xref: /openbmc/linux/fs/gfs2/rgrp.c (revision bc5aa3a0)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22 
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37 
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40 
41 #if BITS_PER_LONG == 32
42 #define LBITMASK   (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK   (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50 
51 /*
52  * These routines are used by the resource group routines (rgrp.c)
53  * to keep track of block allocation.  Each block is represented by two
54  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55  *
56  * 0 = Free
57  * 1 = Used (not metadata)
58  * 2 = Unlinked (still in use) inode
59  * 3 = Used (metadata)
60  */
61 
62 struct gfs2_extent {
63 	struct gfs2_rbm rbm;
64 	u32 len;
65 };
66 
67 static const char valid_change[16] = {
68 	        /* current */
69 	/* n */ 0, 1, 1, 1,
70 	/* e */ 1, 0, 0, 0,
71 	/* w */ 0, 0, 0, 1,
72 	        1, 0, 0, 0
73 };
74 
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 			 const struct gfs2_inode *ip, bool nowrap);
77 
78 
79 /**
80  * gfs2_setbit - Set a bit in the bitmaps
81  * @rbm: The position of the bit to set
82  * @do_clone: Also set the clone bitmap, if it exists
83  * @new_state: the new state of the block
84  *
85  */
86 
87 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
88 			       unsigned char new_state)
89 {
90 	unsigned char *byte1, *byte2, *end, cur_state;
91 	struct gfs2_bitmap *bi = rbm_bi(rbm);
92 	unsigned int buflen = bi->bi_len;
93 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
94 
95 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
96 	end = bi->bi_bh->b_data + bi->bi_offset + buflen;
97 
98 	BUG_ON(byte1 >= end);
99 
100 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
101 
102 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
103 		pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
104 			rbm->offset, cur_state, new_state);
105 		pr_warn("rgrp=0x%llx bi_start=0x%x\n",
106 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
107 		pr_warn("bi_offset=0x%x bi_len=0x%x\n",
108 			bi->bi_offset, bi->bi_len);
109 		dump_stack();
110 		gfs2_consist_rgrpd(rbm->rgd);
111 		return;
112 	}
113 	*byte1 ^= (cur_state ^ new_state) << bit;
114 
115 	if (do_clone && bi->bi_clone) {
116 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
117 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
118 		*byte2 ^= (cur_state ^ new_state) << bit;
119 	}
120 }
121 
122 /**
123  * gfs2_testbit - test a bit in the bitmaps
124  * @rbm: The bit to test
125  *
126  * Returns: The two bit block state of the requested bit
127  */
128 
129 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
130 {
131 	struct gfs2_bitmap *bi = rbm_bi(rbm);
132 	const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
133 	const u8 *byte;
134 	unsigned int bit;
135 
136 	byte = buffer + (rbm->offset / GFS2_NBBY);
137 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
138 
139 	return (*byte >> bit) & GFS2_BIT_MASK;
140 }
141 
142 /**
143  * gfs2_bit_search
144  * @ptr: Pointer to bitmap data
145  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
146  * @state: The state we are searching for
147  *
148  * We xor the bitmap data with a patter which is the bitwise opposite
149  * of what we are looking for, this gives rise to a pattern of ones
150  * wherever there is a match. Since we have two bits per entry, we
151  * take this pattern, shift it down by one place and then and it with
152  * the original. All the even bit positions (0,2,4, etc) then represent
153  * successful matches, so we mask with 0x55555..... to remove the unwanted
154  * odd bit positions.
155  *
156  * This allows searching of a whole u64 at once (32 blocks) with a
157  * single test (on 64 bit arches).
158  */
159 
160 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
161 {
162 	u64 tmp;
163 	static const u64 search[] = {
164 		[0] = 0xffffffffffffffffULL,
165 		[1] = 0xaaaaaaaaaaaaaaaaULL,
166 		[2] = 0x5555555555555555ULL,
167 		[3] = 0x0000000000000000ULL,
168 	};
169 	tmp = le64_to_cpu(*ptr) ^ search[state];
170 	tmp &= (tmp >> 1);
171 	tmp &= mask;
172 	return tmp;
173 }
174 
175 /**
176  * rs_cmp - multi-block reservation range compare
177  * @blk: absolute file system block number of the new reservation
178  * @len: number of blocks in the new reservation
179  * @rs: existing reservation to compare against
180  *
181  * returns: 1 if the block range is beyond the reach of the reservation
182  *         -1 if the block range is before the start of the reservation
183  *          0 if the block range overlaps with the reservation
184  */
185 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
186 {
187 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
188 
189 	if (blk >= startblk + rs->rs_free)
190 		return 1;
191 	if (blk + len - 1 < startblk)
192 		return -1;
193 	return 0;
194 }
195 
196 /**
197  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
198  *       a block in a given allocation state.
199  * @buf: the buffer that holds the bitmaps
200  * @len: the length (in bytes) of the buffer
201  * @goal: start search at this block's bit-pair (within @buffer)
202  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
203  *
204  * Scope of @goal and returned block number is only within this bitmap buffer,
205  * not entire rgrp or filesystem.  @buffer will be offset from the actual
206  * beginning of a bitmap block buffer, skipping any header structures, but
207  * headers are always a multiple of 64 bits long so that the buffer is
208  * always aligned to a 64 bit boundary.
209  *
210  * The size of the buffer is in bytes, but is it assumed that it is
211  * always ok to read a complete multiple of 64 bits at the end
212  * of the block in case the end is no aligned to a natural boundary.
213  *
214  * Return: the block number (bitmap buffer scope) that was found
215  */
216 
217 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
218 		       u32 goal, u8 state)
219 {
220 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
221 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
222 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
223 	u64 tmp;
224 	u64 mask = 0x5555555555555555ULL;
225 	u32 bit;
226 
227 	/* Mask off bits we don't care about at the start of the search */
228 	mask <<= spoint;
229 	tmp = gfs2_bit_search(ptr, mask, state);
230 	ptr++;
231 	while(tmp == 0 && ptr < end) {
232 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
233 		ptr++;
234 	}
235 	/* Mask off any bits which are more than len bytes from the start */
236 	if (ptr == end && (len & (sizeof(u64) - 1)))
237 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
238 	/* Didn't find anything, so return */
239 	if (tmp == 0)
240 		return BFITNOENT;
241 	ptr--;
242 	bit = __ffs64(tmp);
243 	bit /= 2;	/* two bits per entry in the bitmap */
244 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
245 }
246 
247 /**
248  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
249  * @rbm: The rbm with rgd already set correctly
250  * @block: The block number (filesystem relative)
251  *
252  * This sets the bi and offset members of an rbm based on a
253  * resource group and a filesystem relative block number. The
254  * resource group must be set in the rbm on entry, the bi and
255  * offset members will be set by this function.
256  *
257  * Returns: 0 on success, or an error code
258  */
259 
260 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
261 {
262 	u64 rblock = block - rbm->rgd->rd_data0;
263 
264 	if (WARN_ON_ONCE(rblock > UINT_MAX))
265 		return -EINVAL;
266 	if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
267 		return -E2BIG;
268 
269 	rbm->bii = 0;
270 	rbm->offset = (u32)(rblock);
271 	/* Check if the block is within the first block */
272 	if (rbm->offset < rbm_bi(rbm)->bi_blocks)
273 		return 0;
274 
275 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
276 	rbm->offset += (sizeof(struct gfs2_rgrp) -
277 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
278 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
279 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 	return 0;
281 }
282 
283 /**
284  * gfs2_rbm_incr - increment an rbm structure
285  * @rbm: The rbm with rgd already set correctly
286  *
287  * This function takes an existing rbm structure and increments it to the next
288  * viable block offset.
289  *
290  * Returns: If incrementing the offset would cause the rbm to go past the
291  *          end of the rgrp, true is returned, otherwise false.
292  *
293  */
294 
295 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
296 {
297 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
298 		rbm->offset++;
299 		return false;
300 	}
301 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
302 		return true;
303 
304 	rbm->offset = 0;
305 	rbm->bii++;
306 	return false;
307 }
308 
309 /**
310  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
311  * @rbm: Position to search (value/result)
312  * @n_unaligned: Number of unaligned blocks to check
313  * @len: Decremented for each block found (terminate on zero)
314  *
315  * Returns: true if a non-free block is encountered
316  */
317 
318 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
319 {
320 	u32 n;
321 	u8 res;
322 
323 	for (n = 0; n < n_unaligned; n++) {
324 		res = gfs2_testbit(rbm);
325 		if (res != GFS2_BLKST_FREE)
326 			return true;
327 		(*len)--;
328 		if (*len == 0)
329 			return true;
330 		if (gfs2_rbm_incr(rbm))
331 			return true;
332 	}
333 
334 	return false;
335 }
336 
337 /**
338  * gfs2_free_extlen - Return extent length of free blocks
339  * @rrbm: Starting position
340  * @len: Max length to check
341  *
342  * Starting at the block specified by the rbm, see how many free blocks
343  * there are, not reading more than len blocks ahead. This can be done
344  * using memchr_inv when the blocks are byte aligned, but has to be done
345  * on a block by block basis in case of unaligned blocks. Also this
346  * function can cope with bitmap boundaries (although it must stop on
347  * a resource group boundary)
348  *
349  * Returns: Number of free blocks in the extent
350  */
351 
352 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
353 {
354 	struct gfs2_rbm rbm = *rrbm;
355 	u32 n_unaligned = rbm.offset & 3;
356 	u32 size = len;
357 	u32 bytes;
358 	u32 chunk_size;
359 	u8 *ptr, *start, *end;
360 	u64 block;
361 	struct gfs2_bitmap *bi;
362 
363 	if (n_unaligned &&
364 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
365 		goto out;
366 
367 	n_unaligned = len & 3;
368 	/* Start is now byte aligned */
369 	while (len > 3) {
370 		bi = rbm_bi(&rbm);
371 		start = bi->bi_bh->b_data;
372 		if (bi->bi_clone)
373 			start = bi->bi_clone;
374 		end = start + bi->bi_bh->b_size;
375 		start += bi->bi_offset;
376 		BUG_ON(rbm.offset & 3);
377 		start += (rbm.offset / GFS2_NBBY);
378 		bytes = min_t(u32, len / GFS2_NBBY, (end - start));
379 		ptr = memchr_inv(start, 0, bytes);
380 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
381 		chunk_size *= GFS2_NBBY;
382 		BUG_ON(len < chunk_size);
383 		len -= chunk_size;
384 		block = gfs2_rbm_to_block(&rbm);
385 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
386 			n_unaligned = 0;
387 			break;
388 		}
389 		if (ptr) {
390 			n_unaligned = 3;
391 			break;
392 		}
393 		n_unaligned = len & 3;
394 	}
395 
396 	/* Deal with any bits left over at the end */
397 	if (n_unaligned)
398 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
399 out:
400 	return size - len;
401 }
402 
403 /**
404  * gfs2_bitcount - count the number of bits in a certain state
405  * @rgd: the resource group descriptor
406  * @buffer: the buffer that holds the bitmaps
407  * @buflen: the length (in bytes) of the buffer
408  * @state: the state of the block we're looking for
409  *
410  * Returns: The number of bits
411  */
412 
413 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
414 			 unsigned int buflen, u8 state)
415 {
416 	const u8 *byte = buffer;
417 	const u8 *end = buffer + buflen;
418 	const u8 state1 = state << 2;
419 	const u8 state2 = state << 4;
420 	const u8 state3 = state << 6;
421 	u32 count = 0;
422 
423 	for (; byte < end; byte++) {
424 		if (((*byte) & 0x03) == state)
425 			count++;
426 		if (((*byte) & 0x0C) == state1)
427 			count++;
428 		if (((*byte) & 0x30) == state2)
429 			count++;
430 		if (((*byte) & 0xC0) == state3)
431 			count++;
432 	}
433 
434 	return count;
435 }
436 
437 /**
438  * gfs2_rgrp_verify - Verify that a resource group is consistent
439  * @rgd: the rgrp
440  *
441  */
442 
443 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
444 {
445 	struct gfs2_sbd *sdp = rgd->rd_sbd;
446 	struct gfs2_bitmap *bi = NULL;
447 	u32 length = rgd->rd_length;
448 	u32 count[4], tmp;
449 	int buf, x;
450 
451 	memset(count, 0, 4 * sizeof(u32));
452 
453 	/* Count # blocks in each of 4 possible allocation states */
454 	for (buf = 0; buf < length; buf++) {
455 		bi = rgd->rd_bits + buf;
456 		for (x = 0; x < 4; x++)
457 			count[x] += gfs2_bitcount(rgd,
458 						  bi->bi_bh->b_data +
459 						  bi->bi_offset,
460 						  bi->bi_len, x);
461 	}
462 
463 	if (count[0] != rgd->rd_free) {
464 		if (gfs2_consist_rgrpd(rgd))
465 			fs_err(sdp, "free data mismatch:  %u != %u\n",
466 			       count[0], rgd->rd_free);
467 		return;
468 	}
469 
470 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
471 	if (count[1] != tmp) {
472 		if (gfs2_consist_rgrpd(rgd))
473 			fs_err(sdp, "used data mismatch:  %u != %u\n",
474 			       count[1], tmp);
475 		return;
476 	}
477 
478 	if (count[2] + count[3] != rgd->rd_dinodes) {
479 		if (gfs2_consist_rgrpd(rgd))
480 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
481 			       count[2] + count[3], rgd->rd_dinodes);
482 		return;
483 	}
484 }
485 
486 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
487 {
488 	u64 first = rgd->rd_data0;
489 	u64 last = first + rgd->rd_data;
490 	return first <= block && block < last;
491 }
492 
493 /**
494  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
495  * @sdp: The GFS2 superblock
496  * @blk: The data block number
497  * @exact: True if this needs to be an exact match
498  *
499  * Returns: The resource group, or NULL if not found
500  */
501 
502 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
503 {
504 	struct rb_node *n, *next;
505 	struct gfs2_rgrpd *cur;
506 
507 	spin_lock(&sdp->sd_rindex_spin);
508 	n = sdp->sd_rindex_tree.rb_node;
509 	while (n) {
510 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
511 		next = NULL;
512 		if (blk < cur->rd_addr)
513 			next = n->rb_left;
514 		else if (blk >= cur->rd_data0 + cur->rd_data)
515 			next = n->rb_right;
516 		if (next == NULL) {
517 			spin_unlock(&sdp->sd_rindex_spin);
518 			if (exact) {
519 				if (blk < cur->rd_addr)
520 					return NULL;
521 				if (blk >= cur->rd_data0 + cur->rd_data)
522 					return NULL;
523 			}
524 			return cur;
525 		}
526 		n = next;
527 	}
528 	spin_unlock(&sdp->sd_rindex_spin);
529 
530 	return NULL;
531 }
532 
533 /**
534  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
535  * @sdp: The GFS2 superblock
536  *
537  * Returns: The first rgrp in the filesystem
538  */
539 
540 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
541 {
542 	const struct rb_node *n;
543 	struct gfs2_rgrpd *rgd;
544 
545 	spin_lock(&sdp->sd_rindex_spin);
546 	n = rb_first(&sdp->sd_rindex_tree);
547 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
548 	spin_unlock(&sdp->sd_rindex_spin);
549 
550 	return rgd;
551 }
552 
553 /**
554  * gfs2_rgrpd_get_next - get the next RG
555  * @rgd: the resource group descriptor
556  *
557  * Returns: The next rgrp
558  */
559 
560 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
561 {
562 	struct gfs2_sbd *sdp = rgd->rd_sbd;
563 	const struct rb_node *n;
564 
565 	spin_lock(&sdp->sd_rindex_spin);
566 	n = rb_next(&rgd->rd_node);
567 	if (n == NULL)
568 		n = rb_first(&sdp->sd_rindex_tree);
569 
570 	if (unlikely(&rgd->rd_node == n)) {
571 		spin_unlock(&sdp->sd_rindex_spin);
572 		return NULL;
573 	}
574 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
575 	spin_unlock(&sdp->sd_rindex_spin);
576 	return rgd;
577 }
578 
579 void check_and_update_goal(struct gfs2_inode *ip)
580 {
581 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
582 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
583 		ip->i_goal = ip->i_no_addr;
584 }
585 
586 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
587 {
588 	int x;
589 
590 	for (x = 0; x < rgd->rd_length; x++) {
591 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
592 		kfree(bi->bi_clone);
593 		bi->bi_clone = NULL;
594 	}
595 }
596 
597 /**
598  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
599  *                 plus a quota allocations data structure, if necessary
600  * @ip: the inode for this reservation
601  */
602 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
603 {
604 	return gfs2_qa_alloc(ip);
605 }
606 
607 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
608 {
609 	gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
610 		       (unsigned long long)rs->rs_inum,
611 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
612 		       rs->rs_rbm.offset, rs->rs_free);
613 }
614 
615 /**
616  * __rs_deltree - remove a multi-block reservation from the rgd tree
617  * @rs: The reservation to remove
618  *
619  */
620 static void __rs_deltree(struct gfs2_blkreserv *rs)
621 {
622 	struct gfs2_rgrpd *rgd;
623 
624 	if (!gfs2_rs_active(rs))
625 		return;
626 
627 	rgd = rs->rs_rbm.rgd;
628 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
629 	rb_erase(&rs->rs_node, &rgd->rd_rstree);
630 	RB_CLEAR_NODE(&rs->rs_node);
631 
632 	if (rs->rs_free) {
633 		struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
634 
635 		/* return reserved blocks to the rgrp */
636 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
637 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
638 		/* The rgrp extent failure point is likely not to increase;
639 		   it will only do so if the freed blocks are somehow
640 		   contiguous with a span of free blocks that follows. Still,
641 		   it will force the number to be recalculated later. */
642 		rgd->rd_extfail_pt += rs->rs_free;
643 		rs->rs_free = 0;
644 		clear_bit(GBF_FULL, &bi->bi_flags);
645 	}
646 }
647 
648 /**
649  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
650  * @rs: The reservation to remove
651  *
652  */
653 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
654 {
655 	struct gfs2_rgrpd *rgd;
656 
657 	rgd = rs->rs_rbm.rgd;
658 	if (rgd) {
659 		spin_lock(&rgd->rd_rsspin);
660 		__rs_deltree(rs);
661 		BUG_ON(rs->rs_free);
662 		spin_unlock(&rgd->rd_rsspin);
663 	}
664 }
665 
666 /**
667  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
668  * @ip: The inode for this reservation
669  * @wcount: The inode's write count, or NULL
670  *
671  */
672 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
673 {
674 	down_write(&ip->i_rw_mutex);
675 	if ((wcount == NULL) || (atomic_read(wcount) <= 1))
676 		gfs2_rs_deltree(&ip->i_res);
677 	up_write(&ip->i_rw_mutex);
678 	gfs2_qa_delete(ip, wcount);
679 }
680 
681 /**
682  * return_all_reservations - return all reserved blocks back to the rgrp.
683  * @rgd: the rgrp that needs its space back
684  *
685  * We previously reserved a bunch of blocks for allocation. Now we need to
686  * give them back. This leave the reservation structures in tact, but removes
687  * all of their corresponding "no-fly zones".
688  */
689 static void return_all_reservations(struct gfs2_rgrpd *rgd)
690 {
691 	struct rb_node *n;
692 	struct gfs2_blkreserv *rs;
693 
694 	spin_lock(&rgd->rd_rsspin);
695 	while ((n = rb_first(&rgd->rd_rstree))) {
696 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
697 		__rs_deltree(rs);
698 	}
699 	spin_unlock(&rgd->rd_rsspin);
700 }
701 
702 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
703 {
704 	struct rb_node *n;
705 	struct gfs2_rgrpd *rgd;
706 	struct gfs2_glock *gl;
707 
708 	while ((n = rb_first(&sdp->sd_rindex_tree))) {
709 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
710 		gl = rgd->rd_gl;
711 
712 		rb_erase(n, &sdp->sd_rindex_tree);
713 
714 		if (gl) {
715 			spin_lock(&gl->gl_lockref.lock);
716 			gl->gl_object = NULL;
717 			spin_unlock(&gl->gl_lockref.lock);
718 			gfs2_glock_add_to_lru(gl);
719 			gfs2_glock_put(gl);
720 		}
721 
722 		gfs2_free_clones(rgd);
723 		kfree(rgd->rd_bits);
724 		rgd->rd_bits = NULL;
725 		return_all_reservations(rgd);
726 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
727 	}
728 }
729 
730 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
731 {
732 	pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
733 	pr_info("ri_length = %u\n", rgd->rd_length);
734 	pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
735 	pr_info("ri_data = %u\n", rgd->rd_data);
736 	pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
737 }
738 
739 /**
740  * gfs2_compute_bitstructs - Compute the bitmap sizes
741  * @rgd: The resource group descriptor
742  *
743  * Calculates bitmap descriptors, one for each block that contains bitmap data
744  *
745  * Returns: errno
746  */
747 
748 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
749 {
750 	struct gfs2_sbd *sdp = rgd->rd_sbd;
751 	struct gfs2_bitmap *bi;
752 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
753 	u32 bytes_left, bytes;
754 	int x;
755 
756 	if (!length)
757 		return -EINVAL;
758 
759 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
760 	if (!rgd->rd_bits)
761 		return -ENOMEM;
762 
763 	bytes_left = rgd->rd_bitbytes;
764 
765 	for (x = 0; x < length; x++) {
766 		bi = rgd->rd_bits + x;
767 
768 		bi->bi_flags = 0;
769 		/* small rgrp; bitmap stored completely in header block */
770 		if (length == 1) {
771 			bytes = bytes_left;
772 			bi->bi_offset = sizeof(struct gfs2_rgrp);
773 			bi->bi_start = 0;
774 			bi->bi_len = bytes;
775 			bi->bi_blocks = bytes * GFS2_NBBY;
776 		/* header block */
777 		} else if (x == 0) {
778 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
779 			bi->bi_offset = sizeof(struct gfs2_rgrp);
780 			bi->bi_start = 0;
781 			bi->bi_len = bytes;
782 			bi->bi_blocks = bytes * GFS2_NBBY;
783 		/* last block */
784 		} else if (x + 1 == length) {
785 			bytes = bytes_left;
786 			bi->bi_offset = sizeof(struct gfs2_meta_header);
787 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
788 			bi->bi_len = bytes;
789 			bi->bi_blocks = bytes * GFS2_NBBY;
790 		/* other blocks */
791 		} else {
792 			bytes = sdp->sd_sb.sb_bsize -
793 				sizeof(struct gfs2_meta_header);
794 			bi->bi_offset = sizeof(struct gfs2_meta_header);
795 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
796 			bi->bi_len = bytes;
797 			bi->bi_blocks = bytes * GFS2_NBBY;
798 		}
799 
800 		bytes_left -= bytes;
801 	}
802 
803 	if (bytes_left) {
804 		gfs2_consist_rgrpd(rgd);
805 		return -EIO;
806 	}
807 	bi = rgd->rd_bits + (length - 1);
808 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
809 		if (gfs2_consist_rgrpd(rgd)) {
810 			gfs2_rindex_print(rgd);
811 			fs_err(sdp, "start=%u len=%u offset=%u\n",
812 			       bi->bi_start, bi->bi_len, bi->bi_offset);
813 		}
814 		return -EIO;
815 	}
816 
817 	return 0;
818 }
819 
820 /**
821  * gfs2_ri_total - Total up the file system space, according to the rindex.
822  * @sdp: the filesystem
823  *
824  */
825 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
826 {
827 	u64 total_data = 0;
828 	struct inode *inode = sdp->sd_rindex;
829 	struct gfs2_inode *ip = GFS2_I(inode);
830 	char buf[sizeof(struct gfs2_rindex)];
831 	int error, rgrps;
832 
833 	for (rgrps = 0;; rgrps++) {
834 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
835 
836 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
837 			break;
838 		error = gfs2_internal_read(ip, buf, &pos,
839 					   sizeof(struct gfs2_rindex));
840 		if (error != sizeof(struct gfs2_rindex))
841 			break;
842 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
843 	}
844 	return total_data;
845 }
846 
847 static int rgd_insert(struct gfs2_rgrpd *rgd)
848 {
849 	struct gfs2_sbd *sdp = rgd->rd_sbd;
850 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
851 
852 	/* Figure out where to put new node */
853 	while (*newn) {
854 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
855 						  rd_node);
856 
857 		parent = *newn;
858 		if (rgd->rd_addr < cur->rd_addr)
859 			newn = &((*newn)->rb_left);
860 		else if (rgd->rd_addr > cur->rd_addr)
861 			newn = &((*newn)->rb_right);
862 		else
863 			return -EEXIST;
864 	}
865 
866 	rb_link_node(&rgd->rd_node, parent, newn);
867 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
868 	sdp->sd_rgrps++;
869 	return 0;
870 }
871 
872 /**
873  * read_rindex_entry - Pull in a new resource index entry from the disk
874  * @ip: Pointer to the rindex inode
875  *
876  * Returns: 0 on success, > 0 on EOF, error code otherwise
877  */
878 
879 static int read_rindex_entry(struct gfs2_inode *ip)
880 {
881 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
882 	const unsigned bsize = sdp->sd_sb.sb_bsize;
883 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
884 	struct gfs2_rindex buf;
885 	int error;
886 	struct gfs2_rgrpd *rgd;
887 
888 	if (pos >= i_size_read(&ip->i_inode))
889 		return 1;
890 
891 	error = gfs2_internal_read(ip, (char *)&buf, &pos,
892 				   sizeof(struct gfs2_rindex));
893 
894 	if (error != sizeof(struct gfs2_rindex))
895 		return (error == 0) ? 1 : error;
896 
897 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
898 	error = -ENOMEM;
899 	if (!rgd)
900 		return error;
901 
902 	rgd->rd_sbd = sdp;
903 	rgd->rd_addr = be64_to_cpu(buf.ri_addr);
904 	rgd->rd_length = be32_to_cpu(buf.ri_length);
905 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
906 	rgd->rd_data = be32_to_cpu(buf.ri_data);
907 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
908 	spin_lock_init(&rgd->rd_rsspin);
909 
910 	error = compute_bitstructs(rgd);
911 	if (error)
912 		goto fail;
913 
914 	error = gfs2_glock_get(sdp, rgd->rd_addr,
915 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
916 	if (error)
917 		goto fail;
918 
919 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
920 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
921 	if (rgd->rd_data > sdp->sd_max_rg_data)
922 		sdp->sd_max_rg_data = rgd->rd_data;
923 	spin_lock(&sdp->sd_rindex_spin);
924 	error = rgd_insert(rgd);
925 	spin_unlock(&sdp->sd_rindex_spin);
926 	if (!error) {
927 		rgd->rd_gl->gl_object = rgd;
928 		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
929 		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
930 						    rgd->rd_length) * bsize) - 1;
931 		return 0;
932 	}
933 
934 	error = 0; /* someone else read in the rgrp; free it and ignore it */
935 	gfs2_glock_put(rgd->rd_gl);
936 
937 fail:
938 	kfree(rgd->rd_bits);
939 	rgd->rd_bits = NULL;
940 	kmem_cache_free(gfs2_rgrpd_cachep, rgd);
941 	return error;
942 }
943 
944 /**
945  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
946  * @sdp: the GFS2 superblock
947  *
948  * The purpose of this function is to select a subset of the resource groups
949  * and mark them as PREFERRED. We do it in such a way that each node prefers
950  * to use a unique set of rgrps to minimize glock contention.
951  */
952 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
953 {
954 	struct gfs2_rgrpd *rgd, *first;
955 	int i;
956 
957 	/* Skip an initial number of rgrps, based on this node's journal ID.
958 	   That should start each node out on its own set. */
959 	rgd = gfs2_rgrpd_get_first(sdp);
960 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
961 		rgd = gfs2_rgrpd_get_next(rgd);
962 	first = rgd;
963 
964 	do {
965 		rgd->rd_flags |= GFS2_RDF_PREFERRED;
966 		for (i = 0; i < sdp->sd_journals; i++) {
967 			rgd = gfs2_rgrpd_get_next(rgd);
968 			if (!rgd || rgd == first)
969 				break;
970 		}
971 	} while (rgd && rgd != first);
972 }
973 
974 /**
975  * gfs2_ri_update - Pull in a new resource index from the disk
976  * @ip: pointer to the rindex inode
977  *
978  * Returns: 0 on successful update, error code otherwise
979  */
980 
981 static int gfs2_ri_update(struct gfs2_inode *ip)
982 {
983 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
984 	int error;
985 
986 	do {
987 		error = read_rindex_entry(ip);
988 	} while (error == 0);
989 
990 	if (error < 0)
991 		return error;
992 
993 	set_rgrp_preferences(sdp);
994 
995 	sdp->sd_rindex_uptodate = 1;
996 	return 0;
997 }
998 
999 /**
1000  * gfs2_rindex_update - Update the rindex if required
1001  * @sdp: The GFS2 superblock
1002  *
1003  * We grab a lock on the rindex inode to make sure that it doesn't
1004  * change whilst we are performing an operation. We keep this lock
1005  * for quite long periods of time compared to other locks. This
1006  * doesn't matter, since it is shared and it is very, very rarely
1007  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1008  *
1009  * This makes sure that we're using the latest copy of the resource index
1010  * special file, which might have been updated if someone expanded the
1011  * filesystem (via gfs2_grow utility), which adds new resource groups.
1012  *
1013  * Returns: 0 on succeess, error code otherwise
1014  */
1015 
1016 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1017 {
1018 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1019 	struct gfs2_glock *gl = ip->i_gl;
1020 	struct gfs2_holder ri_gh;
1021 	int error = 0;
1022 	int unlock_required = 0;
1023 
1024 	/* Read new copy from disk if we don't have the latest */
1025 	if (!sdp->sd_rindex_uptodate) {
1026 		if (!gfs2_glock_is_locked_by_me(gl)) {
1027 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1028 			if (error)
1029 				return error;
1030 			unlock_required = 1;
1031 		}
1032 		if (!sdp->sd_rindex_uptodate)
1033 			error = gfs2_ri_update(ip);
1034 		if (unlock_required)
1035 			gfs2_glock_dq_uninit(&ri_gh);
1036 	}
1037 
1038 	return error;
1039 }
1040 
1041 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1042 {
1043 	const struct gfs2_rgrp *str = buf;
1044 	u32 rg_flags;
1045 
1046 	rg_flags = be32_to_cpu(str->rg_flags);
1047 	rg_flags &= ~GFS2_RDF_MASK;
1048 	rgd->rd_flags &= GFS2_RDF_MASK;
1049 	rgd->rd_flags |= rg_flags;
1050 	rgd->rd_free = be32_to_cpu(str->rg_free);
1051 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1052 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1053 }
1054 
1055 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1056 {
1057 	struct gfs2_rgrp *str = buf;
1058 
1059 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1060 	str->rg_free = cpu_to_be32(rgd->rd_free);
1061 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1062 	str->__pad = cpu_to_be32(0);
1063 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1064 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1065 }
1066 
1067 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1068 {
1069 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1070 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1071 
1072 	if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1073 	    rgl->rl_dinodes != str->rg_dinodes ||
1074 	    rgl->rl_igeneration != str->rg_igeneration)
1075 		return 0;
1076 	return 1;
1077 }
1078 
1079 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1080 {
1081 	const struct gfs2_rgrp *str = buf;
1082 
1083 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1084 	rgl->rl_flags = str->rg_flags;
1085 	rgl->rl_free = str->rg_free;
1086 	rgl->rl_dinodes = str->rg_dinodes;
1087 	rgl->rl_igeneration = str->rg_igeneration;
1088 	rgl->__pad = 0UL;
1089 }
1090 
1091 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1092 {
1093 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1094 	u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1095 	rgl->rl_unlinked = cpu_to_be32(unlinked);
1096 }
1097 
1098 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1099 {
1100 	struct gfs2_bitmap *bi;
1101 	const u32 length = rgd->rd_length;
1102 	const u8 *buffer = NULL;
1103 	u32 i, goal, count = 0;
1104 
1105 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1106 		goal = 0;
1107 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1108 		WARN_ON(!buffer_uptodate(bi->bi_bh));
1109 		while (goal < bi->bi_len * GFS2_NBBY) {
1110 			goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1111 					   GFS2_BLKST_UNLINKED);
1112 			if (goal == BFITNOENT)
1113 				break;
1114 			count++;
1115 			goal++;
1116 		}
1117 	}
1118 
1119 	return count;
1120 }
1121 
1122 
1123 /**
1124  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1125  * @rgd: the struct gfs2_rgrpd describing the RG to read in
1126  *
1127  * Read in all of a Resource Group's header and bitmap blocks.
1128  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1129  *
1130  * Returns: errno
1131  */
1132 
1133 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1134 {
1135 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1136 	struct gfs2_glock *gl = rgd->rd_gl;
1137 	unsigned int length = rgd->rd_length;
1138 	struct gfs2_bitmap *bi;
1139 	unsigned int x, y;
1140 	int error;
1141 
1142 	if (rgd->rd_bits[0].bi_bh != NULL)
1143 		return 0;
1144 
1145 	for (x = 0; x < length; x++) {
1146 		bi = rgd->rd_bits + x;
1147 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1148 		if (error)
1149 			goto fail;
1150 	}
1151 
1152 	for (y = length; y--;) {
1153 		bi = rgd->rd_bits + y;
1154 		error = gfs2_meta_wait(sdp, bi->bi_bh);
1155 		if (error)
1156 			goto fail;
1157 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1158 					      GFS2_METATYPE_RG)) {
1159 			error = -EIO;
1160 			goto fail;
1161 		}
1162 	}
1163 
1164 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1165 		for (x = 0; x < length; x++)
1166 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1167 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1168 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1169 		rgd->rd_free_clone = rgd->rd_free;
1170 		/* max out the rgrp allocation failure point */
1171 		rgd->rd_extfail_pt = rgd->rd_free;
1172 	}
1173 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1174 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1175 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1176 				     rgd->rd_bits[0].bi_bh->b_data);
1177 	}
1178 	else if (sdp->sd_args.ar_rgrplvb) {
1179 		if (!gfs2_rgrp_lvb_valid(rgd)){
1180 			gfs2_consist_rgrpd(rgd);
1181 			error = -EIO;
1182 			goto fail;
1183 		}
1184 		if (rgd->rd_rgl->rl_unlinked == 0)
1185 			rgd->rd_flags &= ~GFS2_RDF_CHECK;
1186 	}
1187 	return 0;
1188 
1189 fail:
1190 	while (x--) {
1191 		bi = rgd->rd_bits + x;
1192 		brelse(bi->bi_bh);
1193 		bi->bi_bh = NULL;
1194 		gfs2_assert_warn(sdp, !bi->bi_clone);
1195 	}
1196 
1197 	return error;
1198 }
1199 
1200 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1201 {
1202 	u32 rl_flags;
1203 
1204 	if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1205 		return 0;
1206 
1207 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1208 		return gfs2_rgrp_bh_get(rgd);
1209 
1210 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1211 	rl_flags &= ~GFS2_RDF_MASK;
1212 	rgd->rd_flags &= GFS2_RDF_MASK;
1213 	rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1214 	if (rgd->rd_rgl->rl_unlinked == 0)
1215 		rgd->rd_flags &= ~GFS2_RDF_CHECK;
1216 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1217 	rgd->rd_free_clone = rgd->rd_free;
1218 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1219 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1220 	return 0;
1221 }
1222 
1223 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1224 {
1225 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1226 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1227 
1228 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1229 		return 0;
1230 	return gfs2_rgrp_bh_get(rgd);
1231 }
1232 
1233 /**
1234  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1235  * @rgd: The resource group
1236  *
1237  */
1238 
1239 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1240 {
1241 	int x, length = rgd->rd_length;
1242 
1243 	for (x = 0; x < length; x++) {
1244 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
1245 		if (bi->bi_bh) {
1246 			brelse(bi->bi_bh);
1247 			bi->bi_bh = NULL;
1248 		}
1249 	}
1250 
1251 }
1252 
1253 /**
1254  * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1255  * @gh: The glock holder for the resource group
1256  *
1257  */
1258 
1259 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1260 {
1261 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1262 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1263 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1264 
1265 	if (rgd && demote_requested)
1266 		gfs2_rgrp_brelse(rgd);
1267 }
1268 
1269 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1270 			     struct buffer_head *bh,
1271 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1272 {
1273 	struct super_block *sb = sdp->sd_vfs;
1274 	u64 blk;
1275 	sector_t start = 0;
1276 	sector_t nr_blks = 0;
1277 	int rv;
1278 	unsigned int x;
1279 	u32 trimmed = 0;
1280 	u8 diff;
1281 
1282 	for (x = 0; x < bi->bi_len; x++) {
1283 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1284 		clone += bi->bi_offset;
1285 		clone += x;
1286 		if (bh) {
1287 			const u8 *orig = bh->b_data + bi->bi_offset + x;
1288 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1289 		} else {
1290 			diff = ~(*clone | (*clone >> 1));
1291 		}
1292 		diff &= 0x55;
1293 		if (diff == 0)
1294 			continue;
1295 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1296 		while(diff) {
1297 			if (diff & 1) {
1298 				if (nr_blks == 0)
1299 					goto start_new_extent;
1300 				if ((start + nr_blks) != blk) {
1301 					if (nr_blks >= minlen) {
1302 						rv = sb_issue_discard(sb,
1303 							start, nr_blks,
1304 							GFP_NOFS, 0);
1305 						if (rv)
1306 							goto fail;
1307 						trimmed += nr_blks;
1308 					}
1309 					nr_blks = 0;
1310 start_new_extent:
1311 					start = blk;
1312 				}
1313 				nr_blks++;
1314 			}
1315 			diff >>= 2;
1316 			blk++;
1317 		}
1318 	}
1319 	if (nr_blks >= minlen) {
1320 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1321 		if (rv)
1322 			goto fail;
1323 		trimmed += nr_blks;
1324 	}
1325 	if (ptrimmed)
1326 		*ptrimmed = trimmed;
1327 	return 0;
1328 
1329 fail:
1330 	if (sdp->sd_args.ar_discard)
1331 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1332 	sdp->sd_args.ar_discard = 0;
1333 	return -EIO;
1334 }
1335 
1336 /**
1337  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1338  * @filp: Any file on the filesystem
1339  * @argp: Pointer to the arguments (also used to pass result)
1340  *
1341  * Returns: 0 on success, otherwise error code
1342  */
1343 
1344 int gfs2_fitrim(struct file *filp, void __user *argp)
1345 {
1346 	struct inode *inode = file_inode(filp);
1347 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1348 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1349 	struct buffer_head *bh;
1350 	struct gfs2_rgrpd *rgd;
1351 	struct gfs2_rgrpd *rgd_end;
1352 	struct gfs2_holder gh;
1353 	struct fstrim_range r;
1354 	int ret = 0;
1355 	u64 amt;
1356 	u64 trimmed = 0;
1357 	u64 start, end, minlen;
1358 	unsigned int x;
1359 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1360 
1361 	if (!capable(CAP_SYS_ADMIN))
1362 		return -EPERM;
1363 
1364 	if (!blk_queue_discard(q))
1365 		return -EOPNOTSUPP;
1366 
1367 	if (copy_from_user(&r, argp, sizeof(r)))
1368 		return -EFAULT;
1369 
1370 	ret = gfs2_rindex_update(sdp);
1371 	if (ret)
1372 		return ret;
1373 
1374 	start = r.start >> bs_shift;
1375 	end = start + (r.len >> bs_shift);
1376 	minlen = max_t(u64, r.minlen,
1377 		       q->limits.discard_granularity) >> bs_shift;
1378 
1379 	if (end <= start || minlen > sdp->sd_max_rg_data)
1380 		return -EINVAL;
1381 
1382 	rgd = gfs2_blk2rgrpd(sdp, start, 0);
1383 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1384 
1385 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1386 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1387 		return -EINVAL; /* start is beyond the end of the fs */
1388 
1389 	while (1) {
1390 
1391 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1392 		if (ret)
1393 			goto out;
1394 
1395 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1396 			/* Trim each bitmap in the rgrp */
1397 			for (x = 0; x < rgd->rd_length; x++) {
1398 				struct gfs2_bitmap *bi = rgd->rd_bits + x;
1399 				ret = gfs2_rgrp_send_discards(sdp,
1400 						rgd->rd_data0, NULL, bi, minlen,
1401 						&amt);
1402 				if (ret) {
1403 					gfs2_glock_dq_uninit(&gh);
1404 					goto out;
1405 				}
1406 				trimmed += amt;
1407 			}
1408 
1409 			/* Mark rgrp as having been trimmed */
1410 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1411 			if (ret == 0) {
1412 				bh = rgd->rd_bits[0].bi_bh;
1413 				rgd->rd_flags |= GFS2_RGF_TRIMMED;
1414 				gfs2_trans_add_meta(rgd->rd_gl, bh);
1415 				gfs2_rgrp_out(rgd, bh->b_data);
1416 				gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1417 				gfs2_trans_end(sdp);
1418 			}
1419 		}
1420 		gfs2_glock_dq_uninit(&gh);
1421 
1422 		if (rgd == rgd_end)
1423 			break;
1424 
1425 		rgd = gfs2_rgrpd_get_next(rgd);
1426 	}
1427 
1428 out:
1429 	r.len = trimmed << bs_shift;
1430 	if (copy_to_user(argp, &r, sizeof(r)))
1431 		return -EFAULT;
1432 
1433 	return ret;
1434 }
1435 
1436 /**
1437  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1438  * @ip: the inode structure
1439  *
1440  */
1441 static void rs_insert(struct gfs2_inode *ip)
1442 {
1443 	struct rb_node **newn, *parent = NULL;
1444 	int rc;
1445 	struct gfs2_blkreserv *rs = &ip->i_res;
1446 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1447 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1448 
1449 	BUG_ON(gfs2_rs_active(rs));
1450 
1451 	spin_lock(&rgd->rd_rsspin);
1452 	newn = &rgd->rd_rstree.rb_node;
1453 	while (*newn) {
1454 		struct gfs2_blkreserv *cur =
1455 			rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1456 
1457 		parent = *newn;
1458 		rc = rs_cmp(fsblock, rs->rs_free, cur);
1459 		if (rc > 0)
1460 			newn = &((*newn)->rb_right);
1461 		else if (rc < 0)
1462 			newn = &((*newn)->rb_left);
1463 		else {
1464 			spin_unlock(&rgd->rd_rsspin);
1465 			WARN_ON(1);
1466 			return;
1467 		}
1468 	}
1469 
1470 	rb_link_node(&rs->rs_node, parent, newn);
1471 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1472 
1473 	/* Do our rgrp accounting for the reservation */
1474 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1475 	spin_unlock(&rgd->rd_rsspin);
1476 	trace_gfs2_rs(rs, TRACE_RS_INSERT);
1477 }
1478 
1479 /**
1480  * rg_mblk_search - find a group of multiple free blocks to form a reservation
1481  * @rgd: the resource group descriptor
1482  * @ip: pointer to the inode for which we're reserving blocks
1483  * @ap: the allocation parameters
1484  *
1485  */
1486 
1487 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1488 			   const struct gfs2_alloc_parms *ap)
1489 {
1490 	struct gfs2_rbm rbm = { .rgd = rgd, };
1491 	u64 goal;
1492 	struct gfs2_blkreserv *rs = &ip->i_res;
1493 	u32 extlen;
1494 	u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1495 	int ret;
1496 	struct inode *inode = &ip->i_inode;
1497 
1498 	if (S_ISDIR(inode->i_mode))
1499 		extlen = 1;
1500 	else {
1501 		extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1502 		extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1503 	}
1504 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1505 		return;
1506 
1507 	/* Find bitmap block that contains bits for goal block */
1508 	if (rgrp_contains_block(rgd, ip->i_goal))
1509 		goal = ip->i_goal;
1510 	else
1511 		goal = rgd->rd_last_alloc + rgd->rd_data0;
1512 
1513 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1514 		return;
1515 
1516 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1517 	if (ret == 0) {
1518 		rs->rs_rbm = rbm;
1519 		rs->rs_free = extlen;
1520 		rs->rs_inum = ip->i_no_addr;
1521 		rs_insert(ip);
1522 	} else {
1523 		if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1524 			rgd->rd_last_alloc = 0;
1525 	}
1526 }
1527 
1528 /**
1529  * gfs2_next_unreserved_block - Return next block that is not reserved
1530  * @rgd: The resource group
1531  * @block: The starting block
1532  * @length: The required length
1533  * @ip: Ignore any reservations for this inode
1534  *
1535  * If the block does not appear in any reservation, then return the
1536  * block number unchanged. If it does appear in the reservation, then
1537  * keep looking through the tree of reservations in order to find the
1538  * first block number which is not reserved.
1539  */
1540 
1541 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1542 				      u32 length,
1543 				      const struct gfs2_inode *ip)
1544 {
1545 	struct gfs2_blkreserv *rs;
1546 	struct rb_node *n;
1547 	int rc;
1548 
1549 	spin_lock(&rgd->rd_rsspin);
1550 	n = rgd->rd_rstree.rb_node;
1551 	while (n) {
1552 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1553 		rc = rs_cmp(block, length, rs);
1554 		if (rc < 0)
1555 			n = n->rb_left;
1556 		else if (rc > 0)
1557 			n = n->rb_right;
1558 		else
1559 			break;
1560 	}
1561 
1562 	if (n) {
1563 		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1564 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1565 			n = n->rb_right;
1566 			if (n == NULL)
1567 				break;
1568 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1569 		}
1570 	}
1571 
1572 	spin_unlock(&rgd->rd_rsspin);
1573 	return block;
1574 }
1575 
1576 /**
1577  * gfs2_reservation_check_and_update - Check for reservations during block alloc
1578  * @rbm: The current position in the resource group
1579  * @ip: The inode for which we are searching for blocks
1580  * @minext: The minimum extent length
1581  * @maxext: A pointer to the maximum extent structure
1582  *
1583  * This checks the current position in the rgrp to see whether there is
1584  * a reservation covering this block. If not then this function is a
1585  * no-op. If there is, then the position is moved to the end of the
1586  * contiguous reservation(s) so that we are pointing at the first
1587  * non-reserved block.
1588  *
1589  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1590  */
1591 
1592 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1593 					     const struct gfs2_inode *ip,
1594 					     u32 minext,
1595 					     struct gfs2_extent *maxext)
1596 {
1597 	u64 block = gfs2_rbm_to_block(rbm);
1598 	u32 extlen = 1;
1599 	u64 nblock;
1600 	int ret;
1601 
1602 	/*
1603 	 * If we have a minimum extent length, then skip over any extent
1604 	 * which is less than the min extent length in size.
1605 	 */
1606 	if (minext) {
1607 		extlen = gfs2_free_extlen(rbm, minext);
1608 		if (extlen <= maxext->len)
1609 			goto fail;
1610 	}
1611 
1612 	/*
1613 	 * Check the extent which has been found against the reservations
1614 	 * and skip if parts of it are already reserved
1615 	 */
1616 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1617 	if (nblock == block) {
1618 		if (!minext || extlen >= minext)
1619 			return 0;
1620 
1621 		if (extlen > maxext->len) {
1622 			maxext->len = extlen;
1623 			maxext->rbm = *rbm;
1624 		}
1625 fail:
1626 		nblock = block + extlen;
1627 	}
1628 	ret = gfs2_rbm_from_block(rbm, nblock);
1629 	if (ret < 0)
1630 		return ret;
1631 	return 1;
1632 }
1633 
1634 /**
1635  * gfs2_rbm_find - Look for blocks of a particular state
1636  * @rbm: Value/result starting position and final position
1637  * @state: The state which we want to find
1638  * @minext: Pointer to the requested extent length (NULL for a single block)
1639  *          This is updated to be the actual reservation size.
1640  * @ip: If set, check for reservations
1641  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1642  *          around until we've reached the starting point.
1643  *
1644  * Side effects:
1645  * - If looking for free blocks, we set GBF_FULL on each bitmap which
1646  *   has no free blocks in it.
1647  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1648  *   has come up short on a free block search.
1649  *
1650  * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1651  */
1652 
1653 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1654 			 const struct gfs2_inode *ip, bool nowrap)
1655 {
1656 	struct buffer_head *bh;
1657 	int initial_bii;
1658 	u32 initial_offset;
1659 	int first_bii = rbm->bii;
1660 	u32 first_offset = rbm->offset;
1661 	u32 offset;
1662 	u8 *buffer;
1663 	int n = 0;
1664 	int iters = rbm->rgd->rd_length;
1665 	int ret;
1666 	struct gfs2_bitmap *bi;
1667 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1668 
1669 	/* If we are not starting at the beginning of a bitmap, then we
1670 	 * need to add one to the bitmap count to ensure that we search
1671 	 * the starting bitmap twice.
1672 	 */
1673 	if (rbm->offset != 0)
1674 		iters++;
1675 
1676 	while(1) {
1677 		bi = rbm_bi(rbm);
1678 		if (test_bit(GBF_FULL, &bi->bi_flags) &&
1679 		    (state == GFS2_BLKST_FREE))
1680 			goto next_bitmap;
1681 
1682 		bh = bi->bi_bh;
1683 		buffer = bh->b_data + bi->bi_offset;
1684 		WARN_ON(!buffer_uptodate(bh));
1685 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1686 			buffer = bi->bi_clone + bi->bi_offset;
1687 		initial_offset = rbm->offset;
1688 		offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1689 		if (offset == BFITNOENT)
1690 			goto bitmap_full;
1691 		rbm->offset = offset;
1692 		if (ip == NULL)
1693 			return 0;
1694 
1695 		initial_bii = rbm->bii;
1696 		ret = gfs2_reservation_check_and_update(rbm, ip,
1697 							minext ? *minext : 0,
1698 							&maxext);
1699 		if (ret == 0)
1700 			return 0;
1701 		if (ret > 0) {
1702 			n += (rbm->bii - initial_bii);
1703 			goto next_iter;
1704 		}
1705 		if (ret == -E2BIG) {
1706 			rbm->bii = 0;
1707 			rbm->offset = 0;
1708 			n += (rbm->bii - initial_bii);
1709 			goto res_covered_end_of_rgrp;
1710 		}
1711 		return ret;
1712 
1713 bitmap_full:	/* Mark bitmap as full and fall through */
1714 		if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1715 			set_bit(GBF_FULL, &bi->bi_flags);
1716 
1717 next_bitmap:	/* Find next bitmap in the rgrp */
1718 		rbm->offset = 0;
1719 		rbm->bii++;
1720 		if (rbm->bii == rbm->rgd->rd_length)
1721 			rbm->bii = 0;
1722 res_covered_end_of_rgrp:
1723 		if ((rbm->bii == 0) && nowrap)
1724 			break;
1725 		n++;
1726 next_iter:
1727 		if (n >= iters)
1728 			break;
1729 	}
1730 
1731 	if (minext == NULL || state != GFS2_BLKST_FREE)
1732 		return -ENOSPC;
1733 
1734 	/* If the extent was too small, and it's smaller than the smallest
1735 	   to have failed before, remember for future reference that it's
1736 	   useless to search this rgrp again for this amount or more. */
1737 	if ((first_offset == 0) && (first_bii == 0) &&
1738 	    (*minext < rbm->rgd->rd_extfail_pt))
1739 		rbm->rgd->rd_extfail_pt = *minext;
1740 
1741 	/* If the maximum extent we found is big enough to fulfill the
1742 	   minimum requirements, use it anyway. */
1743 	if (maxext.len) {
1744 		*rbm = maxext.rbm;
1745 		*minext = maxext.len;
1746 		return 0;
1747 	}
1748 
1749 	return -ENOSPC;
1750 }
1751 
1752 /**
1753  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1754  * @rgd: The rgrp
1755  * @last_unlinked: block address of the last dinode we unlinked
1756  * @skip: block address we should explicitly not unlink
1757  *
1758  * Returns: 0 if no error
1759  *          The inode, if one has been found, in inode.
1760  */
1761 
1762 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1763 {
1764 	u64 block;
1765 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1766 	struct gfs2_glock *gl;
1767 	struct gfs2_inode *ip;
1768 	int error;
1769 	int found = 0;
1770 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1771 
1772 	while (1) {
1773 		down_write(&sdp->sd_log_flush_lock);
1774 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1775 				      true);
1776 		up_write(&sdp->sd_log_flush_lock);
1777 		if (error == -ENOSPC)
1778 			break;
1779 		if (WARN_ON_ONCE(error))
1780 			break;
1781 
1782 		block = gfs2_rbm_to_block(&rbm);
1783 		if (gfs2_rbm_from_block(&rbm, block + 1))
1784 			break;
1785 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1786 			continue;
1787 		if (block == skip)
1788 			continue;
1789 		*last_unlinked = block;
1790 
1791 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1792 		if (error)
1793 			continue;
1794 
1795 		/* If the inode is already in cache, we can ignore it here
1796 		 * because the existing inode disposal code will deal with
1797 		 * it when all refs have gone away. Accessing gl_object like
1798 		 * this is not safe in general. Here it is ok because we do
1799 		 * not dereference the pointer, and we only need an approx
1800 		 * answer to whether it is NULL or not.
1801 		 */
1802 		ip = gl->gl_object;
1803 
1804 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1805 			gfs2_glock_put(gl);
1806 		else
1807 			found++;
1808 
1809 		/* Limit reclaim to sensible number of tasks */
1810 		if (found > NR_CPUS)
1811 			return;
1812 	}
1813 
1814 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
1815 	return;
1816 }
1817 
1818 /**
1819  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1820  * @rgd: The rgrp in question
1821  * @loops: An indication of how picky we can be (0=very, 1=less so)
1822  *
1823  * This function uses the recently added glock statistics in order to
1824  * figure out whether a parciular resource group is suffering from
1825  * contention from multiple nodes. This is done purely on the basis
1826  * of timings, since this is the only data we have to work with and
1827  * our aim here is to reject a resource group which is highly contended
1828  * but (very important) not to do this too often in order to ensure that
1829  * we do not land up introducing fragmentation by changing resource
1830  * groups when not actually required.
1831  *
1832  * The calculation is fairly simple, we want to know whether the SRTTB
1833  * (i.e. smoothed round trip time for blocking operations) to acquire
1834  * the lock for this rgrp's glock is significantly greater than the
1835  * time taken for resource groups on average. We introduce a margin in
1836  * the form of the variable @var which is computed as the sum of the two
1837  * respective variences, and multiplied by a factor depending on @loops
1838  * and whether we have a lot of data to base the decision on. This is
1839  * then tested against the square difference of the means in order to
1840  * decide whether the result is statistically significant or not.
1841  *
1842  * Returns: A boolean verdict on the congestion status
1843  */
1844 
1845 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1846 {
1847 	const struct gfs2_glock *gl = rgd->rd_gl;
1848 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1849 	struct gfs2_lkstats *st;
1850 	u64 r_dcount, l_dcount;
1851 	u64 l_srttb, a_srttb = 0;
1852 	s64 srttb_diff;
1853 	u64 sqr_diff;
1854 	u64 var;
1855 	int cpu, nonzero = 0;
1856 
1857 	preempt_disable();
1858 	for_each_present_cpu(cpu) {
1859 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1860 		if (st->stats[GFS2_LKS_SRTTB]) {
1861 			a_srttb += st->stats[GFS2_LKS_SRTTB];
1862 			nonzero++;
1863 		}
1864 	}
1865 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1866 	if (nonzero)
1867 		do_div(a_srttb, nonzero);
1868 	r_dcount = st->stats[GFS2_LKS_DCOUNT];
1869 	var = st->stats[GFS2_LKS_SRTTVARB] +
1870 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1871 	preempt_enable();
1872 
1873 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1874 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1875 
1876 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1877 		return false;
1878 
1879 	srttb_diff = a_srttb - l_srttb;
1880 	sqr_diff = srttb_diff * srttb_diff;
1881 
1882 	var *= 2;
1883 	if (l_dcount < 8 || r_dcount < 8)
1884 		var *= 2;
1885 	if (loops == 1)
1886 		var *= 2;
1887 
1888 	return ((srttb_diff < 0) && (sqr_diff > var));
1889 }
1890 
1891 /**
1892  * gfs2_rgrp_used_recently
1893  * @rs: The block reservation with the rgrp to test
1894  * @msecs: The time limit in milliseconds
1895  *
1896  * Returns: True if the rgrp glock has been used within the time limit
1897  */
1898 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1899 				    u64 msecs)
1900 {
1901 	u64 tdiff;
1902 
1903 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1904                             rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1905 
1906 	return tdiff > (msecs * 1000 * 1000);
1907 }
1908 
1909 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1910 {
1911 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1912 	u32 skip;
1913 
1914 	get_random_bytes(&skip, sizeof(skip));
1915 	return skip % sdp->sd_rgrps;
1916 }
1917 
1918 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1919 {
1920 	struct gfs2_rgrpd *rgd = *pos;
1921 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1922 
1923 	rgd = gfs2_rgrpd_get_next(rgd);
1924 	if (rgd == NULL)
1925 		rgd = gfs2_rgrpd_get_first(sdp);
1926 	*pos = rgd;
1927 	if (rgd != begin) /* If we didn't wrap */
1928 		return true;
1929 	return false;
1930 }
1931 
1932 /**
1933  * fast_to_acquire - determine if a resource group will be fast to acquire
1934  *
1935  * If this is one of our preferred rgrps, it should be quicker to acquire,
1936  * because we tried to set ourselves up as dlm lock master.
1937  */
1938 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1939 {
1940 	struct gfs2_glock *gl = rgd->rd_gl;
1941 
1942 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1943 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1944 	    !test_bit(GLF_DEMOTE, &gl->gl_flags))
1945 		return 1;
1946 	if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1947 		return 1;
1948 	return 0;
1949 }
1950 
1951 /**
1952  * gfs2_inplace_reserve - Reserve space in the filesystem
1953  * @ip: the inode to reserve space for
1954  * @ap: the allocation parameters
1955  *
1956  * We try our best to find an rgrp that has at least ap->target blocks
1957  * available. After a couple of passes (loops == 2), the prospects of finding
1958  * such an rgrp diminish. At this stage, we return the first rgrp that has
1959  * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1960  * the number of blocks available in the chosen rgrp.
1961  *
1962  * Returns: 0 on success,
1963  *          -ENOMEM if a suitable rgrp can't be found
1964  *          errno otherwise
1965  */
1966 
1967 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1968 {
1969 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1970 	struct gfs2_rgrpd *begin = NULL;
1971 	struct gfs2_blkreserv *rs = &ip->i_res;
1972 	int error = 0, rg_locked, flags = 0;
1973 	u64 last_unlinked = NO_BLOCK;
1974 	int loops = 0;
1975 	u32 skip = 0;
1976 
1977 	if (sdp->sd_args.ar_rgrplvb)
1978 		flags |= GL_SKIP;
1979 	if (gfs2_assert_warn(sdp, ap->target))
1980 		return -EINVAL;
1981 	if (gfs2_rs_active(rs)) {
1982 		begin = rs->rs_rbm.rgd;
1983 	} else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1984 		rs->rs_rbm.rgd = begin = ip->i_rgd;
1985 	} else {
1986 		check_and_update_goal(ip);
1987 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1988 	}
1989 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1990 		skip = gfs2_orlov_skip(ip);
1991 	if (rs->rs_rbm.rgd == NULL)
1992 		return -EBADSLT;
1993 
1994 	while (loops < 3) {
1995 		rg_locked = 1;
1996 
1997 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1998 			rg_locked = 0;
1999 			if (skip && skip--)
2000 				goto next_rgrp;
2001 			if (!gfs2_rs_active(rs)) {
2002 				if (loops == 0 &&
2003 				    !fast_to_acquire(rs->rs_rbm.rgd))
2004 					goto next_rgrp;
2005 				if ((loops < 2) &&
2006 				    gfs2_rgrp_used_recently(rs, 1000) &&
2007 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2008 					goto next_rgrp;
2009 			}
2010 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2011 						   LM_ST_EXCLUSIVE, flags,
2012 						   &rs->rs_rgd_gh);
2013 			if (unlikely(error))
2014 				return error;
2015 			if (!gfs2_rs_active(rs) && (loops < 2) &&
2016 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2017 				goto skip_rgrp;
2018 			if (sdp->sd_args.ar_rgrplvb) {
2019 				error = update_rgrp_lvb(rs->rs_rbm.rgd);
2020 				if (unlikely(error)) {
2021 					gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2022 					return error;
2023 				}
2024 			}
2025 		}
2026 
2027 		/* Skip unuseable resource groups */
2028 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2029 						 GFS2_RDF_ERROR)) ||
2030 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2031 			goto skip_rgrp;
2032 
2033 		if (sdp->sd_args.ar_rgrplvb)
2034 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2035 
2036 		/* Get a reservation if we don't already have one */
2037 		if (!gfs2_rs_active(rs))
2038 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2039 
2040 		/* Skip rgrps when we can't get a reservation on first pass */
2041 		if (!gfs2_rs_active(rs) && (loops < 1))
2042 			goto check_rgrp;
2043 
2044 		/* If rgrp has enough free space, use it */
2045 		if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2046 		    (loops == 2 && ap->min_target &&
2047 		     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2048 			ip->i_rgd = rs->rs_rbm.rgd;
2049 			ap->allowed = ip->i_rgd->rd_free_clone;
2050 			return 0;
2051 		}
2052 check_rgrp:
2053 		/* Check for unlinked inodes which can be reclaimed */
2054 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2055 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2056 					ip->i_no_addr);
2057 skip_rgrp:
2058 		/* Drop reservation, if we couldn't use reserved rgrp */
2059 		if (gfs2_rs_active(rs))
2060 			gfs2_rs_deltree(rs);
2061 
2062 		/* Unlock rgrp if required */
2063 		if (!rg_locked)
2064 			gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2065 next_rgrp:
2066 		/* Find the next rgrp, and continue looking */
2067 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2068 			continue;
2069 		if (skip)
2070 			continue;
2071 
2072 		/* If we've scanned all the rgrps, but found no free blocks
2073 		 * then this checks for some less likely conditions before
2074 		 * trying again.
2075 		 */
2076 		loops++;
2077 		/* Check that fs hasn't grown if writing to rindex */
2078 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2079 			error = gfs2_ri_update(ip);
2080 			if (error)
2081 				return error;
2082 		}
2083 		/* Flushing the log may release space */
2084 		if (loops == 2)
2085 			gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2086 	}
2087 
2088 	return -ENOSPC;
2089 }
2090 
2091 /**
2092  * gfs2_inplace_release - release an inplace reservation
2093  * @ip: the inode the reservation was taken out on
2094  *
2095  * Release a reservation made by gfs2_inplace_reserve().
2096  */
2097 
2098 void gfs2_inplace_release(struct gfs2_inode *ip)
2099 {
2100 	struct gfs2_blkreserv *rs = &ip->i_res;
2101 
2102 	if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2103 		gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2104 }
2105 
2106 /**
2107  * gfs2_get_block_type - Check a block in a RG is of given type
2108  * @rgd: the resource group holding the block
2109  * @block: the block number
2110  *
2111  * Returns: The block type (GFS2_BLKST_*)
2112  */
2113 
2114 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2115 {
2116 	struct gfs2_rbm rbm = { .rgd = rgd, };
2117 	int ret;
2118 
2119 	ret = gfs2_rbm_from_block(&rbm, block);
2120 	WARN_ON_ONCE(ret != 0);
2121 
2122 	return gfs2_testbit(&rbm);
2123 }
2124 
2125 
2126 /**
2127  * gfs2_alloc_extent - allocate an extent from a given bitmap
2128  * @rbm: the resource group information
2129  * @dinode: TRUE if the first block we allocate is for a dinode
2130  * @n: The extent length (value/result)
2131  *
2132  * Add the bitmap buffer to the transaction.
2133  * Set the found bits to @new_state to change block's allocation state.
2134  */
2135 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2136 			     unsigned int *n)
2137 {
2138 	struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2139 	const unsigned int elen = *n;
2140 	u64 block;
2141 	int ret;
2142 
2143 	*n = 1;
2144 	block = gfs2_rbm_to_block(rbm);
2145 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2146 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2147 	block++;
2148 	while (*n < elen) {
2149 		ret = gfs2_rbm_from_block(&pos, block);
2150 		if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2151 			break;
2152 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2153 		gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2154 		(*n)++;
2155 		block++;
2156 	}
2157 }
2158 
2159 /**
2160  * rgblk_free - Change alloc state of given block(s)
2161  * @sdp: the filesystem
2162  * @bstart: the start of a run of blocks to free
2163  * @blen: the length of the block run (all must lie within ONE RG!)
2164  * @new_state: GFS2_BLKST_XXX the after-allocation block state
2165  *
2166  * Returns:  Resource group containing the block(s)
2167  */
2168 
2169 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2170 				     u32 blen, unsigned char new_state)
2171 {
2172 	struct gfs2_rbm rbm;
2173 	struct gfs2_bitmap *bi, *bi_prev = NULL;
2174 
2175 	rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2176 	if (!rbm.rgd) {
2177 		if (gfs2_consist(sdp))
2178 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2179 		return NULL;
2180 	}
2181 
2182 	gfs2_rbm_from_block(&rbm, bstart);
2183 	while (blen--) {
2184 		bi = rbm_bi(&rbm);
2185 		if (bi != bi_prev) {
2186 			if (!bi->bi_clone) {
2187 				bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2188 						      GFP_NOFS | __GFP_NOFAIL);
2189 				memcpy(bi->bi_clone + bi->bi_offset,
2190 				       bi->bi_bh->b_data + bi->bi_offset,
2191 				       bi->bi_len);
2192 			}
2193 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2194 			bi_prev = bi;
2195 		}
2196 		gfs2_setbit(&rbm, false, new_state);
2197 		gfs2_rbm_incr(&rbm);
2198 	}
2199 
2200 	return rbm.rgd;
2201 }
2202 
2203 /**
2204  * gfs2_rgrp_dump - print out an rgrp
2205  * @seq: The iterator
2206  * @gl: The glock in question
2207  *
2208  */
2209 
2210 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2211 {
2212 	struct gfs2_rgrpd *rgd = gl->gl_object;
2213 	struct gfs2_blkreserv *trs;
2214 	const struct rb_node *n;
2215 
2216 	if (rgd == NULL)
2217 		return;
2218 	gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2219 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2220 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2221 		       rgd->rd_reserved, rgd->rd_extfail_pt);
2222 	spin_lock(&rgd->rd_rsspin);
2223 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2224 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2225 		dump_rs(seq, trs);
2226 	}
2227 	spin_unlock(&rgd->rd_rsspin);
2228 }
2229 
2230 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2231 {
2232 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2233 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2234 		(unsigned long long)rgd->rd_addr);
2235 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2236 	gfs2_rgrp_dump(NULL, rgd->rd_gl);
2237 	rgd->rd_flags |= GFS2_RDF_ERROR;
2238 }
2239 
2240 /**
2241  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2242  * @ip: The inode we have just allocated blocks for
2243  * @rbm: The start of the allocated blocks
2244  * @len: The extent length
2245  *
2246  * Adjusts a reservation after an allocation has taken place. If the
2247  * reservation does not match the allocation, or if it is now empty
2248  * then it is removed.
2249  */
2250 
2251 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2252 				    const struct gfs2_rbm *rbm, unsigned len)
2253 {
2254 	struct gfs2_blkreserv *rs = &ip->i_res;
2255 	struct gfs2_rgrpd *rgd = rbm->rgd;
2256 	unsigned rlen;
2257 	u64 block;
2258 	int ret;
2259 
2260 	spin_lock(&rgd->rd_rsspin);
2261 	if (gfs2_rs_active(rs)) {
2262 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2263 			block = gfs2_rbm_to_block(rbm);
2264 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2265 			rlen = min(rs->rs_free, len);
2266 			rs->rs_free -= rlen;
2267 			rgd->rd_reserved -= rlen;
2268 			trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2269 			if (rs->rs_free && !ret)
2270 				goto out;
2271 			/* We used up our block reservation, so we should
2272 			   reserve more blocks next time. */
2273 			atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2274 		}
2275 		__rs_deltree(rs);
2276 	}
2277 out:
2278 	spin_unlock(&rgd->rd_rsspin);
2279 }
2280 
2281 /**
2282  * gfs2_set_alloc_start - Set starting point for block allocation
2283  * @rbm: The rbm which will be set to the required location
2284  * @ip: The gfs2 inode
2285  * @dinode: Flag to say if allocation includes a new inode
2286  *
2287  * This sets the starting point from the reservation if one is active
2288  * otherwise it falls back to guessing a start point based on the
2289  * inode's goal block or the last allocation point in the rgrp.
2290  */
2291 
2292 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2293 				 const struct gfs2_inode *ip, bool dinode)
2294 {
2295 	u64 goal;
2296 
2297 	if (gfs2_rs_active(&ip->i_res)) {
2298 		*rbm = ip->i_res.rs_rbm;
2299 		return;
2300 	}
2301 
2302 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2303 		goal = ip->i_goal;
2304 	else
2305 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2306 
2307 	gfs2_rbm_from_block(rbm, goal);
2308 }
2309 
2310 /**
2311  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2312  * @ip: the inode to allocate the block for
2313  * @bn: Used to return the starting block number
2314  * @nblocks: requested number of blocks/extent length (value/result)
2315  * @dinode: 1 if we're allocating a dinode block, else 0
2316  * @generation: the generation number of the inode
2317  *
2318  * Returns: 0 or error
2319  */
2320 
2321 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2322 		      bool dinode, u64 *generation)
2323 {
2324 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2325 	struct buffer_head *dibh;
2326 	struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2327 	unsigned int ndata;
2328 	u64 block; /* block, within the file system scope */
2329 	int error;
2330 
2331 	gfs2_set_alloc_start(&rbm, ip, dinode);
2332 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2333 
2334 	if (error == -ENOSPC) {
2335 		gfs2_set_alloc_start(&rbm, ip, dinode);
2336 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2337 	}
2338 
2339 	/* Since all blocks are reserved in advance, this shouldn't happen */
2340 	if (error) {
2341 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2342 			(unsigned long long)ip->i_no_addr, error, *nblocks,
2343 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2344 			rbm.rgd->rd_extfail_pt);
2345 		goto rgrp_error;
2346 	}
2347 
2348 	gfs2_alloc_extent(&rbm, dinode, nblocks);
2349 	block = gfs2_rbm_to_block(&rbm);
2350 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2351 	if (gfs2_rs_active(&ip->i_res))
2352 		gfs2_adjust_reservation(ip, &rbm, *nblocks);
2353 	ndata = *nblocks;
2354 	if (dinode)
2355 		ndata--;
2356 
2357 	if (!dinode) {
2358 		ip->i_goal = block + ndata - 1;
2359 		error = gfs2_meta_inode_buffer(ip, &dibh);
2360 		if (error == 0) {
2361 			struct gfs2_dinode *di =
2362 				(struct gfs2_dinode *)dibh->b_data;
2363 			gfs2_trans_add_meta(ip->i_gl, dibh);
2364 			di->di_goal_meta = di->di_goal_data =
2365 				cpu_to_be64(ip->i_goal);
2366 			brelse(dibh);
2367 		}
2368 	}
2369 	if (rbm.rgd->rd_free < *nblocks) {
2370 		pr_warn("nblocks=%u\n", *nblocks);
2371 		goto rgrp_error;
2372 	}
2373 
2374 	rbm.rgd->rd_free -= *nblocks;
2375 	if (dinode) {
2376 		rbm.rgd->rd_dinodes++;
2377 		*generation = rbm.rgd->rd_igeneration++;
2378 		if (*generation == 0)
2379 			*generation = rbm.rgd->rd_igeneration++;
2380 	}
2381 
2382 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2383 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2384 	gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2385 
2386 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2387 	if (dinode)
2388 		gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2389 
2390 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2391 
2392 	rbm.rgd->rd_free_clone -= *nblocks;
2393 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2394 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2395 	*bn = block;
2396 	return 0;
2397 
2398 rgrp_error:
2399 	gfs2_rgrp_error(rbm.rgd);
2400 	return -EIO;
2401 }
2402 
2403 /**
2404  * __gfs2_free_blocks - free a contiguous run of block(s)
2405  * @ip: the inode these blocks are being freed from
2406  * @bstart: first block of a run of contiguous blocks
2407  * @blen: the length of the block run
2408  * @meta: 1 if the blocks represent metadata
2409  *
2410  */
2411 
2412 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2413 {
2414 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2415 	struct gfs2_rgrpd *rgd;
2416 
2417 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2418 	if (!rgd)
2419 		return;
2420 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2421 	rgd->rd_free += blen;
2422 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2423 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2424 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2425 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2426 
2427 	/* Directories keep their data in the metadata address space */
2428 	if (meta || ip->i_depth)
2429 		gfs2_meta_wipe(ip, bstart, blen);
2430 }
2431 
2432 /**
2433  * gfs2_free_meta - free a contiguous run of data block(s)
2434  * @ip: the inode these blocks are being freed from
2435  * @bstart: first block of a run of contiguous blocks
2436  * @blen: the length of the block run
2437  *
2438  */
2439 
2440 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2441 {
2442 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2443 
2444 	__gfs2_free_blocks(ip, bstart, blen, 1);
2445 	gfs2_statfs_change(sdp, 0, +blen, 0);
2446 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2447 }
2448 
2449 void gfs2_unlink_di(struct inode *inode)
2450 {
2451 	struct gfs2_inode *ip = GFS2_I(inode);
2452 	struct gfs2_sbd *sdp = GFS2_SB(inode);
2453 	struct gfs2_rgrpd *rgd;
2454 	u64 blkno = ip->i_no_addr;
2455 
2456 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2457 	if (!rgd)
2458 		return;
2459 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2460 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2461 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2462 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2463 	update_rgrp_lvb_unlinked(rgd, 1);
2464 }
2465 
2466 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2467 {
2468 	struct gfs2_sbd *sdp = rgd->rd_sbd;
2469 	struct gfs2_rgrpd *tmp_rgd;
2470 
2471 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2472 	if (!tmp_rgd)
2473 		return;
2474 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2475 
2476 	if (!rgd->rd_dinodes)
2477 		gfs2_consist_rgrpd(rgd);
2478 	rgd->rd_dinodes--;
2479 	rgd->rd_free++;
2480 
2481 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2482 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2483 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2484 	update_rgrp_lvb_unlinked(rgd, -1);
2485 
2486 	gfs2_statfs_change(sdp, 0, +1, -1);
2487 }
2488 
2489 
2490 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2491 {
2492 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
2493 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2494 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2495 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2496 }
2497 
2498 /**
2499  * gfs2_check_blk_type - Check the type of a block
2500  * @sdp: The superblock
2501  * @no_addr: The block number to check
2502  * @type: The block type we are looking for
2503  *
2504  * Returns: 0 if the block type matches the expected type
2505  *          -ESTALE if it doesn't match
2506  *          or -ve errno if something went wrong while checking
2507  */
2508 
2509 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2510 {
2511 	struct gfs2_rgrpd *rgd;
2512 	struct gfs2_holder rgd_gh;
2513 	int error = -EINVAL;
2514 
2515 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2516 	if (!rgd)
2517 		goto fail;
2518 
2519 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2520 	if (error)
2521 		goto fail;
2522 
2523 	if (gfs2_get_block_type(rgd, no_addr) != type)
2524 		error = -ESTALE;
2525 
2526 	gfs2_glock_dq_uninit(&rgd_gh);
2527 fail:
2528 	return error;
2529 }
2530 
2531 /**
2532  * gfs2_rlist_add - add a RG to a list of RGs
2533  * @ip: the inode
2534  * @rlist: the list of resource groups
2535  * @block: the block
2536  *
2537  * Figure out what RG a block belongs to and add that RG to the list
2538  *
2539  * FIXME: Don't use NOFAIL
2540  *
2541  */
2542 
2543 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2544 		    u64 block)
2545 {
2546 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2547 	struct gfs2_rgrpd *rgd;
2548 	struct gfs2_rgrpd **tmp;
2549 	unsigned int new_space;
2550 	unsigned int x;
2551 
2552 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2553 		return;
2554 
2555 	if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2556 		rgd = ip->i_rgd;
2557 	else
2558 		rgd = gfs2_blk2rgrpd(sdp, block, 1);
2559 	if (!rgd) {
2560 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2561 		return;
2562 	}
2563 	ip->i_rgd = rgd;
2564 
2565 	for (x = 0; x < rlist->rl_rgrps; x++)
2566 		if (rlist->rl_rgd[x] == rgd)
2567 			return;
2568 
2569 	if (rlist->rl_rgrps == rlist->rl_space) {
2570 		new_space = rlist->rl_space + 10;
2571 
2572 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2573 			      GFP_NOFS | __GFP_NOFAIL);
2574 
2575 		if (rlist->rl_rgd) {
2576 			memcpy(tmp, rlist->rl_rgd,
2577 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2578 			kfree(rlist->rl_rgd);
2579 		}
2580 
2581 		rlist->rl_space = new_space;
2582 		rlist->rl_rgd = tmp;
2583 	}
2584 
2585 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2586 }
2587 
2588 /**
2589  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2590  *      and initialize an array of glock holders for them
2591  * @rlist: the list of resource groups
2592  * @state: the lock state to acquire the RG lock in
2593  *
2594  * FIXME: Don't use NOFAIL
2595  *
2596  */
2597 
2598 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2599 {
2600 	unsigned int x;
2601 
2602 	rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2603 				GFP_NOFS | __GFP_NOFAIL);
2604 	for (x = 0; x < rlist->rl_rgrps; x++)
2605 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2606 				state, 0,
2607 				&rlist->rl_ghs[x]);
2608 }
2609 
2610 /**
2611  * gfs2_rlist_free - free a resource group list
2612  * @rlist: the list of resource groups
2613  *
2614  */
2615 
2616 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2617 {
2618 	unsigned int x;
2619 
2620 	kfree(rlist->rl_rgd);
2621 
2622 	if (rlist->rl_ghs) {
2623 		for (x = 0; x < rlist->rl_rgrps; x++)
2624 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
2625 		kfree(rlist->rl_ghs);
2626 		rlist->rl_ghs = NULL;
2627 	}
2628 }
2629 
2630