 {
766 	struct gfs2_sbd *sdp = rgd->rd_sbd;
767 	struct gfs2_bitmap *bi;
768 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
769 	u32 bytes_left, bytes;
770 	int x;
771 
772 	if (!length)
773 		return -EINVAL;
774 
775 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
776 	if (!rgd->rd_bits)
777 		return -ENOMEM;
778 
779 	bytes_left = rgd->rd_bitbytes;
780 
781 	for (x = 0; x < length; x++) {
782 		bi = rgd->rd_bits + x;
783 
784 		bi->bi_flags = 0;
785 		/* small rgrp; bitmap stored completely in header block */
786 		if (length == 1) {
787 			bytes = bytes_left;
788 			bi->bi_offset = sizeof(struct gfs2_rgrp);
789 			bi->bi_start = 0;
790 			bi->bi_len = bytes;
791 			bi->bi_blocks = bytes * GFS2_NBBY;
792 		/* header block */
793 		} else if (x == 0) {
794 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
795 			bi->bi_offset = sizeof(struct gfs2_rgrp);
796 			bi->bi_start = 0;
797 			bi->bi_len = bytes;
798 			bi->bi_blocks = bytes * GFS2_NBBY;
799 		/* last block */
800 		} else if (x + 1 == length) {
801 			bytes = bytes_left;
802 			bi->bi_offset = sizeof(struct gfs2_meta_header);
803 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
804 			bi->bi_len = bytes;
805 			bi->bi_blocks = bytes * GFS2_NBBY;
806 		/* other blocks */
807 		} else {
808 			bytes = sdp->sd_sb.sb_bsize -
809 				sizeof(struct gfs2_meta_header);
810 			bi->bi_offset = sizeof(struct gfs2_meta_header);
811 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
812 			bi->bi_len = bytes;
813 			bi->bi_blocks = bytes * GFS2_NBBY;
814 		}
815 
816 		bytes_left -= bytes;
817 	}
818 
819 	if (bytes_left) {
820 		gfs2_consist_rgrpd(rgd);
821 		return -EIO;
822 	}
823 	bi = rgd->rd_bits + (length - 1);
824 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
825 		if (gfs2_consist_rgrpd(rgd)) {
826 			gfs2_rindex_print(rgd);
827 			fs_err(sdp, "start=%u len=%u offset=%u\n",
828 			       bi->bi_start, bi->bi_len, bi->bi_offset);
829 		}
830 		return -EIO;
831 	}
832 
833 	return 0;
834 }
835 
836 /**
837  * gfs2_ri_total - Total up the file system space, according to the rindex.
838  * @sdp: the filesystem
839  *
840  */
841 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
842 {
843 	u64 total_data = 0;
844 	struct inode *inode = sdp->sd_rindex;
845 	struct gfs2_inode *ip = GFS2_I(inode);
846 	char buf[sizeof(struct gfs2_rindex)];
847 	int error, rgrps;
848 
849 	for (rgrps = 0;; rgrps++) {
850 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
851 
852 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
853 			break;
854 		error = gfs2_internal_read(ip, buf, &pos,
855 					   sizeof(struct gfs2_rindex));
856 		if (error != sizeof(struct gfs2_rindex))
857 			break;
858 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
859 	}
860 	return total_data;
861 }
862 
863 static int rgd_insert(struct gfs2_rgrpd *rgd)
864 {
865 	struct gfs2_sbd *sdp = rgd->rd_sbd;
866 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
867 
868 	/* Figure out where to put new node */
869 	while (*newn) {
870 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
871 						  rd_node);
872 
873 		parent = *newn;
874 		if (rgd->rd_addr < cur->rd_addr)
875 			newn = &((*newn)->rb_left);
876 		else if (rgd->rd_addr > cur->rd_addr)
877 			newn = &((*newn)->rb_right);
878 		else
879 			return -EEXIST;
880 	}
881 
882 	rb_link_node(&rgd->rd_node, parent, newn);
883 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
884 	sdp->sd_rgrps++;
885 	return 0;
886 }
887 
888 /**
889  * read_rindex_entry - Pull in a new resource index entry from the disk
890  * @ip: Pointer to the rindex inode
891  *
892  * Returns: 0 on success, > 0 on EOF, error code otherwise
893  */
894 
895 static int read_rindex_entry(struct gfs2_inode *ip)
896 {
897 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
898 	const unsigned bsize = sdp->sd_sb.sb_bsize;
899 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
900 	struct gfs2_rindex buf;
901 	int error;
902 	struct gfs2_rgrpd *rgd;
903 
904 	if (pos >= i_size_read(&ip->i_inode))
905 		return 1;
906 
907 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
908 				   sizeof(struct gfs2_rindex));
909 
910 	if (error != sizeof(struct gfs2_rindex))
911 		return (error == 0) ? 1 : error;
912 
913 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
914 	error = -ENOMEM;
915 	if (!rgd)
916 		return error;
917 
918 	rgd->rd_sbd = sdp;
919 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
920 	rgd->rd_length = be32_to_cpu(buf.ri_length);
921 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
922 	rgd->rd_data = be32_to_cpu(buf.ri_data);
923 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
924 	spin_lock_init(&rgd->rd_rsspin);
925 
926 	error = compute_bitstructs(rgd);
927 	if (error)
928 		goto fail;
929 
930 	error = gfs2_glock_get(sdp, rgd->rd_addr,
931 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
932 	if (error)
933 		goto fail;
934 
935 	rgd->rd_gl->gl_object = rgd;
936 	rgd->rd_gl->gl_vm.start = rgd->rd_addr * bsize;
937 	rgd->rd_gl->gl_vm.end = rgd->rd_gl->gl_vm.start + (rgd->rd_length * bsize) - 1;
938 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
939 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
940 	if (rgd->rd_data > sdp->sd_max_rg_data)
941 		sdp->sd_max_rg_data = rgd->rd_data;
942 	spin_lock(&sdp->sd_rindex_spin);
943 	error = rgd_insert(rgd);
944 	spin_unlock(&sdp->sd_rindex_spin);
945 	if (!error)
946 		return 0;
947 
948 	error = 0; /* someone else read in the rgrp; free it and ignore it */
949 	gfs2_glock_put(rgd->rd_gl);
950 
951 fail:
952 	kfree(rgd->rd_bits);
953 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
954 	return error;
955 }
956 
957 /**
958  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
959  * @sdp: the GFS2 superblock
960  *
961  * The purpose of this function is to select a subset of the resource groups
962  * and mark them as PREFERRED. We do it in such a way that each node prefers
963  * to use a unique set of rgrps to minimize glock contention.
964  */
965 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
966 {
967 	struct gfs2_rgrpd *rgd, *first;
968 	int i;
969 
970 	/* Skip an initial number of rgrps, based on this node's journal ID.
971 	   That should start each node out on its own set. */
972 	rgd = gfs2_rgrpd_get_first(sdp);
973 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
974 		rgd = gfs2_rgrpd_get_next(rgd);
975 	first = rgd;
976 
977 	do {
978 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
979 		for (i = 0; i < sdp->sd_journals; i++) {
980 			rgd = gfs2_rgrpd_get_next(rgd);
981 			if (!rgd || rgd == first)
982 				break;
983 		}
984 	} while (rgd && rgd != first);
985 }
986 
987 /**
988  * gfs2_ri_update - Pull in a new resource index from the disk
989  * @ip: pointer to the rindex inode
990  *
991  * Returns: 0 on successful update, error code otherwise
992  */
993 
994 static int gfs2_ri_update(struct gfs2_inode *ip)
995 {
996 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
997 	int error;
998 
999 	do {
1000 		error = read_rindex_entry(ip);
1001 	} while (error == 0);
1002 
1003 	if (error < 0)
1004 		return error;
1005 
1006 	set_rgrp_preferences(sdp);
1007 
1008 	sdp->sd_rindex_uptodate = 1;
1009 	return 0;
1010 }
1011 
1012 /**
1013  * gfs2_rindex_update - Update the rindex if required
1014  * @sdp: The GFS2 superblock
1015  *
1016  * We grab a lock on the rindex inode to make sure that it doesn't
1017  * change whilst we are performing an operation. We keep this lock
1018  * for quite long periods of time compared to other locks. This
1019  * doesn't matter, since it is shared and it is very, very rarely
1020  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1021  *
1022  * This makes sure that we're using the latest copy of the resource index
1023  * special file, which might have been updated if someone expanded the
1024  * filesystem (via gfs2_grow utility), which adds new resource groups.
1025  *
1026  * Returns: 0 on succeess, error code otherwise
1027  */
1028 
1029 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1030 {
1031 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1032 	struct gfs2_glock *gl = ip->i_gl;
1033 	struct gfs2_holder ri_gh;
1034 	int error = 0;
1035 	int unlock_required = 0;
1036 
1037 	/* Read new copy from disk if we don't have the latest */
1038 	if (!sdp->sd_rindex_uptodate) {
1039 		if (!gfs2_glock_is_locked_by_me(gl)) {
1040 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1041 			if (error)
1042 				return error;
1043 			unlock_required = 1;
1044 		}
1045 		if (!sdp->sd_rindex_uptodate)
1046 			error = gfs2_ri_update(ip);
1047 		if (unlock_required)
1048 			gfs2_glock_dq_uninit(&ri_gh);
1049 	}
1050 
1051 	return error;
1052 }
1053 
1054 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1055 {
1056 	const struct gfs2_rgrp *str = buf;
1057 	u32 rg_flags;
1058 
1059 	rg_flags = be32_to_cpu(str->rg_flags);
1060 	rg_flags &= ~GFS2_RDF_MASK;
1061 	rgd->rd_flags &= GFS2_RDF_MASK;
1062 	rgd->rd_flags |= rg_flags;
1063 	rgd->rd_free = be32_to_cpu(str->rg_free);
1064 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1065 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1066 }
1067 
1068 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1069 {
1070 	struct gfs2_rgrp *str = buf;
1071 
1072 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1073 	str->rg_free = cpu_to_be32(rgd->rd_free);
1074 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1075 	str->__pad = cpu_to_be32(0);
1076 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1077 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1078 }
1079 
1080 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1081 {
1082 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1083 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1084 
1085 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1086 	    rgl->rl_dinodes != str->rg_dinodes ||
1087 	    rgl->rl_igeneration != str->rg_igeneration)
1088 		return 0;
1089 	return 1;
1090 }
1091 
1092 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1093 {
1094 	const struct gfs2_rgrp *str = buf;
1095 
1096 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1097 	rgl->rl_flags = str->rg_flags;
1098 	rgl->rl_free = str->rg_free;
1099 	rgl->rl_dinodes = str->rg_dinodes;
1100 	rgl->rl_igeneration = str->rg_igeneration;
1101 	rgl->__pad = 0UL;
1102 }
1103 
1104 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1105 {
1106 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1107 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1108 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1109 }
1110 
1111 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1112 {
1113 	struct gfs2_bitmap *bi;
1114 	const u32 length = rgd->rd_length;
1115 	const u8 *buffer = NULL;
1116 	u32 i, goal, count = 0;
1117 
1118 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1119 		goal = 0;
1120 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1121 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1122 		while (goal < bi->bi_len * GFS2_NBBY) {
1123 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1124 					   GFS2_BLKST_UNLINKED);
1125 			if (goal == BFITNOENT)
1126 				break;
1127 			count++;
1128 			goal++;
1129 		}
1130 	}
1131 
1132 	return count;
1133 }
1134 
1135 
1136 /**
1137  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1138  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1139  *
1140  * Read in all of a Resource Group's header and bitmap blocks.
1141  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1142  *
1143  * Returns: errno
1144  */
1145 
1146 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1147 {
1148 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1149 	struct gfs2_glock *gl = rgd->rd_gl;
1150 	unsigned int length = rgd->rd_length;
1151 	struct gfs2_bitmap *bi;
1152 	unsigned int x, y;
1153 	int error;
1154 
1155 	if (rgd->rd_bits[0].bi_bh != NULL)
1156 		return 0;
1157 
1158 	for (x = 0; x < length; x++) {
1159 		bi = rgd->rd_bits + x;
1160 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1161 		if (error)
1162 			goto fail;
1163 	}
1164 
1165 	for (y = length; y--;) {
1166 		bi = rgd->rd_bits + y;
1167 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1168 		if (error)
1169 			goto fail;
1170 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1171 					      GFS2_METATYPE_RG)) {
1172 			error = -EIO;
1173 			goto fail;
1174 		}
1175 	}
1176 
1177 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1178 		for (x = 0; x < length; x++)
1179 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1180 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1181 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1182 		rgd->rd_free_clone = rgd->rd_free;
1183 		/* max out the rgrp allocation failure point */
1184 		rgd->rd_extfail_pt = rgd->rd_free;
1185 	}
1186 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1187 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1188 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1189 				     rgd->rd_bits[0].bi_bh->b_data);
1190 	}
1191 	else if (sdp->sd_args.ar_rgrplvb) {
1192 		if (!gfs2_rgrp_lvb_valid(rgd)){
1193 			gfs2_consist_rgrpd(rgd);
1194 			error = -EIO;
1195 			goto fail;
1196 		}
1197 		if (rgd->rd_rgl->rl_unlinked == 0)
1198 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1199 	}
1200 	return 0;
1201 
1202 fail:
1203 	while (x--) {
1204 		bi = rgd->rd_bits + x;
1205 		brelse(bi->bi_bh);
1206 		bi->bi_bh = NULL;
1207 		gfs2_assert_warn(sdp, !bi->bi_clone);
1208 	}
1209 
1210 	return error;
1211 }
1212 
1213 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1214 {
1215 	u32 rl_flags;
1216 
1217 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1218 		return 0;
1219 
1220 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1221 		return gfs2_rgrp_bh_get(rgd);
1222 
1223 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1224 	rl_flags &= ~GFS2_RDF_MASK;
1225 	rgd->rd_flags &= GFS2_RDF_MASK;
1226 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1227 	if (rgd->rd_rgl->rl_unlinked == 0)
1228 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1229 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1230 	rgd->rd_free_clone = rgd->rd_free;
1231 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1232 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1233 	return 0;
1234 }
1235 
1236 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1237 {
1238 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1239 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1240 
1241 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1242 		return 0;
1243 	return gfs2_rgrp_bh_get(rgd);
1244 }
1245 
1246 /**
1247  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1248  * @rgd: The resource group
1249  *
1250  */
1251 
1252 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1253 {
1254 	int x, length = rgd->rd_length;
1255 
1256 	for (x = 0; x < length; x++) {
1257 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1258 		if (bi->bi_bh) {
1259 			brelse(bi->bi_bh);
1260 			bi->bi_bh = NULL;
1261 		}
1262 	}
1263 
1264 }
1265 
1266 /**
1267  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1268  * @gh: The glock holder for the resource group
1269  *
1270  */
1271 
1272 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1273 {
1274 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1275 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1276 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1277 
1278 	if (rgd && demote_requested)
1279 		gfs2_rgrp_brelse(rgd);
1280 }
1281 
1282 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1283 			     struct buffer_head *bh,
1284 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1285 {
1286 	struct super_block *sb = sdp->sd_vfs;
1287 	u64 blk;
1288 	sector_t start = 0;
1289 	sector_t nr_blks = 0;
1290 	int rv;
1291 	unsigned int x;
1292 	u32 trimmed = 0;
1293 	u8 diff;
1294 
1295 	for (x = 0; x < bi->bi_len; x++) {
1296 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1297 		clone += bi->bi_offset;
1298 		clone += x;
1299 		if (bh) {
1300 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1301 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1302 		} else {
1303 			diff = ~(*clone | (*clone >> 1));
1304 		}
1305 		diff &= 0x55;
1306 		if (diff == 0)
1307 			continue;
1308 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1309 		while(diff) {
1310 			if (diff & 1) {
1311 				if (nr_blks == 0)
1312 					goto start_new_extent;
1313 				if ((start + nr_blks) != blk) {
1314 					if (nr_blks >= minlen) {
1315 						rv = sb_issue_discard(sb,
1316 							start, nr_blks,
1317 							GFP_NOFS, 0);
1318 						if (rv)
1319 							goto fail;
1320 						trimmed += nr_blks;
1321 					}
1322 					nr_blks = 0;
1323 start_new_extent:
1324 					start = blk;
1325 				}
1326 				nr_blks++;
1327 			}
1328 			diff >>= 2;
1329 			blk++;
1330 		}
1331 	}
1332 	if (nr_blks >= minlen) {
1333 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1334 		if (rv)
1335 			goto fail;
1336 		trimmed += nr_blks;
1337 	}
1338 	if (ptrimmed)
1339 		*ptrimmed = trimmed;
1340 	return 0;
1341 
1342 fail:
1343 	if (sdp->sd_args.ar_discard)
1344 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1345 	sdp->sd_args.ar_discard = 0;
1346 	return -EIO;
1347 }
1348 
1349 /**
1350  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1351  * @filp: Any file on the filesystem
1352  * @argp: Pointer to the arguments (also used to pass result)
1353  *
1354  * Returns: 0 on success, otherwise error code
1355  */
1356 
1357 int gfs2_fitrim(struct file *filp, void __user *argp)
1358 {
1359 	struct inode *inode = file_inode(filp);
1360 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1361 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1362 	struct buffer_head *bh;
1363 	struct gfs2_rgrpd *rgd;
1364 	struct gfs2_rgrpd *rgd_end;
1365 	struct gfs2_holder gh;
1366 	struct fstrim_range r;
1367 	int ret = 0;
1368 	u64 amt;
1369 	u64 trimmed = 0;
1370 	u64 start, end, minlen;
1371 	unsigned int x;
1372 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1373 
1374 	if (!capable(CAP_SYS_ADMIN))
1375 		return -EPERM;
1376 
1377 	if (!blk_queue_discard(q))
1378 		return -EOPNOTSUPP;
1379 
1380 	if (copy_from_user(&r, argp, sizeof(r)))
1381 		return -EFAULT;
1382 
1383 	ret = gfs2_rindex_update(sdp);
1384 	if (ret)
1385 		return ret;
1386 
1387 	start = r.start >> bs_shift;
1388 	end = start + (r.len >> bs_shift);
1389 	minlen = max_t(u64, r.minlen,
1390 		       q->limits.discard_granularity) >> bs_shift;
1391 
1392 	if (end <= start || minlen > sdp->sd_max_rg_data)
1393 		return -EINVAL;
1394 
1395 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1396 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1397 
1398 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1399 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1400 		return -EINVAL; /* start is beyond the end of the fs */
1401 
1402 	while (1) {
1403 
1404 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1405 		if (ret)
1406 			goto out;
1407 
1408 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1409 			/* Trim each bitmap in the rgrp */
1410 			for (x = 0; x < rgd->rd_length; x++) {
1411 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1412 				ret = gfs2_rgrp_send_discards(sdp,
1413 						rgd->rd_data0, NULL, bi, minlen,
1414 						&amt);
1415 				if (ret) {
1416 					gfs2_glock_dq_uninit(&gh);
1417 					goto out;
1418 				}
1419 				trimmed += amt;
1420 			}
1421 
1422 			/* Mark rgrp as having been trimmed */
1423 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1424 			if (ret == 0) {
1425 				bh = rgd->rd_bits[0].bi_bh;
1426 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1427 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1428 				gfs2_rgrp_out(rgd, bh->b_data);
1429 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1430 				gfs2_trans_end(sdp);
1431 			}
1432 		}
1433 		gfs2_glock_dq_uninit(&gh);
1434 
1435 		if (rgd == rgd_end)
1436 			break;
1437 
1438 		rgd = gfs2_rgrpd_get_next(rgd);
1439 	}
1440 
1441 out:
1442 	r.len = trimmed << bs_shift;
1443 	if (copy_to_user(argp, &r, sizeof(r)))
1444 		return -EFAULT;
1445 
1446 	return ret;
1447 }
1448 
1449 /**
1450  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1451  * @ip: the inode structure
1452  *
1453  */
1454 static void rs_insert(struct gfs2_inode *ip)
1455 {
1456 	struct rb_node **newn, *parent = NULL;
1457 	int rc;
1458 	struct gfs2_blkreserv *rs = ip->i_res;
1459 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1460 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1461 
1462 	BUG_ON(gfs2_rs_active(rs));
1463 
1464 	spin_lock(&rgd->rd_rsspin);
1465 	newn = &rgd->rd_rstree.rb_node;
1466 	while (*newn) {
1467 		struct gfs2_blkreserv *cur =
1468 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1469 
1470 		parent = *newn;
1471 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1472 		if (rc > 0)
1473 			newn = &((*newn)->rb_right);
1474 		else if (rc < 0)
1475 			newn = &((*newn)->rb_left);
1476 		else {
1477 			spin_unlock(&rgd->rd_rsspin);
1478 			WARN_ON(1);
1479 			return;
1480 		}
1481 	}
1482 
1483 	rb_link_node(&rs->rs_node, parent, newn);
1484 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1485 
1486 	/* Do our rgrp accounting for the reservation */
1487 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1488 	spin_unlock(&rgd->rd_rsspin);
1489 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1490 }
1491 
1492 /**
1493  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1494  * @rgd: the resource group descriptor
1495  * @ip: pointer to the inode for which we're reserving blocks
1496  * @ap: the allocation parameters
1497  *
1498  */
1499 
1500 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1501 			   const struct gfs2_alloc_parms *ap)
1502 {
1503 	struct gfs2_rbm rbm = { .rgd = rgd, };
1504 	u64 goal;
1505 	struct gfs2_blkreserv *rs = ip->i_res;
1506 	u32 extlen;
1507 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1508 	int ret;
1509 	struct inode *inode = &ip->i_inode;
1510 
1511 	if (S_ISDIR(inode->i_mode))
1512 		extlen = 1;
1513 	else {
1514 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1515 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1516 	}
1517 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1518 		return;
1519 
1520 	/* Find bitmap block that contains bits for goal block */
1521 	if (rgrp_contains_block(rgd, ip->i_goal))
1522 		goal = ip->i_goal;
1523 	else
1524 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1525 
1526 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1527 		return;
1528 
1529 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true, ap);
1530 	if (ret == 0) {
1531 		rs->rs_rbm = rbm;
1532 		rs->rs_free = extlen;
1533 		rs->rs_inum = ip->i_no_addr;
1534 		rs_insert(ip);
1535 	} else {
1536 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1537 			rgd->rd_last_alloc = 0;
1538 	}
1539 }
1540 
1541 /**
1542  * gfs2_next_unreserved_block - Return next block that is not reserved
1543  * @rgd: The resource group
1544  * @block: The starting block
1545  * @length: The required length
1546  * @ip: Ignore any reservations for this inode
1547  *
1548  * If the block does not appear in any reservation, then return the
1549  * block number unchanged. If it does appear in the reservation, then
1550  * keep looking through the tree of reservations in order to find the
1551  * first block number which is not reserved.
1552  */
1553 
1554 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1555 				      u32 length,
1556 				      const struct gfs2_inode *ip)
1557 {
1558 	struct gfs2_blkreserv *rs;
1559 	struct rb_node *n;
1560 	int rc;
1561 
1562 	spin_lock(&rgd->rd_rsspin);
1563 	n = rgd->rd_rstree.rb_node;
1564 	while (n) {
1565 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1566 		rc = rs_cmp(block, length, rs);
1567 		if (rc < 0)
1568 			n = n->rb_left;
1569 		else if (rc > 0)
1570 			n = n->rb_right;
1571 		else
1572 			break;
1573 	}
1574 
1575 	if (n) {
1576 		while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1577 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1578 			n = n->rb_right;
1579 			if (n == NULL)
1580 				break;
1581 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1582 		}
1583 	}
1584 
1585 	spin_unlock(&rgd->rd_rsspin);
1586 	return block;
1587 }
1588 
1589 /**
1590  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1591  * @rbm: The current position in the resource group
1592  * @ip: The inode for which we are searching for blocks
1593  * @minext: The minimum extent length
1594  * @maxext: A pointer to the maximum extent structure
1595  *
1596  * This checks the current position in the rgrp to see whether there is
1597  * a reservation covering this block. If not then this function is a
1598  * no-op. If there is, then the position is moved to the end of the
1599  * contiguous reservation(s) so that we are pointing at the first
1600  * non-reserved block.
1601  *
1602  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1603  */
1604 
1605 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1606 					     const struct gfs2_inode *ip,
1607 					     u32 minext,
1608 					     struct gfs2_extent *maxext)
1609 {
1610 	u64 block = gfs2_rbm_to_block(rbm);
1611 	u32 extlen = 1;
1612 	u64 nblock;
1613 	int ret;
1614 
1615 	/*
1616 	 * If we have a minimum extent length, then skip over any extent
1617 	 * which is less than the min extent length in size.
1618 	 */
1619 	if (minext) {
1620 		extlen = gfs2_free_extlen(rbm, minext);
1621 		if (extlen <= maxext->len)
1622 			goto fail;
1623 	}
1624 
1625 	/*
1626 	 * Check the extent which has been found against the reservations
1627 	 * and skip if parts of it are already reserved
1628 	 */
1629 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1630 	if (nblock == block) {
1631 		if (!minext || extlen >= minext)
1632 			return 0;
1633 
1634 		if (extlen > maxext->len) {
1635 			maxext->len = extlen;
1636 			maxext->rbm = *rbm;
1637 		}
1638 fail:
1639 		nblock = block + extlen;
1640 	}
1641 	ret = gfs2_rbm_from_block(rbm, nblock);
1642 	if (ret < 0)
1643 		return ret;
1644 	return 1;
1645 }
1646 
1647 /**
1648  * gfs2_rbm_find - Look for blocks of a particular state
1649  * @rbm: Value/result starting position and final position
1650  * @state: The state which we want to find
1651  * @minext: Pointer to the requested extent length (NULL for a single block)
1652  *          This is updated to be the actual reservation size.
1653  * @ip: If set, check for reservations
1654  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1655  *          around until we've reached the starting point.
1656  * @ap: the allocation parameters
1657  *
1658  * Side effects:
1659  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1660  *   has no free blocks in it.
1661  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1662  *   has come up short on a free block search.
1663  *
1664  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1665  */
1666 
1667 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1668 			 const struct gfs2_inode *ip, bool nowrap,
1669 			 const struct gfs2_alloc_parms *ap)
1670 {
1671 	struct buffer_head *bh;
1672 	int initial_bii;
1673 	u32 initial_offset;
1674 	int first_bii = rbm->bii;
1675 	u32 first_offset = rbm->offset;
1676 	u32 offset;
1677 	u8 *buffer;
1678 	int n = 0;
1679 	int iters = rbm->rgd->rd_length;
1680 	int ret;
1681 	struct gfs2_bitmap *bi;
1682 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1683 
1684 	/* If we are not starting at the beginning of a bitmap, then we
1685 	 * need to add one to the bitmap count to ensure that we search
1686 	 * the starting bitmap twice.
1687 	 */
1688 	if (rbm->offset != 0)
1689 		iters++;
1690 
1691 	while(1) {
1692 		bi = rbm_bi(rbm);
1693 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1694 		    (state == GFS2_BLKST_FREE))
1695 			goto next_bitmap;
1696 
1697 		bh = bi->bi_bh;
1698 		buffer = bh->b_data + bi->bi_offset;
1699 		WARN_ON(!buffer_uptodate(bh));
1700 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1701 			buffer = bi->bi_clone + bi->bi_offset;
1702 		initial_offset = rbm->offset;
1703 		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1704 		if (offset == BFITNOENT)
1705 			goto bitmap_full;
1706 		rbm->offset = offset;
1707 		if (ip == NULL)
1708 			return 0;
1709 
1710 		initial_bii = rbm->bii;
1711 		ret = gfs2_reservation_check_and_update(rbm, ip,
1712 							minext ? *minext : 0,
1713 							&maxext);
1714 		if (ret == 0)
1715 			return 0;
1716 		if (ret > 0) {
1717 			n += (rbm->bii - initial_bii);
1718 			goto next_iter;
1719 		}
1720 		if (ret == -E2BIG) {
1721 			rbm->bii = 0;
1722 			rbm->offset = 0;
1723 			n += (rbm->bii - initial_bii);
1724 			goto res_covered_end_of_rgrp;
1725 		}
1726 		return ret;
1727 
1728 bitmap_full:	/* Mark bitmap as full and fall through */
1729 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1730 			set_bit(GBF_FULL, &bi->bi_flags);
1731 
1732 next_bitmap:	/* Find next bitmap in the rgrp */
1733 		rbm->offset = 0;
1734 		rbm->bii++;
1735 		if (rbm->bii == rbm->rgd->rd_length)
1736 			rbm->bii = 0;
1737 res_covered_end_of_rgrp:
1738 		if ((rbm->bii == 0) && nowrap)
1739 			break;
1740 		n++;
1741 next_iter:
1742 		if (n >= iters)
1743 			break;
1744 	}
1745 
1746 	if (minext == NULL || state != GFS2_BLKST_FREE)
1747 		return -ENOSPC;
1748 
1749 	/* If the extent was too small, and it's smaller than the smallest
1750 	   to have failed before, remember for future reference that it's
1751 	   useless to search this rgrp again for this amount or more. */
1752 	if ((first_offset == 0) && (first_bii == 0) &&
1753 	    (*minext < rbm->rgd->rd_extfail_pt))
1754 		rbm->rgd->rd_extfail_pt = *minext;
1755 
1756 	/* If the maximum extent we found is big enough to fulfill the
1757 	   minimum requirements, use it anyway. */
1758 	if (maxext.len) {
1759 		*rbm = maxext.rbm;
1760 		*minext = maxext.len;
1761 		return 0;
1762 	}
1763 
1764 	return -ENOSPC;
1765 }
1766 
1767 /**
1768  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1769  * @rgd: The rgrp
1770  * @last_unlinked: block address of the last dinode we unlinked
1771  * @skip: block address we should explicitly not unlink
1772  *
1773  * Returns: 0 if no error
1774  *          The inode, if one has been found, in inode.
1775  */
1776 
1777 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1778 {
1779 	u64 block;
1780 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1781 	struct gfs2_glock *gl;
1782 	struct gfs2_inode *ip;
1783 	int error;
1784 	int found = 0;
1785 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1786 
1787 	while (1) {
1788 		down_write(&sdp->sd_log_flush_lock);
1789 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1790 				      true, NULL);
1791 		up_write(&sdp->sd_log_flush_lock);
1792 		if (error == -ENOSPC)
1793 			break;
1794 		if (WARN_ON_ONCE(error))
1795 			break;
1796 
1797 		block = gfs2_rbm_to_block(&rbm);
1798 		if (gfs2_rbm_from_block(&rbm, block + 1))
1799 			break;
1800 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1801 			continue;
1802 		if (block == skip)
1803 			continue;
1804 		*last_unlinked = block;
1805 
1806 		error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1807 		if (error)
1808 			continue;
1809 
1810 		/* If the inode is already in cache, we can ignore it here
1811 		 * because the existing inode disposal code will deal with
1812 		 * it when all refs have gone away. Accessing gl_object like
1813 		 * this is not safe in general. Here it is ok because we do
1814 		 * not dereference the pointer, and we only need an approx
1815 		 * answer to whether it is NULL or not.
1816 		 */
1817 		ip = gl->gl_object;
1818 
1819 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1820 			gfs2_glock_put(gl);
1821 		else
1822 			found++;
1823 
1824 		/* Limit reclaim to sensible number of tasks */
1825 		if (found > NR_CPUS)
1826 			return;
1827 	}
1828 
1829 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1830 	return;
1831 }
1832 
1833 /**
1834  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1835  * @rgd: The rgrp in question
1836  * @loops: An indication of how picky we can be (0=very, 1=less so)
1837  *
1838  * This function uses the recently added glock statistics in order to
1839  * figure out whether a parciular resource group is suffering from
1840  * contention from multiple nodes. This is done purely on the basis
1841  * of timings, since this is the only data we have to work with and
1842  * our aim here is to reject a resource group which is highly contended
1843  * but (very important) not to do this too often in order to ensure that
1844  * we do not land up introducing fragmentation by changing resource
1845  * groups when not actually required.
1846  *
1847  * The calculation is fairly simple, we want to know whether the SRTTB
1848  * (i.e. smoothed round trip time for blocking operations) to acquire
1849  * the lock for this rgrp's glock is significantly greater than the
1850  * time taken for resource groups on average. We introduce a margin in
1851  * the form of the variable @var which is computed as the sum of the two
1852  * respective variences, and multiplied by a factor depending on @loops
1853  * and whether we have a lot of data to base the decision on. This is
1854  * then tested against the square difference of the means in order to
1855  * decide whether the result is statistically significant or not.
1856  *
1857  * Returns: A boolean verdict on the congestion status
1858  */
1859 
1860 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1861 {
1862 	const struct gfs2_glock *gl = rgd->rd_gl;
1863 	const struct gfs2_sbd *sdp = gl->gl_sbd;
1864 	struct gfs2_lkstats *st;
1865 	s64 r_dcount, l_dcount;
1866 	s64 l_srttb, a_srttb = 0;
1867 	s64 srttb_diff;
1868 	s64 sqr_diff;
1869 	s64 var;
1870 	int cpu, nonzero = 0;
1871 
1872 	preempt_disable();
1873 	for_each_present_cpu(cpu) {
1874 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1875 		if (st->stats[GFS2_LKS_SRTTB]) {
1876 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1877 			nonzero++;
1878 		}
1879 	}
1880 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1881 	if (nonzero)
1882 		do_div(a_srttb, nonzero);
1883 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1884 	var = st->stats[GFS2_LKS_SRTTVARB] +
1885 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1886 	preempt_enable();
1887 
1888 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1889 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1890 
1891 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1892 		return false;
1893 
1894 	srttb_diff = a_srttb - l_srttb;
1895 	sqr_diff = srttb_diff * srttb_diff;
1896 
1897 	var *= 2;
1898 	if (l_dcount < 8 || r_dcount < 8)
1899 		var *= 2;
1900 	if (loops == 1)
1901 		var *= 2;
1902 
1903 	return ((srttb_diff < 0) && (sqr_diff > var));
1904 }
1905 
1906 /**
1907  * gfs2_rgrp_used_recently
1908  * @rs: The block reservation with the rgrp to test
1909  * @msecs: The time limit in milliseconds
1910  *
1911  * Returns: True if the rgrp glock has been used within the time limit
1912  */
1913 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1914 				    u64 msecs)
1915 {
1916 	u64 tdiff;
1917 
1918 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1919                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1920 
1921 	return tdiff > (msecs * 1000 * 1000);
1922 }
1923 
1924 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1925 {
1926 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1927 	u32 skip;
1928 
1929 	get_random_bytes(&skip, sizeof(skip));
1930 	return skip % sdp->sd_rgrps;
1931 }
1932 
1933 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1934 {
1935 	struct gfs2_rgrpd *rgd = *pos;
1936 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1937 
1938 	rgd = gfs2_rgrpd_get_next(rgd);
1939 	if (rgd == NULL)
1940 		rgd = gfs2_rgrpd_get_first(sdp);
1941 	*pos = rgd;
1942 	if (rgd != begin) /* If we didn't wrap */
1943 		return true;
1944 	return false;
1945 }
1946 
1947 /**
1948  * fast_to_acquire - determine if a resource group will be fast to acquire
1949  *
1950  * If this is one of our preferred rgrps, it should be quicker to acquire,
1951  * because we tried to set ourselves up as dlm lock master.
1952  */
1953 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1954 {
1955 	struct gfs2_glock *gl = rgd->rd_gl;
1956 
1957 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1958 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1959 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1960 		return 1;
1961 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1962 		return 1;
1963 	return 0;
1964 }
1965 
1966 /**
1967  * gfs2_inplace_reserve - Reserve space in the filesystem
1968  * @ip: the inode to reserve space for
1969  * @ap: the allocation parameters
1970  *
1971  * We try our best to find an rgrp that has at least ap->target blocks
1972  * available. After a couple of passes (loops == 2), the prospects of finding
1973  * such an rgrp diminish. At this stage, we return the first rgrp that has
1974  * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1975  * the number of blocks available in the chosen rgrp.
1976  *
1977  * Returns: 0 on success,
1978  *          -ENOMEM if a suitable rgrp can't be found
1979  *          errno otherwise
1980  */
1981 
1982 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1983 {
1984 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1985 	struct gfs2_rgrpd *begin = NULL;
1986 	struct gfs2_blkreserv *rs = ip->i_res;
1987 	int error = 0, rg_locked, flags = 0;
1988 	u64 last_unlinked = NO_BLOCK;
1989 	int loops = 0;
1990 	u32 skip = 0;
1991 
1992 	if (sdp->sd_args.ar_rgrplvb)
1993 		flags |= GL_SKIP;
1994 	if (gfs2_assert_warn(sdp, ap->target))
1995 		return -EINVAL;
1996 	if (gfs2_rs_active(rs)) {
1997 		begin = rs->rs_rbm.rgd;
1998 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1999 		rs->rs_rbm.rgd = begin = ip->i_rgd;
2000 	} else {
2001 		check_and_update_goal(ip);
2002 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2003 	}
2004 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2005 		skip = gfs2_orlov_skip(ip);
2006 	if (rs->rs_rbm.rgd == NULL)
2007 		return -EBADSLT;
2008 
2009 	while (loops < 3) {
2010 		rg_locked = 1;
2011 
2012 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2013 			rg_locked = 0;
2014 			if (skip && skip--)
2015 				goto next_rgrp;
2016 			if (!gfs2_rs_active(rs)) {
2017 				if (loops == 0 &&
2018 				    !fast_to_acquire(rs->rs_rbm.rgd))
2019 					goto next_rgrp;
2020 				if ((loops < 2) &&
2021 				    gfs2_rgrp_used_recently(rs, 1000) &&
2022 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2023 					goto next_rgrp;
2024 			}
2025 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2026 						   LM_ST_EXCLUSIVE, flags,
2027 						   &rs->rs_rgd_gh);
2028 			if (unlikely(error))
2029 				return error;
2030 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2031 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2032 				goto skip_rgrp;
2033 			if (sdp->sd_args.ar_rgrplvb) {
2034 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2035 				if (unlikely(error)) {
2036 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2037 					return error;
2038 				}
2039 			}
2040 		}
2041 
2042 		/* Skip unuseable resource groups */
2043 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2044 						 GFS2_RDF_ERROR)) ||
2045 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2046 			goto skip_rgrp;
2047 
2048 		if (sdp->sd_args.ar_rgrplvb)
2049 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2050 
2051 		/* Get a reservation if we don't already have one */
2052 		if (!gfs2_rs_active(rs))
2053 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2054 
2055 		/* Skip rgrps when we can't get a reservation on first pass */
2056 		if (!gfs2_rs_active(rs) && (loops < 1))
2057 			goto check_rgrp;
2058 
2059 		/* If rgrp has enough free space, use it */
2060 		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2061 		    (loops == 2 && ap->min_target &&
2062 		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2063 			ip->i_rgd = rs->rs_rbm.rgd;
2064 			ap->allowed = ip->i_rgd->rd_free_clone;
2065 			return 0;
2066 		}
2067 check_rgrp:
2068 		/* Check for unlinked inodes which can be reclaimed */
2069 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2070 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2071 					ip->i_no_addr);
2072 skip_rgrp:
2073 		/* Drop reservation, if we couldn't use reserved rgrp */
2074 		if (gfs2_rs_active(rs))
2075 			gfs2_rs_deltree(rs);
2076 
2077 		/* Unlock rgrp if required */
2078 		if (!rg_locked)
2079 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2080 next_rgrp:
2081 		/* Find the next rgrp, and continue looking */
2082 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2083 			continue;
2084 		if (skip)
2085 			continue;
2086 
2087 		/* If we've scanned all the rgrps, but found no free blocks
2088 		 * then this checks for some less likely conditions before
2089 		 * trying again.
2090 		 */
2091 		loops++;
2092 		/* Check that fs hasn't grown if writing to rindex */
2093 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2094 			error = gfs2_ri_update(ip);
2095 			if (error)
2096 				return error;
2097 		}
2098 		/* Flushing the log may release space */
2099 		if (loops == 2)
2100 			gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2101 	}
2102 
2103 	return -ENOSPC;
2104 }
2105 
2106 /**
2107  * gfs2_inplace_release - release an inplace reservation
2108  * @ip: the inode the reservation was taken out on
2109  *
2110  * Release a reservation made by gfs2_inplace_reserve().
2111  */
2112 
2113 void gfs2_inplace_release(struct gfs2_inode *ip)
2114 {
2115 	struct gfs2_blkreserv *rs = ip->i_res;
2116 
2117 	if (rs->rs_rgd_gh.gh_gl)
2118 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2119 }
2120 
2121 /**
2122  * gfs2_get_block_type - Check a block in a RG is of given type
2123  * @rgd: the resource group holding the block
2124  * @block: the block number
2125  *
2126  * Returns: The block type (GFS2_BLKST_*)
2127  */
2128 
2129 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2130 {
2131 	struct gfs2_rbm rbm = { .rgd = rgd, };
2132 	int ret;
2133 
2134 	ret = gfs2_rbm_from_block(&rbm, block);
2135 	WARN_ON_ONCE(ret != 0);
2136 
2137 	return gfs2_testbit(&rbm);
2138 }
2139 
2140 
2141 /**
2142  * gfs2_alloc_extent - allocate an extent from a given bitmap
2143  * @rbm: the resource group information
2144  * @dinode: TRUE if the first block we allocate is for a dinode
2145  * @n: The extent length (value/result)
2146  *
2147  * Add the bitmap buffer to the transaction.
2148  * Set the found bits to @new_state to change block's allocation state.
2149  */
2150 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2151 			     unsigned int *n)
2152 {
2153 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2154 	const unsigned int elen = *n;
2155 	u64 block;
2156 	int ret;
2157 
2158 	*n = 1;
2159 	block = gfs2_rbm_to_block(rbm);
2160 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2161 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2162 	block++;
2163 	while (*n < elen) {
2164 		ret = gfs2_rbm_from_block(&pos, block);
2165 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2166 			break;
2167 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2168 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2169 		(*n)++;
2170 		block++;
2171 	}
2172 }
2173 
2174 /**
2175  * rgblk_free - Change alloc state of given block(s)
2176  * @sdp: the filesystem
2177  * @bstart: the start of a run of blocks to free
2178  * @blen: the length of the block run (all must lie within ONE RG!)
2179  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2180  *
2181  * Returns:  Resource group containing the block(s)
2182  */
2183 
2184 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2185 				     u32 blen, unsigned char new_state)
2186 {
2187 	struct gfs2_rbm rbm;
2188 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2189 
2190 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2191 	if (!rbm.rgd) {
2192 		if (gfs2_consist(sdp))
2193 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2194 		return NULL;
2195 	}
2196 
2197 	gfs2_rbm_from_block(&rbm, bstart);
2198 	while (blen--) {
2199 		bi = rbm_bi(&rbm);
2200 		if (bi != bi_prev) {
2201 			if (!bi->bi_clone) {
2202 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2203 						      GFP_NOFS | __GFP_NOFAIL);
2204 				memcpy(bi->bi_clone + bi->bi_offset,
2205 				       bi->bi_bh->b_data + bi->bi_offset,
2206 				       bi->bi_len);
2207 			}
2208 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2209 			bi_prev = bi;
2210 		}
2211 		gfs2_setbit(&rbm, false, new_state);
2212 		gfs2_rbm_incr(&rbm);
2213 	}
2214 
2215 	return rbm.rgd;
2216 }
2217 
2218 /**
2219  * gfs2_rgrp_dump - print out an rgrp
2220  * @seq: The iterator
2221  * @gl: The glock in question
2222  *
2223  */
2224 
2225 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2226 {
2227 	struct gfs2_rgrpd *rgd = gl->gl_object;
2228 	struct gfs2_blkreserv *trs;
2229 	const struct rb_node *n;
2230 
2231 	if (rgd == NULL)
2232 		return;
2233 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2234 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2235 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2236 		       rgd->rd_reserved, rgd->rd_extfail_pt);
2237 	spin_lock(&rgd->rd_rsspin);
2238 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2239 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2240 		dump_rs(seq, trs);
2241 	}
2242 	spin_unlock(&rgd->rd_rsspin);
2243 }
2244 
2245 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2246 {
2247 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2248 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2249 		(unsigned long long)rgd->rd_addr);
2250 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2251 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2252 	rgd->rd_flags |= GFS2_RDF_ERROR;
2253 }
2254 
2255 /**
2256  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2257  * @ip: The inode we have just allocated blocks for
2258  * @rbm: The start of the allocated blocks
2259  * @len: The extent length
2260  *
2261  * Adjusts a reservation after an allocation has taken place. If the
2262  * reservation does not match the allocation, or if it is now empty
2263  * then it is removed.
2264  */
2265 
2266 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2267 				    const struct gfs2_rbm *rbm, unsigned len)
2268 {
2269 	struct gfs2_blkreserv *rs = ip->i_res;
2270 	struct gfs2_rgrpd *rgd = rbm->rgd;
2271 	unsigned rlen;
2272 	u64 block;
2273 	int ret;
2274 
2275 	spin_lock(&rgd->rd_rsspin);
2276 	if (gfs2_rs_active(rs)) {
2277 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2278 			block = gfs2_rbm_to_block(rbm);
2279 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2280 			rlen = min(rs->rs_free, len);
2281 			rs->rs_free -= rlen;
2282 			rgd->rd_reserved -= rlen;
2283 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2284 			if (rs->rs_free && !ret)
2285 				goto out;
2286 			/* We used up our block reservation, so we should
2287 			   reserve more blocks next time. */
2288 			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2289 		}
2290 		__rs_deltree(rs);
2291 	}
2292 out:
2293 	spin_unlock(&rgd->rd_rsspin);
2294 }
2295 
2296 /**
2297  * gfs2_set_alloc_start - Set starting point for block allocation
2298  * @rbm: The rbm which will be set to the required location
2299  * @ip: The gfs2 inode
2300  * @dinode: Flag to say if allocation includes a new inode
2301  *
2302  * This sets the starting point from the reservation if one is active
2303  * otherwise it falls back to guessing a start point based on the
2304  * inode's goal block or the last allocation point in the rgrp.
2305  */
2306 
2307 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2308 				 const struct gfs2_inode *ip, bool dinode)
2309 {
2310 	u64 goal;
2311 
2312 	if (gfs2_rs_active(ip->i_res)) {
2313 		*rbm = ip->i_res->rs_rbm;
2314 		return;
2315 	}
2316 
2317 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2318 		goal = ip->i_goal;
2319 	else
2320 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2321 
2322 	gfs2_rbm_from_block(rbm, goal);
2323 }
2324 
2325 /**
2326  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2327  * @ip: the inode to allocate the block for
2328  * @bn: Used to return the starting block number
2329  * @nblocks: requested number of blocks/extent length (value/result)
2330  * @dinode: 1 if we're allocating a dinode block, else 0
2331  * @generation: the generation number of the inode
2332  *
2333  * Returns: 0 or error
2334  */
2335 
2336 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2337 		      bool dinode, u64 *generation)
2338 {
2339 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2340 	struct buffer_head *dibh;
2341 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2342 	unsigned int ndata;
2343 	u64 block; /* block, within the file system scope */
2344 	int error;
2345 
2346 	gfs2_set_alloc_start(&rbm, ip, dinode);
2347 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false, NULL);
2348 
2349 	if (error == -ENOSPC) {
2350 		gfs2_set_alloc_start(&rbm, ip, dinode);
2351 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false,
2352 				      NULL);
2353 	}
2354 
2355 	/* Since all blocks are reserved in advance, this shouldn't happen */
2356 	if (error) {
2357 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2358 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2359 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2360 			rbm.rgd->rd_extfail_pt);
2361 		goto rgrp_error;
2362 	}
2363 
2364 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2365 	block = gfs2_rbm_to_block(&rbm);
2366 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2367 	if (gfs2_rs_active(ip->i_res))
2368 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2369 	ndata = *nblocks;
2370 	if (dinode)
2371 		ndata--;
2372 
2373 	if (!dinode) {
2374 		ip->i_goal = block + ndata - 1;
2375 		error = gfs2_meta_inode_buffer(ip, &dibh);
2376 		if (error == 0) {
2377 			struct gfs2_dinode *di =
2378 				(struct gfs2_dinode *)dibh->b_data;
2379 			gfs2_trans_add_meta(ip->i_gl, dibh);
2380 			di->di_goal_meta = di->di_goal_data =
2381 				cpu_to_be64(ip->i_goal);
2382 			brelse(dibh);
2383 		}
2384 	}
2385 	if (rbm.rgd->rd_free < *nblocks) {
2386 		pr_warn("nblocks=%u\n", *nblocks);
2387 		goto rgrp_error;
2388 	}
2389 
2390 	rbm.rgd->rd_free -= *nblocks;
2391 	if (dinode) {
2392 		rbm.rgd->rd_dinodes++;
2393 		*generation = rbm.rgd->rd_igeneration++;
2394 		if (*generation == 0)
2395 			*generation = rbm.rgd->rd_igeneration++;
2396 	}
2397 
2398 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2399 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2400 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2401 
2402 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2403 	if (dinode)
2404 		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2405 
2406 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2407 
2408 	rbm.rgd->rd_free_clone -= *nblocks;
2409 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2410 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2411 	*bn = block;
2412 	return 0;
2413 
2414 rgrp_error:
2415 	gfs2_rgrp_error(rbm.rgd);
2416 	return -EIO;
2417 }
2418 
2419 /**
2420  * __gfs2_free_blocks - free a contiguous run of block(s)
2421  * @ip: the inode these blocks are being freed from
2422  * @bstart: first block of a run of contiguous blocks
2423  * @blen: the length of the block run
2424  * @meta: 1 if the blocks represent metadata
2425  *
2426  */
2427 
2428 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2429 {
2430 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2431 	struct gfs2_rgrpd *rgd;
2432 
2433 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2434 	if (!rgd)
2435 		return;
2436 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2437 	rgd->rd_free += blen;
2438 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2439 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2440 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2441 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2442 
2443 	/* Directories keep their data in the metadata address space */
2444 	if (meta || ip->i_depth)
2445 		gfs2_meta_wipe(ip, bstart, blen);
2446 }
2447 
2448 /**
2449  * gfs2_free_meta - free a contiguous run of data block(s)
2450  * @ip: the inode these blocks are being freed from
2451  * @bstart: first block of a run of contiguous blocks
2452  * @blen: the length of the block run
2453  *
2454  */
2455 
2456 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2457 {
2458 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2459 
2460 	__gfs2_free_blocks(ip, bstart, blen, 1);
2461 	gfs2_statfs_change(sdp, 0, +blen, 0);
2462 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2463 }
2464 
2465 void gfs2_unlink_di(struct inode *inode)
2466 {
2467 	struct gfs2_inode *ip = GFS2_I(inode);
2468 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2469 	struct gfs2_rgrpd *rgd;
2470 	u64 blkno = ip->i_no_addr;
2471 
2472 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2473 	if (!rgd)
2474 		return;
2475 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2476 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2477 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2478 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2479 	update_rgrp_lvb_unlinked(rgd, 1);
2480 }
2481 
2482 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2483 {
2484 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2485 	struct gfs2_rgrpd *tmp_rgd;
2486 
2487 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2488 	if (!tmp_rgd)
2489 		return;
2490 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2491 
2492 	if (!rgd->rd_dinodes)
2493 		gfs2_consist_rgrpd(rgd);
2494 	rgd->rd_dinodes--;
2495 	rgd->rd_free++;
2496 
2497 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2498 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2499 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2500 	update_rgrp_lvb_unlinked(rgd, -1);
2501 
2502 	gfs2_statfs_change(sdp, 0, +1, -1);
2503 }
2504 
2505 
2506 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2507 {
2508 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2509 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2510 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2511 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2512 }
2513 
2514 /**
2515  * gfs2_check_blk_type - Check the type of a block
2516  * @sdp: The superblock
2517  * @no_addr: The block number to check
2518  * @type: The block type we are looking for
2519  *
2520  * Returns: 0 if the block type matches the expected type
2521  *          -ESTALE if it doesn't match
2522  *          or -ve errno if something went wrong while checking
2523  */
2524 
2525 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2526 {
2527 	struct gfs2_rgrpd *rgd;
2528 	struct gfs2_holder rgd_gh;
2529 	int error = -EINVAL;
2530 
2531 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2532 	if (!rgd)
2533 		goto fail;
2534 
2535 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2536 	if (error)
2537 		goto fail;
2538 
2539 	if (gfs2_get_block_type(rgd, no_addr) != type)
2540 		error = -ESTALE;
2541 
2542 	gfs2_glock_dq_uninit(&rgd_gh);
2543 fail:
2544 	return error;
2545 }
2546 
2547 /**
2548  * gfs2_rlist_add - add a RG to a list of RGs
2549  * @ip: the inode
2550  * @rlist: the list of resource groups
2551  * @block: the block
2552  *
2553  * Figure out what RG a block belongs to and add that RG to the list
2554  *
2555  * FIXME: Don't use NOFAIL
2556  *
2557  */
2558 
2559 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2560 		    u64 block)
2561 {
2562 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2563 	struct gfs2_rgrpd *rgd;
2564 	struct gfs2_rgrpd **tmp;
2565 	unsigned int new_space;
2566 	unsigned int x;
2567 
2568 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2569 		return;
2570 
2571 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2572 		rgd = ip->i_rgd;
2573 	else
2574 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2575 	if (!rgd) {
2576 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2577 		return;
2578 	}
2579 	ip->i_rgd = rgd;
2580 
2581 	for (x = 0; x < rlist->rl_rgrps; x++)
2582 		if (rlist->rl_rgd[x] == rgd)
2583 			return;
2584 
2585 	if (rlist->rl_rgrps == rlist->rl_space) {
2586 		new_space = rlist->rl_space + 10;
2587 
2588 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2589 			      GFP_NOFS | __GFP_NOFAIL);
2590 
2591 		if (rlist->rl_rgd) {
2592 			memcpy(tmp, rlist->rl_rgd,
2593 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2594 			kfree(rlist->rl_rgd);
2595 		}
2596 
2597 		rlist->rl_space = new_space;
2598 		rlist->rl_rgd = tmp;
2599 	}
2600 
2601 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2602 }
2603 
2604 /**
2605  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2606  *      and initialize an array of glock holders for them
2607  * @rlist: the list of resource groups
2608  * @state: the lock state to acquire the RG lock in
2609  *
2610  * FIXME: Don't use NOFAIL
2611  *
2612  */
2613 
2614 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2615 {
2616 	unsigned int x;
2617 
2618 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2619 				GFP_NOFS | __GFP_NOFAIL);
2620 	for (x = 0; x < rlist->rl_rgrps; x++)
2621 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2622 				state, 0,
2623 				&rlist->rl_ghs[x]);
2624 }
2625 
2626 /**
2627  * gfs2_rlist_free - free a resource group list
2628  * @rlist: the list of resource groups
2629  *
2630  */
2631 
2632 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2633 {
2634 	unsigned int x;
2635 
2636 	kfree(rlist->rl_rgd);
2637 
2638 	if (rlist->rl_ghs) {
2639 		for (x = 0; x < rlist->rl_rgrps; x++)
2640 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2641 		kfree(rlist->rl_ghs);
2642 		rlist->rl_ghs = NULL;
2643 	}
2644 }
2645 
2646