xref: /openbmc/linux/fs/gfs2/rgrp.c (revision b627b4ed)
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 
19 #include "gfs2.h"
20 #include "incore.h"
21 #include "glock.h"
22 #include "glops.h"
23 #include "lops.h"
24 #include "meta_io.h"
25 #include "quota.h"
26 #include "rgrp.h"
27 #include "super.h"
28 #include "trans.h"
29 #include "util.h"
30 #include "log.h"
31 #include "inode.h"
32 #include "ops_address.h"
33 
34 #define BFITNOENT ((u32)~0)
35 #define NO_BLOCK ((u64)~0)
36 
37 #if BITS_PER_LONG == 32
38 #define LBITMASK   (0x55555555UL)
39 #define LBITSKIP55 (0x55555555UL)
40 #define LBITSKIP00 (0x00000000UL)
41 #else
42 #define LBITMASK   (0x5555555555555555UL)
43 #define LBITSKIP55 (0x5555555555555555UL)
44 #define LBITSKIP00 (0x0000000000000000UL)
45 #endif
46 
47 /*
48  * These routines are used by the resource group routines (rgrp.c)
49  * to keep track of block allocation.  Each block is represented by two
50  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
51  *
52  * 0 = Free
53  * 1 = Used (not metadata)
54  * 2 = Unlinked (still in use) inode
55  * 3 = Used (metadata)
56  */
57 
58 static const char valid_change[16] = {
59 	        /* current */
60 	/* n */ 0, 1, 1, 1,
61 	/* e */ 1, 0, 0, 0,
62 	/* w */ 0, 0, 0, 1,
63 	        1, 0, 0, 0
64 };
65 
66 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
67                         unsigned char old_state, unsigned char new_state,
68 			unsigned int *n);
69 
70 /**
71  * gfs2_setbit - Set a bit in the bitmaps
72  * @buffer: the buffer that holds the bitmaps
73  * @buflen: the length (in bytes) of the buffer
74  * @block: the block to set
75  * @new_state: the new state of the block
76  *
77  */
78 
79 static inline void gfs2_setbit(struct gfs2_rgrpd *rgd, unsigned char *buf1,
80 			       unsigned char *buf2, unsigned int offset,
81 			       unsigned int buflen, u32 block,
82 			       unsigned char new_state)
83 {
84 	unsigned char *byte1, *byte2, *end, cur_state;
85 	const unsigned int bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
86 
87 	byte1 = buf1 + offset + (block / GFS2_NBBY);
88 	end = buf1 + offset + buflen;
89 
90 	BUG_ON(byte1 >= end);
91 
92 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
93 
94 	if (unlikely(!valid_change[new_state * 4 + cur_state])) {
95 		gfs2_consist_rgrpd(rgd);
96 		return;
97 	}
98 	*byte1 ^= (cur_state ^ new_state) << bit;
99 
100 	if (buf2) {
101 		byte2 = buf2 + offset + (block / GFS2_NBBY);
102 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
103 		*byte2 ^= (cur_state ^ new_state) << bit;
104 	}
105 }
106 
107 /**
108  * gfs2_testbit - test a bit in the bitmaps
109  * @buffer: the buffer that holds the bitmaps
110  * @buflen: the length (in bytes) of the buffer
111  * @block: the block to read
112  *
113  */
114 
115 static inline unsigned char gfs2_testbit(struct gfs2_rgrpd *rgd,
116 					 const unsigned char *buffer,
117 					 unsigned int buflen, u32 block)
118 {
119 	const unsigned char *byte, *end;
120 	unsigned char cur_state;
121 	unsigned int bit;
122 
123 	byte = buffer + (block / GFS2_NBBY);
124 	bit = (block % GFS2_NBBY) * GFS2_BIT_SIZE;
125 	end = buffer + buflen;
126 
127 	gfs2_assert(rgd->rd_sbd, byte < end);
128 
129 	cur_state = (*byte >> bit) & GFS2_BIT_MASK;
130 
131 	return cur_state;
132 }
133 
134 /**
135  * gfs2_bit_search
136  * @ptr: Pointer to bitmap data
137  * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
138  * @state: The state we are searching for
139  *
140  * We xor the bitmap data with a patter which is the bitwise opposite
141  * of what we are looking for, this gives rise to a pattern of ones
142  * wherever there is a match. Since we have two bits per entry, we
143  * take this pattern, shift it down by one place and then and it with
144  * the original. All the even bit positions (0,2,4, etc) then represent
145  * successful matches, so we mask with 0x55555..... to remove the unwanted
146  * odd bit positions.
147  *
148  * This allows searching of a whole u64 at once (32 blocks) with a
149  * single test (on 64 bit arches).
150  */
151 
152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
153 {
154 	u64 tmp;
155 	static const u64 search[] = {
156 		[0] = 0xffffffffffffffffULL,
157 		[1] = 0xaaaaaaaaaaaaaaaaULL,
158 		[2] = 0x5555555555555555ULL,
159 		[3] = 0x0000000000000000ULL,
160 	};
161 	tmp = le64_to_cpu(*ptr) ^ search[state];
162 	tmp &= (tmp >> 1);
163 	tmp &= mask;
164 	return tmp;
165 }
166 
167 /**
168  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
169  *       a block in a given allocation state.
170  * @buffer: the buffer that holds the bitmaps
171  * @len: the length (in bytes) of the buffer
172  * @goal: start search at this block's bit-pair (within @buffer)
173  * @state: GFS2_BLKST_XXX the state of the block we're looking for.
174  *
175  * Scope of @goal and returned block number is only within this bitmap buffer,
176  * not entire rgrp or filesystem.  @buffer will be offset from the actual
177  * beginning of a bitmap block buffer, skipping any header structures, but
178  * headers are always a multiple of 64 bits long so that the buffer is
179  * always aligned to a 64 bit boundary.
180  *
181  * The size of the buffer is in bytes, but is it assumed that it is
182  * always ok to to read a complete multiple of 64 bits at the end
183  * of the block in case the end is no aligned to a natural boundary.
184  *
185  * Return: the block number (bitmap buffer scope) that was found
186  */
187 
188 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
189 		       u32 goal, u8 state)
190 {
191 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
192 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
193 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
194 	u64 tmp;
195 	u64 mask = 0x5555555555555555ULL;
196 	u32 bit;
197 
198 	BUG_ON(state > 3);
199 
200 	/* Mask off bits we don't care about at the start of the search */
201 	mask <<= spoint;
202 	tmp = gfs2_bit_search(ptr, mask, state);
203 	ptr++;
204 	while(tmp == 0 && ptr < end) {
205 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
206 		ptr++;
207 	}
208 	/* Mask off any bits which are more than len bytes from the start */
209 	if (ptr == end && (len & (sizeof(u64) - 1)))
210 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
211 	/* Didn't find anything, so return */
212 	if (tmp == 0)
213 		return BFITNOENT;
214 	ptr--;
215 	bit = fls64(tmp);
216 	bit--;		/* fls64 always adds one to the bit count */
217 	bit /= 2;	/* two bits per entry in the bitmap */
218 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
219 }
220 
221 /**
222  * gfs2_bitcount - count the number of bits in a certain state
223  * @buffer: the buffer that holds the bitmaps
224  * @buflen: the length (in bytes) of the buffer
225  * @state: the state of the block we're looking for
226  *
227  * Returns: The number of bits
228  */
229 
230 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
231 			 unsigned int buflen, u8 state)
232 {
233 	const u8 *byte = buffer;
234 	const u8 *end = buffer + buflen;
235 	const u8 state1 = state << 2;
236 	const u8 state2 = state << 4;
237 	const u8 state3 = state << 6;
238 	u32 count = 0;
239 
240 	for (; byte < end; byte++) {
241 		if (((*byte) & 0x03) == state)
242 			count++;
243 		if (((*byte) & 0x0C) == state1)
244 			count++;
245 		if (((*byte) & 0x30) == state2)
246 			count++;
247 		if (((*byte) & 0xC0) == state3)
248 			count++;
249 	}
250 
251 	return count;
252 }
253 
254 /**
255  * gfs2_rgrp_verify - Verify that a resource group is consistent
256  * @sdp: the filesystem
257  * @rgd: the rgrp
258  *
259  */
260 
261 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
262 {
263 	struct gfs2_sbd *sdp = rgd->rd_sbd;
264 	struct gfs2_bitmap *bi = NULL;
265 	u32 length = rgd->rd_length;
266 	u32 count[4], tmp;
267 	int buf, x;
268 
269 	memset(count, 0, 4 * sizeof(u32));
270 
271 	/* Count # blocks in each of 4 possible allocation states */
272 	for (buf = 0; buf < length; buf++) {
273 		bi = rgd->rd_bits + buf;
274 		for (x = 0; x < 4; x++)
275 			count[x] += gfs2_bitcount(rgd,
276 						  bi->bi_bh->b_data +
277 						  bi->bi_offset,
278 						  bi->bi_len, x);
279 	}
280 
281 	if (count[0] != rgd->rd_free) {
282 		if (gfs2_consist_rgrpd(rgd))
283 			fs_err(sdp, "free data mismatch:  %u != %u\n",
284 			       count[0], rgd->rd_free);
285 		return;
286 	}
287 
288 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
289 	if (count[1] + count[2] != tmp) {
290 		if (gfs2_consist_rgrpd(rgd))
291 			fs_err(sdp, "used data mismatch:  %u != %u\n",
292 			       count[1], tmp);
293 		return;
294 	}
295 
296 	if (count[3] != rgd->rd_dinodes) {
297 		if (gfs2_consist_rgrpd(rgd))
298 			fs_err(sdp, "used metadata mismatch:  %u != %u\n",
299 			       count[3], rgd->rd_dinodes);
300 		return;
301 	}
302 
303 	if (count[2] > count[3]) {
304 		if (gfs2_consist_rgrpd(rgd))
305 			fs_err(sdp, "unlinked inodes > inodes:  %u\n",
306 			       count[2]);
307 		return;
308 	}
309 
310 }
311 
312 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
313 {
314 	u64 first = rgd->rd_data0;
315 	u64 last = first + rgd->rd_data;
316 	return first <= block && block < last;
317 }
318 
319 /**
320  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
321  * @sdp: The GFS2 superblock
322  * @n: The data block number
323  *
324  * Returns: The resource group, or NULL if not found
325  */
326 
327 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk)
328 {
329 	struct gfs2_rgrpd *rgd;
330 
331 	spin_lock(&sdp->sd_rindex_spin);
332 
333 	list_for_each_entry(rgd, &sdp->sd_rindex_mru_list, rd_list_mru) {
334 		if (rgrp_contains_block(rgd, blk)) {
335 			list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
336 			spin_unlock(&sdp->sd_rindex_spin);
337 			return rgd;
338 		}
339 	}
340 
341 	spin_unlock(&sdp->sd_rindex_spin);
342 
343 	return NULL;
344 }
345 
346 /**
347  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
348  * @sdp: The GFS2 superblock
349  *
350  * Returns: The first rgrp in the filesystem
351  */
352 
353 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
354 {
355 	gfs2_assert(sdp, !list_empty(&sdp->sd_rindex_list));
356 	return list_entry(sdp->sd_rindex_list.next, struct gfs2_rgrpd, rd_list);
357 }
358 
359 /**
360  * gfs2_rgrpd_get_next - get the next RG
361  * @rgd: A RG
362  *
363  * Returns: The next rgrp
364  */
365 
366 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
367 {
368 	if (rgd->rd_list.next == &rgd->rd_sbd->sd_rindex_list)
369 		return NULL;
370 	return list_entry(rgd->rd_list.next, struct gfs2_rgrpd, rd_list);
371 }
372 
373 static void clear_rgrpdi(struct gfs2_sbd *sdp)
374 {
375 	struct list_head *head;
376 	struct gfs2_rgrpd *rgd;
377 	struct gfs2_glock *gl;
378 
379 	spin_lock(&sdp->sd_rindex_spin);
380 	sdp->sd_rindex_forward = NULL;
381 	spin_unlock(&sdp->sd_rindex_spin);
382 
383 	head = &sdp->sd_rindex_list;
384 	while (!list_empty(head)) {
385 		rgd = list_entry(head->next, struct gfs2_rgrpd, rd_list);
386 		gl = rgd->rd_gl;
387 
388 		list_del(&rgd->rd_list);
389 		list_del(&rgd->rd_list_mru);
390 
391 		if (gl) {
392 			gl->gl_object = NULL;
393 			gfs2_glock_put(gl);
394 		}
395 
396 		kfree(rgd->rd_bits);
397 		kmem_cache_free(gfs2_rgrpd_cachep, rgd);
398 	}
399 }
400 
401 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
402 {
403 	mutex_lock(&sdp->sd_rindex_mutex);
404 	clear_rgrpdi(sdp);
405 	mutex_unlock(&sdp->sd_rindex_mutex);
406 }
407 
408 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
409 {
410 	printk(KERN_INFO "  ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
411 	printk(KERN_INFO "  ri_length = %u\n", rgd->rd_length);
412 	printk(KERN_INFO "  ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
413 	printk(KERN_INFO "  ri_data = %u\n", rgd->rd_data);
414 	printk(KERN_INFO "  ri_bitbytes = %u\n", rgd->rd_bitbytes);
415 }
416 
417 /**
418  * gfs2_compute_bitstructs - Compute the bitmap sizes
419  * @rgd: The resource group descriptor
420  *
421  * Calculates bitmap descriptors, one for each block that contains bitmap data
422  *
423  * Returns: errno
424  */
425 
426 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
427 {
428 	struct gfs2_sbd *sdp = rgd->rd_sbd;
429 	struct gfs2_bitmap *bi;
430 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
431 	u32 bytes_left, bytes;
432 	int x;
433 
434 	if (!length)
435 		return -EINVAL;
436 
437 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
438 	if (!rgd->rd_bits)
439 		return -ENOMEM;
440 
441 	bytes_left = rgd->rd_bitbytes;
442 
443 	for (x = 0; x < length; x++) {
444 		bi = rgd->rd_bits + x;
445 
446 		/* small rgrp; bitmap stored completely in header block */
447 		if (length == 1) {
448 			bytes = bytes_left;
449 			bi->bi_offset = sizeof(struct gfs2_rgrp);
450 			bi->bi_start = 0;
451 			bi->bi_len = bytes;
452 		/* header block */
453 		} else if (x == 0) {
454 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
455 			bi->bi_offset = sizeof(struct gfs2_rgrp);
456 			bi->bi_start = 0;
457 			bi->bi_len = bytes;
458 		/* last block */
459 		} else if (x + 1 == length) {
460 			bytes = bytes_left;
461 			bi->bi_offset = sizeof(struct gfs2_meta_header);
462 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
463 			bi->bi_len = bytes;
464 		/* other blocks */
465 		} else {
466 			bytes = sdp->sd_sb.sb_bsize -
467 				sizeof(struct gfs2_meta_header);
468 			bi->bi_offset = sizeof(struct gfs2_meta_header);
469 			bi->bi_start = rgd->rd_bitbytes - bytes_left;
470 			bi->bi_len = bytes;
471 		}
472 
473 		bytes_left -= bytes;
474 	}
475 
476 	if (bytes_left) {
477 		gfs2_consist_rgrpd(rgd);
478 		return -EIO;
479 	}
480 	bi = rgd->rd_bits + (length - 1);
481 	if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
482 		if (gfs2_consist_rgrpd(rgd)) {
483 			gfs2_rindex_print(rgd);
484 			fs_err(sdp, "start=%u len=%u offset=%u\n",
485 			       bi->bi_start, bi->bi_len, bi->bi_offset);
486 		}
487 		return -EIO;
488 	}
489 
490 	return 0;
491 }
492 
493 /**
494  * gfs2_ri_total - Total up the file system space, according to the rindex.
495  *
496  */
497 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
498 {
499 	u64 total_data = 0;
500 	struct inode *inode = sdp->sd_rindex;
501 	struct gfs2_inode *ip = GFS2_I(inode);
502 	char buf[sizeof(struct gfs2_rindex)];
503 	struct file_ra_state ra_state;
504 	int error, rgrps;
505 
506 	mutex_lock(&sdp->sd_rindex_mutex);
507 	file_ra_state_init(&ra_state, inode->i_mapping);
508 	for (rgrps = 0;; rgrps++) {
509 		loff_t pos = rgrps * sizeof(struct gfs2_rindex);
510 
511 		if (pos + sizeof(struct gfs2_rindex) >= ip->i_disksize)
512 			break;
513 		error = gfs2_internal_read(ip, &ra_state, buf, &pos,
514 					   sizeof(struct gfs2_rindex));
515 		if (error != sizeof(struct gfs2_rindex))
516 			break;
517 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
518 	}
519 	mutex_unlock(&sdp->sd_rindex_mutex);
520 	return total_data;
521 }
522 
523 static void gfs2_rindex_in(struct gfs2_rgrpd *rgd, const void *buf)
524 {
525 	const struct gfs2_rindex *str = buf;
526 
527 	rgd->rd_addr = be64_to_cpu(str->ri_addr);
528 	rgd->rd_length = be32_to_cpu(str->ri_length);
529 	rgd->rd_data0 = be64_to_cpu(str->ri_data0);
530 	rgd->rd_data = be32_to_cpu(str->ri_data);
531 	rgd->rd_bitbytes = be32_to_cpu(str->ri_bitbytes);
532 }
533 
534 /**
535  * read_rindex_entry - Pull in a new resource index entry from the disk
536  * @gl: The glock covering the rindex inode
537  *
538  * Returns: 0 on success, error code otherwise
539  */
540 
541 static int read_rindex_entry(struct gfs2_inode *ip,
542 			     struct file_ra_state *ra_state)
543 {
544 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
545 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
546 	char buf[sizeof(struct gfs2_rindex)];
547 	int error;
548 	struct gfs2_rgrpd *rgd;
549 
550 	error = gfs2_internal_read(ip, ra_state, buf, &pos,
551 				   sizeof(struct gfs2_rindex));
552 	if (!error)
553 		return 0;
554 	if (error != sizeof(struct gfs2_rindex)) {
555 		if (error > 0)
556 			error = -EIO;
557 		return error;
558 	}
559 
560 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
561 	error = -ENOMEM;
562 	if (!rgd)
563 		return error;
564 
565 	mutex_init(&rgd->rd_mutex);
566 	lops_init_le(&rgd->rd_le, &gfs2_rg_lops);
567 	rgd->rd_sbd = sdp;
568 
569 	list_add_tail(&rgd->rd_list, &sdp->sd_rindex_list);
570 	list_add_tail(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
571 
572 	gfs2_rindex_in(rgd, buf);
573 	error = compute_bitstructs(rgd);
574 	if (error)
575 		return error;
576 
577 	error = gfs2_glock_get(sdp, rgd->rd_addr,
578 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
579 	if (error)
580 		return error;
581 
582 	rgd->rd_gl->gl_object = rgd;
583 	rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
584 	rgd->rd_flags |= GFS2_RDF_CHECK;
585 	return error;
586 }
587 
588 /**
589  * gfs2_ri_update - Pull in a new resource index from the disk
590  * @ip: pointer to the rindex inode
591  *
592  * Returns: 0 on successful update, error code otherwise
593  */
594 
595 static int gfs2_ri_update(struct gfs2_inode *ip)
596 {
597 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
598 	struct inode *inode = &ip->i_inode;
599 	struct file_ra_state ra_state;
600 	u64 rgrp_count = ip->i_disksize;
601 	int error;
602 
603 	if (do_div(rgrp_count, sizeof(struct gfs2_rindex))) {
604 		gfs2_consist_inode(ip);
605 		return -EIO;
606 	}
607 
608 	clear_rgrpdi(sdp);
609 
610 	file_ra_state_init(&ra_state, inode->i_mapping);
611 	for (sdp->sd_rgrps = 0; sdp->sd_rgrps < rgrp_count; sdp->sd_rgrps++) {
612 		error = read_rindex_entry(ip, &ra_state);
613 		if (error) {
614 			clear_rgrpdi(sdp);
615 			return error;
616 		}
617 	}
618 
619 	sdp->sd_rindex_uptodate = 1;
620 	return 0;
621 }
622 
623 /**
624  * gfs2_ri_update_special - Pull in a new resource index from the disk
625  *
626  * This is a special version that's safe to call from gfs2_inplace_reserve_i.
627  * In this case we know that we don't have any resource groups in memory yet.
628  *
629  * @ip: pointer to the rindex inode
630  *
631  * Returns: 0 on successful update, error code otherwise
632  */
633 static int gfs2_ri_update_special(struct gfs2_inode *ip)
634 {
635 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
636 	struct inode *inode = &ip->i_inode;
637 	struct file_ra_state ra_state;
638 	int error;
639 
640 	file_ra_state_init(&ra_state, inode->i_mapping);
641 	for (sdp->sd_rgrps = 0;; sdp->sd_rgrps++) {
642 		/* Ignore partials */
643 		if ((sdp->sd_rgrps + 1) * sizeof(struct gfs2_rindex) >
644 		    ip->i_disksize)
645 			break;
646 		error = read_rindex_entry(ip, &ra_state);
647 		if (error) {
648 			clear_rgrpdi(sdp);
649 			return error;
650 		}
651 	}
652 
653 	sdp->sd_rindex_uptodate = 1;
654 	return 0;
655 }
656 
657 /**
658  * gfs2_rindex_hold - Grab a lock on the rindex
659  * @sdp: The GFS2 superblock
660  * @ri_gh: the glock holder
661  *
662  * We grab a lock on the rindex inode to make sure that it doesn't
663  * change whilst we are performing an operation. We keep this lock
664  * for quite long periods of time compared to other locks. This
665  * doesn't matter, since it is shared and it is very, very rarely
666  * accessed in the exclusive mode (i.e. only when expanding the filesystem).
667  *
668  * This makes sure that we're using the latest copy of the resource index
669  * special file, which might have been updated if someone expanded the
670  * filesystem (via gfs2_grow utility), which adds new resource groups.
671  *
672  * Returns: 0 on success, error code otherwise
673  */
674 
675 int gfs2_rindex_hold(struct gfs2_sbd *sdp, struct gfs2_holder *ri_gh)
676 {
677 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
678 	struct gfs2_glock *gl = ip->i_gl;
679 	int error;
680 
681 	error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, ri_gh);
682 	if (error)
683 		return error;
684 
685 	/* Read new copy from disk if we don't have the latest */
686 	if (!sdp->sd_rindex_uptodate) {
687 		mutex_lock(&sdp->sd_rindex_mutex);
688 		if (!sdp->sd_rindex_uptodate) {
689 			error = gfs2_ri_update(ip);
690 			if (error)
691 				gfs2_glock_dq_uninit(ri_gh);
692 		}
693 		mutex_unlock(&sdp->sd_rindex_mutex);
694 	}
695 
696 	return error;
697 }
698 
699 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
700 {
701 	const struct gfs2_rgrp *str = buf;
702 	u32 rg_flags;
703 
704 	rg_flags = be32_to_cpu(str->rg_flags);
705 	if (rg_flags & GFS2_RGF_NOALLOC)
706 		rgd->rd_flags |= GFS2_RDF_NOALLOC;
707 	else
708 		rgd->rd_flags &= ~GFS2_RDF_NOALLOC;
709 	rgd->rd_free = be32_to_cpu(str->rg_free);
710 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
711 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
712 }
713 
714 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
715 {
716 	struct gfs2_rgrp *str = buf;
717 	u32 rg_flags = 0;
718 
719 	if (rgd->rd_flags & GFS2_RDF_NOALLOC)
720 		rg_flags |= GFS2_RGF_NOALLOC;
721 	str->rg_flags = cpu_to_be32(rg_flags);
722 	str->rg_free = cpu_to_be32(rgd->rd_free);
723 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
724 	str->__pad = cpu_to_be32(0);
725 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
726 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
727 }
728 
729 /**
730  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
731  * @rgd: the struct gfs2_rgrpd describing the RG to read in
732  *
733  * Read in all of a Resource Group's header and bitmap blocks.
734  * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
735  *
736  * Returns: errno
737  */
738 
739 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
740 {
741 	struct gfs2_sbd *sdp = rgd->rd_sbd;
742 	struct gfs2_glock *gl = rgd->rd_gl;
743 	unsigned int length = rgd->rd_length;
744 	struct gfs2_bitmap *bi;
745 	unsigned int x, y;
746 	int error;
747 
748 	mutex_lock(&rgd->rd_mutex);
749 
750 	spin_lock(&sdp->sd_rindex_spin);
751 	if (rgd->rd_bh_count) {
752 		rgd->rd_bh_count++;
753 		spin_unlock(&sdp->sd_rindex_spin);
754 		mutex_unlock(&rgd->rd_mutex);
755 		return 0;
756 	}
757 	spin_unlock(&sdp->sd_rindex_spin);
758 
759 	for (x = 0; x < length; x++) {
760 		bi = rgd->rd_bits + x;
761 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
762 		if (error)
763 			goto fail;
764 	}
765 
766 	for (y = length; y--;) {
767 		bi = rgd->rd_bits + y;
768 		error = gfs2_meta_wait(sdp, bi->bi_bh);
769 		if (error)
770 			goto fail;
771 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
772 					      GFS2_METATYPE_RG)) {
773 			error = -EIO;
774 			goto fail;
775 		}
776 	}
777 
778 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
779 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
780 		rgd->rd_flags |= GFS2_RDF_UPTODATE;
781 	}
782 
783 	spin_lock(&sdp->sd_rindex_spin);
784 	rgd->rd_free_clone = rgd->rd_free;
785 	rgd->rd_bh_count++;
786 	spin_unlock(&sdp->sd_rindex_spin);
787 
788 	mutex_unlock(&rgd->rd_mutex);
789 
790 	return 0;
791 
792 fail:
793 	while (x--) {
794 		bi = rgd->rd_bits + x;
795 		brelse(bi->bi_bh);
796 		bi->bi_bh = NULL;
797 		gfs2_assert_warn(sdp, !bi->bi_clone);
798 	}
799 	mutex_unlock(&rgd->rd_mutex);
800 
801 	return error;
802 }
803 
804 void gfs2_rgrp_bh_hold(struct gfs2_rgrpd *rgd)
805 {
806 	struct gfs2_sbd *sdp = rgd->rd_sbd;
807 
808 	spin_lock(&sdp->sd_rindex_spin);
809 	gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count);
810 	rgd->rd_bh_count++;
811 	spin_unlock(&sdp->sd_rindex_spin);
812 }
813 
814 /**
815  * gfs2_rgrp_bh_put - Release RG bitmaps read in with gfs2_rgrp_bh_get()
816  * @rgd: the struct gfs2_rgrpd describing the RG to read in
817  *
818  */
819 
820 void gfs2_rgrp_bh_put(struct gfs2_rgrpd *rgd)
821 {
822 	struct gfs2_sbd *sdp = rgd->rd_sbd;
823 	int x, length = rgd->rd_length;
824 
825 	spin_lock(&sdp->sd_rindex_spin);
826 	gfs2_assert_warn(rgd->rd_sbd, rgd->rd_bh_count);
827 	if (--rgd->rd_bh_count) {
828 		spin_unlock(&sdp->sd_rindex_spin);
829 		return;
830 	}
831 
832 	for (x = 0; x < length; x++) {
833 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
834 		kfree(bi->bi_clone);
835 		bi->bi_clone = NULL;
836 		brelse(bi->bi_bh);
837 		bi->bi_bh = NULL;
838 	}
839 
840 	spin_unlock(&sdp->sd_rindex_spin);
841 }
842 
843 static void gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
844 				    const struct gfs2_bitmap *bi)
845 {
846 	struct super_block *sb = sdp->sd_vfs;
847 	struct block_device *bdev = sb->s_bdev;
848 	const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
849 					   bdev_hardsect_size(sb->s_bdev);
850 	u64 blk;
851 	sector_t start = 0;
852 	sector_t nr_sects = 0;
853 	int rv;
854 	unsigned int x;
855 
856 	for (x = 0; x < bi->bi_len; x++) {
857 		const u8 *orig = bi->bi_bh->b_data + bi->bi_offset + x;
858 		const u8 *clone = bi->bi_clone + bi->bi_offset + x;
859 		u8 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
860 		diff &= 0x55;
861 		if (diff == 0)
862 			continue;
863 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
864 		blk *= sects_per_blk; /* convert to sectors */
865 		while(diff) {
866 			if (diff & 1) {
867 				if (nr_sects == 0)
868 					goto start_new_extent;
869 				if ((start + nr_sects) != blk) {
870 					rv = blkdev_issue_discard(bdev, start,
871 							    nr_sects, GFP_NOFS);
872 					if (rv)
873 						goto fail;
874 					nr_sects = 0;
875 start_new_extent:
876 					start = blk;
877 				}
878 				nr_sects += sects_per_blk;
879 			}
880 			diff >>= 2;
881 			blk += sects_per_blk;
882 		}
883 	}
884 	if (nr_sects) {
885 		rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS);
886 		if (rv)
887 			goto fail;
888 	}
889 	return;
890 fail:
891 	fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
892 	sdp->sd_args.ar_discard = 0;
893 }
894 
895 void gfs2_rgrp_repolish_clones(struct gfs2_rgrpd *rgd)
896 {
897 	struct gfs2_sbd *sdp = rgd->rd_sbd;
898 	unsigned int length = rgd->rd_length;
899 	unsigned int x;
900 
901 	for (x = 0; x < length; x++) {
902 		struct gfs2_bitmap *bi = rgd->rd_bits + x;
903 		if (!bi->bi_clone)
904 			continue;
905 		if (sdp->sd_args.ar_discard)
906 			gfs2_rgrp_send_discards(sdp, rgd->rd_data0, bi);
907 		memcpy(bi->bi_clone + bi->bi_offset,
908 		       bi->bi_bh->b_data + bi->bi_offset, bi->bi_len);
909 	}
910 
911 	spin_lock(&sdp->sd_rindex_spin);
912 	rgd->rd_free_clone = rgd->rd_free;
913 	spin_unlock(&sdp->sd_rindex_spin);
914 }
915 
916 /**
917  * gfs2_alloc_get - get the struct gfs2_alloc structure for an inode
918  * @ip: the incore GFS2 inode structure
919  *
920  * Returns: the struct gfs2_alloc
921  */
922 
923 struct gfs2_alloc *gfs2_alloc_get(struct gfs2_inode *ip)
924 {
925 	BUG_ON(ip->i_alloc != NULL);
926 	ip->i_alloc = kzalloc(sizeof(struct gfs2_alloc), GFP_KERNEL);
927 	return ip->i_alloc;
928 }
929 
930 /**
931  * try_rgrp_fit - See if a given reservation will fit in a given RG
932  * @rgd: the RG data
933  * @al: the struct gfs2_alloc structure describing the reservation
934  *
935  * If there's room for the requested blocks to be allocated from the RG:
936  *   Sets the $al_rgd field in @al.
937  *
938  * Returns: 1 on success (it fits), 0 on failure (it doesn't fit)
939  */
940 
941 static int try_rgrp_fit(struct gfs2_rgrpd *rgd, struct gfs2_alloc *al)
942 {
943 	struct gfs2_sbd *sdp = rgd->rd_sbd;
944 	int ret = 0;
945 
946 	if (rgd->rd_flags & GFS2_RDF_NOALLOC)
947 		return 0;
948 
949 	spin_lock(&sdp->sd_rindex_spin);
950 	if (rgd->rd_free_clone >= al->al_requested) {
951 		al->al_rgd = rgd;
952 		ret = 1;
953 	}
954 	spin_unlock(&sdp->sd_rindex_spin);
955 
956 	return ret;
957 }
958 
959 /**
960  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
961  * @rgd: The rgrp
962  *
963  * Returns: The inode, if one has been found
964  */
965 
966 static struct inode *try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked)
967 {
968 	struct inode *inode;
969 	u32 goal = 0, block;
970 	u64 no_addr;
971 	struct gfs2_sbd *sdp = rgd->rd_sbd;
972 	unsigned int n;
973 
974 	for(;;) {
975 		if (goal >= rgd->rd_data)
976 			break;
977 		down_write(&sdp->sd_log_flush_lock);
978 		n = 1;
979 		block = rgblk_search(rgd, goal, GFS2_BLKST_UNLINKED,
980 				     GFS2_BLKST_UNLINKED, &n);
981 		up_write(&sdp->sd_log_flush_lock);
982 		if (block == BFITNOENT)
983 			break;
984 		/* rgblk_search can return a block < goal, so we need to
985 		   keep it marching forward. */
986 		no_addr = block + rgd->rd_data0;
987 		goal++;
988 		if (*last_unlinked != NO_BLOCK && no_addr <= *last_unlinked)
989 			continue;
990 		*last_unlinked = no_addr;
991 		inode = gfs2_inode_lookup(rgd->rd_sbd->sd_vfs, DT_UNKNOWN,
992 					  no_addr, -1, 1);
993 		if (!IS_ERR(inode))
994 			return inode;
995 	}
996 
997 	rgd->rd_flags &= ~GFS2_RDF_CHECK;
998 	return NULL;
999 }
1000 
1001 /**
1002  * recent_rgrp_next - get next RG from "recent" list
1003  * @cur_rgd: current rgrp
1004  *
1005  * Returns: The next rgrp in the recent list
1006  */
1007 
1008 static struct gfs2_rgrpd *recent_rgrp_next(struct gfs2_rgrpd *cur_rgd)
1009 {
1010 	struct gfs2_sbd *sdp = cur_rgd->rd_sbd;
1011 	struct list_head *head;
1012 	struct gfs2_rgrpd *rgd;
1013 
1014 	spin_lock(&sdp->sd_rindex_spin);
1015 	head = &sdp->sd_rindex_mru_list;
1016 	if (unlikely(cur_rgd->rd_list_mru.next == head)) {
1017 		spin_unlock(&sdp->sd_rindex_spin);
1018 		return NULL;
1019 	}
1020 	rgd = list_entry(cur_rgd->rd_list_mru.next, struct gfs2_rgrpd, rd_list_mru);
1021 	spin_unlock(&sdp->sd_rindex_spin);
1022 	return rgd;
1023 }
1024 
1025 /**
1026  * forward_rgrp_get - get an rgrp to try next from full list
1027  * @sdp: The GFS2 superblock
1028  *
1029  * Returns: The rgrp to try next
1030  */
1031 
1032 static struct gfs2_rgrpd *forward_rgrp_get(struct gfs2_sbd *sdp)
1033 {
1034 	struct gfs2_rgrpd *rgd;
1035 	unsigned int journals = gfs2_jindex_size(sdp);
1036 	unsigned int rg = 0, x;
1037 
1038 	spin_lock(&sdp->sd_rindex_spin);
1039 
1040 	rgd = sdp->sd_rindex_forward;
1041 	if (!rgd) {
1042 		if (sdp->sd_rgrps >= journals)
1043 			rg = sdp->sd_rgrps * sdp->sd_jdesc->jd_jid / journals;
1044 
1045 		for (x = 0, rgd = gfs2_rgrpd_get_first(sdp); x < rg;
1046 		     x++, rgd = gfs2_rgrpd_get_next(rgd))
1047 			/* Do Nothing */;
1048 
1049 		sdp->sd_rindex_forward = rgd;
1050 	}
1051 
1052 	spin_unlock(&sdp->sd_rindex_spin);
1053 
1054 	return rgd;
1055 }
1056 
1057 /**
1058  * forward_rgrp_set - set the forward rgrp pointer
1059  * @sdp: the filesystem
1060  * @rgd: The new forward rgrp
1061  *
1062  */
1063 
1064 static void forward_rgrp_set(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd)
1065 {
1066 	spin_lock(&sdp->sd_rindex_spin);
1067 	sdp->sd_rindex_forward = rgd;
1068 	spin_unlock(&sdp->sd_rindex_spin);
1069 }
1070 
1071 /**
1072  * get_local_rgrp - Choose and lock a rgrp for allocation
1073  * @ip: the inode to reserve space for
1074  * @rgp: the chosen and locked rgrp
1075  *
1076  * Try to acquire rgrp in way which avoids contending with others.
1077  *
1078  * Returns: errno
1079  */
1080 
1081 static struct inode *get_local_rgrp(struct gfs2_inode *ip, u64 *last_unlinked)
1082 {
1083 	struct inode *inode = NULL;
1084 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1085 	struct gfs2_rgrpd *rgd, *begin = NULL;
1086 	struct gfs2_alloc *al = ip->i_alloc;
1087 	int flags = LM_FLAG_TRY;
1088 	int skipped = 0;
1089 	int loops = 0;
1090 	int error, rg_locked;
1091 
1092 	rgd = gfs2_blk2rgrpd(sdp, ip->i_goal);
1093 
1094 	while (rgd) {
1095 		rg_locked = 0;
1096 
1097 		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1098 			rg_locked = 1;
1099 			error = 0;
1100 		} else {
1101 			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1102 						   LM_FLAG_TRY, &al->al_rgd_gh);
1103 		}
1104 		switch (error) {
1105 		case 0:
1106 			if (try_rgrp_fit(rgd, al))
1107 				goto out;
1108 			if (rgd->rd_flags & GFS2_RDF_CHECK)
1109 				inode = try_rgrp_unlink(rgd, last_unlinked);
1110 			if (!rg_locked)
1111 				gfs2_glock_dq_uninit(&al->al_rgd_gh);
1112 			if (inode)
1113 				return inode;
1114 			/* fall through */
1115 		case GLR_TRYFAILED:
1116 			rgd = recent_rgrp_next(rgd);
1117 			break;
1118 
1119 		default:
1120 			return ERR_PTR(error);
1121 		}
1122 	}
1123 
1124 	/* Go through full list of rgrps */
1125 
1126 	begin = rgd = forward_rgrp_get(sdp);
1127 
1128 	for (;;) {
1129 		rg_locked = 0;
1130 
1131 		if (gfs2_glock_is_locked_by_me(rgd->rd_gl)) {
1132 			rg_locked = 1;
1133 			error = 0;
1134 		} else {
1135 			error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, flags,
1136 						   &al->al_rgd_gh);
1137 		}
1138 		switch (error) {
1139 		case 0:
1140 			if (try_rgrp_fit(rgd, al))
1141 				goto out;
1142 			if (rgd->rd_flags & GFS2_RDF_CHECK)
1143 				inode = try_rgrp_unlink(rgd, last_unlinked);
1144 			if (!rg_locked)
1145 				gfs2_glock_dq_uninit(&al->al_rgd_gh);
1146 			if (inode)
1147 				return inode;
1148 			break;
1149 
1150 		case GLR_TRYFAILED:
1151 			skipped++;
1152 			break;
1153 
1154 		default:
1155 			return ERR_PTR(error);
1156 		}
1157 
1158 		rgd = gfs2_rgrpd_get_next(rgd);
1159 		if (!rgd)
1160 			rgd = gfs2_rgrpd_get_first(sdp);
1161 
1162 		if (rgd == begin) {
1163 			if (++loops >= 3)
1164 				return ERR_PTR(-ENOSPC);
1165 			if (!skipped)
1166 				loops++;
1167 			flags = 0;
1168 			if (loops == 2)
1169 				gfs2_log_flush(sdp, NULL);
1170 		}
1171 	}
1172 
1173 out:
1174 	if (begin) {
1175 		spin_lock(&sdp->sd_rindex_spin);
1176 		list_move(&rgd->rd_list_mru, &sdp->sd_rindex_mru_list);
1177 		spin_unlock(&sdp->sd_rindex_spin);
1178 		rgd = gfs2_rgrpd_get_next(rgd);
1179 		if (!rgd)
1180 			rgd = gfs2_rgrpd_get_first(sdp);
1181 		forward_rgrp_set(sdp, rgd);
1182 	}
1183 
1184 	return NULL;
1185 }
1186 
1187 /**
1188  * gfs2_inplace_reserve_i - Reserve space in the filesystem
1189  * @ip: the inode to reserve space for
1190  *
1191  * Returns: errno
1192  */
1193 
1194 int gfs2_inplace_reserve_i(struct gfs2_inode *ip, char *file, unsigned int line)
1195 {
1196 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1197 	struct gfs2_alloc *al = ip->i_alloc;
1198 	struct inode *inode;
1199 	int error = 0;
1200 	u64 last_unlinked = NO_BLOCK;
1201 
1202 	if (gfs2_assert_warn(sdp, al->al_requested))
1203 		return -EINVAL;
1204 
1205 try_again:
1206 	/* We need to hold the rindex unless the inode we're using is
1207 	   the rindex itself, in which case it's already held. */
1208 	if (ip != GFS2_I(sdp->sd_rindex))
1209 		error = gfs2_rindex_hold(sdp, &al->al_ri_gh);
1210 	else if (!sdp->sd_rgrps) /* We may not have the rindex read in, so: */
1211 		error = gfs2_ri_update_special(ip);
1212 
1213 	if (error)
1214 		return error;
1215 
1216 	inode = get_local_rgrp(ip, &last_unlinked);
1217 	if (inode) {
1218 		if (ip != GFS2_I(sdp->sd_rindex))
1219 			gfs2_glock_dq_uninit(&al->al_ri_gh);
1220 		if (IS_ERR(inode))
1221 			return PTR_ERR(inode);
1222 		iput(inode);
1223 		gfs2_log_flush(sdp, NULL);
1224 		goto try_again;
1225 	}
1226 
1227 	al->al_file = file;
1228 	al->al_line = line;
1229 
1230 	return 0;
1231 }
1232 
1233 /**
1234  * gfs2_inplace_release - release an inplace reservation
1235  * @ip: the inode the reservation was taken out on
1236  *
1237  * Release a reservation made by gfs2_inplace_reserve().
1238  */
1239 
1240 void gfs2_inplace_release(struct gfs2_inode *ip)
1241 {
1242 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1243 	struct gfs2_alloc *al = ip->i_alloc;
1244 
1245 	if (gfs2_assert_warn(sdp, al->al_alloced <= al->al_requested) == -1)
1246 		fs_warn(sdp, "al_alloced = %u, al_requested = %u "
1247 			     "al_file = %s, al_line = %u\n",
1248 		             al->al_alloced, al->al_requested, al->al_file,
1249 			     al->al_line);
1250 
1251 	al->al_rgd = NULL;
1252 	if (al->al_rgd_gh.gh_gl)
1253 		gfs2_glock_dq_uninit(&al->al_rgd_gh);
1254 	if (ip != GFS2_I(sdp->sd_rindex))
1255 		gfs2_glock_dq_uninit(&al->al_ri_gh);
1256 }
1257 
1258 /**
1259  * gfs2_get_block_type - Check a block in a RG is of given type
1260  * @rgd: the resource group holding the block
1261  * @block: the block number
1262  *
1263  * Returns: The block type (GFS2_BLKST_*)
1264  */
1265 
1266 unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1267 {
1268 	struct gfs2_bitmap *bi = NULL;
1269 	u32 length, rgrp_block, buf_block;
1270 	unsigned int buf;
1271 	unsigned char type;
1272 
1273 	length = rgd->rd_length;
1274 	rgrp_block = block - rgd->rd_data0;
1275 
1276 	for (buf = 0; buf < length; buf++) {
1277 		bi = rgd->rd_bits + buf;
1278 		if (rgrp_block < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1279 			break;
1280 	}
1281 
1282 	gfs2_assert(rgd->rd_sbd, buf < length);
1283 	buf_block = rgrp_block - bi->bi_start * GFS2_NBBY;
1284 
1285 	type = gfs2_testbit(rgd, bi->bi_bh->b_data + bi->bi_offset,
1286 			   bi->bi_len, buf_block);
1287 
1288 	return type;
1289 }
1290 
1291 /**
1292  * rgblk_search - find a block in @old_state, change allocation
1293  *           state to @new_state
1294  * @rgd: the resource group descriptor
1295  * @goal: the goal block within the RG (start here to search for avail block)
1296  * @old_state: GFS2_BLKST_XXX the before-allocation state to find
1297  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1298  * @n: The extent length
1299  *
1300  * Walk rgrp's bitmap to find bits that represent a block in @old_state.
1301  * Add the found bitmap buffer to the transaction.
1302  * Set the found bits to @new_state to change block's allocation state.
1303  *
1304  * This function never fails, because we wouldn't call it unless we
1305  * know (from reservation results, etc.) that a block is available.
1306  *
1307  * Scope of @goal and returned block is just within rgrp, not the whole
1308  * filesystem.
1309  *
1310  * Returns:  the block number allocated
1311  */
1312 
1313 static u32 rgblk_search(struct gfs2_rgrpd *rgd, u32 goal,
1314 			unsigned char old_state, unsigned char new_state,
1315 			unsigned int *n)
1316 {
1317 	struct gfs2_bitmap *bi = NULL;
1318 	const u32 length = rgd->rd_length;
1319 	u32 blk = 0;
1320 	unsigned int buf, x;
1321 	const unsigned int elen = *n;
1322 	const u8 *buffer;
1323 
1324 	*n = 0;
1325 	/* Find bitmap block that contains bits for goal block */
1326 	for (buf = 0; buf < length; buf++) {
1327 		bi = rgd->rd_bits + buf;
1328 		if (goal < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1329 			break;
1330 	}
1331 
1332 	gfs2_assert(rgd->rd_sbd, buf < length);
1333 
1334 	/* Convert scope of "goal" from rgrp-wide to within found bit block */
1335 	goal -= bi->bi_start * GFS2_NBBY;
1336 
1337 	/* Search (up to entire) bitmap in this rgrp for allocatable block.
1338 	   "x <= length", instead of "x < length", because we typically start
1339 	   the search in the middle of a bit block, but if we can't find an
1340 	   allocatable block anywhere else, we want to be able wrap around and
1341 	   search in the first part of our first-searched bit block.  */
1342 	for (x = 0; x <= length; x++) {
1343 		/* The GFS2_BLKST_UNLINKED state doesn't apply to the clone
1344 		   bitmaps, so we must search the originals for that. */
1345 		buffer = bi->bi_bh->b_data + bi->bi_offset;
1346 		if (old_state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1347 			buffer = bi->bi_clone + bi->bi_offset;
1348 
1349 		blk = gfs2_bitfit(buffer, bi->bi_len, goal, old_state);
1350 		if (blk != BFITNOENT)
1351 			break;
1352 
1353 		/* Try next bitmap block (wrap back to rgrp header if at end) */
1354 		buf = (buf + 1) % length;
1355 		bi = rgd->rd_bits + buf;
1356 		goal = 0;
1357 	}
1358 
1359 	if (blk != BFITNOENT && old_state != new_state) {
1360 		*n = 1;
1361 		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1362 		gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone, bi->bi_offset,
1363 			    bi->bi_len, blk, new_state);
1364 		goal = blk;
1365 		while (*n < elen) {
1366 			goal++;
1367 			if (goal >= (bi->bi_len * GFS2_NBBY))
1368 				break;
1369 			if (gfs2_testbit(rgd, buffer, bi->bi_len, goal) !=
1370 			    GFS2_BLKST_FREE)
1371 				break;
1372 			gfs2_setbit(rgd, bi->bi_bh->b_data, bi->bi_clone,
1373 				    bi->bi_offset, bi->bi_len, goal,
1374 				    new_state);
1375 			(*n)++;
1376 		}
1377 	}
1378 
1379 	return (blk == BFITNOENT) ? blk : (bi->bi_start * GFS2_NBBY) + blk;
1380 }
1381 
1382 /**
1383  * rgblk_free - Change alloc state of given block(s)
1384  * @sdp: the filesystem
1385  * @bstart: the start of a run of blocks to free
1386  * @blen: the length of the block run (all must lie within ONE RG!)
1387  * @new_state: GFS2_BLKST_XXX the after-allocation block state
1388  *
1389  * Returns:  Resource group containing the block(s)
1390  */
1391 
1392 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1393 				     u32 blen, unsigned char new_state)
1394 {
1395 	struct gfs2_rgrpd *rgd;
1396 	struct gfs2_bitmap *bi = NULL;
1397 	u32 length, rgrp_blk, buf_blk;
1398 	unsigned int buf;
1399 
1400 	rgd = gfs2_blk2rgrpd(sdp, bstart);
1401 	if (!rgd) {
1402 		if (gfs2_consist(sdp))
1403 			fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1404 		return NULL;
1405 	}
1406 
1407 	length = rgd->rd_length;
1408 
1409 	rgrp_blk = bstart - rgd->rd_data0;
1410 
1411 	while (blen--) {
1412 		for (buf = 0; buf < length; buf++) {
1413 			bi = rgd->rd_bits + buf;
1414 			if (rgrp_blk < (bi->bi_start + bi->bi_len) * GFS2_NBBY)
1415 				break;
1416 		}
1417 
1418 		gfs2_assert(rgd->rd_sbd, buf < length);
1419 
1420 		buf_blk = rgrp_blk - bi->bi_start * GFS2_NBBY;
1421 		rgrp_blk++;
1422 
1423 		if (!bi->bi_clone) {
1424 			bi->bi_clone = kmalloc(bi->bi_bh->b_size,
1425 					       GFP_NOFS | __GFP_NOFAIL);
1426 			memcpy(bi->bi_clone + bi->bi_offset,
1427 			       bi->bi_bh->b_data + bi->bi_offset,
1428 			       bi->bi_len);
1429 		}
1430 		gfs2_trans_add_bh(rgd->rd_gl, bi->bi_bh, 1);
1431 		gfs2_setbit(rgd, bi->bi_bh->b_data, NULL, bi->bi_offset,
1432 			    bi->bi_len, buf_blk, new_state);
1433 	}
1434 
1435 	return rgd;
1436 }
1437 
1438 /**
1439  * gfs2_alloc_block - Allocate a block
1440  * @ip: the inode to allocate the block for
1441  *
1442  * Returns: the allocated block
1443  */
1444 
1445 u64 gfs2_alloc_block(struct gfs2_inode *ip, unsigned int *n)
1446 {
1447 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1448 	struct gfs2_alloc *al = ip->i_alloc;
1449 	struct gfs2_rgrpd *rgd = al->al_rgd;
1450 	u32 goal, blk;
1451 	u64 block;
1452 
1453 	if (rgrp_contains_block(rgd, ip->i_goal))
1454 		goal = ip->i_goal - rgd->rd_data0;
1455 	else
1456 		goal = rgd->rd_last_alloc;
1457 
1458 	blk = rgblk_search(rgd, goal, GFS2_BLKST_FREE, GFS2_BLKST_USED, n);
1459 	BUG_ON(blk == BFITNOENT);
1460 
1461 	rgd->rd_last_alloc = blk;
1462 	block = rgd->rd_data0 + blk;
1463 	ip->i_goal = block;
1464 
1465 	gfs2_assert_withdraw(sdp, rgd->rd_free >= *n);
1466 	rgd->rd_free -= *n;
1467 
1468 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1469 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1470 
1471 	al->al_alloced += *n;
1472 
1473 	gfs2_statfs_change(sdp, 0, -(s64)*n, 0);
1474 	gfs2_quota_change(ip, *n, ip->i_inode.i_uid, ip->i_inode.i_gid);
1475 
1476 	spin_lock(&sdp->sd_rindex_spin);
1477 	rgd->rd_free_clone -= *n;
1478 	spin_unlock(&sdp->sd_rindex_spin);
1479 
1480 	return block;
1481 }
1482 
1483 /**
1484  * gfs2_alloc_di - Allocate a dinode
1485  * @dip: the directory that the inode is going in
1486  *
1487  * Returns: the block allocated
1488  */
1489 
1490 u64 gfs2_alloc_di(struct gfs2_inode *dip, u64 *generation)
1491 {
1492 	struct gfs2_sbd *sdp = GFS2_SB(&dip->i_inode);
1493 	struct gfs2_alloc *al = dip->i_alloc;
1494 	struct gfs2_rgrpd *rgd = al->al_rgd;
1495 	u32 blk;
1496 	u64 block;
1497 	unsigned int n = 1;
1498 
1499 	blk = rgblk_search(rgd, rgd->rd_last_alloc,
1500 			   GFS2_BLKST_FREE, GFS2_BLKST_DINODE, &n);
1501 	BUG_ON(blk == BFITNOENT);
1502 
1503 	rgd->rd_last_alloc = blk;
1504 
1505 	block = rgd->rd_data0 + blk;
1506 
1507 	gfs2_assert_withdraw(sdp, rgd->rd_free);
1508 	rgd->rd_free--;
1509 	rgd->rd_dinodes++;
1510 	*generation = rgd->rd_igeneration++;
1511 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1512 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1513 
1514 	al->al_alloced++;
1515 
1516 	gfs2_statfs_change(sdp, 0, -1, +1);
1517 	gfs2_trans_add_unrevoke(sdp, block, 1);
1518 
1519 	spin_lock(&sdp->sd_rindex_spin);
1520 	rgd->rd_free_clone--;
1521 	spin_unlock(&sdp->sd_rindex_spin);
1522 
1523 	return block;
1524 }
1525 
1526 /**
1527  * gfs2_free_data - free a contiguous run of data block(s)
1528  * @ip: the inode these blocks are being freed from
1529  * @bstart: first block of a run of contiguous blocks
1530  * @blen: the length of the block run
1531  *
1532  */
1533 
1534 void gfs2_free_data(struct gfs2_inode *ip, u64 bstart, u32 blen)
1535 {
1536 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1537 	struct gfs2_rgrpd *rgd;
1538 
1539 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1540 	if (!rgd)
1541 		return;
1542 
1543 	rgd->rd_free += blen;
1544 
1545 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1546 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1547 
1548 	gfs2_trans_add_rg(rgd);
1549 
1550 	gfs2_statfs_change(sdp, 0, +blen, 0);
1551 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1552 }
1553 
1554 /**
1555  * gfs2_free_meta - free a contiguous run of data block(s)
1556  * @ip: the inode these blocks are being freed from
1557  * @bstart: first block of a run of contiguous blocks
1558  * @blen: the length of the block run
1559  *
1560  */
1561 
1562 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
1563 {
1564 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1565 	struct gfs2_rgrpd *rgd;
1566 
1567 	rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
1568 	if (!rgd)
1569 		return;
1570 
1571 	rgd->rd_free += blen;
1572 
1573 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1574 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1575 
1576 	gfs2_trans_add_rg(rgd);
1577 
1578 	gfs2_statfs_change(sdp, 0, +blen, 0);
1579 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
1580 	gfs2_meta_wipe(ip, bstart, blen);
1581 }
1582 
1583 void gfs2_unlink_di(struct inode *inode)
1584 {
1585 	struct gfs2_inode *ip = GFS2_I(inode);
1586 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1587 	struct gfs2_rgrpd *rgd;
1588 	u64 blkno = ip->i_no_addr;
1589 
1590 	rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
1591 	if (!rgd)
1592 		return;
1593 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1594 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1595 	gfs2_trans_add_rg(rgd);
1596 }
1597 
1598 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
1599 {
1600 	struct gfs2_sbd *sdp = rgd->rd_sbd;
1601 	struct gfs2_rgrpd *tmp_rgd;
1602 
1603 	tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
1604 	if (!tmp_rgd)
1605 		return;
1606 	gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
1607 
1608 	if (!rgd->rd_dinodes)
1609 		gfs2_consist_rgrpd(rgd);
1610 	rgd->rd_dinodes--;
1611 	rgd->rd_free++;
1612 
1613 	gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
1614 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
1615 
1616 	gfs2_statfs_change(sdp, 0, +1, -1);
1617 	gfs2_trans_add_rg(rgd);
1618 }
1619 
1620 
1621 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
1622 {
1623 	gfs2_free_uninit_di(rgd, ip->i_no_addr);
1624 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
1625 	gfs2_meta_wipe(ip, ip->i_no_addr, 1);
1626 }
1627 
1628 /**
1629  * gfs2_rlist_add - add a RG to a list of RGs
1630  * @sdp: the filesystem
1631  * @rlist: the list of resource groups
1632  * @block: the block
1633  *
1634  * Figure out what RG a block belongs to and add that RG to the list
1635  *
1636  * FIXME: Don't use NOFAIL
1637  *
1638  */
1639 
1640 void gfs2_rlist_add(struct gfs2_sbd *sdp, struct gfs2_rgrp_list *rlist,
1641 		    u64 block)
1642 {
1643 	struct gfs2_rgrpd *rgd;
1644 	struct gfs2_rgrpd **tmp;
1645 	unsigned int new_space;
1646 	unsigned int x;
1647 
1648 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
1649 		return;
1650 
1651 	rgd = gfs2_blk2rgrpd(sdp, block);
1652 	if (!rgd) {
1653 		if (gfs2_consist(sdp))
1654 			fs_err(sdp, "block = %llu\n", (unsigned long long)block);
1655 		return;
1656 	}
1657 
1658 	for (x = 0; x < rlist->rl_rgrps; x++)
1659 		if (rlist->rl_rgd[x] == rgd)
1660 			return;
1661 
1662 	if (rlist->rl_rgrps == rlist->rl_space) {
1663 		new_space = rlist->rl_space + 10;
1664 
1665 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
1666 			      GFP_NOFS | __GFP_NOFAIL);
1667 
1668 		if (rlist->rl_rgd) {
1669 			memcpy(tmp, rlist->rl_rgd,
1670 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *));
1671 			kfree(rlist->rl_rgd);
1672 		}
1673 
1674 		rlist->rl_space = new_space;
1675 		rlist->rl_rgd = tmp;
1676 	}
1677 
1678 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
1679 }
1680 
1681 /**
1682  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
1683  *      and initialize an array of glock holders for them
1684  * @rlist: the list of resource groups
1685  * @state: the lock state to acquire the RG lock in
1686  * @flags: the modifier flags for the holder structures
1687  *
1688  * FIXME: Don't use NOFAIL
1689  *
1690  */
1691 
1692 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
1693 {
1694 	unsigned int x;
1695 
1696 	rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
1697 				GFP_NOFS | __GFP_NOFAIL);
1698 	for (x = 0; x < rlist->rl_rgrps; x++)
1699 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
1700 				state, 0,
1701 				&rlist->rl_ghs[x]);
1702 }
1703 
1704 /**
1705  * gfs2_rlist_free - free a resource group list
1706  * @list: the list of resource groups
1707  *
1708  */
1709 
1710 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
1711 {
1712 	unsigned int x;
1713 
1714 	kfree(rlist->rl_rgd);
1715 
1716 	if (rlist->rl_ghs) {
1717 		for (x = 0; x < rlist->rl_rgrps; x++)
1718 			gfs2_holder_uninit(&rlist->rl_ghs[x]);
1719 		kfree(rlist->rl_ghs);
1720 	}
1721 }
1722 
1723